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The peer-review process, in its present form, has
been repeatedly criticized. Of the many critiques
ranging from publication delays to referee bias,
this paper will focus specifically on the issue of how
submitted manuscripts are distributed to qualified
referees. Unqualified referees, without the proper
knowledge of a manuscript’s domain, may reject a
perfectly valid study or potentially more damaging,
unknowingly accept a faulty or fraudulent result. In
this paper, referee competence is analyzed with re-
spect to referee bid data collected from the 2005 Joint
Conference on Digital Libraries (JCDL). The analysis
of the referee bid behavior provides a validation of
the intuition that referees are bidding on conference
submissions with regards to the subject domain of
the submission. Unfortunately, this relationship is
not strong and therefore suggests that there exists
other factors beyond subject domain that may be
influencing referees to bid for particular submissions.

1 Introduction

The peer-review process is the most widely accepted
method for validating research results within the sci-
entific community. However, its credibility as a valid
certification mechanism has come under scrutiny. There
exists a rich body of literature that points to many of
the inadequacies of the current system (Evans, 1995;
El-Munchid, 2001; Bence & Oppenheim, 2004), but of
particular interest to this paper is the issue concerned with
ensuring that referees are in fact reviewing manuscripts
within their domain of expertise (Kassirer & Campion,
1994; Eisenhart, 2002). There exists a series of stages
within the peer-review process that ultimately lead up to
a referee review. One of the first and potentially most
important stage is the one that attempts to distributed

submitted manuscripts to competent referees. Unfor-
tunately, it is difficult to study many of the stages of
the peer-review process due to its confidential nature.
Therefore, much of the peer-review process, including
referee assignment, remains sheltered from the rigors of
the scientific method. Fortunately, the program chairs
and steering committee of the 2005 Joint Conference on
Digital Libraries1 (JCDL) has provided the Los Alamos
National Laboratory (LANL) Digital Library Research
and Prototyping team the referee bid data used for their
2005 conference peer-review process so that referee
assignment could be analyzed for this study.

In conference situations, where there exist a large
number of submissions at one particular point in time
(near the submission deadline date), conference orga-
nizers tend to rely on a pool of pre-selected referees
to review the submission archive. The conference
organizers require each referee to briefly look over each
submission (e.g. read each submission abstract or ACM
classification codes) and place submission bids. A referee
bid states the referee’s subjective opinion of their level
of expertise with regards to a submission. Furthermore,
conflict of interest situations are usually identified at this
point. Once all the referee bids have been collected, the
conference organizers can use any number of the many
documented manuscript-to-referee matching algorithms
to distribute each submission to a set of competent
referees (Wei, Hartvigsen, & Czuchlewski, 1999). These
stages are represented in Figure 1. The data set provided
by the 2005 JCDL program chair does not state which
referees reviewed which submission, only the subjective
opinion of the referee’s level of expertise with respect to
each submission.

Since conference organizers ask their referees to bid on

1JCDL 2005 is located at: http://www.jcdl2005.org/
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Figure 1: Typical conference review stages

submissions with regard to their domain of expertise, it is
hypothesized that referee bidding is based on two factors:
1) the subject domain of the submission and 2) the
expertise of the referee. The validity of this hypothesis
is investigated using various statistical techniques that
rely on a keyword analysis of submission abstracts and
the location of each referee within the greater scientific
community’s co-authorship network. In short, the
analysis demonstrates that the referees of the 2005 JCDL
program committee are, in fact, bidding for submissions
with respect to the subject domain of the submissions.
Unfortunately, the strength of this relationship is not
strong enough to conclude that submission subject
domain is the only, or even the most significant, factor
influencing referee bidding behavior.

2 The 2005 JCDL Bid Data Set

The JCDL is an international forum that focuses on
the technical, practical, and social issues concerning
digital libraries. Each year the JCDL hosts a conference
to present technical papers, posters, demonstrations,
tutorials, etc. that present recent developments in the
digital library community. From June 7th to June 10th

of 2005, the JCDL was held in Denver, Colorado in the
United States (Sumner, 2005). The bid data provided by
the 2005 JCDL program chair is considered extremely
sensitive, therefore careful handling and analysis of this
data was the first priority of this research endeavor. All
information that is not publicly available from the JCDL
website is, to the best of our knowledge, indeterminable
from the presented results. Information such as which
submissions were rejected is not provided. The names
of the referees have been anonymized by assigning each
referee a unique random identifier. This section will
discuss the bid data provided by the 2005 JCDL program
chair as well as the various manipulations necessary to
appropriately represent this information for analysis.

There were264 submissions to the 2005 JCDL. Of

those264 submissions,105 were full technical articles,
77 were short technical articles,40 were posters,17 were
demonstrations,4 were panel talks,7 were tutorials,7
were workshop talks, and7 were doctoral presentations.
The JCDL program committee provided the authors a
table containing each submission’s unique identification
number, title, authors, type, and acceptance/rejection
status. An example subset of this data is provided in
Table 1. The submission titles and authors of those
submission that were rejected by the committee have
been replaced with the ### notation in order to protect
the privacy of the submitters. Since accepted submissions
are freely accessible, information pertaining to accepted
publications is provided2. Furthermore, note that the title
and authors have been truncated to ensure that the table
fits within the margins of this paper.

Each referee on the 2005 JCDL program committee
was asked to bid on which submissions they wished to
review in terms of their expertise in the subject domain of
the submission. Therefore, accompanying the submission
data table there also exists an associated bid matrix,
B ∈ B

|S|×|R|, whereS is the set of submissions,R is
the set of referees, andB = {0, 1, 2, 3, 4}. It is important
to note that|S| >> |R|. The rows of the bid matrix
refer to the unique id of each of the submissions. The
columns of the bid matrix refer to the referees of the
program committee. The matrix entries are the bid values
provided by each referee for each submission. Therefore,
bi,j refers to refereej’s bid for submissioni, where
0 ≤ bi,j ≤ 4. Table 2 is an artificial example of the
supplied bid information. Note that the bid values for
Table 2 were randomly generated and the referee names
are not provided. The actual program committee for the
JCDL is public information3, but their respective bid
vectors are not.

sub/ref 1 2 3 4 5

13 1 2 2 3 3
14 2 3 2 3 3
15 4 2 3 1 1
16 3 3 1 2 0
17 1 3 2 3 3

Table 2: Example bid matrix for each submission for each
program committee referee,B

2JCDL 2005 proceedings located at: http://www.informatik.uni-
trier.de/ ley/db/conf/jcdl/jcdl2005.html

3JCDL 2005 program committee available at:
http://www.jcdl2005.org/progcomm.html
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sub id submission title submission authors submission type submission status

13 ### ### Full Technical Article REJECTED
14 ### ### Full Technical Article REJECTED
15 Creating an Infrastructure for Collaboration... R. David Lankes, ... Short Technical Article ACCEPTED
16 Graph-based Text Representation Model... Hidekazu Nakawatase, ... Full Techinical Article ACCEPTED
17 An Evaluation of Automatic Ontologies... Aaron Krowne, ... Full Techinical Article ACCEPTED

Table 1: Sample of the 2005 JCDL submission data

The values of the bid matrix,B, are not on an interval
scale, but instead are nominal (i.e. each value symbolizes
a particular bid type). Table 3 provides the meaning for
each of the bid values.

bid meaning of the bid value

0 did not provide a bid
1 expert in the domain of the submission and wants to review
2 expert in the domain of the submission
3 not an expert in the domain of the submission
4 conflict of interest between referee and submission

Table 3: The meaning of the bid values within the bid
matrix,B′

The bid matrix provided by the 2005 JCDL,B′, con-
tains extraneous information such as ’wants to review’
(b = 1) and ’conflict of interest’ (b = 4). Since this study
focuses specifically on referee expertise, this information
will be discarded. Therefore, bid categories1 and2 will
be considered the same and bid categories0 and4 will
be considered wildcards. The modified bid matrix used
throughout the remainder of this study has the properties
of B′ ∈ B

′|S|×|R| whereB′ = {0, 1, 2}. Table 4 has the
bid meanings of the modified bid matrix.

bid meaning of the bid value

0 unknown expertise (wildcard)
1 expert in the domain of the submission
2 not an expert in the domain of the submission

Table 4: The meaning of the bid values within the modi-
fied bid matrix,B′

The original artificial bid matrix provided in Table 2 is
thus transformed into the one shown in Table 5.

Of the 264 submissions, only118 of the submissions
have actual bid data. This means that146 submissions
had bids of all0. Therefore, only those submissions
with a complete set of bid data will be analyzed for the

sub/ref 1 2 3 4 5

13 1 1 1 2 2
14 1 2 1 2 2
15 0 1 2 1 1
16 2 2 1 1 0
17 1 2 1 2 2

Table 5: Example modified bid matrix for each submis-
sion for each program committee referee,B

′

remainder of this study. In addition, of the76 program
committee members of the JCDL,11 members gave no
bid information. No bid information is defined as an
individual whose bid vector is all0’s. These referees were
removed from the analysis. Finally, since a portion of this
analysis is based on co-authorship behavior, those referee
committee members not located within the DBLP4 were
not included in this study. Of the remaining65 referees,
5 were not in the DBLP. Therefore, the bid matrix as
defined for the remainder of this study has118 rows
(submissions), and60 columns (referees),B′ ∈ B

′118×60.

3 The Methodology

Intuitively, when ignoring conflict of interest situations,
referee bidding should be based on two factors: 1) the
domain of the submission and 2) the domain of expertise
of the referee. Therefore, the referee bid matrix should
be the result of each referees analysis of the submis-
sion abstracts and the referee’s area of expertise (their
location in the scientific community’s co-authorship
network). This idea, which is the hypothesis of this
study, is represented by the arced dotted lines at the
top of Figure 2. To verify or falsify this hypothesis, a
collection of statistical techniques are used to determine
the relationship between referee bidding and submis-
sion subject domain. The two factors of the hypothesis

4Digital Bibliography and Library Project available at:
http://www.informatik.uni-trier.de/ ley/db/
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are explored according to Track1 and Track2 of Figure 2.

Track 1 provides a correlation between two submis-
sion similarity matrices. The first similarity matrix is
constructed using referee bid data,Sb, and the second
is constructed according to an submission abstract term
analysis,St (Section 4). If referees are in fact bidding
according to the subject domain of the submissions, then
the correlation betweenSb andSt should be high. If the
correlation is negative, or extremely low, then other fac-
tors that may not include submission subject domain are
influencing referee bidding. Furthermore, it is possible to
cluster submissions according to referee bid behavior. A
intra-term analysis of these clusters provide an entropy
value for each of the clusters. If the clusters created by
referee bidding maintain a low entropy for their highest
weighted terms and a low correlation between their term
vectors, then it can be argued that referee bidding is
driven by submission subject domain.

Track 2 provides the correlation between a referee
similarity matrix created according to referee bidding be-
havior,Rb, and a referee similarity matrix created using
a relative rank algorithm within a co-authorship network,
Rg (Section 5). A high correlation means that referees
who are similar in expertise, as determined by their place
in the co-authorship network, are also bidding similarly.
A high correlation would be expected if referee bidding
is based solely on submission subject domain. If this
correlation is low, then other factors besides submission
subject domain are influencing referee bidding. This
paper will first explore Track1 and then Track2.

4 The Bid Matrix and Submission
Similarity

This section will present the Track1 analysis represented
in Figure 2. In order to determine the relationship
between referee bidding and submission subject do-
main, the submissions are related according to the bid
behavior of the program committee referees,Sb, and are
related according to their abstract term-frequency inverse
document-frequency (TFIDF) term weight distributions,
St (Salton, 1998). In short, a TFIDF calculation deter-
mines the most descriptive words within a document (or
document cluster) with respect to the entire document
corpus. This section will first discuss the construction of
Sb and thenSt.

Bid Matrix (B)

Referee Similarity
Matrix (Rb)

Submission Similarity
Matrix (Sb)

Hamming
 Distance

Submission Similarity
Matrix (St)

TFIDF &
Cosine Similarity

Pearson Correlation

Referee Similarity
Matrix (Rg)

Pearson Correlation

Submission 
Abstracts

Co-Authorship
Network

Network Influence
Relative-Rank

 Submission
Dendrogram

 Referee
Dendrogram

Cluster Entropy

Hamming
 Distance

Track 1 Track 2

Figure 2: Experiment outline

Since the values of the bid matrix,B′, refer to semantic
categories and not a gradient scale, a Hamming distance
function is used to determine the similarity of any two
submissions (Hamming, 1950). Hamming distance is
defined as the amount of characters that differ between
two strings of equal length. For example, if there exists
the strings ”2212” and ”1212”, the Hamming distance
is 1 since only their first characters differ. Given the
Hamming distance between two bid vectors,h( ~b′i, ~b′j),
and the length of a vector,l = |~b′l|, the similarity
between any two submissions is calculated according
to Eq. 1. To account for wildcard bids (b′i,j = 0), if
any one of the two bid vectors being compared has an
entry that contains a0, that particular entry on both
vectors is ignored and both their vector lengths,l,
are reduced by1. For example, when comparing the
two bid vectors ”0121” and ”2120”, their length,l, is
2 and their Hamming distance,h, is 0 because both
their first and last entries are ignored and their second
and third entries are equal. Therefore, their similarity is1.

Sbi,j = Sbj,i = 1−
h( ~b′i, ~b′j)

l
(1)

Eq. 1 ensures a symmetrical submission similarity
matrix, Sb ∈ R

|S|×|S|, whose diagonal values are1.0.
According to the sample bid matrix presented in Table
5, the submission similarity matrix shown in Table 6 is
constructed using Eq. 1.
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id 13 14 15 16 17

13 1.0 0.8 0.25 0.25 0.8
14 0.8 1.0 0.0 0.5 1.0
15 0.25 0.0 1.0 0.6̄6 0.0
16 0.25 0.5 0.6̄6 1.0 0.5
17 0.8 1.0 0.0 0.5 1.0

Table 6: Submission similarity determined according to
their Hamming distance

4.1 Submission Similarity and the Dendro-
gram

Once a submission similarity matrix,Sb, has been
constructed it is possible to hierarchically structure the
submissions into a dendrogram in order to visualize the
relationship between the various submissions. The sub-
mission dendrogram constructed fromSb is presented in
Figure 3. Note that the titles of the rejected submissions
have been left out. Accepted submission titles have
been truncated to ensure readability. Furthermore, larger
cluster patterns are represented as the8 boxed sections
and are denotedC1 throughC8. These clusters were
extracted from the dendrogram by setting a threshold
on the dendrogram tree height. The threshold, which is
1.1, was arbitrarily selected to expose enough clusters to
make the following analysis interesting.

A manual review of the clusters with respect to the
submissions they contain demonstrates a congruency
between submission topic and referee bidding. To
validate this qualitative claim, three statistical techniques
are used. The first involves analyzing the abstracts of the
submissions of each of the clusters in order to determine
cluster subject domain. The second involves determining
the entropy value of each cluster. Clusters that are more
strict with respect to a particular subject domain will tend
to have a lower entropy. The third technique provides a
correlation between a similarity matrix constructed from
the cosine similarity of the TFIDF term weight vectors of
each submission,St, and the matrix constructed from the
referee bid behavior,Sb. This final correlation provides
a single quantitative value expressing the relationship
between submission subject domain and referee bidding.

4.2 Entropy in the Submission Clusters

The 8 major clusters of the submission dendrogram
derived according to referee bid data can be validated as
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Figure 3: Submission similarity represented according to
a hierarchical cluster

meaningful categorizations by analyzing the terms of the
submission abstracts. This requires that all submission
abstracts be parsed to determine the full collection of
keywords across all submission abstracts. Each abstract
is processed by removing stop words and then applying
the Porter stemming algorithm (Porter, 1980). These
two processes remove overly frequent words (i.e. the,
and, it) and perform suffix stripping (i.e. computer and
computation stem to comput), respectively. Each time a
particular term in the full collection of keywords is used
in an abstract of one of the cluster submissions, the term
frequency for that term in that cluster is incremented by
1. An example feature vector is provided in Table 7. For
example, for all the submissions in cluster3, the term
built was used7 times.
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cluster/term browser built bureau bush

3 3 7 3 1
4 4 3 2 0
5 1 0 1 0

Table 7: Cluster feature vectors of the keywords in the
submission abstracts

For each clusteri it is possible to determine how
specific a particular termj is to that cluster according
to Eq. 2 wherefreq(i, j) is the frequency of termj in
clusteri, n(i) is the total number of terms in clusteri,
N is the number of clusters (which is always8 for this
experiment), andnc(j) is the number of clusters for
which termj appears (Salton, 1998).

tfidf(i, j) =
freq(i, j)

n(i)
× log10

(

N

nc(j)

)

(2)

The higher the TFIDF weight for termj in clusteri,
the more specific termj is to the clusteri and therefore
the more suited it is as a description of the cluster’s
subject domain. The following table presents the TFIDF
calculations for the sample feature vector presented in
Table 7.

cluster/term browser built bureau bush

3 0.00 0.08 0.00 0.03
4 0.00 0.05 0.00 0.00
5 0.00 0.00 0.00 0.00

Table 8: Cluster TFIDF term weight vectors of the key-
words in the submission abstracts

In order to determine the subject domain of each of
the 8 clusters, the top 10 TFIDF weighted terms were
extracted. Table 9 provides these terms ordered by their
TFIDF weight where term1 has a higher weight than
term2.

The term weight distributions derived from the TFIDF
calculation of the cluster abstracts can now be represented
according to their internal cluster information content.
Internal cluster information content can be calculated
using the standard entropy equation as defined according
to its information theoretic sense (Shannon, 1948). The
lower the entropy, the more specialized, or focused, the
cluster. The higher the entropy, the less specialized.
Since clusters vary in size, the entropy for a cluster is

calculated only for the top10 term weights presented
in Table 9. Furthermore, since an entropy calculation is
defined for a probability distribution, Eq. 3 normalizes
the top10 term weights.

tfidf ′(i, j) =
tfidf(i, j)

∑k<10
k=0 tfidf(i, k)

(3)

The entropy of a cluster is then calculated over the
probability distribution as described by Eq. 4, where
H(i) is the entropy for clusteri.

H(i) = −

j<10
∑

j=0

tfidf ′(i, j) log2(tfidf
′(i, j)) (4)

The entropy values for the8 clusters of the dendrogram
presented in Figure 3 are presented in Table 10.

cluster entropy

1 3.2668
2 3.2840
3 3.2148
4 3.2213
5 3.2025
6 3.2281
7 3.2610
8 3.2442

Table 10: Entropy values for the 8 clusters defined in Fig-
ure 3

It is interesting to note thatC5, the lowest entropy
cluster, is composed mainly of submissions associated
with name disambiguation and music in digital-library
research. On the other hand, the highest entropy cluster
C2 has a mix of more unrelated submissions ranging
from digital libraries in educational settings to infectious
diseases and terrorism. Figure 4 and 5 present the distri-
bution of the term weights for the top10 terms of the8
clusters. The steeper the distribution tail, the lower the
cluster entropy and therefore the more focused the cluster
is towards its higher weighted terms. The analysis of the
terms for each cluster points to a qualitative relationship
between referee bidding and submission subject domain.

A more quantitative validation can be determined
when the TFIDF term weight vectors of the8 clusters are
compared using a Pearson correlation. The correlations
are performed on the cluster’s TFIDF term weight vectors
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C1 C2 C3 C4 C5 C6 C7 C8

1 webcast behaviour extract patent name hidden ecl photo
2 cyberinfrastructur drew powerpoint tobacco surrog crawler morf preserv
3 ncknow note handel invent music subschema relev video
4 interview overload mainli determin disambigu flora item-level european
5 teacher engag train hidden segment ontos network alert
6 descriptor factor graph control candid queri citat dark
7 faculti gather step american network expans circleview region
8 lesson school weight chemic tempor homepag dlii busi
9 survei teamsearch algebra compani citat plant extract addit
10 transcript visualis basi searchabl genet reusabl meta-inform mobil

Table 9: Top 10 terms for the 8 clusters defined in Figure 3
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Figure 4: Normalized TFIDF weights for the 10 terms of
Table 9 for the clusters 1 through 4 defined in Figure 3

which contain the entire abstract dictionary,D, where
|D| = 2121. Table 11 provides the Pearson correlations
for each cluster comparison. What is noticeable from
Table 11 is that all the correlations are less than±0.1.
The fact that the clusters, which are organized by referee
bidding, yield very low correlations between their TFIDF
term weight vectors means that the clusters are well
separated according to their term distributions. If these
correlations were high, then it would be difficult to
claim that the clusters are organized according to subject
domain and thus referee bidding would not be related to
submission subject domain. Since the correlations are
all less that±0.1, this confirms the hypothesis that there
does exist a relationship between the bidding behavior
of the conference referees and the subject domain of
the submission abstracts. The next section will further
explore the strength of this relationship.
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Figure 5: Normalized TFIDF weights for the 10 terms of
Table 9 for the clusters 5 through 8 defined in Figure 3

4.3 Cosine Similarity Correlation

To further quantify the relationship between referee
bidding and a submission’s subject domain, it is possible
to correlate the relationship between submissions based
on referee bidding, on the one hand, and the relationship
between submissions based on their TFIDF term weight
vectors, on the other. This requires the construction
of the similarity matrixSt, which denotes the cosine
similarity between every submission with respect to their
complete TFIDF term weight vector. This means that
each term in the abstracts of each submission is analyzed
according to the TFIDF equation presented in Eq. 2.
This results in a matrixT ∈ R

|S|×|D| where|S| is the
size of the submission archive and|D| is the size of the
full collection of terms of all abstracts in the submission
archive. For this particular experimentT is therefore
defined asT ∈ R

118×2121. The TFIDF term weight
vector of each submission can be compared against every
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C1 C2 C3 C4 C5 C6 C7 C8

C1 1.0 -0.0318 -0.0396 -0.0631 -0.0616 -0.0477 -0.0720 -0.0527
C2 -0.0318 1.0 -0.0214 -0.0639 -0.0392 -0.0502 -0.0323 -0.0804
C3 -0.0396 -0.0214 1.0 -0.0343 0.01064 0.02349 0.04540 -0.0321
C4 -0.0631 -0.0639 -0.0343 1.0 -0.0437 -0.0531 -0.0540 -0.0850
C5 -0.0616 -0.0392 0.01064 -0.0437 1.0 -0.0410 0.03928 -0.0684
C6 -0.0477 -0.0502 0.02349 -0.0531 -0.0410 1.0 -0.0156 -0.0780
C7 -0.0720 -0.0323 0.04540 -0.0540 0.03928 -0.0156 1.0 -0.0687
C8 -0.0527 -0.0804 -0.0321 -0.0850 -0.0684 -0.0780 -0.0687 1.0

Table 11: Pearson correlations for the2121 TFIDF term weights of the 8 clusters defined in Figure 3

other submission’s TFIDF term weight vector using the
standard cosine similarity function presented in Eq. 5,
where~ti is the TFIDF term weight vector for submission
i. This equation guarantees a symmetrical matrix with a
diagonal of1.0.

Sti,j = Stj,i =
~ti · ~tj

∥

∥~ti
∥

∥ ·
∥

∥~tj
∥

∥

(5)

The correlation betweenSt and Sb can now be
calculated. With 13,922 degrees of freedom and ap-value
< 2.2−16, the Pearson correlation was determined to
be 0.357. This means that submissions categorized
according to a TFIDF analysis of their abstracts and
submissions categorized according to the referee bid
behavior are in fact positively correlated, though not
strongly. Therefore, it can be concluded that there are
other factors besides submission subject domain that
influence referee bid behavior.

df = 13922, p < 2.2−16, r = 0.357

5 The Bid Matrix and Referee Sim-
ilarity

This section will overview the experiment as described
by Track2 of Figure 2. If referees are deemed similar in
expertise, as determined by their relative location to one
another within the scientific community’s co-authorship
network, then similar referees should be bidding sim-
ilarly. To test this hypothesis, two referee similarity
matrices are created. The first referee similarity matrix,
Rb ∈ R

|R|×|R|, is constructed from the transpose of the
modified bid matrix,B′T . Each referee is compared to
each other referee with respect to their bidding behavior.

Based on the transpose of the artificial data from Table
2, the same similarity equation used to construct the
submission similarity matrix, Eq. 1, can be used to
construct the referee similarity matrix presented in Table
12. The next section will present a dendrorgam ofRb

before discussing the second referee similarity matrix,
Rg.

ref 1 2 3 4 5

1 1.0 0.5 0.75 0.0 0.0
2 0.5 1.0 0.2 0.4 0.75
3 0.75 0.2 1.0 0.2 0.0
4 0.0 0.4 0.2 1.0 1.0
5 0.0 0.75 0.0 1.0 1.0

Table 12: Referee similarity determined according to their
Hamming distance

5.1 Referee Similarity and the Dendrogram

Given the referee similarity matrix,Rb, the dendrogram
in Figure 6 can be constructed. Unfortunately, due to
privacy issues, the referee names are not provided. What
is noticeable from the dendrogram is the collection of
nearly identical referees on the upper branch. When
reviewing the modified bid matrix,B′, it becomes
apparent that19 of the referees stated themselves to be
expert in the domain of every submission (excluding their
wildcard bids).

5.2 Relative-Rank Correlation

In order to provide a quantitative evaluation of the
similarity of referees with respect to their bidding
behavior and their domain of expertise, a relative-rank
algorithm within a co-authorship network is computed to
determine referee similarity. It has been widely accepted
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Figure 6: Referee similarity represented according to a
hierarchical cluster

that co-authorship networks represent the relationship
of individuals with respect to their domain of expertise
(Newman, 2004). The relative-rank algorithm will
determine the similarity of each referee with respect to
each other referee as defined by their relative location
to one another within the greater scientific community’s
co-authorship network. The similarity of the referees as
determined by their relative-rank,Rg, and their similarity
as determined by their bid behavior,Rb, can then be
correlated. A high correlation means that referees of
similar expertise are bidding in a similar manner. A
low correlation means that referees of similar expertise
are not bidding in a similar manner. The co-authorship
network, G, used for this experiment was constructed
from the DBLP database as of October 2005. The DBLP
co-authorship network has 284,082 nodes (authors)
and 2,167,018 edges (co-authorship relationships). This

section will first formalize the co-authorship network data
structure and relative-rank algorithm before discussing
the results.

A co-authorship network is defined by a graph com-
posed of nodes that represent authors and edges that
represent a joint publication. Therefore, a co-authorship
network is represented by the tupleG = (N,E,W ),
whereN is the set of authors in the network,E is the
set of edges relating the various authors, andW is the
set of weights associated with the strength of tie between
any two collaborating authors. Any edge,ei,j , connects
two authors,ni andnj , with a respective weight ofwi,j .
Furthermore,E ⊆ N × N and |E| = |W |. The edge
weight between any two authors is determined by Eq. 6,
where the summation is over the set of all manuscripts
registered with the DBLP,M , expressing a collaboration
between authorsni and nj , and the functionA(m)
returns the total number of authors for manuscriptm,
wherem ∈ M andwi,j ∈ R

+ (Liu, Bollen, Nelson, &
Sompel, 2005; Newman, 2001).

wi,j = wj,i =
∑

∀m∈M authored by i,j

1

A(m)− 1
(6)

To provide the reader with an understanding of the
relationship between the 2005 JCDL program committee
members, a subset of the DBLP co-authorship network
which contains the program committee’s co-authorship
relationships is presented in Figure 7. Note that this
network was not constructed using referee bid data, but
from information that is publicly available through the
DBLP database. Furthermore, the co-authorship edge
weights have been left out to improve readability.

The final analysis to be performed is to rank each
of the 60 referees relative to one another so as to
constructRg ∈ R

|R|×|R|, Eq. 7. For each referee in
the JCDL program committee that provided valid bid
data and is located in the DBLP, a similarity value to
every other member in the committee was computed
using a relative-rank algorithm (sometimes called a
’personalized’ rank) (Rodriguez & Bollen, 2005; White
& Smyth, 2003) within the DBLP co-authorship network.
SinceG is a weighted graph, the ranking algorithm actu-
ally used in this experiment is the weighted relative-rank
implementation described in (Rodriguez & Bollen, 2005).
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Figure 7: Subset of the DBLP co-authorship network con-
taining only connected JCDL referees

Rg =









RgR1,R1

· · · RgR1,R|R|

...
. . .

...
RgR|R|,R1

· · · RgR|R|,R|R|









(7)

An example of relative-ranking is as follows. Given
a network such as the one displayed in Figure 7, the
relative-rank algorithm would rankFOX more strongly to
NELSON than toRAY since there exists a clique relation-
ship betweenFOX, NELSON, and their co-authors. This
network structure does not exist betweenFOX andRAY.
Since co-authorship networks relate individuals with
respect to similar domains of expertise, the conclusion to
be drawn is that the stronger ranking ofFOX to NELSON
implies thatFOX is more related by expertise toNELSON
than he is toRAY. A simplified version of the pseudo-code

for constructingRg, Eq. 7, is presented in Algorithm 1.
For a more indepth, and formal, review of relative-rank
algorithms for network analysis, refer to (Rodriguez &
Bollen, 2005; White & Smyth, 2003).

foreach(nl ∈ R) do1
foreach(nj ∈ R) do2

Rgnl,nj
= rank(nl, nj);3

end4
end5

Algorithm 1 : Constructing the referee
similarity matrixRg

Given Rb and Rg, with 3,598 degrees of freedom
and ap-value < 2.2−16, the Pearson correlation was
calculated to be0.220. The positive correlation indicates
that referees are bidding with respect to their domain of
expertise, but the low correlation again hints that there
may be other factors contributing to referee bidding.

df = 3598, p < 2.2−16, r = 0.220

6 Conclusion

This paper provided an exploration of the bidding behav-
ior of the 2005 JCDL program committee. The various
analysis techniques used demonstrate that the 2005
JCDL program committee did, in fact, bid for conference
submissions with respect to the subject domain of the
submission. On the other hand, the strength of this
relationship is low and therefore demonstrates that other
factors may be involved in referee bidding. One such
factor seems to be referee fatigue. With146 submissions
having no bid data and with19 referees stating them-
selves to be an expert in the domain of all submissions,
human-driven referee bidding in conference settings
may not be the most optimal technique for performing
conference peer-review. Since bidding is the preliminary
component of the manuscript-to-referee matching algo-
rithm, sloppy bidding can have dramatic effects on which
referees actually review which submissions, Figure 8.
In general, the stages that follow from the inclusion of
noisy data in the peer-review chain can severely effect
the quality of the peer-review process. It is speculated
that referee fatigue not only influences the bidding and
manuscript dissemination stages of the review cycle, but
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potentially more damaging, fatigued referees could be
rejecting acceptable manuscripts or accepting fraudulent
or faulty manuscripts in the review stage.

Authors 
Submit 

Manuscripts

Conference
Organizers
Distribute

Manuscripts

Referees
Review

Manuscripts

Referees
Bid on

Manuscripts

Noise 
Due to Referee Fatigue speculation

Figure 8: Human-factor noise in review stages

When the19 referees that provided no variation in
their bid vector (referees that stated themselves to be
experts in the domain of all submissions) are removed
from the analysis, the correlation betweenSb andSg was
determined to be0.361 (originally 0.357). Likewise, for
Rb andRg the correlation was determined to be0.383
(originally 0.220). Though these are both higher corre-
lations, they still are not strong correlations. It can only
be concluded that, contrary to the hypothesis, submission
subject domain and referee expertise are not the only
factors involved in the referee bidding process. Future
work in this area will focus on expanding this study’s
hypothesis in order to develop a mathematical model of
the factors influencing referee bidding. Furthermore, an
application of this methodology to bid data from other
conferences can help to provide a broader perspective
(and confirmation) of the factors influencing submission
bidding in the peer-review process.
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