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Abstract We introduce a method to predict or recommend high-potential future (i.e., not

yet realized) collaborations. The proposed method is based on a combination of link

prediction and machine learning techniques. First, a weighted co-authorship network is

constructed. We calculate scores for each node pair according to different measures called

predictors. The resulting scores can be interpreted as indicative of the likelihood of future

linkage for the given node pair. To determine the relative merit of each predictor, we train

a random forest classifier on older data. The same classifier can then generate predictions

for newer data. The top predictions are treated as recommendations for future collabora-

tion. We apply the technique to research collaborations between cities in Africa, the

Middle East and South-Asia, focusing on the topics of malaria and tuberculosis. Results

show that the method yields accurate recommendations. Moreover, the method can be used

to determine the relative strengths of each predictor.
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Introduction

Research collaboration is an important topic in informetrics. Collaboration has the

potential of saving costs and diffusing insights and ideas between partners. Hence, the

advantages of collaboration are very attractive to institutes in those regions or countries

that do not yet belong to the ‘rich and famous’ in science. While it may seem most

attractive to collaborate with wealthier regions (Schubert and Sooryamoorthy 2010), there

are several advantages when collaborating among developing nations, such as the estab-

lishment of local centres of excellence and a greater awareness among partners of the needs

and problems common to developing nations (Boshoff 2010). Yet it is not always obvious

which partners one should collaborate with. Using recommendation techniques is a pos-

sible way to approach this problem (e.g., Yang and Jin 2006). The current article proposes

a new practical method to generate collaboration recommendations for policy makers and

university strategists.

In this article, we study research collaboration between cities in Africa, the Middle East,

and South-Asia. Co-authorship networks are constructed among these cities within the

research fields of malaria and tuberculosis during three consecutive, 5-year time periods:

1997–2001, 2002–2006, and 2007–2011. Our aim is to develop a methodology for rec-

ommending potentially fruitful collaborations, using link prediction and machine learning.

The method generates recommendations by ‘learning’ from the first two time periods. We

evaluate the quality of the generated recommendations by comparing them with the actual

collaborations in the third period.

In the next section, we discuss how the data has been collected. Subsequently, we

discuss the extraction of the collaboration networks and explain our link prediction and

machine learning approach. The Results section highlights the recommended collabora-

tions and their quality. The final section contains the conclusions.

This article is a reworked and extended version of a paper that was presented at the ISSI

2013 conference (Guns and Rousseau 2013).

Data

Cities located in the following countries (referred to as the target countries) are included if

they have contributions in the field under study:

• all African countries;

• all countries in the Middle East, except for Israel and Turkey (considered to be more

European oriented);

• countries in South-Asia, that is, all Asian countries excluding countries that belong to

the former Soviet Republic, Mongolia, China, North and South Korea, Taiwan and

Japan.

We restrict ourselves to two topics: the diseases malaria and tuberculosis. These are

topics that are not entirely dominated by Western countries on the one hand, and not too

specific to a certain country or region (The STIMULATE-6 Group 2007) on the other.

The data were collected from Thomson Reuters’ Web of Science (WoS) on October 26

and November 21, 2012. We searched for all publications published in the three 5-year

periods (1997–2001, 2002–2006, 2007–2011) with at least one address in one of the target

countries. These sets were then restricted to the two topics. Results are summarized in

Table 1.
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Methods

Network construction

After exporting the search results from the WoS, we extracted a weighted network of co-

authorship between cities as follows (for both topics and for each time period). For each

publication, the city of each author’s (primary) affiliation was recorded. A script was

written to extract the city automatically. Because of the large variety of address formats

and inconsistencies in the data, all results were manually checked and corrected where

necessary. Table 2 summarizes the results.

Subsequently a network was created whose node set consists of all cities encountered.

All cities that co-occur on a single publication are then linked in the network. The weight

of the link between cities A and B is the number of publications with authors from A and

B. Because our analysis is on the level of cities rather than individuals, we have not taken

into account the number of authors from a city on a single publication. For instance, a

publication with five authors from city A and three from city B is treated the same as a

publication with one author from A and one from B.

Some publications in our data have co-authors from cities outside the set of target

countries (see ‘other’ in Table 2). Therefore, we decided to create two networks for each

topic: a network including these external cities—the full network—and a network

excluding them—the restricted network. In total, this procedure led to 12 different net-

works: a full and a restricted network for each of the two topics, and this for each of the

three periods. First we describe the link prediction techniques we use, followed by the

machine learning technique.

Link prediction techniques

Since we are interested in opportunities for future collaboration, we focus on cities from

the target countries that do not yet collaborate in a given time period. There are many

possible methods for determining which future collaborations are the most promising.

Here, we focus on the information that is already present in the city collaboration network,

Table 1 Numbers of publications for each topic and period

Topic Number of publications

1997–2001 2002–2006 2007–2011

Malaria 2,622 4,671 7,901

Tuberculosis 2,369 3,830 7,832

Table 2 Number of cities in the data

Topic Number of cities (African and South-Asian/other)

1997–2001 2002–2006 2007–2011

Malaria 400/361 601/587 904/883

Tuberculosis 351/270 482/468 831/777
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without relying on any other data source. We start from the assumption that a collaboration

should be recommended if (a) the two cities do not yet collaborate, and (b) the two cities

are similar or related. To determine the similarity or relatedness of cities, we take a link

prediction approach. We try to determine a relatedness score W for each node pair on the

basis of the current network. Singling out those pairs that are currently unlinked (condition

a) and sorting them in decreasing order of W (condition b) yields a list of the most

promising future collaborations.

A formula that results in a relatedness score W is called a predictor. We use the

following predictors (Guns 2011, 2012): common neighbours, cosine, Adamic/Adar,

weighted graph distance, weighted Katz, weighted rooted PageRank, and weighted Sim-

Rank. Taken together, these predictors represent all of the most important approaches that

were studied in the seminal paper of Liben-Nowell and Kleinberg (2007): raw co-occur-

rence (common neighbours), normalized co-occurrence (cosine, Adamic/Adar), distance-

based approaches (weighted graph distance, weighted Katz), and approaches based on

random walks (weighted rooted PageRank, weighted SimRank). Guns (2012) showed that

the weighted versions of the last four predictors outperform the unweighted counterparts;

for this reason we only include the weighted versions.

We will now discuss each of these in turn.

Common neighbours

Common neighbours is defined as the number of neighbouring nodes that two nodes have

in common:

Wðu; vÞ ¼ NðuÞ \ NðvÞj j; ð1Þ

where N(v) denotes the set of neighbours of node v and |S| denotes the number of elements

in set S.

Jaccard

The Jaccard predictor is a normalization of common neighbours:

Wðu; vÞ ¼ NðuÞ \ NðvÞj j
NðuÞ [ NðvÞj j : ð2Þ

Adamic/Adar

The Adamic/Adar predictor starts from the assumption that two nodes u and v having

(many) low-degree neighbours in common indicates a stronger relatedness between u and v

than having highly connected neighbours in common:

Wðu; vÞ ¼
X

z2NðuÞ\NðvÞ

1

log NðzÞ: ð3Þ

This measure was initially defined in the context of social networks on the Web

(Adamic and Adar 2003).
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Weighted rooted PageRank

The next two predictors are inspired by Google’s PageRank (and hence indirectly by the

Pinski–Narin citation influence methodology (1976)). The intuition behind rooted Page-

Rank (Liben-Nowell and Kleinberg 2007) is best explained from the perspective of a

random walker. The random walker starts at a fixed node v, called the root node. At each

step, the walker moves along a link to a neighbour of the current node. Contrary to ordinary

PageRank, rooted PageRank does not allow random ‘teleportation’ but only allows tele-

portation back to the root node v. This form of teleportation occurs with probability 1 - a
(where 0 \ a\ 1). High a values tend to favour the well-connected nodes in the network

(with high classic PageRank scores), especially in relatively small networks such as ours.

On the other hand, setting a too low reduces the advantage of a PageRank-like predictor.

We use link weights, such that a link with a higher weight will be more likely to be

traversed than a link with a lower weight.

Essentially, rooted PageRank is a specific form of so-called personalized PageRank

(Langville and Meyer 2005). The resulting scores can be interpreted as a measure of each

node’s relatedness to the root node. The highest scoring node is typically the root node

itself.

Weighted SimRank

SimRank is a measure of how similar two nodes in a network are, originally proposed by

Jeh and Widom (2002) and further elaborated by Antonellis et al. (2008). The SimRank

thesis can be summarized as: Objects that link to similar objects are similar themselves.

Note the recursive nature of the thesis,—to assess the similarity of a node pair, we need to

have an estimate of the similarity of the nodes that they link to. The starting point of a

SimRank computation is the assumption that an object is maximally similar to itself:

W(a, a) = 1. One can then calculate the SimRank score of each node pair iteratively, until

the changes drop below a given threshold value. The basic SimRank formula is:

Wðu; vÞ ¼ c

jNuj � jNvj
X

p2Nu

X

q2Nv

Wðp; qÞ: ð4Þ

In case of isolate nodes, the above formula would lead to a division by zero, which can

be avoided by adding 1 to the denominator. Since our data contains no isolates, this is not

necessary. Since we want to take link weights into account, we extend Eq. (4) as follows

(Antonellis et al. 2008):

Wðu; vÞ ¼ cP
p2Nu

wðu; pÞ �
P

q2Nv
wðv; qÞ

X

p2Nu

X

q2Nv

Wðp; qÞ � wðu; pÞ � wðv; qÞ; ð5Þ

where w(x, y) denotes the weight of the link between x and y. In (4) and (5), c (0 \ c \ 1)

is the ‘decay factor’ that determines how quickly similarities decrease. If, for example,

cities x and y both collaborate with z, then c determines the certainty with which we can

state that x and y are similar. Lower c values also result in lower values for W(x, y).

Weighted graph distance

One can hypothesize that the longer the distance between two nodes, the less related they

are. Since we have a weighted network, the question is how to define distance in this
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context. It has been proposed by several authors (Egghe and Rousseau 2003; Newman

2001) that the path length in a proximity-based weighted network can be defined by taking

the inverse of each weight:

pðu; vÞ ¼
Xt

i¼1

1

wi

; ð6Þ

where wiði ¼ 1; . . .; tÞ denotes the weight of the ith link in the path. A possible downside of

this approach is that it ignores the number of nodes one has to traverse: in some cases, a

large number of intermediary nodes may have a negative effect on the relatedness of the

path’s endpoints, even if the link weights are high. For this reason, Opsahl et al. (2010)

propose the following generalization of path length in a weighted network:

paðu; vÞ ¼
Xt

i¼1

1

wa
i

; ð7Þ

where a is an extra parameter between 0 and 1. If a = 0, (7) reduces to the path length in

the corresponding unweighted network—i.e., only the number of intermediary nodes is

taken into account. If a = 1, (7) reduces to (6)—i.e., only the link weights are taken into

account. Thus, setting 0 \ a\ 1 allows us to find a balance between these two extremes.

Because we want to favour short paths over longer ones, we define the weighted graph

predictor as

Wðu; vÞ ¼ 1

paðu; vÞ
: ð8Þ

Weighted Katz

Before we define the weighted Katz predictor (Katz 1953) we explain the used termi-

nology. A walk is a sequence of nodes v1, v2,…,vm, such that each node pair vi, vi?1 in the

sequence is connected by a link. There are no further restrictions on walks. A multigraph is

a graph allowed to have multiple links between two nodes. Different links between two

nodes also constitute different walks, i.e., the number of walks v1, v2, …, vm in a multi-

graph is equal to
Qm�1

i¼1 N vi; viþ1ð Þ, where N(vi, vi?1) denotes the number of links between

vi and vi?1.

The weighted Katz predictor can best be described in the context of a multigraph. Let A

denote the (full) adjacency matrix of the multigraph M. The element aij is equal to the

number of links between vi and vj or 0 if no link is present. Each element a
kð Þ

ij of Ak (the k-th

power of A) has a value equal to the number of walks in M with length k from vi to vj

(Wasserman and Faust 1994, p. 159). The weighted Katz predictor is then defined as:

Wðvi; vjÞ ¼
X1

k¼1

bka
ðkÞ
ij ; ð9Þ

where b is a parameter between 0 and 1. This parameter represents the ‘‘probability of

effectiveness of a single link’’. Thus, each path with length k has a probability bk of

effectiveness. As 0 \b \ 1 higher powers become smaller and smaller so that the influ-

ence of nodes further away decreases fast.
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Random forest classifiers

Now we turn to the machine learning technique that is used to aggregate the results of the

different predictors. Random forests were introduced by Breiman (2001) as a robust

machine learning technique for classification and regression. A random forest is an

ensemble of decision trees, where each tree is built starting from a bootstrap sample of the

input data. Moreover, each node (i.e., each decision) in a tree is based on a random subset

of the available features. By introducing randomness at both the data and the model level,

random forests have been shown to yield accurate and robust results. A practical advantage

of random forests is that the procedure automatically predicts the probability with which an

item belongs to a certain class (in our case: the probability of a link for each node pair).

This is not the case for, for instance, support vector machines (SVMs), which require a

time-consuming cross-validation procedure (Platt 1999) to obtain similar probability

estimates.

For our purposes, we need to classify node pairs (potential links) into two groups: links

and non-links. The method works as follows:

(1) We split the data into two time periods, such that we have an early network A1 and a

later network A2.

(2) We choose a number of predictors (see above). For each node pair in A1 we calculate

its relatedness score according to each predictor.

(3) The random forest classifier is trained on the features (relatedness scores) from A1 and

the corresponding classification data (link or not) from A2. Essentially, the classifier

learns each predictor’s relative strength in predicting which links will or will not

occur in the next time period.

(4) For each potential link in A2 we calculate its relatedness score according to each

predictor.

(5) The trained classifier yields predictions on the basis of the features that were

determined in the previous step.

(6) We treat the top n predictions as recommendations for collaboration.

Here, we will use the 1997–2001 networks as A1 and the 2002–2006 networks as A2. We

use the scikit-learn (Pedregosa et al. 2011) random forest classifier with 500 trees.

Evaluation

Using the networks from 1997–2001 and 2002–2006 for training purposes, we produce

recommendations for the period following 2002–2006. In other words, we can use the

actual data from the period 2007–2011 to assess the quality of our recommendations, i.e.,

to see whether or not the recommendations are realized.

Since we are interested in recommending high-potential collaborations, it makes sense

to restrict our analysis to the top predictions. Concretely, we draw a list of the n unlinked

node pairs with the highest score (we will test this for different values of n). These are

considered as our recommendations. A recommendation is successful if it takes place in the

evaluation period 2007–2011. Let s denote the number of successful recommendations and

n the total number of recommendations. We then determine the success rate SR=s/n as an

indicator of recommendation quality. SR is essentially precision-at-n.

Suppose that the test network from the period 2007–2011 is a complete network, where

every pair of nodes is connected. In that case, any prediction would lead to SR = 1. In

general, if the test network is very dense, one would expect higher SR values. For this
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reason, we will also provide the expected success rate for a completely random prediction.

This is equal to the ratio of the number of new links (links present in the test network but

not the training network) and the number of possible new links (unlinked node pairs in the

training network).

Results

Collaboration network structure

Before turning to the recommendation results, we briefly describe the structure of the

collaboration networks that we obtained.

Using VOSviewer (Van Eck and Waltman 2007, 2010) we obtained 12 visualizations of

our data: one for each network. We provide one visualization for malaria (Fig. 1) and one

for tuberculosis (Fig. 2). Colour versions of these figures as well as the other ten visual-

izations are available in the additional online material.

The malaria networks can be described as follows. In the full view (period 1997–2001)

we can easily see a dense main cluster dominated by Oxford, London and Bangkok; Indian

cities (New Delhi) have a peripheral position. During the period 2002–2006 the main

cluster is dominated by London, Bangkok and Nairobi. Indian cities have moved closer to

the main cluster. Finally, during the period 2007–2011 we have a strong main cluster,

including Indian cities, and dominated by London and Oxford. When considering the

restricted networks the 1997–2001 view is rather scattered with centres in Nairobi and

Bangkok, with some Vietnamese cities between these two centres; Indian cities are situated

far away from these clusters. During the period 2002–2006 the Vietnamese cluster has

almost merged with the Thai one. Finally during the period 2007–2011 there is a clear

Fig. 1 Collaboration network for malaria (restricted view, 2007–2011)
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African cluster (Nairobi, Dakar, Cape Town) and an Asian one (Bangkok, Mae Sot, New

Delhi) as can be seen in Fig. 1. Moreover an Iranian group of cities becomes visible on the

periphery.

As to the tuberculosis networks, the 1997–2001 full view shows a group of centres

around London, Geneva, Atlanta, Paris and Johannesburg. These are situated rather close

to one another. During the period 2002–2006 these groups have formed a main cluster

where we see London, Geneva, Paris, New Delhi and Oxford; Dhaka (Bangladesh) is

clearly visible above this main cluster, while Antwerp and Brussels (Belgium) are situated

in the very centre of this figure (Fig. 2). In the 2007–2011 view we again have several

clusters situated close to one another. The largest, central, one contains London, Paris,

Geneva, Cape Town, Kampala and Liverpool; close to this main cluster we have an Indian

cluster around New Delhi and Chennai; we further have clusters around Taipei and around

Tehran. The 1997–2001 restricted network contains several scattered clusters around the

following centres: South-Africa (Cape Town, Johannesburg), Chennai–Pune, another

Indian one around New Delhi, Bangalore and including Bangkok, and finally one around

Addis Ababa (Ethiopia). The 2002–2006 view is very linear with centres around New

Delhi, Hanoi, Bangkok and Cape Town (and other South African cities) including Dakar

(Senegal). Finally the restricted 2007–2011 view contains a large cluster around Cape

Town (and South African cities) and including Addis Ababa. Moreover we see an Indian

cluster, a Thai one and an Iranian one on the periphery.

In summary, the following observations pertain to both topics. The full networks are

mainly dominated by Western cities, although some larger African or Asian cities are also

able to occupy a central position. There appears to be at least a mild form of geographical

Fig. 2 Collaboration network for tuberculosis (full view, 2002–2006)
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bias—e.g., Asian cities mainly collaborating with other Asian cities—but the effect is

modest: we also found several cases of intense international and intercontinental collab-

oration. Some countries, such as India and Iran, are more likely to form separate clusters.

This observation corresponds with the results of Glänzel and Gupta (2008) who found that

India has relatively few research collaborations with other countries.

Recommendations

We predicted collaborations between research institutes situated in different cities based on

relatedness scores as explained above. The parameters for each predictor were set to the

values shown in Table 3. These predictors were then applied to each of the four cases

(malaria full, malaria restricted, tuberculosis full, and tuberculosis restricted). Applying the

method whereby we train a random forest classifier on earlier predictions (namely all

predictions obtained by the seven predictors used) yields the results that are summarized in

Table 4.

In general, the success rate decreases as more recommendations are generated, although

exceptions exist. The success rate of our method is clearly—by a factor of 35–80 times—

better than randomized predictions. Predictions based on the full network are generally (but

not always) better than those based on the restricted network. Since the former contains

more information than the latter, this is not unexpected. Indeed, if two target cities col-

laborate with a Western city, they may eventually end up collaborating directly, but this

can only be inferred from the full network. Comparing our results with the performance of

individual predictors (Guns and Rousseau 2013) illustrates the merits of the current

method: only in one specific case (tuberculosis 2002–2006, restricted) does an individual

predictor (weighted Katz) yield a higher success rate.

Table 5 provides the top ten recommendations for the full and restricted malaria net-

works. It can be seen that most recommendations for African cities involve other African

cities (and likewise for Asian ones), but some non-trivial cross-continental recommenda-

tions occur as well. Successful predictions often involve South-African or Thai cities

Table 3 Values chosen for pre-
dictor parameters

Predictor and parameter Value

Weighted graph distance: a 0.9

Weighted Katz: b 0.001

Weighted rooted PageRank: a 0.4

Weighted SimRank: c 0.3

Table 4 Recommendation success rates

Data set Random success rate Success rate

n = 5 n = 10 n = 20 n = 50 n = 100

Malaria (full) 0.02 1.00 1.00 0.95 0.82 0.77

Malaria (restricted) 0.02 0.60 0.60 0.80 0.68 0.67

Tuberculosis (full) 0.01 0.60 0.80 0.70 0.48 0.35

Tuberculosis (restricted) 0.01 0.60 0.50 0.45 0.52 0.37
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(e.g., Mae Sot, Johannesburg). Such cities could be called facilitator cities. They play a

central role in weaving the fabric of international collaboration.

Since the random forest classifier aggregates the results of (in our case) seven predic-

tors, it is interesting to explore the relative contribution of each predictor to the final

results. We determine predictor importance using the so-called Gini importance measure

(Breiman et al. 1984). At each split in a tree, one records the decrease in heterogeneity of

predictions. The average of all decreases in the forest for a given predictor is its Gini

importance. The higher the Gini importance, the more important the predictor.

Table 6 shows each predictor’s contribution according to Gini importance. The pre-

dictors that are only based on neighbouring information contribute less than the topology-

based predictors. Remarkably, the two predictors that contribute most, SimRank and rooted

PageRank, do not yield very high success rates when used in isolation (Guns and Rousseau

2013). At the same time, the individual predictor with the highest success rate (weighted

Katz) contributes far less to the aggregated results. We hypothesize that this is due to the

fact that the random forest classifier takes all predictions into account, whereas the high

success rates for weighted Katz found by Guns and Rousseau (2013) were based on just

twenty predictions. We also see that the most important predictors are those that incor-

porate link weights.

A downside of the method is that it tends to yield less interesting predictions: whereas

single predictors regularly recommend collaborations between African and Asian cities,

Table 5 Top 10 recommendations for malaria (full and restricted)

No. Malaria full Malaria restricted

1 Banjul, Gambia—Bamako, Mali Mae Sot, Thailand—Jakarta, Indonesia

2 Yaounde, Cameroon—Banjul, Gambia Ifakara, Tanzania—Blantyre, Malawi

3 New Delhi, India—Bamako, Mali Kilifi, Kenya—Addis Ababa, Ethiopia

4 Johannesburg, South Africa—Bamako, Mali Kisumu, Kenya—Dakar, Senegal

5 Nairobi, Kenya—Antananarivo, Madagascar Moshi, Tanzania—Kampala, Uganda

6 Johannesburg, South Africa—Dakar, Senegal Ibadan, Nigeria—Calabar, Nigeria

7 Ouagadougou, Burkina Faso—Nairobi, Kenya Durban, South Africa—Blantyre, Malawi

8 Yaounde, Cameroon—Accra, Ghana Johannesburg, South Africa—Bangkok,
Thailand

9 Dar Es Salaam, Tanzania—Cape Town, South
Africa

Mae Sot, Thailand—Ifakara, Tanzania

10 Bamako, Mali—Accra, Ghana Kuala Lumpur, Malaysia—Bangkok, Thailand

Table 6 Predictor importance,
averaged over the four data sets

Predictor Average Gini importance
(±S.D.)

Weighted SimRank 0.264 (±0.054)

Weighted rooted PageRank 0.241 (±0.032)

Weighted graph distance 0.163 (±0.016)

Weighted Katz 0.146 (±0.017)

Adamic/Adar 0.085 (±0.027)

Jaccard 0.072 (±0.017)

CommonNeighbours 0.028 (±0.014)
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this is rare with our current method. In other words, an improvement of the method would

try to strike a better balance between performance on the one hand and non-triviality on the

other. We leave this to future research.

Conclusions

In this paper we have presented a new method for recommending research collaboration

partners. By aggregating over multiple predictors, the accuracy of our recommendations

(measured by comparing recommendations with actually realized collaborations in a later

period) is remarkably high. Similar methods could also be used for, for instance, fore-

casting short term developments in citation networks (Shibata et al. 2012).

A surprising result of our study was the relative importance of the predictors, in that an

individual predictor’s success rate is less clearly related to the predictor’s importance than

anticipated. The most likely explanation is the fact that the random forest classifier

determines relative importance by looking at all predictions, not just the most likely ones.

In general, weighted and topology-based predictors are more important than local

(neighbour-based) ones.

By focussing on cities and regions this article contributes to the emerging subfield of

spatial or regional scientometrics (Frenken et al. 2009).
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