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Abstract

Probabilistic generation of photons and electron-positron pairs due to
the processes of strong-field quantum electrodynamics (SFQED) is often the
most resource-intensive part of the kinetic simulations required in order to
model current and future experimental studies at high-intensity laser facili-
ties. To reduce its computational demands one can exploit tabulation of the
precomputed rates, time-step sub-cycling, dynamic down-sampling of parti-
cle/photon ensembles and other approaches. As the culmination of previous
improvements, the method described here provides the opportunity to make
the minimal possible number of rate computations per QED event. In some
of our tests, this method was shown to increase performance by more than
an order of magnitude. The computational routine is publicly available as
a part of the open-source framework hi-χ designed as a Python-controlled
toolbox for collaborative development.

Keywords: Strong-field QED, Compton process, Breit-Wheeler process,
Particle-In-Cell, Performance optimization

1. Introduction

Modern high-intensity lasers provide the opportunity to reach electromag-
netic field intensities sufficient for invoking processes of strong-field quantum
electrodynamics (SFQED), namely non-linear Compton scattering and Breit-
Wheeler pair production [1]. These processes trigger a variety of phenomena,
for both single-particle and collective dynamics of emerging plasmas, with
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potential applications as novel particle and radiation sources, as well as for
fundamental studies relevant to SFQED, plasma physics and astrophysics [2].

Numerical simulations with probabilistic account for SFQED processes
play an important role in both theoretical studies and experiment design for
the upcoming experimental programs in this field. A particularly fruitful
methodology is based on extending the Particle-In-Cell (PIC) method with a
module that accounts for the SFQED processes via probabilistic generation of
macro-photons, electrons and positrons that sample the 3D3P distribution by
an ensemble of reasonable size [3, 4, 5, 6, 7, 8, 9, 10]. The implementations
of this approach, also referred to as QED-PIC codes, include EPOCH [6],
PIConGPU [11], VPIC 2.0 [12], OSIRIS [13], Smilei [9], Tristan-MP [14],
Calder [15], PICADOR [16], PICSAR-QED [10] to name a few.

Although the QED-PIC method is practical, it can become computa-
tionally demanding due to two main reasons: (1) the prolific generation
of new particles/photons and (2) the extremely short time step sometimes
required in order to resolve the characteristic temporal interval between
SFQED events (as compared to the laser wave period and other macroscopic
scales of the simulated processes). The former is commonly addressed by
resampling the ensemble through either merging/coalescing macro-particles/
photons [17, 18, 19, 20] or by removing some of the macro-particles/photons
and redistributing their statistical weight among the remaining ones [21, 3,
22, 23].

The way to handle computational demands caused by the short charac-
teristic time between SFQED events depends on the method used for sam-
pling these events. The use of rejection sampling implies that for each time
step and for each photon/particle two random numbers are generated: one
that defines the proposed energy of photon/particle to be generated and an-
other that determines whether the proposal is accepted or rejected [3]. This
method is particularly simple to implement as it requires the computation of
two special functions, more precisely the first and second synchrotron func-
tions [7], found in some standard libraries. The low-energy singularity in the
probability distribution for Compton scattering can be resolved via increased
sampling of low energy proposals through the method of importance sampling
[24]. By setting the requirements on the time step and implementation of
time step sub-cycling to meet said requirements, it also becomes possible
to meet the general rejection sampling requirements for any simulation set-
ting [7]. For each particle/photon this procedure permits the generation of
arbitrarily many events (even local cascades) during each global time step,
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making the whole computational method versatile for studies of extreme pro-
cesses [25, 26, 27].

However, the use of rejection sampling has a disadvantage: even if the
restrictions on the sub-step duration are mildened, the method requires multi-
ple, and sometimes expensive, computations of the involved special functions
per accepted SFQED event. [28] The reason for this is that events need to be
rare (per time step) in order to be accurately counted. In the limit of the time
step being large there is a unit probability of accepting proposals, resulting
in one event per time step. This leads to an artificially uniform generation
of events and the exclusion of cases when more than a single event happens
within a single time sub-step.

In order to avoid unnecessary computations of the special functions one
can use inverse sampling, in which a distribution is sampled through its cu-
mulative distribution, which has already been used in the area of PIC simula-
tions to account for ionization processes (see e.g. [29]). For SFQED processes
the use of inverse sampling implies the following procedure [30, 6, 31]. For
each particle/photon we generate a uniformly distributed in the unit interval
random number p and compute the so-called optical depth d by inverting
p = 1–e−d. If we represent the probability of an event not happening within

the time interval (t, t+ t1) as P (t, t+ t1) = 1− exp
(
−
∫ t+t1
t

R(τ)dτ
)
, where

R(τ) is the instantaneous event rate over the particle’s trajectory, then the
exponent plays the role of a cumulative optical depth. As the particle prop-
agates, the integral in the exponent is computed using first-order Eulerian
integration until it reaches the value of d, at which point the event is assigned
to occur. The energy of the outgoing particles is determined randomly us-
ing inverse sampling through pre-computed look-up tables that store the
inverse cumulative probability as a two-dimensional function of energy and
the quantum nonlinearity parameter χ. A new value of optical depth is then
generated in order to determine the moment for the next event to happen,
and so on.

In the inverse sampling procedure that was just described one of the
most computationally demanding parts is the evaluation of the rate, which
is performed once per particle per global time step. This is done in many
state-of-the-art QED-PIC codes, including [6, 10]. For many cases where
the global time step is set by the requirements of the field solver, this is
not a very limiting restriction, as it becomes necessary to reevaluate the
rate over this time scale anyways in order to account for the field evolution.
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However, as was the case for the rejection sampling scheme described earlier,
the global time step has to be sufficiently small in order to ensure that events
are rare. This means that several evaluations of the rate are necessary for
the same reason as described before. Furthermore, choosing the global time
step according to the highest rate expected to be observed in a simulation
can result in additional computational demands.

While there are many techniques for reducing computational demands, it
is difficult to assess performance in an exact and general manner, as perfor-
mance strongly depends on factors such as problem, method, hardware and
various implementation details. We have here described a number of meth-
ods that are commonly employed to improve the performance of SFQED
computations. However, depending on factors such as those just listed, the
performance for any given scenario might naturally vary. Therefore, the de-
velopment and implementation of a unified methodology for comparing the
performance of PIC codes is a very difficult problem. However, we can fo-
cus on minimizing the time step sub-cycling. Regardless of the hardware
and software environment and implementation features of the various com-
ponents of the QED-PIC method, reducing the time-step sub-cycling should
speed up simulations. That is what this paper focuses on.

In this article we present the implementation of a method that combines
the inverse sampling methodology described above with sub-cycling. In doing
so, within each global time step we allow multiple SFQED events originated
from a single particle/photon, including from secondary particles. After the
optical depth is reached, we generate new particles, assign optical depths
for each of them and continue the process until the end of the global time
step. At this point we re-evaluate the rate for all particles/photons in the
ensemble, as the global time step often defines the time scale over which the
field can no longer be assumed to remain unchanged. For this reason this
procedure implies the minimum number of possible rate evaluations: either
one per event or one per global time step, depending on whether the optical
depth is shorter or longer than the global time step. Furthermore, our imple-
mentation, described in more detail in Section 3, also employs high-precision
approximations of the cumulative distribution functions with analytical treat-
ment of limiting cases. The computational accuracy is presented in Section 4
and we perform comprehensive testing in Section 5.
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2. Motivation

The QED-PIC event generator can be implemented in several different
ways, but one thing in common between all of them is that they sample the
events in accordance with the partial rates as described later in equations
3 and 6. The two most common ways of sampling the spectra is to employ
either rejection sampling or inverse transform sampling. In the former case,
an energy value is first picked at random after which rejection sampling is
performed on the partial rate (dW/dE) to determine if the event should
occur. In the latter case, it is first decided if the event occurs at all using
the event rate (W =

∫
(dW/dE) dE), then the energy is determined through

inverse transform sampling of the partial rate.
There are advantages and disadvantages to each of the two approaches.

For example, the latter requires tabulation of the inverse cumulative distri-
bution function, but in both cases the probability of a QED event to occur
within one time step must, naturally, be less than unity. More rigorously,
the probability of a single event within one time step must in fact be much
smaller than unity in order for the number of events over an extended du-
ration of time to be accurate. The reason for this is that we traditionally
neglect the occurrence of multiple events within a single time step. The
total number of events over a large number of time steps should therefore,
on average, be underestimated (not accounting for any quantum interference
effects). This discrepancy is minimized by making the events rare. Further-
more, a high event probability will also lead to an apparent, but unphysical,
temporal correlation between such events.

This is typically only an issue in regimes of very high χ and as the sim-
plest way to ensure sufficient accuracy is decreasing the global time step,
it can for the most part be ignored. At the same time this issue can not
be completely disregarded, as decreasing the global time step can be highly
inefficient. Ultimately, an increased temporal resolution is only necessary for
particles experiencing high values of χ, and typically only for a limited period
of time as the strong fields giving rise to the high χ are often well localized in
both time and space. The general solution is therefore to implement what is
called sub-cycling, wherein the time step is reduced only for the particles for
which it is required, as determined by their instantaneous value of χ. This
can be performed entirely in the particle pusher, without any changes to the
remainder of the PIC loop, and is commonly done by splitting the time step
into an integer number of sub-steps for the selected particles.
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Although only a fraction of the ensemble is typically contributing to the
QED processes, the requirements on the time step will affect the efficiency
of the entire event generator, as its accuracy relies on a large rejection-
acceptance ratio. This in turn implies that the number of rate computations
per accepted event is large. An improvement can be obtained by comput-
ing when the next emission will occur, instead of if it will occur within the
current time step. This minimizes the number of expensive computations
per event, even allowing it to approach unity without loss of accuracy un-
der certain conditions. Furthermore, this way a complete separation of time
scales can be obtained between the QED-event generator and the classical
PIC loop, allowing the global time step to be set through consideration of
only the usual PIC constraints, such as the stability of the field solver.

3. Method

3.1. Memorylessness

If we assume that events are discrete and independent then the time be-
tween events can be described through the exponential distribution. Because
the exponential distribution is memoryless, this can be exploited to create
an event generator that is independent of the chosen global time step of the
PIC simulation. This is achieved by computing the time until the next event.
If the event is determined to occur within the current time step, it can be
performed at the determined time through adaptive sub-cycling. If not, the
event can be discarded and the simulation pushed to the next time step.

We can easily show that this produces consistent sampling of the dis-
tribution function, independently of the choice of the time step ∆t, using
the cumulative distribution function (CDF) of the exponential distribution,
Pe(t

∗ ≤ t) = 1− exp(−λt), where λ is the event rate and t∗ is the time until
the next event. We further assume that λ remains unchanged over one time
step. For t ≤ ∆t, the probability for an event to occur within a current time
step is trivial, as it is entirely determined by the exponential distribution.

P (t∗ ≤ t; t ≤ ∆t) = Pe(t
∗ ≤ t). (1)

With t > ∆t however, the CDF instead contains two terms: (1) The proba-
bility for an event to occur within a concurrent time step (Pe(t

∗ ≤ ∆t)) plus
(2) The probability that the event was rejected in a concurrent time step and
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Figure 1: Graphical representation over how the sub-cycling scheme works. The time until
the next event t∗ is computed for each particle separately (colored circles). If the event is
computed to occur within the current global time step (∆t) the particle is pushed to that
point in time, after which the event is performed (solid arrows). If the event is to occur
outside the current global time step the particle is instead pushed to the end of the global
time step, and the event is discarded (dashed arrows). For simplicity, every event is here
depicted as creating one more particle.

accepted in the succeeding time step.

P (t∗ ≤ t; t > ∆t) = Pe(t
∗ ≤ ∆t) + Pe(t

∗ > ∆t)Pe(t
∗ ≤ t−∆t)

= 1− e−λ∆t + e−λ∆t(1− e−λ(t−∆t))

= 1− e−λt = Pe(t
∗ ≤ t)

(2)

We thus have that P (t∗ ≤ t) = Pe(t
∗ ≤ t) regardless of the value of ∆t. As

such, the choice of time step may, with regard to the event generator, simply
be seen as arbitrary synchronization points, allowing us to completely de-
couple any time step requirement due to particle events from the constraints
due to the fields.

This important property leads to two significant improvements in com-
parison with the general approach [6, 30, 31]. Firstly, we do not need to
impose the smallness on the time step to integrate the optical depth. In-
stead, at each time step we sample events for each particle, and if the event
does not occur on the current step, we simply move the particle for the whole
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time step and discard the event. Otherwise, we move the particle during the
fraction of the time step corresponding to the optical depth, to the position
where secondary particles are produced. This procedure ensures temporal lo-
cality, i.e. all event processing is performed within a single time step and no
state (e.g. an optical depth) needs to be saved between time steps. Secondly,
after the event we can sample for new events from both initial and secondary
particles and move them until all particles move to the end of the time step.
A graphical sketch of how this sub-cycling works is shown in Figure 1. Thus,
we can account for multiple events during a single time step, which also relax
time constraints on a time step in the case of a prolific secondary particles
production.

3.2. Determining the next event

For both Compton scattering and Breit-wheeler pair production the event
rate is simply determined by the total rate λ = W (χ) =

∫
(dW/dE) dE.

Knowing that the time between emissions t∗ is governed by the exponential
distribution it can, through inverse sampling, be obtained as t∗ = − log(r)/W (χ),
where r ∼ U(0, 1) is a uniformly distributed random number. This process
is equivalent to determining the optical depth of a particle.

3.3. Photon emission

The partial rate of nonlinear Compton scattering is given by [32, 33, 34,
35]:

dWγ

dε
=

√
3

2π

α

τC

χ

γ

[
(1− ε)

ε
F1(z) + εF2(z)

]
, z =

2

3χ

ε

1− ε
, (3)

where ε = ℏω/γmc2 is the photon energy normalized to the energy of the
radiating particle, ℏ is the Planck constant, ω is the photon frequency, γ is
the Lorentz factor, m is the electron mass, c is the speed of light, α is the fine
structure constant and τC is the Compton time. F1(x) = x

∫∞
x

K5/3(x
′)dx′

and F2(x) = xK2/3(x) are the first and second synchrotron function, respec-
tively.

3.3.1. Event rate

Consider the total rate of photon emission:

Wγ(χ) =

√
3

2π

α

τC

χ

γ

∫ 1

0

(
(1− ε)

ε
F1(z) + εF2(z)

)
dε (4)
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As described above, the main idea of the new method is estimating the time
t∗ after which the photon is emitted. In order to achieve this, the Compton
rate Wγ(χ) is approximated by a piecewise function over χ, the local trend
is identified and refined using a polynomial approximation (intervals and
local trends are given in Appendix A). The tables specifying intervals over χ
and the local trends are provided in the supplementary materials section for a
more compact narration. The employment of polynomials up to the 9th order
allows us to achieve a relative precision of 10−3, which will be demonstrated
below. Polynomial values can be computed using the Horner scheme [36],
based on Fused Multiply-Add (FMA) instructions, computing multiplication
and addition (a·b+c) in one operation with higher accuracy and performance.
As a result, these computations are relatively lightweight for modern CPUs.
We note that the proposed approach allows for even higher precision, but that
would require additional computations and would be significantly slower. We
believe that the proposed parameters of approximation provide an optimal
compromise between accuracy and computational efficiency, while accuracy
remains at least the same as in the prior scheme [7].

3.3.2. Determining the energy (Compton)

The energy can be obtained through inverse transform sampling of the
partial rate, requiring the computation of the cumulative distribution func-
tion

cdfγ(χ, ε) =
Wγ(χ, ε)

Wγ(χ)
, (5)

where Wγ(χ, ε) =
∫ ε

0
dW
dε′

(χ, ε′) dε′.
In order to obtain the required value of ε the inverse function cdf−1

γ (χ, ε)
(Compton inverse CDF) must be evaluated for r ∼ U(0, 1), for which the
method of tabulation of an inverse function was used. The domain of the
inverse function was represented by a mesh as follows. The mesh is uniform
over r2 ∈ [0.05, 0.93] (96 points), inverted logarithmic condensing to 1 over
r2 ∈ [0.93, 1] (96 points), and logarithmic over χ ∈ [1.5−30, 1.530] (61 points).
The inverse function was evaluated in the nodes. In further computations
linear interpolation is used between nodes in the main region and asymp-
totic approximations are used over r2 ∈ [0.0, 0.05]. Within this approach an
acceptable relative deviation was considered to be below 10−2 in the spec-
ified domain. The typical value was 10−3. We experimentally found that
such a complex distribution of points allows us to approximate the function
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accurately enough to avoid the problems described in [37]. Implementation
details are given in Appendix B.

3.3.3. The particle push algorithm with account for QED effects

The constructed approximations allow us to formulate a new particle push
algorithm of charged particles during a single global time step within the
main PIC cycle with account for QED effects (algorithm 1). The algorithm
functions as follows. Until the particle exits the loop (lines 3-14), signifying
the end of the current time step, the time of emission of the next photon
is continuously updated (lines 4-6). If a photon must be emitted within
this time step, the particle is pushed to coordinates corresponding to the
time of emission (line 11), after which a photon is emitted (line 14) with the
according energy (line 13). Otherwise, the particle is pushed to coordinates
corresponding to the end of the time step (line 8). The emitted photons are
pushed using an algorithm described in Section 3.4.3. Note that χ, rate, and
t∗ are updated at the beginning of each time sub-step, while the fields are
assumed to be constant throughout the global time step in accordance with
the usual assumptions of the PIC method.

Algorithm 1 The particle push algorithm with account for QED effects (for
charged particles)

1: procedure ParticlePush(particle, E,B, dt)
2: t = 0
3: while t < dt do
4: Update χ
5: rate = ComptonRate(χ)
6: t∗ = −log(random()/rate)
7: if t+ t∗ > dt then
8: Pusher(particle, E,B, dt− t)
9: t = dt

10: else
11: Pusher(particle, E,B, t∗)
12: t = t+ t∗

13: invCDF = ComptonInvCDF (χ, random())
14: EmissionPhoton(particle, invCDF )

10



3.4. Photon decay into an electron-positron pair

3.4.1. Event rate (Breit-Wheeler)

The partial rate of Breit-Wheeler pair production is given by [33]:

dW

dεe
=

√
3

2π

α

τC

mc2χγ

ℏω
[(εe − 1)εeF1(zp) + F2(zp)] , (6)

where zp = 2
3χγ(1−εe)εe

. This expression shows the probability of decay of

a photon into an electron-positron pair with energies εeℏω and (1 − εe)ℏω,
respectively.

Similar to the way photon emission is handled, the time of photon decay
is determined from the total pair production rate:

Wp(χγ) =

√
3

2π

α

τC

mc2χγ

ℏω

∫ 1

0

((εe − 1)εeF1(zp) + F2(zp)) dεe. (7)

By computing the Breit-Wheeler rate Wp(χγ) the value of t
∗, at which point

in time the event occurs, can be determined in accordance with Sec.3.2.
For fast computation a piecewise function with identified local trends and
refinement using polynomials is used (intervals and local trends are given in
Appendix C). The demanded precision is the same as in the case of photon
emission.

3.4.2. Determining the energy (Breit-Wheeler)

In order to obtain the dimensionless energy of the generated electron εe
(the energy of the positron is then 1− εe) the same approach as in Sec.3.3.2
is used.

cdfp(χγ, εe) =
Wp(χγ, εe)

Wp(χγ)
, (8)

where Wp(χγ, εe) =
∫ εe
0

dW
dε′e

(χγ, ε
′
e) dε

′
e.

In order to evaluate the inverse function cdf−1
p (χγ, εe) (Breit-Wheeler in-

verse CDF) a mesh logarithmic over r2 ∈ [0.0, 0.05] (64 points), uniform over
r ∈ [0.05, 0.5] (64 points), and logarithmic over χ ∈ [1.5−30, 1.530] (61 points)
is used. Since the function is symmetric with respect to r2 = 0.5, the values
r ∈ [0.5, 1] are not used and in this case cdf−1

p (χγ, r) = 1− cdf−1
p (χγ, 1− r).

Implementation details are given in Appendix D.
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3.4.3. Particle push algorithm with account for QED effects (for photons)

The algorithm of particle push for photons with account for QED effects
by the end of a global time step (algorithm 2) is similar to the algorithm for
charged particles. Unlike the algorithm 1, we do not need a while loop, since
the photon is removed during pair production and no further work is required
on it. If a photon must decay within this time step, the photon is pushed
to coordinates corresponding to the time of decay (line 10), after which an
electron-positron pair is generated (line 13) with the according energies (line
12) and the photon is deleted (line 14). Otherwise, the photon is pushed to
coordinates corresponding to the end of the time step (line 7). The generated
particles are pushed using the algorithm described above in Sec.3.3.3.

Algorithm 2 Particle push algorithm with account for QED effects (for
photons)

1: procedure PhotonPush(particle, E,B, dt)
2: t = 0
3: Update χγ, υ
4: rate = BreitWheelerRate(χγ)
5: t∗ = −log(random()/rate)
6: if t∗ > dt then
7: particle.position += dt · υ
8: t = dt
9: else

10: particle.position += t∗ · υ
11: t = t∗

12: invCDF = BreitWheelerInvCDF (χγ, random())
13: PairProduction(particle, invCDF )
14: Delete particle

4. Validation

We here present the accuracy of the implemented functions by comparing
the functions to the true values, which are computed to a high accuracy (of
the order of 10−15) through a combination of piecewise integration and special
treatment of integrand divergences.
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4.1. Event rates

The implemented Compton rate, Wγ(χ), defined in equation 4, and its
relative accuracy are presented in Figure 2 and compared with the lowest or-
der asymptotic approximations. The implemented function shows a relative
error of less than 2× 10−6 across all values of χ. Similarly, the implemented
Breit-Wheeler rate, Wp(χγ), defined in equation 7, is also presented in Fig-
ure 2. The implemented Breit-Wheeler function shows a relative error of less
than 10−6 for all χγ ≳ 10−2. For χγ ≲ 10−2 the relative error increases to
around 10−3, but as the Breit-Wheeler rate (as well as the absolute error)
in this domain is less than 10−70 s−1, any such errors are computationally
irrelevant.
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Figure 2: The left panels show the implemented Compton (top, blue) and Breit-Wheeler
(bottom, blue) rates, indistinguishable from the true values (solid black), together with the
lowest order asymptotic approximations (dashed) as functions of the quantum nonlinearity
parameter χ. The right panels show the relative errors of the implemented functions as
well as the relative errors of the asymptotic approximations.
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4.2. Spectra

The particle spectra are defined through the derivative of the CDF with
respect to energy. Because of the involvement of the derivative, the numerical
discretization and the two-dimensional nature of the CDF, the accuracy of
the produced spectra becomes more difficult to evaluate compared to the ac-
curacy of the rate functions. Care must therefore be taken when interpreting
the errors of the inverse CDF, and how it relates to the produced spectra.

With these caveats in mind, the inverse CDF and its resulting number
spectra (given by the partial rate) are presented in Figure 3 for both the
Compton and the Breit-Wheeler processes. Both the CDFs and the spectra
show good agreement over a wide range of values of both energy (ε, εe) and
the quantum nonlinearity parameter (χ, χγ). Nevertheless, because the CDF
becomes non-invertible as ε → 1, the relative error contains a divergence in
this limit. However, as was the case for the Breit-Wheeler rate in certain
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Figure 3: The left panels show the implemented Compton (top, markers) and Breit-
Wheeler (bottom, markers) inverse CDFs as functions of energy, compared against the
true values (solid lines) for different χ and χγ . The right panels show the corresponding
number spectra (partial rate) resulting from the inverse CDFs.
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Figure 4: Normalized root mean squared error of the implemented inverse cumulative dis-
tribution function (left) and resulting number spectra (right) as functions of the quantum
nonlinearity parameter (χ, χγ) for both the Compton (blue) and Breit-Wheeler (orange)
processes.

regimes, this generally occurs where the absolute errors of the spectra are
unquestionably negligible.

The normalized root mean squared (RMS) errors of both inverse CDFs
and spectra are presented in Figure 4 as functions of χ (χγ). This is computed
according to √∫ (

f(χ, ε)− f0(χ, ε)
)2

dε

/∫
f0(χ, ε)2 dε, (9)

where f is the implemented function, and f0 the true function. In general,
the inverse CDF and its resulting spectra show typical errors on the order of
10−2-10−3 depending on the regime and process.

5. Numerical verification

Here we conclude by testing our implementation on a few benchmark
cases and comparing against previously published results.

5.1. Cascade development

In this benchmark we simulate the development of a cascade seeded by
a single electron with an initial energy of ε0 = 100GeV, moving in a strong
constant magnetic field (H0 = 0.2ES) oriented perpendicularly to the elec-
tron’s direction of motion. In Figure 5 we show the number of electrons and
positrons with energy greater than 10−3ε0 as a function of time. The results
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Figure 5: Number of electrons and positrons with energy exceeding 10−3ε0 in a cascade
seeded by a single electron with gamma-factor γ0 = ε0/mec

2 = 2 × 105 in a constant
magnetic field, transverse to the electron’s velocity and of strength 0.2ES , presented as a
function of time. The results of [38] (light gray), [4] (medium gray) are shown with solid
lines. Our results (red) and the results of [7] (dark gray) are presented for two different
choices of time step, 0.5trad (markers) and 10−3trad (lines). Error bars and the colored
area indicate the one sigma standard error of the mean across 1000 simulations.

are averaged over 1000 simulations and are performed for two different time
steps, 10−3trad and 0.5trad, where trad = 3.85×γ

1/3
0 (ES/H0)

2/3ℏ2/(mce2). The
benchmark shows excellent agreement between the two choices of time step,
as well as with previously published results [38, 4, 7]. Some deviations can
be seen for t/trad > 6, however all discrepancies are shown to lie within 1-2
standard deviations.

5.2. Cascade spectra

Next, we again simulate a cascade seeded by a single electron in a strong
constant magnetic field oriented perpendicularly to the electron’s direction
of motion, but here with a field strength of H0 = 10−3ES and initial electron
energy γ0 = 1000. The distribution of electrons Φ−(γ, t), positrons Φ+(γ, t)
and photons Φγ(γ, t) are presented in Figure 6 as functions of energy and after
1 fs of cascade development. Our results are averaged over 108 simulation
runs and compared with the results of [6, 7], showing excellent agreement.
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Ridgers (2014), fig. 2
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Figure 6: Distribution of electrons Φ−(γ, t), positrons Φ+(γ, t) and photons Φγ(γ, t) as
functions of energy, normalized to mc2, after t = 1 fs of cascade development. The results
of [6] (light gray), [7] (medium gray) and our results (red) are shown with solid lines. The
colored area indicate the one sigma standard error of the mean across 108 simulations.

5.3. QED cascade in circularly polarized standing wave

In this section we demonstrate capabilities of the developed method of
accounting for QED processes. We consider a model example, which is never-
theless very instructive and widely used for physical insight: a QED cascade
in the fields of a standing circularly polarized plane wave [39, 40, 41, 42,
43, 44, 45]. This wave is homogeneous in directions along both electric and
magnetic fields, these fields rotate in time and their amplitudes are locally
constant. QED processes are more frequent in the vicinity of the electric
field antinode where electrons and positrons quickly gain energy after pho-
ton emission and photons have a high probability to decay. In this field
configuration, when the QED cascade becomes steady-state, the number of
electrons, positrons and photons grows exponentially in time, moreover, ra-
diation losses suppress particle escape from the antinode region [44]. Thus,
the considered configuration of fields can lead to likely the most frequent
(in comparison with other field structures) calls of functions handling QED
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processes, and the calculations of these functions may take a significant part
of computational time.

We performed series of simulations of a QED cascade in the standing
circularly-polarized plane wave with different time steps and wave ampli-
tudes. We analyzed the results and compared the computational perfor-
mance using different event generators: AEG (the adaptive event generator)
[7], mAEG (the modified adaptive event generator) [28] and FQED (the fast
QED-event generator considered in this paper). For simulations with these
event generators we used the same configurations. The simulation box was
64× 2× 2 cells and 2λ× 2λ× 2λ along x, y and z, where λ = 0.8 µm is the
laser wavelength. The time step was varied in range from T/6000 to T/50,
where T ≈ 2.67 fs is the laser period. QED cascade development was con-
sidered during 10T . That period of time is sufficient in order to determine
the cascade growth rate.

Fields were set analytically:

Ey = A/
√
2× cos(kx) sin(ωt),

Ez = A/
√
2× cos(kx) cos(ωt),

By = −A/
√
2× sin(kx) sin(ωt),

Bz = −A/
√
2× sin(kx) cos(ωt),

(10)

other field components were zero. Amplitude A was considered in the range
from 700Rf to 2100Rf , where Rf = 2πmc/eT = 1.3 × 108 G or statV/cm.
For each amplitude and each time step we performed six simulations: two
simulations for each QED-event generator with different seeds for the random
number generator (RNG). Results of simulations, as well as their performance
at certain physical parameters, were averaged over these two simulations.

Initially electrons and positrons were uniformly distributed in the whole
simulation box and the quantity of each was 5 × 104. One macroparticle
(aggregation of a number of physical particles in PIC-codes) was equal to
one real particle. The boundary conditions for particles were periodic due
to the plane structure of the continuous wave. In order to avoid memory
shortage as a result of QED cascade development we used a global leveling
resampling technique [22], which does not allow the number of macroparticles
of any individual type to substantially exceed a manually specified threshold.
The chosen resampling method produces minimal numerical artifacts in the
particle ensemble[22]. The resampling threshold was set such that resampling
was run when the number of macroparticles of any given type exceeded 106.
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Figure 7: (a) Dependencies of the QED cascade growth rate on field amplitude using
different event generators with time step dt = T/100. Solid and dashed lines correspond to
the relative discrepancy of growth rates ηΓ (left y axis) calculated with FQED and mAEG
with respect to the growth rate ΓAEG calculated with AEG , represented by the dotted line
(right y axis). (b) Growth rates determined with the help of different event generators
as functions of the time step at wave amplitude A = 1414Rf . Markers correspond to
performed simulations. (c) Distribution of electron density along the x axis at the last
moment of time t = 10T in simulations with different QED-event generators.

For tests of the developed event generator we used 1 two-CPU node of
the Joint Supercomputer Center of RAS with Intel Xeon Gold 6248R. We
run tests using 1 MPI process and 96 threads.

First, we analyze physical consistency of simulations performed with dif-
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Figure 8: Duration of the particle loop stage and overall duration of the simulation using
different event generators (a) as functions of amplitude of the circularly polarized standing
plane wave with time step dt = T/100 and (c) as a function of time step for wave amplitude
A = 1414Rf . Speedup of the particle loop stage and overall speedup of simulations with
mAEG and FQED relative to simulations with AEG as functions of (b) amplitude and
(d) time step. Asymptotic behavior of the duration of the particle loop stage with the use
of mAEG and FQED event generators are shown by dotted black and dashed black lines,
respectively.

ferent event generators. We consider the QED cascade growth rate Γ as
the main result to compare. In order to determine Γ we calculate the total
quantity of electrons in the simulation box as a function of time Ne(t) and
then Γ = ln [Ne(10T )/Ne(8T )]/ (2T ). As reference values of the growth rate
we consider values ΓAEG obtained with the AEG event generator previously
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used in many studies (for example, see [22, 25, 26, 27, 44]).
Figure 7 (a) shows that ηΓ = (ΓmAEG,FQED − ΓAEG) /ΓAEG (relative dis-

crepancy of growth rates) is about 1%. Within the amplitude range A/Rf >
1000, where ΓT > 1, the relative discrepancy is minimal (≲ 1%). However,
within the lower amplitude range A/Rf < 1000 for both the mAEG and the
FQED event generators ηΓ is several percent. This increase of |ηΓ| can be
explained by low values of ΓT < 1 and consequently a larger dispersion of
results which may demand averaging over more than two performed simula-
tions with different RNG seeds.

To determine the dependence of Γ on time step we choose A = 1414Rf

at which ΓT > 1 and the dispersion of results is assumed insignificant. For
all three event generators fluctuations of the growth rate were within 1%
(average growth rate ≈ 3.215T ), see Fig. 7 (b). The use of the FQED event
generator results in minimal fluctuations within 0.6%, while AEG leads to
the maximal fluctuations around 1%. The maximal considered time step is
dt = T/50, since, according to our simulations, for longer time steps the time
resolution of particle motion becomes insufficient for the given field amplitude
A = 1414Rf .

Besides growth rate, which is calculated based on the amount of particles
in the simulation box, we also show [see Fig. 7 (c)] that spatial electron
distributions obtained in simulations with different event generators are very
close to each other. These distributions are local characteristics and they also
confirm that the developed QED-event generators agree nearly perfectly.

Second, we compare the achievable performance of different event gener-
ators. The main part of the computations for the considered setup is related
to handling of particles as the total duration of each simulation is only slightly
longer than the total time spent in the particle loop stage (Fig. 8 (a), (c)).
Moreover, a substantial part of computations within the particle loop are
devoted to QED processes, especially for A > 1414Rf . An increase of am-
plitude makes QED processes more probable leading to production of more
pairs and photons, substantially increasing both the time spent in the particle
loop as well as the overall computational time. However, owing to resam-
pling, which at A ≳ 1000Rf occurs not only for photons but also for pairs,
t(A) is a concave function (see Fig. 8 (a)).

Within the considered amplitude range the FQED event generator is the
fastest. Its speedup in relation to AEG increases with amplitude and can
exceed the factor of 20 (Fig. 8 (b)). Another event generator, mAEG, demon-
strates qualitatively similar behavior, but speedup is around 2-2.5.
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For a given wave amplitude A = 1414Rf we also investigate performance
at different time steps [Fig. 8 (b), (d)]. At time steps dt ≪ T/3000 all three
event generators show very close performance and the time of computations
scales as ∼ 1/dt. AEG and mAEG do not need sub-cycling and mainly lines
7-9 of the algorithm 1, and lines 6-8 of the algorithm 2 of FQED are enabled.

With increasing time step the AEG event generator is the first to have t
deviate from the 1/dt dependence. At dt > dtAEG ≈ T/3000 it enables sub-
cycling more frequently and as a result at dt > T/150 the performance of sim-
ulations with this event generator becomes nearly independent on time step.
The QED-event generator mAEG determines sub-steps more precisely [28].
So, for this event generator the computational time t scales as 1.2 (dt/T )−1.08

up to dtmAEG ≈ T/1000 and at dt ≳ T/100 the slope of the function t(dt)
substantially decreases.

The event generator FQED shows the best performance among the con-
sidered event generators. The threshold time step at which t(dt) changes its
dependence is dtFQED ≈ T/500, and deviation from this dependence with
increasing dt is quite slow. The maximal speedup is achieved at the maxi-
mal possible dt: performance of simulations with FQED can be more than
an order of magnitude better than that with AEG and up to an order of
magnitude better than that with mAEG.

Owing to properties of particle motion [44], the characteristic time of
QED processes of the considered problem is roughly tQED ∼ 1.5T (Rf/A)

0.645 ≈
T/70. Having compared dtAEG,mAEG,FQED with tQED we conclude that AEG
uses excessively short time steps during sub-cycling (tQED/dtAEG > 40). The
more precise estimate of sub-steps for sub-cycling implemented in mAEG
(tQED/dtmAEG ≈ 14) significantly improves performance, but the FQED
event generator based on both the optical depth methodology and sub-cycling
yields the best performance. The necessity of sub-cycling for this event gen-
erator (lines 11-14 of the algorithm 1, and lines 10-14 of the algorithm 2) is
evident at time steps closest to tQED (tQED/dtFQED ≈ 7), and the optical
depth methodology allows creating particles or photons with a minimal num-
ber of function calls required in order to determine QED rates and generate
random numbers.

To sum up, the developed FQED event generator of QED processes
presents advantages compared to both mAEG and AEG: it has approxi-
mately the same accuracy but speeds up performance by an order of mag-
nitude or more. The greatest benefit of FQED is observed when the QED
rates are greatest (field amplitudes ≳ 1000Rf ) and the time step is quite long.
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However, it is important to note that there may be limiting factors (compu-
tational or physical) that prohibit the use of long time steps at the considered
field amplitudes and thus hinder computational performance. For example,
particle motion or plasma oscillations may demand (within the employed
numerical schemes) very detailed time resolution, with which the speedup
provided by FQED is not so impressive, even for larger field amplitudes.

5.4. QED cascade in two colliding tightly focused laser beams

Although the developed event generator FQED demonstrated exceptional
performance in the previous example, it is important to note that the benefit
of using this method is problem-dependent. The proportion of the particle
ensemble that takes part in QED processes is crucially important, as well
as how strong the electromagnetic fields are, and what time resolution is
sufficient. These aspects can be interconnected. For example, if we aim to
enhance QED processes, laser intensity could be increased by using tighter
laser focusing. This narrows the strongest-field region, making it more inho-
mogeneous. As a result, particles may escape the strong field region more
quickly making a smaller portion of the particle ensemble continuously en-
gaged in QED processes. Additionally, stronger field amplitudes may require
shorter time steps. As a result, the interplay of different factors can diminish
some of the benefits of FQED.
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Figure 9: Results of irradiation of a spherical target of 1λ radius with initial electron
density 5ncr by two counter-propagating linearly polarized tightly focused laser pulses
with power 25 PW and duration of 30 fs. (a) Quantity of electrons Ne in the vicinity
of the plane y = 0 (−0.03λ < y < 0.03λ) as function of iteration number nit. (b) Time
duration demanded for computation of 100 iterations t100 depending on iteration number.
(c) Cumulative sum of t100 to a certain iteration nit (Σt100). Legends for (b) and (c) are
identical. Vertical black dotted lines separates different stages of laser-plasma interaction.
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In this section we consider one of the basic schemes of expected exper-
iments devoted to QED cascades using counter-propagating multipetawatt
laser pulses (see, for example, [3, 46, 47, 48, 49]). Thanks to remarkable
progress in laser science and technology such laser pulses are now almost in
operation [50]. In contrast to the example in the previous section here we
consider a more realistic numerical setup. Two identical counter-propagating
multipetawatt laser beams with focusing angles equal to 45◦ irradiate a seed
hydrogen-like target in the form of a sphere with radius 1λ located in the
mutual focus of these beams. Electron density of the target for numerical
tests is assumed to be ne = 5ncr where ncr = 1.38×1021 cm−3, the laser beam
power is 25 PW (the maximal field amplitude in mutual focus is 2600Rf ),
the laser pulse duration is 30 fs and the pulse has a sin2 envelope.

The simulation box was 264×296×296 cells and 8.2λ×9.1λ×9.1λ along
x, y and z, where λ = 0.9 µm. The time step was T/64, where T ≈ 3 fs. The
time of simulations was 41T . The larger simulation box and the longer time
of simulation are necessary for the modeling of tightly focused laser pulses
using the Total field – Scattered field technique [51] by setting currents at the
closed interface near the PML (perfectly matched layer) [52]. The PML en-
sures absorbing boundary condition for fields; particles and photons were also
absorbed at the boundaries of simulation box. E-mode laser beams propagate
along the x axis and the largest component of the electric field is along the z
axis. The center of the seed sphere was located in the coordinate origin. Ini-
tially this sphere contains 107 macroelectrons and hydrogen-like macroions,
this quantity of macroparticles is equivalent to a statistical weight of parti-
cles of 1100. The threshold for resampling of particles and photons was 107

macroparticles. We used the minimal sufficient spatial and time resolution
for clearer demonstration of the capabilities of different event generators.
Such a rough resolution can be used in practice during the optimization of
various laser pulse or seed target parameters, which may require quite many
simulations.

For these tests we used 2 two-CPU nodes of the Joint Supercomputer
Center of RAS with Intel Xeon Gold 6248R. We run tests using 2 MPI
processes with 96 threads per process.

In order to demonstrate agreement between simulations performed using
different QED-event generators we show the time evolution of the quantity
of electrons Ne in the vicinity of the plane y = 0 (-0.03λ < y < 0.03λ)
(Fig. 9 (a)). At the beginning of interaction the initial target is deformed
and destroyed by the leading edges of laser pulses. As a result, Ne decreases
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between iterations 500 < nit < 1000. At this stage laser fields become
relativistic but insufficient for fast QED processes. However, excessive sub-
cycling within AEG increases the time required to compute the particle loop
stage in comparison with the corresponding time in the cases of mAEG and
FQED. For analysis this time was summed over each consecutive 100 iter-
ations, we call the summed time t100. FQED and mAEG show the same
performance at this stage (Fig. 9 (b)).

At the next stage laser fields become strong enough, a QED cascade is
triggered and a rapid growth of Ne occurs (1000 < nit < 1400). Strong
field amplitudes and a not very short time step allow FQED to reveal its
remarkable performance at this stage: AEG is up to 6 times slower (mAEG
is only slightly slower).

When electron-positron plasma density becomes comparable with the rel-
ativistic critical density, the nonlinear self-consistent regime of laser interac-
tion with extremely dense electron-positron plasma takes place (1400 < nit <
1600). Field amplitudes sharply decrease inside dense plasma due to absorp-
tion and screening, so the speedup of particle loop computations with FQED
and mAEG decreases (Fig. 9 (b)). Between FQED and mAEG the former
shows slightly better performance.

The final stage is expansion of plasma due to decreasing of field intensity
of incident pulses. Here performance becomes very similar with all three
QED-event generators because Ne strongly decreases (Fig. 9 (a)). We should
note that in the case of mAEG Ne shows deviation from that obtained with
AEG and FQED. This discrepancy can be explained by several factors. First,
Ne(nit) is a random value, and, when the quantity of particles decreases, the
dispersion of this random value increases. The reason of discrepancy of Ne at
nit ≈ 1000 (at the end of the deformation and the destruction of the initial
spherical target) is similar. Second, resampling leads to different ensembles
of macroparticles in simulations with different QED-event generators. As a
result, the absorption of macroparticles with different statistical weight at
the boundaries of the simulation box additionally increase dispersion of Ne.

As a result, a remarkable speedup of the particle loop stage with the
FQED event generator during a third (1000 < nit < 1800) of all iterations
results in a decrease of the total particle loop time from 1952 s in the case
of AEG to 786 s. This fact is demonstrated by the cumulative sum of t100 in
Fig. 9 (c).The mAEG event generator ensures performance (811 s for parti-
cle loop stage) very close to that in the case of FQED. The speedup for this
problem is much less than that in the previous section and the reasons lie
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in the properties of interaction. Laser pulses have quite a short duration, so
the maximal field amplitude is achieved for a relatively short period of time.
The maximal fields are in quite a small region which particles escape rela-
tively quickly. Also the dense generated electron-positron plasma decreases
the field amplitude due to absorption and prevents penetration of strong
fields inwards. Moreover, besides the particle loop stage there are other
computational stages among which current deposition, communications and
data output required approximately 900 s, 1100 s and 1100 s, respectively,
independently on the type of QED-event generator. Thus the overall com-
putational time demonstrates a less significant difference in performances:
overall times were 6912 s, 5211 s and 5049 s with AEG, mAEG and FQED,
respectively. Nevertheless, the newly developed QED-event generator can
speed up simulations of such a problem, which is not very demanding for
computation of QED processes, by 30%, while the speedup of the particle
loop stage can achieve the factor of 2.5.

6. Conclusion

In this paper, we proposed a new algorithm for taking into account QED
effects in resource-intensive strong-field quantum electrodynamics numerical
simulations. Unlike other methods, our scheme allows us to avoid excessive
splitting of the time step, which leads to a substantial speed up of simula-
tions. Our implementation is publicly available as part of the open-source
hi-χ project designed as a Python-controlled toolbox for collaborative de-
velopment. We plan to further optimize the code for better utilization of
computational resources of modern CPUs.
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Appendix A. Compton Rate Approximation

The partial rate dW/dε of nonlinear Compton scattering is given in equa-
tion 3. In order to approximate the total rate function W (χ) we considered
it as a sum of two functions:

W (χ) = C1(χ) + C2(χ), (A.1)
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where C1 and C2 correspond to terms in (Eq.3) containing the first and
second synchrotron functions, respectively. Each term was approximated
independently by means of a local trend approximation with refinement using
a polynomial factor in order to approximate the trend-free function:

Ci(χ) ≈ Polynom(f(χ)) · Trend(Ci(χ)) (A.2)

This approach factors out the main trend of the initial function, which
often results in simpler forms of the approximating polynomial. The main
trends of the Compton rate were chosen based on its asymptotic form:

Wγ(χ) =
α

τC

1

γ


5

2
√
3
χ ≈ 1.44χ, if χ ≪ 1

14Γ( 2
3
)

9 3√3
χ2/3 ≈ 1.46χ2/3, if χ ≫ 1

, (A.3)

Basic information about the functions C1(χ) and C2(χ) is presented in Ta-
bles A.1 and A.2, respectively. The exact form of the functions, including
polynomial coefficients, is available in the open-source code hi-χ [53].

Table A.1: Details of approximation of the C1(χ) term of the Compton rate.

χ interval C1(χ) trend f(χ)
Additional information
about approximation of
C1(χ)

2
3χ

< 10−12 3

√
2
3χ

2
3χ

Degree 1 polynomial

10−12 ⩽ 2
3χ

< 10−3 1 6

√
2
3χ

Degree 6 polynomial

10−3 ⩽ 2
3χ

< 1 1 3

√
2
3χ

Rational polynomial P (f(χ))
Q(f(χ))

,
degrees 6 and 4, respectively

1 ⩽ 2
3χ

< 4 3

√(
2
3χ

)2 2
3χ

Degree 6 polynomial

4 ⩽ 2
3χ

< 100 1 2
3χ

Degree 6 polynomial
2
3χ

⩾ 100 1 3χ
2

Degree 4 polynomial

Appendix B. Compton inverse CDF Approximation

As described earlier in Sec.3.3.2, in the main domain linear interpolation
based on precomputed and tabulated values on the mesh is employed.
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Table A.2: Details of approximation of the C2(χ) term of the Compton rate.

χ interval C2(χ) trend f(χ)
Additional information
about approximation of
C2(χ)

2
3χ

< 10−3 1 3

√
2
3χ

Degree 3 polynomial

10−3 ⩽ 2
3χ

< 4

3

√(
2
3χ

)7

;

3

√(
2
3χ

)11

;

3

√
2
3χ
;

3

√(
2
3χ

)5

;

2
3χ
;(
2
3χ

)2

(
2
3χ

)2

C2(χ) considered as a sum
of 6 functions with individual
trends, these functions are
approximated independently.
For each term the degree of
the polynomial is 10.

4 ⩽ 2
3χ

< 100 1 4

√
2
3χ

Rational polynomial P (f(χ))
Q(f(χ))

,
degrees 10 and 2, respectively

2
3χ

⩾ 100 1 3χ
2

Degree 7 polynomial

At small values of ε, the cumulative distribution function scales as

cdfγ(χ, ε) =
1

W (χ)

2 · 32/3

Γ(1
3
)
ε1/3χ2/3. (B.1)

Therefore, the Compton inverse CDF function at the lower bound of r2
(r2 < 0.05) is approximated by the following asymptotic form:

cdf−1
γ (χ, r2) = D(χ) · 3

√
r2 (B.2)

The coefficientD(χ) is calculated from the conditions of the Compton inverse
CDF function continuity at the closest mesh nodes.

Appendix C. Breit-Wheeler Rate Approximation

In order to approximate the function Wp(χγ) we consider it as a sum of
two functions:

Wp(χγ) = B1(χγ) +B2(χγ), (C.1)
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corresponding to terms in (6) containing the first and second synchrotron
functions, respectively. Each term is again approximated independently using
the same approach as in Appendix A:

Bi(χγ) ≈ Polynom(f(χγ)) · Trend(Bi(χγ)) (C.2)

The main trends of the Breit-Wheeler rate were chosen based on its asymp-
totic form:

Wp(χγ) =
α

τC

mc2

ℏω


3
√
3

16
√
2
χγe

−8/3χγ ≈ 0.23χγe
−8/3χγ , if χγ ≪ 1

20π2

7 3√3Γ( 1
3
)4
χ
2/3
γ ≈ 0.38χ

2/3
γ , if χγ ≫ 1

, (C.3)

Basic information about the functions B1(χγ) and B2(χγ) is presented in
Tables C.3 and C.4, respectively.

Table C.3: Details of approximation of the B1(χγ) term of the Breit-Wheeler rate.

χγ interval
B1(χγ)
trend

f(χγ)
Additional information
about approximation of
B1(χγ)

8
3χγ

< 10−6 1 3

√
8

3χγ
Degree 4 polynomial

10−6 ⩽ 8
3χγ

< 10−1 1 3

√
8

3χγ
Degree 8 polynomial

10−1 ⩽ 8
3χγ

< 1 e
− 8

3χγ 3

√
8

3χγ
Degree 7 polynomial

1 ⩽ 8
3χγ

< 4 e
− 8

3χγ 3

√
8

3χγ
Degree 7 polynomial

4 ⩽ 8
3χγ

< 200 e
− 8

3χγ
3χγ

8
Degree 7 polynomial

8
3χγ

⩾ 200 e
− 8

3χγ 1 Without polynomial

Appendix D. Breit-Wheeler Inverse CDF Approximation

As described above in Sec.3.4.2, linear interpolation based on precom-
puted and tabulated values on the mesh is employed in the main domain.

At small values of εe, the cumulative distribution function scales as fol-
lows:

cdfp(χγ, εe) =
1

W (χγ)

3

8
√
π
(χγεe)

3/2 exp(− 2

3χγεe
) (D.1)
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Table C.4: Details of approximation of the B2(χγ) term of the Breit-Wheeler rate.

χγ interval
B2(χγ)
trend

f(χγ)
Additional information
about approximation of
B2(χγ)

2
3χγ

< 2−6
(

3χγ

2

)4
3

√
3χγ

2
Degree 5 polynomial

2−6 ⩽ 2
3χγ

< 2−3
e
− 8

3χγ

3

√
2

3χγ
;

6

√
3χγ

2

The coefficient
Polynom(f(χγ)) in C.2 is
computed as the sum of two
polynomials of degree 72−3 ⩽ 2

3χγ
< 2−1

e
− 8

3χγ

3

√
2

3χγ
;

4

√
3χγ

2

2−1 ⩽ 2
3χγ

< 1 e
− 8

3χγ

6

√
2

3χγ
;

4

√
3χγ

2

1 ⩽ 2
3χγ

< 8 e
− 8

3χγ 6

√
2

3χγ
Degree 7 polynomial

8 ⩽ 2
3χγ

< 50 e
− 8

3χγ
3χγ

2
Degree 7 polynomial

2
3χ

⩾ 50 e
− 8

3χγ
3χγ

2
Degree 7 polynomial

Therefore, the Breit-Wheeler inverse CDF function at the lower bound of
r2 (r2 < 10−5) is approximated by the following asymptotic form:

cdf−1
p (χγ, r2) = L(χγ) ·

χγ

LambertW

[
M(χγ) ·

(
χγ

r2

) 2
3

] , (D.2)

where the LambertW function [54] is employed. The coefficients L and M
are calculated from the conditions of function continuity on the closest mesh
nodes.
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