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Abstract

This paper presents a method for assessing the quality of similarity functions. The scenario taken into account is that of approximate
data matching, in which it is necessary to determine whether two data instances represent the same real world object. Our method
is based on the semi-automatic estimation of optimal threshold values. We propose two methods for performing such estimation.
The first method is an algorithm based on a reward function, and the second is a statistical method. Experiments were carried out to
validate the techniques proposed. The results show that both methods for threshold estimation produce similar results. The output
of such methods was used to design a grading function for similarity functions. This grading function, called discernability, was
used to compare a number of similarity functions applied to an experimental data set.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The process of approximate data matching aims at defining whether two data instances (strings, tuples, trees, . . .)
represent the same real world object. This process appears in several data management applications such as approximate
querying and data integration. In approximate querying, the problem is to find database instances that represent the
same data instance given as a query. In data integration, the aim is to assess whether two data instances originating
from different sources represent the same real world object. Approximate data matching usually relies on the use of
a similarity function. A similarity function f (v1, v2) �→ s assigns a score s to a pair of data values v1 and v2. These
values are considered to be representing the same real world object if s is greater then a given threshold t. There is a
wide range of similarity functions, from very simple string matching functions, like Levenshtein’s edit distance (Hall
& Dowling, 1980; Levenshtein, 1966; Navarro, Baeza-Yates, Sutinen, & Tarhio, 2001), to functions specific to XML
trees (Dorneles, Heuser, Lima, da Silva, & de Moura, 2004). Generally speaking, similarity functions are imperfect
and the quality of their results will depend on the specific data set being matched.

The use of similarity functions in approximate data matching poses two problems. The first is to determine the
threshold value that should be used. The difficulty in this case arises from the fact that the distribution of score values
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obtained by one similarity function may be completely different from the distribution obtained by another. It may even
vary when the same similarity function is applied to different data sets.

The second problem is how to measure if a similarity function is more adequate for a specific data set then another.
Existing approaches for the evaluation of similarity functions (Bilenko, Mooney, Cohen, Ravikumar, & Fienberg,
2003; Cohen, 2003) are based on the recall/precision curve, a classical Information Retrieval (IR) quality measure
(Salton, 1989). Recall/precision curves are useful to express the ability of a similarity function in ranking the results
of matches. However, they are not suitable for expressing how efficient similarity functions are in telling apart relevant
from irrelevant matches.

In this paper, we propose a quality measure specifically designed for similarity functions in the context of data
matching. As a byproduct, our approach also produces a threshold value that may be interpreted as the “best” one for
a given similarity function, when considering a specific data set. Here, “best” means a threshold value that minimizes
false positives and false negatives with respect to an answer set.

The remainder of this paper is organized as follows: Section 2 proposes two methods for threshold definition;
Section 3 presents experiments that evaluate the proposed methods; Section 4 proposes a function called discernability
to assess the quality of similarity functions and applies it to compare several similarity functions; Section 5 presents a
summary and the conclusions.

2. Process of threshold definition

For most applications, the process of threshold definition is left to the user who must choose an arbitrary value to be
applied to one or more queries. If the threshold chosen is too high, there is a risk of not retrieving any results. On the
other hand, if the chosen threshold is too low, many irrelevant items will be retrieved. This problem is aggravated by
the fact, mentioned in the introduction, that the distribution of score values may vary significantly from one similarity
function to another. As a result, the definition of a threshold is generally a trial and error process, in which the user has
to test a number of different values until the result is satisfactory.

In this section, we propose two semi-automatic methods for the calculation of threshold values for a given similarity
function. The output of these methods is an interval of threshold values [tmin

best, t
max
best ] that provides optimum results. By

optimum we mean a threshold value that maximizes the number of cases in which sirrel ≤ tbest ≤ srel, where srel is
the lowest score for a relevant item, sirrel is the highest score for an irrelevant item. In what follows, we explain how
to calculate these scores. The process of threshold definition should be guided by two premises: (i) minimize false
positives and (ii) minimize false negatives.

Both methods rely on a sampling process that takes values from a pre-existing collection V of data values (v) to be
compared by a similarity function. These sample values are then used as queries against V in order to collect knowledge
about how the score values are distributed.

More specifically, the sampling process is as follows: A sample Q ⊆ V is taken from the collection. Each element
q ∈ Q is used as a query object against the collection V. The similarity between the query and each element of the
database is calculated using a given similarity function:

L : (Q ⊆ V ) × V → R
+.

So, for each q ∈ Q we define the set:

Rq = {s ∈ R+/s = L(q, v), v ∈ V }.
Here, Rq induces an order ≺ on V, defined by relation:

v, w ∈ V, v ≺ w ⇔ L(q, v) < L(q, w),

then the values in V are ranked in decreasing order of similarity to the query value q.
Next, a human expert labels each element of the ranking as relevant (rel), if the data value is considered to

represent the same real world object as the query q or as irrelevant (irrel) otherwise. Defining

vq(rel) = min{v/v is relevant}, vq(irrel) = max{v/v is irrelevant},
if n = |Q|, q ∈ Q we note k the index of q such that k ∈ [1, n].
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Table 1
Example of similarity ranking

Score Data item Relevance

1.0000 Journal of Informetrics Relevant
0.8636 Jrnl of Infometrics Relevant
0.7391 J. of Informetrics Relevant
0.1304 Informetrics Journal Relevant
0.1304 JOI Relevant
0.1250 Decision Support Systems Irrelevant
0.0869 TODS Irrelevant
0.0869 SIGMOD Irrelevant
0.0434 TKDE Irrelevant

This labelling enables us to identify two important points in the ranking: sLrel(k) = L(q, vq(rel)), which is the lowest
score corresponding to a relevant item and sLirrel(k) = L(q, vq(irrel)), which is the highest score attained by an irrelevant
item. Those values are used by both methods for threshold definition proposed in this paper. Notice that for some queries
sLirrel(k) could be greater than sLrel(k). Such a situation indicates that the similarity function has failed to separate relevant
from irrelevant items.

Example. Consider a database containing titles of computing science journals. The object “Journal of Informetrics”
is represented in five different forms, namely: “Journal of Informetrics”, “J. of Informetrics”, “JOI”, “Informetrics
Journal”, “Jrnl of Infometrics”. Supposing that the database contains nine data items, the ranking generated by the edit
distance function is shown in Table 1. According to this ranking, the lowest score of a relevant item is srel = 0.1304
and the highest score of an irrelevant item is sirrel = 0.1250.

2.1. Reward function algorithm

A function to measure how good a threshold value is in separating relevant from irrelevant items can be defined by
the simple formula below:

fL(n, t) =
n∑

k=1

d(sLrel(k), sLirrel(k)) (1)

where L is the similarity function used; n the number of queries (sample size); t is the threshold being analyzed; d(·, ·)
measures how adequate sLrel(k) and sLirrel(k) are with the threshold t, such that:

d(sLrel(k), sLirrel(k)) = Rt
rel(k) + Rt

irrel(k) (2)

with

Rt
rel(k) =

⎧⎨
⎩

1 if sLrel(k) > t

−1 else sLrel(k) ≤ t
and Rt

irrel(k) =
⎧⎨
⎩

−1 if sLirrel(k) ≥ t

1 else sLirrel(k) < t
(3)

According to these equations, the optimal threshold tbest (or more precisely the interval for the optimal threshold),
which reaches the maximum value on the function fL(n, t), can be defined as

fL
max = max

t∈[tmin,tmax]
{fL(n, t)}. (4)

where tmin and tmax represent the limits of the threshold interval to be tested.
Algorithm 1 shows a description of BestThresh, which determines tbest. The inputs for this algorithm are: (i)

the number of queries (n); (ii) the limits of the threshold interval to be tested (tmin and tmax); (iii) the lowest sim-
ilarity score achieved by a relevant item for the query k, denoted by sLrel(k); (iv) the highest score achieved by
an irrelevant item for the same query k, denoted by sLirrel(k); (v) the numerical precision (h) on which the algo-
rithm should operate. The algorithm produces two outputs: the interval [tmin

best, t
max
best ] in which the optimal threshold
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(tbest) lies; and its associated fmax, which is the number of points achieved by that threshold interval. The rea-
son for the output of the algorithm being an interval and not a single value is that a number of threshold values,
in sequential order, can achieve fmax. The lowest and the highest values are then used as limits of the interval.
Ways in which fmax could be used in the evaluation of the quality of the similarity function will be discussed in
Section 4.

The limits tmin and tmax are, respectively, the smallest and the largest similarity scores from the rank-
ing generated by the similarity function. The numerical precision, denoted by h, is calculated by the formula
h = (tmax − tmin)/ndiv, where ndiv is the number of divisions we want to make on the interval [tmin, tmax].
This way, each threshold t to be tested by the algorithm is obtained by ti = tmin + ih, where i = 0, . . . ,

ndiv.
The algorithm works as follows: each threshold t between tmin and tmax is tested for each query. The test consists

in comparing t with srel and sirrel. The number of points achieved by each threshold t is computed according to Eqs.
(3) and (4). The highest number of points achieved by a threshold (fmax), which is initialized at the beginning of the
algorithm with the smallest value possible, is then found. Once fmax is established, the algorithm finds the interval in
which all threshold values achieve fmax.

Algorithm 1. BestThresh
1: Input: n, tmin, tmax, sLrel(k), sLirrel(k), k = 1 . . . n, h

2: Output: tmin
best, t

max
best , fmax

3: fmax = −2n;
4: ndiv = (tmax − tmin)/h

5: for (a) i = 0, . . . , ndiv do
6: t = tmin + ih;
7: f (t) = 0;
8: for (b) k = 1, . . . , n do
9: d = 0;
10: if (sLrel(k) > t) then
11: d = d + 1;
12: else
13: d = d − 1;
14: end if
15: if (sLirrel(k) < t) then
16: d = d + 1;
17: else
18: d = d − 1;
19: end if
20: f (t) = f (t) + d;
21: end for (b)
22: if (f (t) ≥ fmax) then
23: fmax = f (t);
24: end if
25: end for (a)
26: t = tmin

27: while (f (t) �= fmax) do
28: t = t + h

29: end while
30: tmin

best = t

31: t = tmax

32: while (f (t) �= fmax) do
33: t = t − h

34: end while
35: tmax

best = t

36: if fmax < 0 then
37: aux = tmax

best
38: tmax

best = tmin
best

39: tmin
best = aux

40: end if
41: Write “the best threshold is in the interval” [tmin

best, t
max
best ]
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2.2. Bivariate normal distribution

In this section, we explore the approach of a bivariate normal distribution (Spiegel, 1992; Weisstein, 2004) to find
tbest. This method is based on statistics and tries to maximize the probability of finding a threshold that minimizes false
positives and false negatives.

Let us consider the probability density function (PDF) for sLirrel and sLrel, denoted by P(sLirrel) and P(sLrel), respectively.
Considering a sample of size n, the experimental mean values are computed as 〈sLirrel〉 = (1/n)

∑n
k=1 sLirrel(k) and

〈sLrel〉 = (1/n)
∑n

k=1 sLrel(k), and the respective standard deviation σ(sLirrel) =
√

[1/(n − 1)]
∑n

k=1[sLirrel(k) − 〈sLirrel〉]2,

σ(sLrel) =
√

[1/(n − 1)]
∑n

k=1[sLrel(k) − 〈sLrel〉]2.
Given the means and the standard deviations, we can calculate the distributions for P(srel) and P(sirrel), which would

approximately be:

P(sLirrel) = 1√
2πσ2(sLirrel)

exp

[
−1

2

(
sLirrel − 〈sLirrel〉

σ(sLirrel)

)2
]

,

P(sLrel) = 1√
2πσ2(sLrel)

exp

[
−1

2

(
sLrel − 〈sLrel〉

σ(sLrel)

)2
]

(5)

Since there is a correlation between sLirrel(k) and sLrel(k), the joint distribution P(sLirrel, s
L
rel) is not necessarily the product

P(sLirrel) · P(sLrel). Therefore, in order to calculate the joint PDF, we need to take the correlation coefficient ρ into
consideration. The formula for the joint PDF is given below:

P(sLirrel, s
L
rel) = 1

2πσ(sLrel)σ(sLirrel)
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)

[(
sLirrel − 〈sLirrel〉

σ(sLirrel)

)2

+
(

sLrel − 〈sLrel〉
σ(sLrel)

)2

− 2ρ

(
sLirrel − 〈sLirrel〉

σ(sLirrel)

) (
sLrel − 〈sLrel〉

σ(sLrel)

)]}
, (6)

where ρ is the correlation coefficient defined by the formula:

ρ = 〈sLrels
L
irrel〉 − 〈sLrel〉〈sLirrel〉
σ(sLrel)σ(sLirrel)

, (7)

that assumes values in the interval [−1, 1], where |ρ| ∼ 1 denotes correlated data and |ρ| ∼ 0 denotes that in our data,
sLrel and sLirrel are independent random variables.

For determining tbest, it is sufficient to find the value of t that yields the maximum:

F (t) = P(sLirrel〈t, sLrel〉t) = 1

2πσ(sLrel)σ(sLirrel)
√

1 − ρ2

∫ t

−∞

∫ ∞

t

exp

{
− 1

2(1 − ρ2)

[(
sLirrel − 〈sLirrel〉

σ(sLirrel)

)2

+
(

sLrel − 〈sLrel〉
σ(sLrel)

)2

− 2ρ

(
sLirrel − 〈sLirrel〉

σ(sLirrel)

) (
sLrel − 〈sLrel〉

σ(sLrel)

)]}
dsLirrel dsLrel (8)

That is, we are trying to find the value of t that maximizes the probability of t being simultaneously greater than sLirrel
and less than sLrel. A simple algorithm was implemented to compute F (t), in order to discover the value of tbest for each
similarity function used in the experiments.

3. Experiments

In this section, we describe the experiments we carried out in order to evaluate the two threshold definition methods
proposed in Section 2. We collected titles for 18 scientific papers and manually edited them (i.e. adding, replacing,
removing and/or swapping characters or words) to simulate possible typing errors. In total 150 paper titles were
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Fig. 1. Lowest relevant score and highest irrelevant score as function of the kth query for function L (edit distance).

generated. A sample of 120 items was picked and used as queries against the database. The similarity between the each
query and the documents was calculated using the Edit distance function (Hall & Dowling, 1980; Levenshtein, 1966;
Navarro et al., 2001). This function calculates the minimum number of character insertions, deletions and replacements
necessary to make two strings equal.

As mentioned in Section 2, a human expert labelled all returned items in the ranked list as relevant or irrelevant.
Based on this labelling, the values for sLrel(k) and sLirrel(k) were obtained. Fig. 1 shows a plot of sLrel(k) and sLirrel(k) as a
function of the kth query, for a sample of 120 queries (n).

3.1. Experiments using the BestThresh algorithm

Considering a number from k = 1 to n queries and a precision of h = (tmax − tmin)/ndiv = 0.001, where tmax = 1,
tmin = 0 and ndiv = 1000, we run the BestThresh algorithm evaluating each threshold calculated by the formula
ti = tmin + ih, where i = 1, . . . , ndiv. The results produced by the algorithm indicate that tbest lies in the interval
I = [0.524, 0.529]. All threshold values within this interval have achieved fmax = f edit(n, t) = 154. Thus, whichever
value belonging to I would be a suitable threshold for performing a search by chance using this particular similarity
function. Fig. 2 shows a plot of f edit(n, t) as a function t.

Notice that the values of f edit(n, t) are distributed symmetrically as function of t. The continuous curve in Fig. 2 is
a normal fit for our data, which gives us an exact notion of how our values are distributed.

A “robustness” test can be performed to assess how tbest behaves as the sample size (n) grows. Intuitively, tbest
should converge to a constant value t∞best when extrapolating k → n. Fig. 3 shows that tbest stabilizes as the number of
queries approaches 120.

Fig. 2. Plot of f edit(n, t) as function of t for the edit distance function.
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Fig. 3. Evolution of tbest as function of sample size. The plot clearly shows that tbest converges to the values in the interval I = [0.524, 0.529] as
n → ∞.

3.2. Results using bivariate normal distribution

We calculated the parameters (〈sLirrel〉, σ2(sLirrel)) and (〈sLrel〉, σ2(sLrel)) for the sample queries using the same similarity
function applied in the previous subsection (edit distance). Histograms for the values for sLirrel and sLrel were also
computed. Fig. 4 shows how sLirrel and sLrel are distributed around the mean values 〈sLirrel〉 and 〈sLrel〉. The continuous
curves in these plots denote the normal fits. Calculating the correlation ρ = 0.022, we obtained the bivariate normal,
shown in Fig. 5.

The numerical software Maple was used to calculate F (t) specified by Eq. (8), spanning t in the interval [0, 1] to
find the value of t that yields the maximum F (t). We present our results on Fig. 5 as a plot of F (t) as a function of
t. Notice that the probability F (t) is approximately a normal PDF once that the continuous curve is a normal PDF
fit. The figure shows that the most likely value for tbest is 0.515. This value was obtained by our statistical method

Fig. 4. Histograms for the values of sLirrel and sLrel. The continuous curves are the gaussian fits for these histograms. A correlation coefficient between
the two distributions can be determined.
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Fig. 5. Plot F (t) × t. The most likely value for tbest is the value of t corresponding to the highest value of F (t).

considering a precision of h = 0.001. Recall that the value for tbest calculated by the BestThresh algorithm was in the
interval I = [0.524, 0.529]. This shows that both methods are in agreement.

4. Evaluating similarity functions

The aim of this section is to use our two methods for threshold definition to evaluate the quality of different similarity
functions. One similarity function can be considered better than another if it provides better separation of relevant and
irrelevant data items returned in response to a query. According to our approach, a similarity function that has a higher
fmax is considered better than another function that has a smaller fmax. Also, the size of the range of the interval for
tbest is another indicator of the quality of the function. Given that a good similarity function should place relevant and
irrelevant items far apart in the ranking, the larger the interval, the better. Section 4.1 proposes a function that evaluates
the quality of a similarity function for a specific data set. Section 4.2 applies the proposed discernability to assess a
number of similarity functions.

4.1. The discernability function

Below we define a method for assessing the quality of a similarity function. We named the proposed function dis-
cernability as it refers to the ability of the similarity function in discerning relevant from irrelevant items. Discernability
takes two aspects into consideration: (i) how well the similarity function separates relevant from irrelevant items; (ii)
how far apart in the ranking the similarity function places relevant and irrelevant items. The first aspect is given by
the maximum number of points (fmax) calculated by the BestThresh algorithm. The second aspect can be calculated
by taking the difference between tmax

best and tmin
best. Discernability also defines two coefficients c1 and c2 which allow the

user to express the importance given to each of the two aspects considered. For the experiments described in this paper
we gave the same importance to c1 and c2 using c1 = c2 = 1. The values produced by the discernability will be in the
interval [−1, 1].

discernabilityL(tmin
best, t

max
best , fmax) = c1

c1 + c2
(tmax

best − tmin
best) + c2

c1 + c2
· fmax

2n
(9)

In order to assess whether the threshold values calculated by our two methods are plausible, we define two measures for
computing the theoretical confidence interval, considering the distribution of threshold values. In this case the average
value of t is given by

〈t〉 =
∑n

i=1 tiF (ti)∑n
i=1 F (ti)

(10)

and the respective uncertainty associated

σt =
√∑n

i=1 t2
i F (ti)∑n

i=1 F (ti)
− 〈t〉2 (11)
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4.2. Experiments

The same data used in Section 3 was used to compare the performance of eight similarity functions. Below we list
each function together with a brief description.

• Edit distance (Hall & Dowling, 1980; Levenshtein, 1966; Navarro et al., 2001). As mentioned in the previous
section, this function computes the minimum number of changes (insertions,deletions and replacements) that are
necessary to make two strings equal.

• Acronyms (Dorneles et al., 2004). This function is useful for matching acronyms to their unabbreviated form, e.g.
matching “JOI” to “Journal of Informetrics”.

• Guth (Guth, 1976). This function is designed for matching proper nouns.
• Jaccard (Jaccard, 1912). This simple function states that the similarity between s1 and s2 is given by (s1 ∩ s2) ÷

(s1 ∪ s2).
• Jaro (Jaro, 1989). This is a function based on the number and order of common characters between two strings.
• JaroWinkler (Winkler, 1999). This is a variant of the Jaro function that emphasizes matches in the first few

characters.
• N-gram (Navarro et al., 2001). The similarity score is calculated based on the number of characters that are in the

same position in each gram. For the experiments described in this section, we used n = 3.
• TF-IDF (Salton & McGill, 1983). The acronym stands for term-frequency inverse document frequency. This is

widely used in IR as a weighting scheme in order to give more importance to less frequent words. For string
matching, TF is the frequency of the term in the string and IDF can be computed using the entire collection of
strings to be matched.

In addition to the real similarity functions above, we tested three artificial ones:

• Optimal. The perfect similarity function should correctly separate relevant and irrelevant items and place them as
far as possible in the ranking, i.e. for all queries srel = 1 and sirrel = 0.

• NoneRetrieved. Function that calculates a similarity score of zero between the query and all data items, no matter
whether they are relevant or not. In this case for all queries srel = sirrel = 0.

• WorstPossible. The worst function places all non-relevant items higher than the relevant ones in the ranking, i.e.
for all queries srel = 0 and sirrel = 1.

A precision of h = 0.001 was used for the computation of the interval [tmin
best, t

max
best ] by the BestTresh algorithm. The

limits of this interval were used to calculate the discernability for the similarity function. tbest was calculated by the
bivariate normal distribution.

The results are shown in Table 2. The second column of the table presents the values for fmax, which represent the
number of points achieved by tbest for a given function. The third column displays the results for discernability. The
fourth column shows the interval for tbest calculated by the BestThresh algorithm. The fifth column contains the most

Table 2
Comparison among different similarity functions

Function fmax Discernability [tmin
best, t

max
best ] tbest Confidence interval

Jaro–Winkler 184 0.4048 [0.768, 0.811] 0.791 [0.716, 0.887]
Jaro 178 0.3713 [0.755, 0.756] 0.753 [0.703, 0.888]
Acronyms 158 0.3616 [0.601, 0.666] 0.592 [0.455, 0.781]
Edit distance 154 0.3233 [0.524, 0.529] 0.515 [0.404, 0.697]
N-gram 134 0.2851 [0.576, 0.588] 0.553 [0.440, 0.723]
Guth 38 0.0821 [0.905, 0.911] 0.801 [0.686, 0.896]
Jaccard 16 0.0468 [0.401, 0.428] 0.301 [0.169, 0.428]
TFIDF 16 0.0438 [0.578, 0.599] 0.442 [0.273, 0.614]
Optimal∗ 240 0.9999 [0.001, 0.999] – –
NoneRetrieved∗ 0 0.0000 [0.000, 0.000] – –
WorstPossible∗ −240 −0.9999 [0.999, 0.001] – –
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Fig. 6. Distribution of Srel and Sirrel for different similarity functions.

Fig. 7. The x axis represents the threshold values and the y axis represents the number of occurrences, i.e. how many queries achieved that threshold
value for srel and sirrel. The plots tagged (a) show examples of histograms for functions that are statistically treatable and the plots tagged (b) illustrate
histograms for functions that are not statistically treatable.
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likely value for tbest computed by our statistical method for threshold definition. In the last column of the table, we
show the confidence interval built with the distribution F (t) by Eqs. (10) and (11).

Table 2 shows that the absolute difference between the results of our two proposed methods for threshold estimation
is at most 0.136, showing that the two approaches are in agreement. It is worth pointing out that the better the similarity
function, the more in agreement the two methods are. Furthermore, in all cases the values calculated by both methods
are within the theoretical confidence interval.

Table 2 also shows the results for discernability. According to them, the best real function for the data set analyzed
was Jaro–Winkler and the worst was TFIDF. This can be confirmed by observing the plots in Fig. 6, which show the
distribution of srel and sirrel. Indeed, the best separation between relevant and irrelevant data items was achieved by Jaro–
Winkler, whilst with TFIDF these items are often shuffled and/or too close together in the ranking. The plots also show
the behavior of the (artificial) Optimal function, which would achieve the highest marks according to the discernability
function. The behavior of Jaro, which achieved the second best result, is also plotted in Fig. 6. It is worth pointing out that
this ranking is for the data set used in the experiment. For a different data set, the ranking would most probably differ.

The similarity functions in Table 2 that have the symbol ∗ are functions for which the statistical approach is not
applicable due to the nature of the data, i.e., there is no variability in the measures of similarity using this function. By
no variability we mean that the values for srel and/or the values for sirrel are constant for most queries. In other words,
the standard deviations for srel and sirrel(σ(sLrel) and σ(sLirrel)) are close to zero. Nevertheless, it is still possible to find
an optimal threshold using the BestThresh algorithm.

In Fig. 7 we present plots of dispersion for the similarity values using two types of functions. Type (a) represent
functions that are statistically treatable (or in which there is a reasonable variability in the data); and type (b) represent
functions which are not statistically treatable.

5. Summary and conclusions

The contributions of this paper are two-fold. Our goal was to propose a method for measuring the quality of similarity
functions in separating relevant from irrelevant data items returned in response to a query. In order to achieve this goal,
we made a second contribution which was the development of techniques for the estimation of optimal threshold values.
Such techniques can be applied not only in the evaluation of similarity functions but also in standard IR experiments
to assess the quality of different ranking algorithms.

Several experiments were carried out in order to evaluate our proposed approaches. Initially, we performed experi-
ments to test the threshold definition methods. The results show that both techniques produce similar values, validating
one another.

In this paper, we used human intervention to identify relevant and irrelevant data items. However, it is worth pointing
out that this sampling process could be automated through the use of clustering algorithms, as done in our previous
work (Stasiu, Heuser, & da Silva, 2005). In this case, all the elements of a given cluster are considered as representing
the same real world object. Thus, the relevant results for a query are the elements from the same cluster as the query.
The sampling (or clustering) phase can be seen as a type of training. After this process, new queries should produce
better results as a consequence of the use of a more suitable threshold.

We used the output produced by our threshold definition methods to design a “grade”, which we called discernability,
to measure the quality of similarity functions. The discernability takes into consideration the separation and the distance
between relevant and irrelevant items. Those two aspects may be weighted differently according to their importance
in the data set being analyzed. Finally, we performed experiments to assess the quality of eight similarity functions
according to the discernability function. The results show that, for the data set considered, the best function was
Jaro-Winkler and the worst was TFIDF.
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