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Abstract. In this work we address graph based semi-supervised learning using the theory
of the spatial segregation of competitive systems. First, we define a discrete counterpart over
connected graphs by using direct analogue of the corresponding competitive system. This model
turns out doesn’t have a unique solution as we expected. Nevertheless, we suggest gradient
projected and regularization methods to reach some of the solutions. Then we focus on a
slightly different model motivated from the recent numerical results on the spatial segregation
of reaction-diffusion systems. In this case we show that the model has a unique solution and
propose a novel classification algorithm based on it. Finally, we present numerical experiments
showing the method is efficient and comparable to other semi-supervised learning algorithms at
high and low label rates.

1. Introduction

In this paper we consider a semi-supervised learning approach which deals with the classi-
fication of a large number of unlabeled data when very few labels just are available. In some
applications such as medical images, we have few training examples which are labeled. The aim
is to find efficient algorithms with good performance with these few labeled examples. In this
situation, geometric or topological properties of the unlabeled data has been used to propose
and to improve several algorithms.

A common way to use the unlabeled data in semi-supervised learning is to build a graph over
the data e.g., in image classification. To start, we requires to construct an adjacency matrix, or
weight matrix W , for the data set, which encodes the similarities between pairs of date nodes.
If our data set consists of n points X = {x1, x2, · · · , xn} ⊂ Rd, then the weight matrix W is
an n × n symmetric matrix, where the element wij represents the similarity between two data
points xi and xj . The similarity is always nonnegative and should be large when xi and xj are
close together spatially, and small (or zero), when xi and xj are far apart. As a choice, the
weight matrix can be the Gaussian weights

wij = exp(−|xi − xj |
2σ2

),

where | · | is the Euclidean norm and σ is a free parameter that controls the scale at which points
are connected by strong similarities wij in the weight matrix. In fact, the weight matrix W
provides the data set with a graph structure, where each pair of points (xi, xj) is connected by
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an edge with edge weight wij . Other choices of weight matrix are possible, such as the k-nearest
neighbor graph, see [26].

Recently, many works aim to transpose and adapt Partial Differential Equations (PDEs) on
graphs. This reformulation of continuous problems onto a graph is such that the solution behaves
analogously to the continuous formulation see [6, 15].

In graph-based semi-supervised learning, we are given a few labeled data on the graph and
we aim to extend these labels from a given set to the rest of the nodes in graph in a decisive
manner. To model propagating labels in semi-supervised learning, it is assumed that the learned
labels vary smoothly and not change fast within high density regions of the graph (smoothness
assumptions). Based on this assumption different approaches have been proposed. One of the
pioneer methods is Laplace learning, [27]. Later it has been observed that the Laplace learning
can give poor results in classification [23]. The results are often poor because the solutions have
localized spikes near the labeled points, while being almost constant far from them. To overcome
this problem several versions of Laplace learning algorithm have been proposed, for instance
Laplacian regularization, [1], weighted Laplacian, [25, 13] and p-Laplace learning, [11, 24]. Also,
the limiting case in p-Laplacian when p tends to infinity is so called Lipschitz learning is studied
in [22] and similar to continuum PDEs is related to finding the absolutely minimal lipschitz
extension of the training data. Recently, in [10] another approach to increase accuracy of
Laplace learning is given and called Poisson learning.

To explain these methods, let as before X = {x1, · · · , xn} denotes the data points or equiv-
alently vertices in a graph. We assume there is a subset of the nodes Γ = {x1, · · · , xm} ⊂ X

that their labels are given with a label function g : Γ → Rk. It is further assumed that
yi = g(xi) ∈ {e1, · · · , ek} where ei is the standard basis in Rk and represents the ith class.
In graph-based semi-supervised learning, we aim to extend labels to the rest of the vertices
{xm+1, · · · , xn}.

In Laplace learning algorithm the labels are extended by finding the minimizer u : X → Rk
for the following problem min Jn(u) := 1

2

n∑
i=1

n∑
j=1

wij |u(xi)− u(xj)|2

subject to u(xi) = yi, for i = 1, 2, · · · ,m.
(1)

The minimizer will be a harmonic function satisfying{
Lu(x) = 0, x ∈ X \ Γ,
u = g, on Γ,

where L is the unnormalized graph Laplacian given by

Lu(xi) =
n∑
j=1

wij (u(xi)− u(xj)).

Let u = (u1, · · · , uk) be a solution of (1), the label of node xi ∈ X \ Γ is dictated by

arg max
j∈{1,··· ,k}

uj(xi).
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In p-Laplacian algorithm, the object function is replaced with

min
u∈K

Jp(u) :=
n∑
i=1

n∑
j=1

wij |u(xi)− u(xj)|p,

or for weighted Laplacian the following object is considered

min
u∈K

Jγ(u) :=
n∑
i=1

n∑
j=1

γ(xi)wij |u(xi)− u(xj)|2,

where γ(x) ≈ dist(x,Γ)−α increases the weights of edges adjacent to labels much more than
other edges. Using this method encourages the label functions to be flat (more regular) near
labels, thus preventing the appearance of spikes (discontinuous solutions). (see [25, 13] for more
details).

The authors in [10] have proposed a scheme, called Poisson learning that replaces the label
values at training points as sources and sinks, and solves the Poisson equation on the graph as
follows:

Lu(xi) =
m∑
j=1

(yj − y)δij , i = 1, · · · , n,

with further condition
∑n

i=1 d(xi)u(xi) = 0, where y = 1
m

∑m
i=1 yi is the average label vector,

δij is Kronecker delta and d(xi) =
∑n

j=1wij is the degree of vertex xi.
A major topic in this strand concerns the continuum limits of these PDEs or functional on

graphs, linking between the discrete and continuum perspectives and the study of the consistency
of the above methods in the large data limit, we refer the reader to e.g. [13, 17, 19].

Let x1, x2, · · · , xn be a sequence of independent and identically distributed random variables
on Ω with smooth distribution ρ(x). Define the weight matrix

wij = ηε(|xi − xj |) =
1

εd
η(
|xi − xj |

ε
)

where η is a radial kernel η : [0,∞)→ [0,∞) which is nonincreasing, continuous at 0 and given
by

η(t) =

{
1 0 ≤ t ≤ 1
0 t > 2.

In [16] it has been shown that for u sufficiently smooth, with probability one

1

ε2n2
Jn(u)→

k∑
i=1

∫
Ω
|∇ui(x)|2ρ(x) dx := J∞(u),

where ρ is density function of a probability measure that data points are generated.
In this paper, we propose a novel classification scheme based on the segregation model. Our

motivation for the current work is based on properties of a class of reaction diffusion system
with highly comparative rate which yields segregation of different components which means at
each point in the domain different components can not coexist. In this model, we solve problem
(1) with additional constraint

ui(x) · uj(x) = 0, for all x ∈ X, 1 ≤ i 6= j ≤ k.
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The continuous form corresponding to the segregation model has been studied extensively, for
instance [9, 8, 4]. We state the results related to limiting configuration of the following coupled
system as parameter ε tends to zero.


∆uεi =

uεi
ε

∑
j 6=i

uεj(x) in Ω,

uεi ≥ 0 in Ω,

uεi (x) = φi(x) on ∂Ω,

(2)

for i = 1, · · · ,m. The boundary values satisfy

φi(x) · φj(x) = 0, i 6= j on the boundary.

First, for each fixed ε the exist unique positive solution (uε1, · · · , uεm). Next, to explain the
asymptotic behaviour of 2 by construction barrier functions, one can show that the normal
derivative of uεi is bounded independent of ε, this consequently proves that the H1-norm of uεi
is bounded. Next integrating the equation in 2 over Ω indicates

(uεi
∑
j 6=i

uεj(x))→ 0 as ε tends to zero.

Let (u1, · · · , um) be the limiting configuration, then the results in [9] shows that ui are pairwise
segregated, i.e., ui(x) ·uj(x) = 0, harmonic in their supports and satisfy the following differential
inequalities

• −∆ui ≥ 0,

• −∆(ui −
∑
j 6=i

uj) ≤ 0,

• Let x belongs to interface then

lim
y→x

∇ui(y) = − lim
y→x

∇uj(y) Free boundary condition.

In [14], it has been shown that the limiting solution of (2) minimizes the following functional
min J(u) :=

1

2

∫
Ω

k∑
i=1

|∇ui|2 dx

subject to ui = φi, on ∂Ω,

ui ≥ 0, and ui · uj = 0 in Ω,

(3)

In [8, 7, 2, 3, 4], the authors have proposed and analyzed the following numerical scheme to
solving limiting configuration of system (2) and (3)

ut+1
i (x) = max

(
uti(x)−

∑
j 6=i

utj(x), 0
)

where v̄(x) denotes the average of values of v of neighbors of mesh point x, and t refers to
iterations.
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2. Calculus on graphs and setting the problem

This section is devoted to review some facts about the calculus on graphs and setting our
problem. Let X = {x1, · · · , xn} denote the vertices of a graph with the symmetric edge weight
wxy between x, y ∈ X. The degree of a vertex x is given by d(x) =

∑
y∈Xwxy. Let `2(X) denote

the set of functions u : X→ R equipped with the inner product

(u, v) =
∑
x∈X

u(x)v(x),

for functions u, v : X → R. We also define a vector field on the graph to be an antisymmetric
function V : X × X → R2, i.e. V (x, y) = −V (y, x) and denote the space of all vector fields by
`2(X2). The gradient of a function u ∈ `2(X) is the vector field

∇u(x, y) = u(y)− u(x).

For two vector fields V1, V2 the inner product is

(V1, V2)`2(X2) =
1

2

∑
x,y∈X

wxyV1(x, y)V2(x, y),

so the norm of vector field V is ‖V ‖`2(X2) =
√

(V, V )`2(X2). The graph divergence of a vector

field V is defined by

div V (x) =
∑
y∈X

wxyV (x, y),

which satisfies the divergence formula

(∇u, V )`2(X2) = −(u,div V ).

The unnormalized graph laplacian L of a function u ∈ `2(X) is defined as

Lu(x) := −div (∇u)(x) =
∑
y∈X

wxy(u(x)− u(y)).

The operator L satisfies

(Lu, v) = (∇u,∇v)`2(X2). (4)

In Appendix, we revisit some important tools for PDE on graphs, such as Poincaré inequality
and maximum principle.

We consider a subset of the nodes Γ ⊂ X as the boundary of the graph and define the
admissible set

K :=
{
u = (u1, · · · , uk) ∈

(
`2(X)

)k
: ui = φi on Γ for i = 1, . . . , k

}
,

where the boundary data φi are known and satisfy the following assumption

φi ∈ {0, 1}. (5)
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We are going to solve the optimization problem

min
u∈K

J(u) := ‖∇u‖2 =

k∑
i=1

‖∇ui‖2`2(X2)

subject to: (6)

ui(x) ≥ 0, ∀x ∈ X, (7)

ui(x) · uj(x) = 0 ∀x ∈ X and i 6= j.

The following theorem states the existence of solution to problem (6) and describes some
properties of the solution.

Theorem 2.1. Problem (6) has a solution. Moreover, the solution satisfies

(i) Lui(x) ≤ 0, if ui(x) = 0, and x ∈ X.
(ii) Lui(x) = 0, if ui(x) > 0, and x ∈ X \ Γ.

(iii) For every x ∈ X \ Γ, there is one component ui such that ui(x) > 0.

Proof. Consider a minimizing sequence un ∈ K for problem (6). By Poincaré inequality, Propo-
sition 8.1, we obtain that

‖uni ‖ ≤
1

λ1
‖∇(uni − φi)‖+ ‖φi‖ ≤

1

λ1
(‖∇uni ‖+ ‖∇φi‖) + ‖φi‖.

Thus for every i = 1, · · · , k the sequence {uni } is bounded. Hence, there exists a subsequence
such that for every components i

u
nj

i → ui.

It is obvious that u = (u1, · · · , uk) satisfies the constraints in (6) and is a minimizer.
(i) To prove this part of theorem, notice that if ui(x) = 0 for some x ∈ X, then

Lui(x) =
∑
y∈X

wxy(ui(x)− ui(y)) = −
∑
y∈X

wxyui(y) ≤ 0.

(ii) Now consider the case ui(x) > 0 for some fixed node x ∈ X \ Γ. Let us define

vi = ui + tδx, vj = uj when j 6= i,

where δx is delta function which is δx(y) = 0 for every y 6= x and δx(x) = 1. We also consider
some values of t such that vi(x) ≥ 0, (t can be negative). Obviously, v ∈ K and satisfies the
constraints in (6). Therefore,

0 ≤‖∇v‖2 − ‖∇u‖2 = ‖∇vi‖2 − ‖∇ui‖2

=
1

2

∑
y,z∈X

wyz
(
(vi(z)− vi(y))2 − (ui(z)− ui(y))2

)
=
∑
y∈X

wxy
(
t2 + 2t(ui(x)− ui(y))

)
=t2d(x) + 2tLui(x).

Since ui(x) > 0, so parameter t can be take some negative values and when t→ 0± we conclude
that Lui(x) = 0.
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(iii) Let A := {x ∈ X \ Γ : u1(x) = · · · = uk(x) = 0}. We claim that A = ∅. Otherwise, there
is some x ∈ A such that wxy 6= 0 and ui(y) > 0 for some i ∈ {1, · · · , k}. Thus

Lui(x) = −
∑
z∈X

wxzui(z) ≤ −wxyui(y) < 0.

Now choose the competitor v with

vi = ui + tδx, vj = uj when j 6= i,

for some t ≥ 0 and repeat the calculation in the previous part to get

0 ≤ ‖∇v‖2 − ‖∇u‖2 = t2d(x) + 2tLui(x).

Since Lui(x) < 0, we can choose small value for t to arrive at a contradiction. �

Remark 2.2. Problem (6) has not necessary a unique solution. For example, in a symmetry
model, there are different choices for classification. In a toy example, consider a graph with four
vertices A, B, C and D. Let wAB = wBC = wCD = wAD = 1 and wAC = wBD = 0. Also,
A and C are boundary points with boundary data u1(A) = u2(C) = 1 and u1(C) = u2(A) = 0.
This problem has four solutions

(i) u1(B) = u1(D) = 1
2 , u2(B) = u2(D) = 0,

(ii) u2(B) = u2(D) = 1
2 , u1(B) = u1(D) = 0,

(iii) u1(B) = u2(D) = 1
2 , u2(B) = u1(D) = 0,

(iv) u1(D) = u2(B) = 1
2 , u1(B) = u2(D) = 0.

3. Gradient projection method

Gradient projection is one method that we use to solve the problem (6). In the sequel, we
use the following notation for averaging of a function

Au(x) :=
1

d(x)

∑
y∈X

wxyu(y),

where

d(x) =
∑
y∈X

wxy,

and the admissible set

S :=
{
u = (u1, · · · , uk) ∈

(
`2(X)

)k
: ui = φi on Γ, ui ≥ 0, ui · uj = 0 for i 6= j

}
.

We also use the projection P :
(
`2(X)

)k → S which is defined as follows. For every v ∈
(
`2(X)

)k
and every x ∈ X \ Γ, first we find

ix := arg max
1≤j≤k

(vj(x))+

and if it has more than one solution we choose the smallest index. (v+ := max(v, 0).) Then we
define u := Pv with uix(x) = (vix(x))+ and uj(x) = 0 for j 6= ix. For any x ∈ Γ, we obviously
define ui(x) = φi(x).

The following lemma shows why P is a projection.
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Lemma 3.1. Consider v ∈
(
`2(X)

)k
, then

‖v − Pv‖ ≤ ‖v −w‖, for all w ∈ S.

Proof. Consider w ∈ S and define the index function σ : X → {1, · · · , k} such that wj(x) = 0
for j 6= σ(x). So,

‖v −w‖2 =
∑
x∈X

(vσ(x)(x)− wσ(x)(x))2 +
∑
i 6=σ(x)

(vi(x))2


=
∑
x∈X

k∑
i=1

(vi(x))2 +
∑
x∈X

(
(vσ(x)(x)− wσ(x)(x))2 − (vσ(x)(x))2

)
Similarly we have,

‖v − Pv‖2 =
∑
x∈X

k∑
i=1

(vi(x))2 +
∑
x∈X

(
(vix(x)− (vix(x))+)2 − (vix(x))2

)
.

It is enough to show

(vix(x)− (vix(x))+)2 − (vix(x))2 ≤ (vσ(x)(x)− wσ(x)(x))2 − (vσ(x)(x))2, (8)

for every x ∈ X. If vix(x) ≤ 0, then vσ(x)(x) ≤ 0 by the definition of ix. Thus the left hand
side of (8) is zero as well as the right hand side is positive (recall that wσ(x)(x) ≥ 0). If
vix(x) ≥ 0 ≥ vσ(x)(x), the left hand side of (8) is negative and the right hand side will be
positive. If vix(x) ≥ vσ(x)(x) ≥ 0, then (8) will hold trivially. �

Our algorithm according to the gradient projection method is as follows:

(1) Choose an initial guess in S. It might be an extension of boundary data as ui,0 = φi on Γ
and ui,0 = 0 in X \ Γ.

(2) For t ≥ 0, calculate the gradient of the cost function J at ut = (u1,t, · · · , uk,t). It is equal to

δJ(ut) := (Lu1,t, · · · ,Luk,t).

(3) Update the value of each components by

ut+1 := P(ut − 1

d
Lut) = P(Aut).

(4) If ‖ut+1 − ut‖ is small then stop the algorithm, otherwise set t = t + 1 and iterate the
previous steps.

The following proposition proves why the algorithm works.

Proposition 3.2. Assume u is a solution of problem (6). Consider an arbitrary point x ∈ X\Γ
such that ui(x) > 0, then

ui(x) = Aui(x) ≥ Auj(x), for all j 6= i.
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Proof. For a fixed index j 6= i, define a competitor v ∈ S

vi := ui − ui(x)δx, vj := uj + ui(x)δx, v` := u`, for ` 6= i, j.

Therefore,

0 ≤‖∇v‖2 − ‖∇u‖2 = ‖∇vi‖2 + ‖∇vj‖2 − ‖∇ui‖2 − ‖∇uj‖2

=
∑
y

wxy
(
(vi(x)− vi(y))2 + (vj(x)− vj(y))2 − (ui(x)− ui(y))2 − (uj(x)− uj(y))2

)
=
∑
y 6=x

wxy
(
ui(y)2 + (ui(x)− uj(y))2 − (ui(x)− ui(y))2 − uj(y)2

)
=
∑
y 6=x

2wxyui(x) (ui(y)− uj(y)) .

Since ui(x) > 0, we get

1

d(x)

∑
y

wxyui(y) ≥ 1

d(x)

∑
y

wxyuj(y) = Auj(x).

Now apply result (ii) of Theorem 2.1, we obtain that ui(x) = 1
d(x)

∑
y
wxyui(y). �

Define the map G : (`2+(X))k −→ S with rule Gu = v, where

vi = max

ui −∑
j 6=i

uj , 0

 ,

and `2+(X) is the set of nonnegative functions. If we replace this map instead of projection P

in the gradient projection algorithm, we will obtain the segregation method. We will study this
method in Section 5.

Proposition 3.3. Suppose P is the projection on S defined in Section 3. Then there is a positive
constant C0 such that

‖Pu− u‖ ≤ ‖Gu− u‖ ≤ C0‖Pu− u‖,
for every u ∈ (`2+(X))k.

Proof. The left inequality will be hold according to Lemma 3.1. For a fixed node x ∈ X, we
need to show

k∑
j=1

|vj(x)− uj(x)|2 ≤ C0

k∑
j=1

|wj(x)− uj(x)|2, (9)

where Gu = v and Pu = w. Let i := arg max1≤j≤k uj(x). If there is more than one index for i,
then v(x) = G(u)(x) = 0. Thus (9) holds for C0 ≥ 2.

Now assume that i is the unique solution of i := arg max1≤j≤k uj(x). Hence,

wi(x) = ui(x), and wj(x) = vj(x) = 0 for j 6= i.
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Therefore, using the definition of vi and applying Cauchy-Schwartz inequality we obtain

k∑
j=1

|vj(x)− uj(x)|2 =

∑
j 6=i

uj(x)

2

+
∑
j 6=i
|uj(x)|2

≤ ((k − 1) + 1)
∑
j 6=i
|uj(x)|2 = k

k∑
j=1

|wj(x)− uj(x)|2,

which implies that (9) holds for C0 ≥ k. �

4. Penalization method

In this section, we apply the penalization method to solve problem (6). Since finding the
solution directly is not efficient (the optimization problem (6) is a problem with (n − m)k

parameters), we would prefer to solve a PDE instead. In this case, we can just find a PDE for
points that ui > 0 and this subdomain is not known. In fact, we have a free boundary problem
and if we know the domain {ui > 0}, we are able to find the solution. In order to overcome this
difficulty, we relax the constraint with a penalty term and try to estimate the solution for the
original problem (6).

Indeed, we consider the following problem

min
u∈K

Jε(u) :=
k∑
i=1

‖∇ui‖2`2(X2) +
1

ε

∑
i 6=j

(u2
i , u

2
j ). (10)

Since the energy function is convex, it is straightforward that the problem has a unique solution
which satisfies

Lui +
ui
ε

∑
j 6=i

u2
j = 0, in X \ Γ. (11)

Furthermore, we know that the solution is nonnegative due to the maximum principle, Propo-
sition 8.2.

Theorem 4.1. Let uε be the solution of (10) for every ε > 0. For any sequence εn → 0, there
is a subsequence of uεn which converges to a minimizer of (6).

Proof. Let v be an arbitrary minimizer of (6), then we have Jε(v) = J(v) thanks to the con-
straint in (6). So,

Jε(u
ε) ≤ Jε(v) = J(v) =: Λ.

Therefore ‖∇uε‖ ≤
√

Λ is uniformly bounded and then by Poincaré inequality we get ‖uε‖ is
bounded, since

λ1‖uεi − φi‖ ≤ ‖∇(uεi − φi)‖ ≤
√

Λ + ‖∇φi‖.
Hence, toward a subsequence we can assume that uεn → u ∈ K. We need to show that u is a
minimizer of (6) and satisfies its constraints. First, we have

1

εn

∑
i 6=j

(
(uεni )2, (uεnj )2

)
≤ Jεn(uεn) ≤ Λ,
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so, ∑
i 6=j

(
(uεni )2, (uεnj )2

)
−→ 0.

Thus, (u2
i , u

2
j ) = 0 and taking into account that uεi is nonnegative we obtain that the constraint

in (6) holds for u. To close the argument, note that

‖∇u‖2 = lim
εn→0

‖∇uεn‖2 ≤ Jεn(uεn) ≤ Λ.

So, J(u) = Λ and u is a minimizer. �

In the sequel we introduce an algorithm to solve problem (10) or its equivalent version (11).
The later is a nonlinear system of PDEs and is not easy to solve directly. For an explanation
of our algorithm, we define the following sequence which converges to the solution (11). First,
consider the harmonic extension ui,0 of boundary data given by{

Lui,0 = 0, in X \ Γ,

ui,0 = φi on Γ,

which is a nonnegative function according to the maximum principle. Next, given nonnegative
functions um := (u1,m, · · · , uk,m), let ui,m+1 be the solution of the following system{

Lui,m+1 +
ui,m+1

ε

∑
j 6=i

u2
j,m = 0, in X \ Γ,

ui,m+1 = φi, on Γ,

The following theorem shows that why our algorithm works for solving problem (11).

Theorem 4.2. Suppose that the boundary data φi satisfy (5). Then the sequence um makes the
following order

1 ≥ ui,0 ≥ ui,2 ≥ · · · ≥ ui,2m ≥ · · · ≥ ui,2m+1 ≥ · · · ≥ ui,3 ≥ ui,1 ≥ 0. (12)

Moreover, the limit of this sequence is the solution of (11).

Proof. Step 1: We show that ui,m is nonnegative.
This is a matter of maximum principle, Proposition 8.2. For m = 0, it is obvious due to
maximum principle and taking account that ui,0 is a harmonic function. In fact, we consider
p(x) ≡ 0 in Proposition 8.2. To show ui,m+1 ≥ 0, again apply Proposition 8.2 for nonnegative
function p(x) = 1

ε

∑
j 6=i u

2
j,m.

Step 2: ui,0 ≤ 1.
Apply the maximum principle for harmonic function 1− ui,0 and recall the assumption (5).

Step 3: In this step we show that ui,m ≤ ui,0.
We just need to note that Lui,m+1 ≤ 0 = Lui,0. Then maximum principle yields that ui,m+1 ≤
ui,0.
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Step 4: Here, we claim that ui,2 ≥ ui,1.
By the result of Step 2, we can write

0 = Lui,2 +
ui,2
ε

∑
j 6=i

u2
j,1

≤ Lui,2 +
ui,2
ε

∑
j 6=i

u2
j,0.

This together with the equation of ui,1, the maximum principle yields that ui,2 ≥ ui,1.

Step 5: Now we close the argument with the induction. Assume that

ui,0 ≥ ui,2 ≥ · · · ≥ ui,2m ≥ ui,2m−1 ≥ · · · ≥ ui,1 ≥ 0. (13)

for some m ≥ 1, we will extend the string for m+ 1. By the following inequality

0 = Lui,2m+1 +
ui,2m+1

ε

∑
j 6=i

u2
j,2m ≥ Lui,2m+1 +

ui,2m+1

ε

∑
j 6=i

u2
j,2m−1

we can apply Proposition 8.2 for function (ui,2m − ui,2m+1) when p = 1
ε

∑
j 6=i u

2
j,2m−1 to deduce

that ui,2m ≥ ui,2m+1. Similarly, we have

0 = Lui,2m+1 +
ui,2m+1

ε

∑
j 6=i

u2
j,2m ≤ Lui,2m+1 +

ui,2m+1

ε

∑
j 6=i

u2
j,2m−2

according the induction assumption uj,2m−2 ≥ uj,2m. Comparing with the equation for ui,2m−1

we obtain ui,2m+1 ≥ ui,2m−1. Now repeat this argument to show that ui,2m ≥ ui,2m+2 ≥ ui,2m+1.

Step 6: From (12), we know that there are ui and ui as the limit of

ui,2m −→ ui,

ui,2m+1 −→ ui.

These limits satisfy 
Lui + ui

ε

∑
j 6=i u

2
j = 0, in X \ Γ

Lui +
ui
ε

∑
j 6=i u

2
j = 0, in X \ Γ

ui = ui = φi on Γ.

(14)

Multiply in inner product `2(X) both equations by ui − ui and subtract to get

ε‖∇(ui − ui)‖2`2(X2) =
(
ui(ui − ui),

∑
j 6=i

u2
j

)
−
(
ui(ui − ui),

∑
j 6=i

u2
j

)
.
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It is worthwhile noticing that although the equation holds in X \ Γ, since ui − ui = 0 on Γ we
are able to utilize the relation (4). Now sum over i, we obtain

ε‖∇(u− u)‖2`2(X2) =
∑
i

(
uiui,

∑
j 6=i

(u2
j + u2

j )
)
−
∑
i

(
u2
i ,
∑
j 6=i

u2
j

)
−
∑
i

(
u2
i ,
∑
j 6=i

u2
j

)
=
∑
i,j

(
uiui, u

2
j + u2

j

)
−
∑
i

(
uiui, u

2
i + u2

i

)
− 2

∑
i,j

(
u2
i , u

2
j

)
+ 2

∑
i

(
u2
i , u

2
i

)
=
∑
x∈X

∑
i,j

ui(x)ui(x)(u2
j (x) + u2

j (x))

−
∑
x∈X

∑
i

ui(x)ui(x)(ui(x)− ui(x))2

− 2
∑
x∈X

(∑
i

(ui(x))2
)(∑

i

(ui(x))2
)

≤2
∑
x∈X

(∑
i

ui(x)ui(x)−
(∑

i

(ui(x))2
)(∑

i

(ui(x))2
))
≤ 0,

where we have used the relation 0 ≤ ui ≤ ui ≤ 1 and in the last line the Cauchy-Schwartz
inequality has been applied.

Then ‖∇(u−u)‖2`2(X2) ≤ 0 and so, u−u is constant in X. Taking this along to the boundary

condition implies that u = u in X. Recall (14), ui = ui is a solution of (11). �

5. The main algorithm for clustering

In the previous sections of the paper we considered a minimization problem (6), which un-
fortunately has no unique solution over connected graphs. In the current section in order to
overcome the lack of uniqueness we consider different functional and prove the existence and
uniqueness of the minimizer. The definition of a new functional is inspired from the numerical
results of the spatial segregation of reaction-diffusion systems (see [2]).

5.1. Existence and uniqueness of a minimizer. We introduce the discrete counterpart of
the spatial segregation problem defined on connected graphs. In the rest of the paper the
following notation

ẑq = zq −
∑
j 6=q

zj ,

for elements (z1, z2, . . . , zk), will play a crucial role. Let ui(xl) for i = 1, 2 · · · k denote the
average value of ui for all neighbor points of xl :

ui(xl) =
1

deg(xl)

∑
p∼l

wlpui(xp),
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where

deg(xl) =
∑

(xl,y)∈E

wxly,

and V and E stand for a set of vertices and edges respectively. We will set a graph X to be a
tuple (V,E) in the rest of this section.

When X is a connected graph and also consist of discrete and finite number of points, it
turns out that we have to consider slightly different functional (see [2, Section 2]). Since L is a
self-adjoint operator, then we set:

J(u1, . . . , uk) =
1

2

k∑
i=1

‖∇ui‖2`2(X2) −
∑
i 6=j

(∇ui,∇uj)`2(X2) , (15)

over the set

K =
{
u = (u1, · · · , uk) ∈

(
`2(X)

)k
: ui = φi on Γ, ui ≥ 0, ui · uj = 0 for i 6= j

}
. (16)

Theorem 5.1. The following minimization problem

inf
K
J(u1, u2, . . . , uk) (17)

has a solution.

Proof. The proof repeats the same lines as in Theorem 2 in [2]. In [2] the functional is defined for
standard difference scheme, but it can be easily concluded for the connected graphs as well. �

Now, by following the proofs of Proposition 1 and Lemma 2 for Fl(x, s) = 0 in [2], We can
observe that the similar results can be obtained for connected graphs instead of finite difference
discretization. Although, it is worth to notice that the standard finite difference grid is itself a
particular case of connected graphs.

Thus, we conclude the following result:

Theorem 5.2. For every minimizer (u1, . . . , uk) ∈ K, the following properties hold:

• Lûi(x) = 0 whenever ui(x) > 0.
• Lûi(x) ≥ 0 whenever x ∈ X \ Γ.

To prove the uniqueness of the minimizer (u1, . . . , uk) ∈ K one needs some technical lemmas.

Lemma 5.3. Let X = (V,E) be a connected graph. If any two vectors (u1, u2, . . . , uk) and
(v1, v2, . . . , vk) are minimizers to the (17), then the following equation holds:

max
x∈X

(ûl(x)− v̂l(x)) = max
{x∈X : ul(x)≤vl(x)}

(ûl(x)− v̂l(x)) ,

for all l = 1, 2, . . . , k.

Proof. We argue by contradiction. Suppose for some l0 we have

ûl0(x0)− v̂l0(x0) = max
x∈X

(ûl0(x)− v̂l0(x)) =

= max
{x∈X : ul0 (x)>vl0 (x)}

(ûl0(x)− v̂l0(x)) > max
{x∈X : ul0 (x)≤vl0 (x)}

(ûl0(x)− v̂l0(x)).
(18)



GRAPH BASED SEMI-SUPERVISED LEARNING USING SPATIAL SEGREGATION THEORY 15

It is easy to observe that the following simple chain of inclusions hold:

{ul(x) > vl(x)} ⊂ {ûl(x) > v̂l(x)} ⊂ {ul(x) ≥ vl(x)}. (19)

We obviously see that ul0(x0) > vl0(x0) ≥ 0 implies ûl0(x0) > v̂l0(x0). On the other hand,
Theorem 5.2 gives us

Lûi(x0) = 0,

and
Lv̂i(x0) ≥ 0.

Therefore
L(ûi − v̂i)(x0) ≤ 0.

Thus,

0 < (ûl0(x0)− v̂l0(x0)) ≤ 1

deg(x0)

∑
y∈X

wx0y (ûl0(y)− v̂l0(y)) ,

which implies that ûl0(x0) − v̂l0(x0) = ûl0(y) − v̂l0(y) > 0, when wx0y 6= 0. Due to the chain
(19), we apparently have ul0(y) ≥ vl0(y). According to our assumption (18), the only possibility
is ul0(y) > vl0(y) for all y ∈ X. Now we can proceed the previous steps for all y ∈ V such that
(x0, y) ∈ E, and then for each one we will get corresponding neighbours with the same strict
inequality and so on. Since the graph X is connected, then one can always find the shortest
path from a given vertex y to the vertex belonging Γ. Continuing above procedure along this
path we will finally approach to a vertex on Γ, where as we know ul0(x) = vl0(x) = φl0(x) for all
x ∈ Γ. Hence, the strict inequality fails, which implies that our initial assumption (18) is false.
Observe that the same arguments can be applied if we interchange the roles of ul(x) and vl(x).
Thus, we also have

max
V

(v̂l(x)− ûl(x)) = max
{vl(x)≤ul(x)}

(v̂l(x)− ûl(x)) ,

for every l = 1, 2, . . . ,m.
Particularly, for every fixed l = 1, 2. . . . ,m and x ∈ V we have

− max
{vl(x)≤ul(x)}

(v̂l(x)− ûl(x)) = −max
x∈V

(v̂l(x)− ûl(x)) ≤

≤ ûl(x)− v̂l(x) ≤ max
x∈V

(ûl(x)− v̂l(x)) = max
{ul(x)≤vl(x)}

(ûl(x)− v̂l(x)). (20)

�

Thanks to Lemma 5.3 in the sequel we will use the following notations:

A := max
l

(
max
x∈V

(ûl(x)− v̂l(x))

)
= max

l

(
max

{ul(x)≤vl(x)}
(ûl(x)− v̂l(x))

)
,

and

B := max
l

(
max
x∈V

(v̂l(x)− ûl(x))

)
= max

l

(
max

{vl(x)≤ul(x)}
(v̂l(x)− ûl(x))

)
.

Next lemma we write down without a proof. The proof can be easily adapted from [2][Lemma
4].
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Lemma 5.4. Let X = (V,E) be a connected graph. Assume given two vectors (u1, u2, . . . , uk)
and (v1, v2, . . . , vk) are minimizers to the (17). For them we set A and B as defined above. If
A > 0 and it is attained for some l0, then A = B > 0 and there exists some t0 6= l0, and y0 ∈ V,
such that

0 < A = max
{ul0 (x)≤vl0 (x)}

(ûl0(x)− v̂l0(x)) = max
{ul0 (x)=vl0 (x)=0}

(ûl0(x)− v̂l0(x)) = v̂t0(y0)− ût0(y0).

Now, we are ready to proof the uniqueness of the minimizer. The following Theorem is true.

Theorem 5.5 (Uniqueness). Let X = (V,E) be a connected graph. Then there exists a unique
minimizer (u1, u2, . . . , uk) ∈ K, to minimization problem (17).

Proof. Let two vectors (u1, u2, . . . , uk) and (v1, v2, . . . , vk) are minimizers to (17). For these
vectors we set the definition of A and B. Then, we consider two cases A ≤ 0 and A > 0. If
we assume that A ≤ 0, then according to Lemma 5.4, we get B ≤ 0. But if A and B are
non-positive, then the uniqueness follows. Indeed, due to (20) we have the following obvious
inequalities

0 ≤ −B ≤ ûl(x)− v̂l(x) ≤ A ≤ 0.

This provides for every l = 1, k and x ∈ V we have ûl(x) = v̂l(x), which in turn implies

ul(x) = vl(x).

Now suppose A > 0. Our aim is to prove that this case leads to a contradiction. Let the value A
is attained for some l0 ∈ 1, k, then due to Lemma 5.4 there exist y0 ∈ V and t0 6= l0 such that:

0 < A = B = max
{ul0 (x)≤vl0 (x)}

(ûl0(x)− v̂l0(x))

= max
{ul0 (x)=vl0 (x)=0}

(ûl0(x)− v̂l0(x)) = v̂t0(y0)− ût0(y0).

Thus, along with the fact that v̂t0(y0) > ût0(y0) implies vt0(y0) ≥ ut0(y0), we can repeat the
same steps as in the proof of Lemma 5.3 to obtain

(v̂t0(y0)− ût0(y0)) ≤ 1

deg(y0)

∑
(y0,z)∈E

wy0z (v̂t0(z)− ût0(z)) .

This implies A = v̂t0(y0) − ût0(y0) = v̂t0(z) − ût0(z) > 0 for all (y0, z) ∈ E. The chain (19)
provides that for all (y0, z) ∈ E, we have vt0(z) ≥ ut0(z). Since a graph X is connected, then
one can always find a shortest path from y0 to some vertex w ∈ Γ. Assume the vertices along
this path are y0; y1; . . . ; yk−1; yq = w. Hence, for every 0 ≤ j ≤ q− 1, we have (yj , yj+1) ∈ E, i.e.
every vertex yj+1 is a closest neighbor for yj and yj+2.

According to the above arguments for the neighbor vertex y1 ∈ V we proceed as follows: If
vt0(y1) > ut0(y1), then obviously

(v̂t0(y1)− ût0(y1)) ≤ 1

deg(y1)

∑
(y1,z)∈E

wy1z (v̂t0(z)− ût0(z)) .

This, as we saw a few lines above, leads to A = v̂t0(y1) − ût0(y1) = v̂t0(z) − ût0(z) > 0 for all
(y1, z) ∈ E. In particular, A = v̂t0(y2)− ût0(y2) > 0.
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If vt0(y1) = ut0(y1), then due to v̂t0(y1) − ût0(y1) = A = B > 0, there exists some λ0 6= t0,
such that

0 < A = v̂t0(y1)− ût0(y1) =
∑
l 6=t0

(ul(y1)− vl(y1)) = uλ0(y1)−
∑
l 6=t0

vl(y1).

Note that uλ0(y1) > 0 implies ul(y1) = 0 for all l 6= λ0, and particularly vt0(y1) = ut0(y1) = 0.
Following the definition of A, we get

A = uλ0(y1)−
∑
l 6=t0

vl(y1) ≥ ûλ0(y1)− v̂λ0(y1),

which in turn gives 2
∑
l 6=λ0

vl(y1) ≤ 0, and therefore vl(y1) = 0 for all l 6= λ0. Hence

A = uλ0(y1)−
∑
l 6=t0

vl(y1) = ûλ0(y1)− v̂λ0(y1),

This suggests us to apply the same approach as above to arrive at

(v̂λ0(y1)− ûλ0(y1)) ≤ 1

deg(y1)

∑
(y1,z)∈E

wy1z (v̂λ0(z)− ûλ0(z)) ,

which leads to A = ûλ0(y1) − v̂λ0(y1) = ûλ0(z) − v̂λ0(z) > 0, for all (y1, z) ∈ E. In particular,
A = ûλ0(y2)− v̂λ0(y2) > 0. Thus, combining two cases we observe that for y2 ∈ V there exist an
index 1 ≤ ly2 ≤ m (in our case ly2 = t0 or ly2 = λ0) such that

either ûly2 (y2)− v̂ly2 (y2) = A, or ûly2 (y2)− v̂ly2 (y2) = −A. (21)

It is not hard to understand that the same procedure can be repeated for a vertex y2 instead of
y1 and come to the same conclusion (21) for y3 ∈ V and some index ly3 and so on. This allows
to claim that for every yj ∈ V along the path (y0, . . . , yq) there exist some lyj such that

|ûlyj (yj)− v̂lyj (yj)| = A > 0.

But this means that above equality holds also for yq = w ∈ Γ, which will lead to a contradiction,
because for every z ∈ Γ, and l = 1, · · · , k one has ûl(z)− v̂l(z) = 0. This completes the proof of
uniqueness. �

5.2. Semi-supervised learning algorithm. Using definition of graph Laplacian in

L(ui −
∑
j 6=i

uj) ≥ 0,

yields

L(ui −
∑
j 6=i

uj)(xl) =

n∑
s=1

wls

ui(xl)− ui(xs)−∑
j 6=i

(uj(xl)− uj(xs))

 . (22)

To obtain ui(xl) from (22) we impose the following conditions

ui(xl) · uj(xl) = 0 and ui(xl) ≥ 0.
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From these

deg(xl)ui(xl)−
n∑
s=1

wls ui(xs) +
n∑
s=1

∑
j 6=i

wls uj(xs) = 0

Then

ui(xl) = ui(xl)−
∑
j 6=i

uj(xl).

According to the above ideas and following the Theorem 5.2 we can easily check that if
(u1, u2, . . . , uk) ∈ K is a unique minimizer to (17), then it satisfies the following system of
equations: 

u1(x) = max

(
u1(x)−

∑
p 6=1

up(x), 0

)
, x ∈ X \ Γ,

u2(x) = max

(
u2(x)−

∑
p 6=2

up(x), 0

)
, x ∈ X \ Γ,

. . . . . . . . . . . .

uk(x) = max

(
uk(x)−

∑
p 6=k

up(x), 0

)
, x ∈ X \ Γ,

ui(x) = φi(x), x ∈ Γ, for all i = 1, 2, . . . , k.

(23)

Remark 5.6. We remark that the system (23) itself implies the disjointness property, i.e. it is
easy to see that if a vector (u1, u2, . . . , uk) satisfies the system (23), then ui(x) · uj(x) = 0, for
every x ∈ V and i 6= j.

In order to approximate the solution of system (23) we propose the iterative scheme which is
easy to implement as follows: For i = 1, · · · k, and xl ∈ X \ Γ we set

u
(t+1)
i (xl) = max

u(t)
i (xl)−

∑
j 6=i

u
(t)
j (xl), 0

 .

In the lite of Remark 5.6 it can be seen that for every iteration the disjointness property is
preserved. In other words the following lemma is true.

Lemma 5.7. Let X = (V,E) be a connected graph. The above iterative method satisfies

u
(t)
i (x) · u(t)

j (x) = 0, ∀x ∈ V, i 6= j.

The label decision for vertex xl is determined by the strictly positive component ui(xl), i.e.
find an index i0 such that ui0(xl) > 0. Thus, in this case the label corresponding to a vertex xl
will be i0.



GRAPH BASED SEMI-SUPERVISED LEARNING USING SPATIAL SEGREGATION THEORY 19

6. Experimental results

In this section we are going to test and compare two well-known semi-supervised learning
algorithms to the one we have developed based on segregation theory. We note that our taken
dataset for visual implementations will be the random generated half-moons and for the statistic
analysis we will use the well-known MNIST. Thus, we will depict the predictions for Laplace
learning, Poisson learning and our learning (We call it Segregation learning) algorithms.

We run the learning algorithms for different number of initial label of classes and for different
number of classes (basically we will run for 3, 4 and 5 classes). For each implementation all the
classes have the same number of nodes, i.e, either all classes have 200 or 300 nodes. The reader
can also observe the red nodes on every figure. They correspond to the randomly chosen initial
known labels. In the figures 1–15 below one can observe that, when the initial number of labels
per class is small, i.e. 2, 3 or 5 labels, then the Laplace learning algorithm is performing poorly,
whilst both the Poisson and our Segregation learning algorithms are performing much better
and have more or less the same accuracy.

When the initial number of labels per class is 10 or 20 labels, then the performance of the
Laplace learning becomes more accurate and is getting close to the results depicted for Poisson
and Segregation learning algorithms.

Tables 1 and 2 show the average accuracy over all 100 trials for various low and high label
rates. The implementations have been done on MNIST dataset only for 3 classes. We see that
for low label rates Laplace learning performs poor as we noted in the depicted figures. On the
other hand Poisson and Segregation learning perform better and predicted more or less with the
same accuracy. For high label rates Laplace learning performs much better and gets close to
Poisson and Segregation learning results.

Figure 1. Comparison of Laplace, Poisson and Segregation learning algorithms
for 3 classes and initial 2 labels per class.

7. Conclusion

In this work we develop several semi-supervised algorithms on graphs. Our main algorithm
is a new approach for graph-based semi-supervised learning based on spatial segregation theory.
The method is efficient and simple to implement. We presented numerical results showing that
Segregation Learning performs more or less as Poisson Learning algorithm not only at high label
rates, but also at low label rates on MNIST dataset.
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Figure 2. Comparison of Laplace, Poisson and Segregation learning algorithms
for 3 classes and initial 3 labels per class.

Figure 3. Comparison of Laplace, Poisson and Segregation learning algorithms
for 3 classes and initial 5 labels per class.

Figure 4. Comparison of Laplace, Poisson and Segregation learning algorithms
for 3 classes and initial 10 labels per class.
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Figure 14. Comparison of Laplace, Poisson and Segregation learning algorithms
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Figure 15. Comparison of Laplace, Poisson and Segregation learning algorithms
for 5 classes and initial 20 labels per class.
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8. Appendix

In this section, we record two important statements in graphs, Poincaré inequality and max-
imum principle for superharmonic functions.

Proposition 8.1 (Poincaré inequaity). Assume the graph X is connected. For every Γ ⊂ X,
there exists constant λ1 > 0, the first eigenvalue of Laplacian, such that

λ1‖u‖`2(X) ≤ ‖∇u‖`2(X2)

for all u ∈ `2(X) satisfying u = 0 on Γ.

Proof. By the contradiction, we may assume that there exist the sequence un such that

‖∇un‖`2(X2) ≤
1

n
‖un‖`2(X), un = 0 on Γ.

Let ûn := un/‖un‖, then ‖∇ûn‖ → 0. The sequence {ûn(x)}n is uniformly bounded (|ûn(x)| ≤
‖ûn‖ = 1) and so there is a subsequence ûni and the limit function u such that ûni(x) → u(x)
for every x ∈ X. Hence, ∇ûni → ∇u, and so ∇u = 0 which yields that u is a constant function
on X. On the other hand, from the boundary data ûni = 0 on Γ we obtain that u = 0 on Γ and
so u = 0 on all of the graph. This contradicts the condition ‖u‖ = limni→∞ ‖ûni‖ = 1. �

Proposition 8.2 (Maximum principle). Assume the graph X is connected. Let p(x) be a non-
negative function on X, and u satisfies Lu + p(x)u ≥ 0 in X \ Γ. If u ≥ 0 on Γ, then u ≥ 0 in
X.

Proof. Define A+ := {x ∈ X : u(x) ≥ 0} and A− := {x ∈ X : u(x) < 0}. Let v := max(−u, 0)
and multiply by the equation to get

0 ≤ (Lu+ pu, v) =(∇u,∇v)`2(X2) + (pu, v)

=
1

2

∑
x,y∈X

wxy(u(x)− u(y))(v(x)− v(y)) +
∑
x∈X

p(x)u(x)v(x)

=− 1

2

∑
x,y∈A−

wxy(u(x)− u(y))2 −
∑

x∈A−,y∈A+

wxy(u(x)− u(y))u(x)

−
∑
x∈A−

p(x)(u(x))2 ≤ 0

If A− 6= ∅, we can find an edge between A+ and A− due to the connectedness of G. (Note that
the boundary condition ensures that A+ 6= ∅.) But the second term in the above calculation
yields that wxy = 0 for every x ∈ A− and y ∈ A+. Therefore, we must have A− = ∅. �
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