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Abstract 

This study examines collaboration dynamics with the goal to predict and recommend 

collaborations starting from the current topology. Author-, institution-, and country-level 

collaboration networks are constructed using a ten-year data set on library and information 

science publications. Different statistical approaches are applied to these collaboration networks. 

The study shows that, for the employed data set in particular, higher-level collaboration networks 

(i.e., country-level collaboration networks) tend to yield more accurate prediction outcomes than 

lower-level ones (i.e., institution- and author-level collaboration networks). Based on the 

recommended collaborations of the data set, this study finds that neighbor-information-based 

approaches are more clustered on a 2-D multidimensional scaling map than topology-based ones. 

Limitations of the applied approaches on sparse collaboration networks are also discussed.  
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Introduction 

Social networks have the propensity to evolve over time. Every second, new friendships are 

established and old friendships are updated in Facebook connections, new collaborations are 

formed and populated in academic databases, and Twitter follower-following relationships are 

constantly subject to changes and updates. To capture such evolving features, earlier studies 

mainly employed a macro-perspective to model network growths and simulate network 

behaviors (e.g., Albert & Barabási, 2000; Jeong, Néda, & Barabási, 2003; Barrat, Barthélemy, & 

Vespignani, 2004; Sakaki, Okazaki, & Matsuo, 2010). Later on, studies that focused on 

individuals’ growth patterns and behaviors in social networks were also introduced (e.g., 

Kretschmer, 2004; Liu et al., 2005; Yan & Ding, 2009). These micro-level analyses have 

complemented the scholarship of social network analysis. They are specialized in examining 

individuals’ power, stratification, ranking, and inequality in various sociological settings 

(Wasserman & Faust, 1994). 

Micro-level analyses have been one of the foci in informetric research. Studies in this field have 

typically employed authors, research communities, and institutions as the unit of analysis. 

Informetric studies have applied various indicators to collaboration networks. These studies have 

revealed the most “central” authors through centrality measures (e.g., Liu et al., 2005; Yin et al., 

2006; Fiala, Rousselot, & Ježek, 2008; Yan & Ding, 2011), identified factors that are associated 

with collaboration and citation (e.g., Yan & Sugimoto, 2011), and examined the relationship 

between geographic location and collaboration (e.g., Ponds, Van Oort, & Frenken, 2007). 

However, these studies mainly used static approaches, and consequently did not inform the 

dynamic characteristics of collaborations. The goal of this study is to fill this gap by probing into 

collaboration dynamics using a ten-year data set on library and information science publications.  

Specifically, we aim to predict and recommend collaborations based on the structure of current 

collaboration networks. This topology-based prediction is also known as link prediction (Liben-

Nowell & Kleinberg, 2007). Link prediction recommends collaborations purely based on the 

intrinsic collaboration topology. This method does not rely on any data concerning the complex 

social, cognitive, institutional, or geographical factors (e.g., Ponds, Van Oort, & Frenken, 2007; 

Yan & Sugimoto, 2011). These factors are indirectly accounted for, because they may influence 

the network topology through mechanisms like homophily or the Matthew effect. 

The performance of link predictors determines the effectiveness of collaboration 

recommendations. In the past, various link predictors were proposed and applied (e.g., Liben-

Nowell & Kleinberg, 2007; Sharan & Neville, 2008; Guns & Rousseau, 2013). These studies, 

however, focused largely on author collaborations. Consequently, we have limited understanding 

of collaboration dynamics of other major collaborative entities, such as institutions and countries. 

These collaborative entities should not be neglected. Rather, they should be systematically 

examined. They deliver unique perspectives to examine collaborations that author-level analysis 

may be inadequate to afford. For instance, institutions can be used as proxies to delve into 
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authors’ collective collaboration behaviors (Hoekman, Frenken, & van Oort, 2009). Country-

level collaboration analysis can provide “a tool for high-level scrutiny of the quality and quantity 

of the research enterprise” (Holton, 1978, p. 200). Both institution- and country-level analysis 

can signify spatial-temporal discoveries of knowledge production and innovation (Havermann, 

Heinz, & Kretschmer, 2006; Yan & Sugimoto, 2010). 

This study is thus motivated to further our understanding of collaboration dynamics. It 

investigates collaboration prediction and recommendation at author-, institution-, and country-

levels. Through the application of several link predictors, the following research questions are 

addressed: 

 To what extent do different levels of aggregation, i.e. author-, institution-, or country-

level, affect the performance of link predictors? 

Previous studies have mainly examined the dynamics of author collaborations. A 

systematic analysis of all three levels of collaboration (i.e., author, institution, and 

country) has not yet been carried out. To fill this gap, the current study conducts an 

integrated examination of collaboration dynamics at the levels of authors, institutions and 

countries using link prediction methods. 

 Based on true/false positive and true/false negative statistics, what are the between-object 

distances of different link predictors? 

A set of evaluation methods (i.e., precision-recall, receiver operating characteristic (ROC) 

curve, area under the ROC curve (AUC), and top k evaluation) is triangulated to ensure 

the highest level of validity. Specifically, the current study also uses multidimensional 

scaling to visualize the between-object distances among eight predictors on a two-

dimensional map.  

 Starting from past collaboration relations in library and information science, what new 

collaborations are most probable to establish at author-, institution-, and country-levels? 

And what approach can be used to integrate the recommended collaborations obtained 

from multiple link predictors? 

Previous efforts on link prediction mainly relied on one predictor to recommend 

collaborations (e.g., Guns, 2009, 2011). Nonetheless, different link predictors may 

capture different collaboration characteristics. We propose a straightforward approach to 

merge the collaboration recommendations obtained from different predictors.  

Note that these research questions are addressed using a data set on library and information 

science publications. Thus, findings of this study do not necessarily generalize to other research 

fields. Nevertheless, this study should inform dynamic analyses of collaborations in general and 

assist scholars trying to discern collaboration characteristics at different collaboration levels. 

This study also contributes to micro-level informetric research by providing ways to assess 

individuals’ collaboration potentials.  
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Literature review 

Collaboration networks 

Studies of collaboration networks have a long standing in information science. Collaboration 

networks furnish an important medium to examine scholarly communication (e.g., Logan & 

Shaw, 1991; Luukkonen, Persson, & Sivertsen, 1992). Although early studies of coauthorship 

networks helped information scientists gain an in-depth understanding of the socio-cognitive 

structure of several author communities, these studies were limited to a small scale and the 

employed approaches were largely constrained to descriptive statistics.  

In the last decade, we have witnessed a new movement in network analysis. The focus has 

shifted to large-scale statistical properties of graphs (Newman, 2001a, 2001b). In particular, the 

discoveries of small-world (Watts & Strogatz, 1998) and scale-free (Barabási & Albert, 1999) 

properties have promoted studies of collaboration networks. Recently, collaboration networks 

have been used to evaluate various clustering techniques, such as modularity-based techniques 

(Newman & Girvan, 2004), Clique Percolation Method (Farkas, Ábel, Palla, & Vicsek, 2007), 

link communities (Ahn, Bagrow, & Lehmann, 2010), and community kernel (Wang, Lou, Tang, 

& Hopcroft, 2011). These meso-level techniques have reshaped the research landscape of 

scientific collaboration and have propelled its analysis toward a more granular level. They have 

provided insights into interdisciplinarity (e.g., Moody, 2004), teams of science (e.g., Wuchty, 

Jones, & Uzzi, 2007; Börner et al., 2010), and even human mobile communications (e.g., 

Blondel et al., 2008).  

In addition to macro- and meso-level analyses, at the micro-level, the predominant theme of 

analysis is situated on identifying the “status” of authors in a given research community. The 

status typically represents authors’ ability in forming research synergies. A set of standard 

centrality measures and variants were used to approximate author status in collaboration 

networks (e.g., Liu et al., 2005; Sidiropoulos & Manolopoulos, 2006; Fiala, Rousselot, & Ježek, 

2008; Yan & Ding, 2009). Yet, approaches of these studies remained static and yielded only 

retrospective perspectives on the status of authors. 

The link prediction problem 

Simply put, link prediction addresses the following question: given the topology of a 

collaboration network at time t, what collaborations will be formed in a future time t’ (Liben-

Nowell & Kleinberg, 2007). The link prediction problem attempts to model the evolving 

mechanism of social networks through their intrinsic features (i.e., their topology). Studies have 

used a number of link predictors to predict collaborations in fields such as physics (Liben-

Nowell & Kleinberg, 2007), computer science (Sharan & Neville, 2008), and malaria and 

tuberculosis research (Guns & Rousseau, 2013). Recent studies have generalized the link 

prediction method, allowing it to work with supervised (Lichtenwalter, Lussier, & Chawla, 2010), 
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directed (e.g., Shibata, Kajikawa, & Sakata, 2012; Guo, Yang, & Zhou, 2013), weighted (e.g., Lü 

& Zhou, 2010), and multi-relational data sets (e.g., Ströele, Zimbrão, & Souza, 2013). 

Previous efforts on link prediction were largely confined to author collaborations. An 

investigation on multiple collaboration levels (i.e., authors, institutions and countries) is lacking. 

It is thus unclear from the previous literature how different collaboration levels affect prediction 

results. To address this, this paper uses an empirical data set and applies eight link predictors to 

all three collaboration levels: author-, institution-, and country-levels. Prediction results of the 

three levels are compared and contrasted using a set of triangulated evaluative methods.   

Methods 

Link predictors 

To date, more than 30 algorithms have been used to address the link prediction problem (e.g., 

Liben-Nowell & Kleinberg, 2007; Sarkar, Chakrabarti, & Moore, 2010; Guns, 2011). Eight link 

predictors were selected for this study, due to their algorithmic transparency, ease of 

implementation, and marked performance (Guns, 2011; Liben-Nowell & Kleinberg, 2007; 

Lichtenwalter & Chawla, 2011). They can be grouped into two categories: predictors that 

consider only nodes’ neighboring information, including Adamic/Adar (Adamic & Adar, 2003), 

Common Neighbors, Preferential Attachment, and Jaccard; and predictors that consider the 

whole topology of collaboration networks, including Katz (Katz, 1953), Rooted PageRank, 

Weighted Rooted PageRank, and SimRank. These eight algorithms are applied to a data set of 

library and information science publications.  

The data set was divided into two slices based on the papers’ years of publication. A two-step 

approach was adopted: first, all eight predictors were applied to the data set of the first time slice; 

and the data set of the second time slice was used to evaluate the performance of these predictors. 

In the second step, the two best performing predictors were applied to the whole data set to 

predict the most likely collaborations (among those who have not collaborated yet). The 

evaluation is not simply a comparison between two disconnected collaboration networks, but 

rather, we intend to verify whether the predicted collaborations based on the first network have 

been established in addition to existing ones.  

The eight link prediction algorithms are introduced here, using the following notations provided 

in Liben-Nowell and Kleinberg (2007).      denotes the set of neighbors of  .     is the 

cardinality of set  . An example of calculating these link predictors is illustrated in Figure 1. 

Common Neighbors:            . The formula of common neighbors denotes the number of 

neighbors that node x and node y share. 
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Jaccard: 
           

           
. Jaccard similarity is commonly used in information retrieval to measure the 

probability that two sets share certain features. In this case, the feature is all neighbors that node 

x and node y have.  

Adamic/Adar:  
 

                     . Adamic and Adar (2003) proposed a measure based on the 

rarity of traits shared by two Web users. Their hypothesis is that if two users share a very rare 

trait (e.g., an unusual hobby), it indicates a social connection with more confidence than a very 

common trait. In the context of link prediction, the Adamic/Adar measure further normalizes the 

calculation of common neighbors by giving higher weights to less usual common features 

between node x and node y. Suppose that x and y have two common neighbors a and b, where a 

has only two neighbors x and y but b has ten neighbors in addition to x and y; then a contributes 

more to the likelihood that x and y will have a connection in the future.  

Preferential Attachment:              . According to Barabási and colleagues (2002), the 

probability of collaboration of x and y is proportional to the product of the number of 

collaborators of   and  . 

Katz:       
    

   , where    
   

 is the element corresponding to nodes   and   in the  -th power 

of the adjacency matrix  , i.e., the number of walks with length   from   to   (an unweighted 

version is used in this study where the element equals 1 if i and j collaborates; for a weighted 

version, please see Guns & Rousseau, 2013). The parameter   (     ) represents the 

effectiveness of a single link. Thus, each path with length   has a probability    of effectiveness. 

According to empirical results (Liben-Nowell & Kleinberg, 2007), choosing a small    (at the 

0.001 level) will yield more accurate predictions. In this study,   is set at 0.001. For reasons of 

computational feasibility, we do not consider walks where k > 10. 

Rooted PageRank is inspired by Google’s PageRank. Like standard PageRank, rooted 

PageRank can be understood using the concept of a random Web surfer, who, at each time step, 

either moves to a node adjacent to the current one or teleports. However, unlike standard 

PageRank, rooted PageRank does not teleport the surfer to a random node; instead, teleportation 

always puts the surfer back at a fixed root node. The rooted PageRank value of a node is the 

stationary probability that the random surfer will be located at that node. As such, it represents a 

node’s proximity to the root node. According to empirical results (Liben-Nowell & Kleinberg, 

2007), choosing an   value between 0.1 and 0.5 yields more accurate predictions. In this study,   

is set at 0.3. Weighted Rooted PageRank uses edge weights to calculate the transition 

probability from one node to another. 

SimRank follows a recursive definition: two nodes are similar if they are connected by similar 

neighbors. It is defined as 
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where            and   is a constant between 0 and 1. In this study it is set as 0.5. Like 

PageRank, SimRank can be understood in terms of random walks on a network. Jeh and Widom 

(2002) prove that the SimRank score          can be interpreted as the time before two random 

walkers meet on the network if they start at nodes   and   and randomly walk the network. 

Figure 1 shows the calculation of eight link predictors for two sample collaboration networks. 

Our goal is to estimate the prospect of author i collaborating with author j as highlighted in 

Figure 1.  

 

Figure 1. An example of applying link predictors 

In Figure 1(a), author i has 7 coauthors and author j has 6 coauthors; thus, based on its topology, 

the intersection of i and j is 4 and the union of i and j is 9. For the four authors in the intersection, 

they have three, four, five, and seven coauthors respectively; thus, Γ(z) equals 3, 4, 5, and 7. 

Using such information, Common Neighbors, Jaccard, and Preferential Attachment can be 

obtained. The calculation of topology-based predictors is less upfront and thus only the final 

result is given (because the two networks are binary ones, Rooted PageRank and Weighted 

Rooted PageRank yield the same results). Results in Figure 1(a) and Figure 1(b) show that: while 

neighbor-information-based predictors produced more consistent results (i.e., author i and j in 
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Figure 1(a) are more likely to become coauthors than author i and j in Figure 1(b)), topology-

based predictors generated less consistent outcomes. The inconsistencies in Figure 1 illustrate the 

marked differences between different predictors and the need for systematic comparison and 

evaluation. 

To effectively evaluate the performance of link predictors, we first applied eight link predictors 

to three collaboration levels: author-, institution-, and country-levels. The employed evaluation 

methods include precision-recall, receiver operating characteristic (ROC) curve, area under the 

ROC curve (AUC), and top k evaluation. The evaluation thus addresses the first research 

question. We then examined the relationship among link predictors through multidimensional 

scaling. This addresses the second research question. Last, we use the Borda count method 

(Aslam & Montague, 2001) to merge recommendation results obtained from different predictors. 

This addresses the third research question.  

Data 

The data set contains all publications from the 59 journals indexed in the 2008 version of the 

Journal Citation Reports in the Information Science & Library Science category.  All document 

types published within these journals from January 2001 to February 2010 were downloaded for 

analysis. Name disambiguation for author names and institution names was implemented. 

Situations where authors have multiple affiliations were considered and these affiliations were 

treated equally. Please refer to Yan and Sugimoto (2011) for detailed information on the used 

name disambiguation method. 

The dataset was then divided into two time slices based on papers’ years of publication. Table 1 

shows the sizes and densities of author collaboration networks, institution collaboration networks, 

and country/state collaboration networks (worldwide countries and U.S. states). Both author and 

institution collaboration networks are quite sparse, which suggests that authors from a given 

institution tend to collaborate with a limited number of authors in other institutions. Note that the 

densities of the author and institution collaboration networks decrease between the first and 

second period, whereas the density of the country collaboration network almost doubles. 

Table 1. Size and density of collaboration networks 

Time Author collaboration networks Institution collaboration 

networks 

Country collaboration networks 

Nodes Links Density Nodes Links Density Nodes Links Density 

2001-2005 9,659 10,509 2.2e-4 3,010 530 1.2e-4 149 1,479 0.13 

2006-2010 12,766 16,588 2.0e-4 3,783 785 1.1e-4 151 2,836 0.25 

2001-2010 16,657 21,527 1.6e-4 4,836 1,223 1.0e-4 164 3,012 0.23 
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Results 

Precision-recall graphs and ROC curves for the eight predictors 

Two graphical evaluation methods are used to evaluate the eight predictors: the precision-recall 

graph and the receiver operating characteristic (ROC) curve which plots true positive rate (equal 

to recall) against false positive rates (the ratio of false positives versus the total number of non-

collaborations). The two measures have previously been applied to predictor evaluation as well 

as a variety of information retrieval and machine learning algorithms (e.g., Bradley, 1997; 

Clauset, Moore, & Newman, 2008; Lichtenwalter, Lussier, & Chawla, 2010; Pencina, et al., 

2008).  

Figures 2 and 3 show the precision-recall graph and ROC curve of the eight predictors for author 

collaboration networks. For topology-based predictors, Katz has the best performance, followed 

by Weighted Rooted PageRank, Rooted PageRank, and SimRank. For neighbor-information-

based predictors, Common Neighbor has the best performance based on precision and recall, 

followed by Preferential Attachment, Adamic/Adar, and Jaccard Coefficient; Preferential 

Attachment has the best performance based on the ROC curve, followed by Adamic/Adar, 

Common Neighbor, and Jaccard Coefficient. 

 

Figure 2. Performance of topology-based link predictors (author collaboration networks) 
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Figure 3. Performance of neighbor-information-based link predictors (author collaboration 

networks) 

Figures 4 and 5 show the precision-recall graph and ROC curve for institution collaboration 

networks. For topology-based predictors, Katz has the best performance, followed by Weighted 

Rooted PageRank, Rooted PageRank, and SimRank. For neighbor-information-based predictors, 

Preferential Attachment has the best performance, followed by Adamic/Adar, Common 

Neighbor, and Jaccard Coefficient. 
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Figure 4. Performance of topology-based link predictors (institution collaboration networks) 

 

Figure 5. Performance of neighbor-information-based link predictors (institution collaboration 

networks) 

Figures 6 and 7 show the precision-recall graph and ROC curve for state/country collaboration 

networks. For topology-based predictors, Katz has the best performance, followed by Rooted 

PageRank, Weighted Rooted PageRank, and SimRank. For neighbor-information-based 

predictors, Preferential Attachment has the best performance, followed by Adamic/Adar, 

Common Neighbor, and Jaccard Coefficient. 
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Figure 6. Performance of topology-based link predictors (country collaboration networks) 

 

Figure 7. Performance of neighbor-information-based link predictors (country collaboration 

networks) 

Overall, across the three aggregation levels we find that Katz is the best performing topology-

based predictor and Preferential Attachment is the best performing neighbor-based predictor. 

Area under ROC (AUC) and top k evaluations 

If the precision–recall curve or ROC curve of one predictor is completely above the curve of 

another, we can safely conclude that the former has a better performance than the latter. In some 

cases, however, two curves may overlap, making it less clear which of the two should be 

preferred. For this reason we also consider two single number indicators: Area under ROC curve 

(AUC) and top k relevance with normalized discounted cumulative gain (nDCG). 

Because the vertical axis of the ROC charts denotes true positive rate, the higher AUC, the better 

the performance. An AUC of 1 denotes a perfect predictor. Because a random method (e.g., 

getting either head or tail when flipping a coin) would yield an AUC of 0.5, a score below 0.5 

can thus be considered as worthless. The result is shown in Table 2 where the highest AUCs for 

both topology-based and neighbor-information-based predictors are displayed in bold. 

Table 2. Area under ROC (AUC) for eight predictors 

 Author Institution State/Country 

Rooted PageRank 0.5110 0.5108 0.6713 

SimRank 0.4022 0.3519 0.4857 

Weighted Rooted PageRank 0.5547 0.5212 0.6643 

Katz 0.6123 0.6399 0.7971 

Adamic/Adar 0.6598 0.6209 0.7899 

Common Neighbors 0.6113 0.6037 0.7878 
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Jaccard Coefficient 0.4488 0.4229 0.7180 

Preferential Attachment 0.6739 0.6826 0.8337 

Katz has the highest AUC among topology-based predictors, followed by Weighted Rooted 

PageRank and Rooted PageRank (except in the case of countries, where Rooted PageRank 

performs slightly better than Weighted Rooted PageRank). SimRank has the lowest AUC. For 

neighbor-information-based predictors, Preferential Attachment has the highest AUC, followed 

by Adamic/Adar and Common Neighbor. Jaccard Coefficient has the lowest AUC. This is 

consistent across all three levels of aggregation. For both topology-based and neighbor-

information-based predictors, Preferential Attachment has the best performance, Katz has the 

second best performance, and Adamic/Adar has the third best performance (except for authors, 

where Adamic/Adar outperforms Katz). 

The results are generally consistent with findings in previous studies. For instance, Huang, Li, 

and Chen (2005) have found that Katz and Preferential Attachment have the best performance 

among several link predictors. A study by Liben-Nowell and Kleinberg (2007) also found that 

Katz and Adamic/Adar are among the best performing predictors. The same study also 

concluded that Preferential Attachment performs better when applied to denser networks. In this 

case, the country collaboration networks are much denser than author and institution 

collaboration networks. Therefore, the finding that Preferential Attachment performs 

exceptionally well on country collaboration networks is consistent with Liben-Nowell and 

Kleinberg’s (2007) study. Contrary to our findings here, Guns (2009) obtained poor results for 

Preferential Attachment. This can be explained by the low density and the multidisciplinary 

nature of the network used in that study.  

The Jaccard Coefficient is a normalization of Common Neighbors but clearly performs worse; 

this is consistent with findings elsewhere that Common Neighbors outperforms normalized 

forms like Jaccard (Guns, 2011; Liben-Nowell & Kleinberg, 2007). Predictors’ performances are 

largely consistent across author, institution, and country collaboration networks.  

Top k relevance was implemented to evaluate predictors’ performances at different top levels. 

The results were first ranked based on respective predictor scores (e.g., Rooted PageRank scores, 

Katz scores, number of common neighbors). The following values for k were examined: 20, 50, 

100, 200, and 500. Normalized discounted cumulative gain (nDCG) is used as the relevance 

measurement. Specifically, for the top k predicted collaboration pairs, true positive predictions 

have a raw score of 1 and false positive predictions have a raw score of 0. The raw scores are 

processed to give discounted scores at lower ranks. The processed scores are normalized so that 

an nDCG of 1 is the upper bound (all true positive for all top k pairs) and 0 for the lower bound 

(all false positive for top k pairs). The results are presented in Table 3 where the highest nDCGs 

are displayed in bold for each level of aggregation and at each different k value. 

Table 3. Top k relevance for eight predictors 
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  Author Institution State/Country 

Rooted PageRank 

k=20 0 0.0336 0.3770 

k=50 0 0.0343 0.4625 

k=100 0 0.0432 0.4904 

k=200 0 0.0340 0.4982 

k=500 0.0016 0.0272 0.5085 

SimRank 

k=20 0 0 0.4422 

k=50 0.0299 0.0262 0.4259 

k=100 0.0188 0.0466 0.3991 

k=200 0.0115 0.0591 0.3522 

k=500 0.0159 0.0565 0.2808 

Weighted Rooted PageRank 

k=20 0 0.1280 0.3382 

k=50 0 0.0876 0.3196 

k=100 0 0.0695 0.3118 

k=200 0 0.0500 0.3456 

k=500 0.0034 0.0385 0.3623 

Katz 

k=20 0 0.0648 1 

k=50 0.0305 0.0369 1 

k=100 0.0617 0.0375 1 

k=200 0.0377 0.0687 0.9525 

k=500 0.0484 0.0690 0.9033 

Adamic/Adar 

k=20 0 0.0682 1 

k=50 0.0279 0.0388 1 

k=100 0.0176 0.0550 0.9720 

k=200 0.0107 0.0533 0.9523 

k=500 0.0182 0.0683 0.9067 

Common Neighbor 

k=20 0 0 1 

k=50 0.0283 0.0430 1 

k=100 0.0248 0.0421 0.9721 

k=200 0.0424 0.0488 0.9520 

k=500 0.0296 0.0695 0.9031 

Jaccard Coefficient 

k=20 0 0.0551 1 

k=50 0 0.0473 0.9384 

k=100 0.0070 0.0298 0.9023 

k=200 0.0083 0.0255 0.8706 

k=500 0.0057 0.0244 0.8189 

Preferential Attachment 

k=20 0 0.0727 1 

k=50 0.0547 0.0544 1 

k=100 0.0344 0.0490 1 

k=200 0.0210 0.0649 0.9760 

k=500 0.0237 0.0725 0.9355 

In general, Preferential Attachment has the highest nDCG, especially for dense country 

collaboration networks; Katz and Weighted Rooted PageRank also have high nDCG. For 

different k levels, nDCG varies across different predictors and different aggregation levels. For 

instance, nDCG scores increase for Rooted PageRank and Weighted Rooted PageRank when 
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applied to country collaboration networks as k increases; however, it decreases when applied to 

institution collaboration networks. For Katz, Adamic/Adar, and Preferential Attachment, no 

noticeable trend can be identified between different k levels and nDCG scores. For different 

levels of aggregation, country collaboration networks yield the highest nDCG scores, followed 

by institution collaboration networks and author collaboration networks, suggesting that network 

densities affect prediction results – denser networks may yield more precise collaboration 

predictions. This is reinforced by the fact that the density of the country collaboration network 

increases – and many new links are formed, whereas the density of the other two decreases (and 

fewer new links are formed). 

Despite the large differences between the three levels of aggregation, we find that strong 

predictors at one aggregation level (e.g., Katz and Preferential Attachment) tend to yield good 

results at the other levels as well. The results indicate that scientific collaboration is a complex 

research activity: in addition to the topological factor, geographical, topical, policy-related, or 

accidental factors also contribute to and thus inform the formation of future collaborations. 

Relationships between the eight predictors 

Using prediction results of country collaboration networks as an example, Table 4 shows the 

matching results of true positive predictions among eight predictors; for each predictor, the best 

matched predictor is displayed in bold. The last row shows the total number of overlapped 

predictions for each predictor.  

Table 4. Overlapping of true positive predictions 

 

Rooted 

PageRank 

SimRank Weighted 

Rooted 

PageRank 

Katz Adamic/ 

Adar 

Common 

Neighbor 

Jaccard 

Coefficient 

Preferential 

Attachment 

Rooted PageRank 2780 
       

SimRank 793 2780 
      

Weighted Rooted PageRank 921 848 2780 
     

Katz 1089 764 1036 2780 
    

Adamic/Adar 1051 757 1026 1341 2780 
   

Common Neighbor 1044 806 993 1363 1340 2780 
  

Jaccard Coefficient 1004 762 983 1223 1200 1225 2780 
 

Preferential Attachment 1111 767 1048 1366 1380 1382 1262 2780 

Sum 7013 5497 6855 8182 8095 8153 7659 8316 

Rooted PageRank, Weighted Rooted PageRank, Katz, Adamic/Adar, Common Neighbor, and 

Jaccard Coefficient have the highest numbers of overlapping true positive predictions with 

Preferential Attachment. SimRank has the highest number of overlapping true positive 

predictions with Weighted Rooted PageRank. The results suggest that Preferential Attachment is 

more similar to other predictors and SimRank is the least similar to other predictors. These 
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findings are confirmed through multidimensional scaling (MDS). The binary true/false positive 

and true/false negative prediction results were used to form a Euclidean distance matrix for MDS. 

The Kruskal’s stress value is 0.15 and R squared is 0.95, suggesting that the two dimensions (as 

illustrated in Figure 8) deliver a sound representation of the prediction results.  

 

Figure 8. Graphic presentation of multidimensional scaling of the eight predictors  

As indicated by MDS, SimRank is the most different from all other link predictors. Weighted 

Rooted PageRank and Rooted PageRank, surprisingly, are on the two ends of dimension 2, 

suggesting that collaboration intensity (i.e., edge weight) has a great impact on prediction results. 

While topology-based predictors are scattered in different corners in Figure 8, neighbor-

information-based predictors are more collocated and thus producing more consistent prediction 

outcomes. Among all topology-based predictors, Katz yielded results the most similar to 

neighbor-information-based predictors; among all neighbor-information-based predictors, 

Preferential Attachment yielded results the most similar to topology-based predictors. 

Collaboration recommendation  

Two predictors, Katz (the best performing topology-based predictor) and Preferential 

Attachment (the best performing neighbor-information-based predictor), were found to perform 
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well across all three levels of aggregation. In this section they are applied to the integrated 2001-

2010 collaboration networks to generate recommendations for collaboration between authors, 

institutions, and countries. Top 10 predicted collaboration pairs are presented in Tables 5 to 7.  

Table 5. Top 10 predicted author collaboration pairs 

Katz Preferential Attachment 

SHAW BR – LANDUCCI G 1.61e-05 ROUSSEAU R – OPPENHEIM C 2891 

ROWLEY J – COOPER J 1.42e-05 TENOPIR C – OPPENHEIM C 2596 

RAY K – COOPER J 1.42e-05 OPPENHEIM C – NICHOLAS D 2419 

COULSON G – COOPER J 1.42e-05 OPPENHEIM C – LEYDESDORFF L 2183 

COOPER J – BANWELL L 1.42e-05 TENOPIR C – ROUSSEAU R 2156 

ROWLEY J – LIGHT A 1.42e-05 OPPENHEIM C – BOOTH A 2065 

ROWLEY J – BARKER A 1.42e-05 OPPENHEIM C – DAVIS GB 2065 

RAY K – BARKER A 1.42e-05 ROUSSEAU R – NICHOLAS D 2009 

RAY K – LIGHT A 1.42e-05 OPPENHEIM C – BENBASAT I 2006 

BARKER A – BANWELL L 1.42e-05 OPPENHEIM C – NUNAMAKER JF 1947 

Predictors Katz and Preferential Attachment yielded quite different top 10 results for author 

collaboration networks. On the Preferential Attachment column, results suggest that Charles 

Oppenheim and Ronald Rousseau may form a collaboration relation which may complement 

their research; other suggested collaborations are Carol Tenopir and Charles Oppenheim, Loet 

Leydesdorff and Charles Oppenheim, David Nicholas and Charles Oppenheim, and Carol 

Tenopir and Ronald Rousseau.  

For savvy information scientists, some of these recommended collaborations may not be feasible. 

Our goal here is not merely to predict and verify who will collaborate with whom in the future, 

nor to designate authors to work with others based on the recommendations. But rather, we 

intend to suggest a small set of potential collaborators for their scrutiny. The suggested 

collaborators may be improbable and in other cases trivial, but they may also be latent from 

scholars’ daily activities. Especially in the latter case, these recommended collaborations can be 

beneficial.   

Table 6 shows predicted institutional collaborations. 

Table 6. Top 10 predicted institution collaboration pairs 

Katz Preferential Attachment 

INDIANA UNIV,BLOOMINGTON – 

GEORGIA STATE UNIV,ATLANTA 

2.21e-05 INDIANA UNIV,BLOOMINGTON – 

HARVARD UNIV,CAMBRIDGE 

1564 

UNIV WISCONSIN,MADISON – UNIV 

MARYLAND,COLLEGE PK 

1.82e-05 HARVARD UNIV,CAMBRIDGE – 

GEORGIA STATE UNIV,ATLANTA 

1426 

UNIV GEORGIA,ATHENS – INDIANA 

UNIV,BLOOMINGTON 

1.81e-05 PENN STATE UNIV,UNIVERSITY PK – 

HARVARD UNIV,CAMBRIDGE 

1196 
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UNIV ARIZONA,TUCSON – INDIANA 

UNIV,BLOOMINGTON 

1.61e-05 UNIV ARIZONA,TUCSON – 

HARVARD UNIV,CAMBRIDGE 

1150 

UNIV PITTSBURGH,PITTSBURGH – 

MICHIGAN STATE UNIV,E LANSING 

1.42e-05 KATHOLIEKE UNIV 

LEUVEN,BELGIUM – HARVARD 

UNIV,CAMBRIDGE 

1058 

UNIV PITTSBURGH,PITTSBURGH – UNIV 

ILLINOIS,CHICAGO 

1.42e-05 UNIV MARYLAND,COLLEGE PK – 

HARVARD UNIV,CAMBRIDGE 

1058 

INDIANA UNIV,BLOOMINGTON – DUKE 

UNIV,DURHAM 

1.42e-05 INDIANA UNIV,BLOOMINGTON – 

GEORGIA STATE UNIV,ATLANTA 

1054 

UNIV PITTSBURGH,PITTSBURGH – 

BRIGHAM &38; WOMENS HOSP,BOSTON 

1.41e-05 UNIV PITTSBURGH,PITTSBURGH – 

UNIV ARIZONA,TUCSON 

975 

UNIV WASHINGTON,SEATTLE – INDIANA 

UNIV,BLOOMINGTON 

1.41e-05 MICHIGAN STATE UNIV,E LANSING 

– HARVARD UNIV,CAMBRIDGE 

920 

UNIV WASHINGTON,SEATTLE – UNIV 

MARYLAND,COLLEGE PK 

1.41e-05 UNIV PITTSBURGH,PITTSBURGH – 

KATHOLIEKE UNIV 

LEUVEN,BELGIUM 

897 

Predictors Katz and Preferential Attachment yield somewhat more consistent results for 

institution collaboration networks. It is suggested that Indiana University and Georgia State 

University may benefit from forming collaborations. Although the top 10 pairs of Katz and 

Preferential Attachment have no other predictions in common, it can be seen that the nodes 

(institutions) involved are to a larger extent the same, which is not the case for authors (Table 5). 

Table 7 shows predicted collaborations between U.S. states and/or countries. 

Table 7. Top 10 predicted state/country collaboration pairs 

Katz Preferential Attachment 

SCOTLAND – GEORGIA,USA 1.39e-03 SCOTLAND – GEORGIA,USA 6230 

GERMANY – COLORADO,USA 1.37e-03 GERMANY – COLORADO,USA 6216 

WISCONSIN,USA – FRANCE 1.28e-03 WISCONSIN,USA – FRANCE 5904 

WASHINGTON,USA – SPAIN 1.28e-03 WASHINGTON,USA – SPAIN 5776 

SOUTH KOREA – DENMARK 1.26e-03 DENMARK – ARIZONA,USA 5740 

DENMARK – ARIZONA,USA 1.26e-03 SOUTH KOREA – DENMARK 5576 

OKLAHOMA,USA – GERMANY 1.26e-03 OKLAHOMA,USA – GERMANY 5544 

OKLAHOMA,USA – INDIA 1.22e-03 SPAIN – ARIZONA,USA 5320 

NEBRASKA,USA – INDIA 1.22e-03 NEVADA,USA – GERMANY 5208 

NEVADA,USA – GERMANY 1.20e-03 HUNGARY – ARIZONA,USA 5180 

Predictors Katz and Preferential Attachment yield more consistent results for country 

collaboration networks: eight out of 10 recommendations belong to the top 10 of both predictors. 

Cross state/country collaborations may promote knowledge sharing and stimulate innovation 

(Jones, Wuchty, & Uzzi, 2008). 

Discussion 
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Integrating prediction results 

In our opinion, each predictor has its strengths and weaknesses. This can be illustrated by 

considering the Preferential Attachment results in Table 5. While some of these collaborators 

share similar research expertise, others are less so; for instance, Carol Tenopir and Ronald 

Rousseau are both prolific authors in information science, but they possess different research 

interests: one on information access and the other on informetrics. The strong results of 

Preferential Attachment in the previous section indicate that it captured certain aspects of 

network evolution which may be overlooked by other predictors. Hence, a promising approach 

seems to be merging the results of different predictors, each with their own conceptual and 

algorithmic properties. This approach can be seen as an application of the principle of 

polyrepresentation (Ingwersen, 1994; Larsen, Ingwersen, & Lund, 2009). 

A simple merging procedure is the Borda method (Aslam & Montague, 2001), where – for each 

predictor – the highest ranked prediction gets a score of   (the number of possible predictions), 

the second highest a score of    , and so on. The merged prediction is then obtained by 

summing the Borda score over all predictors for each item (in this case, each collaboration pair). 

Table 8 displays the results of applying this procedure to the recommendations for author 

collaboration according to Katz and PreferentialAttachment. This introduces several new 

recommendations into the top 10 (compare with Table 5). At the same time, some earlier 

recommendations, including the recommended collaboration between Tenopir and Rousseau, 

remain. Future research may also consider other merging procedures. 

Table 8. Top 10 predicted author collaboration pairs with merged predictions 

Prediction Score 

THELWALL M – LEYDESDORFF L 4965869 

TENOPIR C – SMITH A 4965053 

SMITH A – HUNTINGTON P 4964992 

TENOPIR C – BAWDEN D 4964846 

YEN DC – JIANG JJ 4964775 

TENOPIR C – ROUSSEAU R 4964140 

ROUSSEAU R – LEYDESDORFF L 4964125 

HUNTINGTON P – BAWDEN D 4964060 

ROUSSEAU R – GLANZEL W 4964002 

YEN DC – KLEIN G 4963846 

Toward a multi-level analysis of collaboration 

Scientific collaboration is a complex societal phenomenon. One school of thought believes that 

collaboration is predicated upon institutions and institutions are governed by epistemological 

cultures (e.g., Mulkay, Gilbert, & Woolgar, 1975). Others hold a different belief that 

collaboration is “transepistemic” as scientific inquiries are conducted in an environment where 
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both scientists and non-scientists work together, and thus collaboration possesses both technical 

and non-technical nature (Knorr-Cetina, 1982): “[T]he situational contingencies observed in the 

laboratory are traversed and sustained by relationships which constantly transcend the site of 

research” (p.102). 

In order to examine these beliefs, one must situate all essential collaborative entities (i.e., authors, 

institutions, and countries) in a systematic context (Figure 9).  

 

Figure 9. Collaboration levels 

Author-level analysis is helpful for understanding individuals’ collaboration motivations; it may 

help to reconcile the debate over the inclination of authors to collaborate with domain exports vs. 

scholars with similar academic standing, authors with similar research specialties vs. authors 

with diverse specialties, authors with close physical proximity vs. authors with an extended 

geographical distance. Institution collaboration studies help the examination of the role of 

research institutions in shaping disciplines’ landscape (e.g., Boschma, 2005). It also provides 

social and institutional aspects to study disciplinarity (e.g., Abbot, 2001). Country-level 

collaboration studies are useful for identifying macro-level factors that contribute to 

collaboration. Factors such as language, science policy, and culture can all affect country-level 

collaborations. For instance, Thelwall (2012) found that language is a deciding factor for 

university website interlinking among European countries.  
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In this paper, we have evaluated eight link predictors in a well-defined data set. Based on the 

evaluation results, we applied the two best performing ones, Katz and PreferentialAttachment, to 

recommend collaborations at author-, institution-, and country-levels. The same predictors tend 

to perform well at all collaboration levels. Most variability among the author-, institution- and 

country-levels appears to be attributed to differences in network density. Our results indicate that 

all predictors perform better when applied to the dense country collaboration network instead of 

the sparse author or institution collaboration networks. This is especially the case for 

PreferentialAttachment, which yields the highest level of accuracy for country collaboration 

networks. 

The results show that most likely collaborations comprise authors with similar research 

specialties (e.g., Leydesdorff – Thelwall, Leydesdorff – Rousseau). At the same time, institution-

level predictions show that geographic distance is another factor shaping future collaborations, as 

the recommended collaborations seem to maintain shorter geographic distances or are located in 

the same country/territory (e.g., UNIV MARYLAND,COLLEGE PK – HARVARD 

UNIV,CAMBRIDGE or INDIANA UNIV,BLOOMINGTON – GEORGIA STATE 

UNIV,ATLANTA).  

Link prediction and teams of science 

Science is monotonically becoming more collaborative (e.g., Babchuk, Keith, & Peters, 1999; 

Wuchty, Jones, Uzzi, 2007): research teams are becoming predominant “cross nearly all fields” 

(Wuchty, Jones, Uzzi, 2007, p. 1036). Research teams are formed comprising scientists and 

scholars of diverse expertise (e.g., Fiore, 2008), from multiple universities (e.g., Jones, Wuchty, 

& Uzzi, 2008), between post-docs and colleagues (e.g., Horta, 2009), and between doctoral 

students and advisors (e.g., Moody, 2004). Teams produce high impact research, especially for 

those of multi-university collaborations (Jones, Wuchty, & Uzzi, 2008). Teams also help 

researchers engage more actively in information exchange with domestic and international peers 

and allow them to integrate into international scholarly communities (e.g., Horta, 2009; 

Lambiotte, R., & Panzarasa, 2009). 

Because the current analysis is based on a data set on library and information science 

publications, collaborations outside this field are not included. Yet, the recommendations do 

include suggestions for cross-expertise collaboration, such as between Carol Tenopir (a 

renowned scholar on information access) and Ronald Rousseau (a renowned scholar on 

informetrics), and between Indiana University (a university that has a department specialized in 

informetrics) and Georgia State University (a university that has a department specialized in 

information systems). Such cross-expertise recommendation is attributed to the way that link 

predictors work: link predictors do not differentiate whether an author is associated with any 

particular field; as long as there are instances of collaborations, either cross-expertise or within-

expertise, link predictors will follow such topology and recommend collaborations that may 

pertain to it. In this regard, link prediction is capable of recommending teams of science, 
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provided that there are precedents of teams in the existing topology. Future analysis may benefit 

from using more interdisciplinary data sets (e.g., data sets on energy and brain science) and 

evaluating the performance of link predictors on recommending teams of science. 

Limitation 

The link prediction method relies only on topology. Such an approach brings forward 

conveniences and benefits (e.g., low requirement of data sources and ease of implementation); 

however, it may also result in limitations. As scientific collaboration is a complex socio-

cognitive process, multiple factors can contribute to collaboration decisions (e.g., Moody, 2004; 

Yan & Sugimoto, 2011). These factors may not always be effectively captured and assimilated 

by topology. Consequently, false positive rates are high and some of the recommended 

collaborations may be undesirable or unrealistic. As stated earlier, the goal of this study is not 

simply evaluating different link predictors, but illustrating how to use these predictors to reveal 

latent information and to recommend potential collaborations. As long as the prediction results 

can inspire some authors (and thereby, potentially, institutions and countries) to establish new 

collaborations, the link prediction method is worth investigating. Future studies may benefit from 

incorporating machine learning methods (e.g., Al Hasan et al., 2006; Lichtenwalter, Lussier, & 

Chawla, 2010) with link prediction to enhance prediction performance.  

Conclusion 

This study has explored collaboration dynamics through the link prediction method. Author-, 

institution-, and country-level collaboration networks have been constructed using a ten-year 

data set on library and information science publications. Eight link predictors have been applied 

to these collaboration networks. They have been grouped into two categories: neighbor-

information-based (Adamic/Adar, Common Neighbors, Preferential Attachment, and Jaccard 

Coefficient) and topology-based (Katz, Rooted PageRank, Weighted Rooted PageRank, and 

SimRank).  

The study has revealed that, for the employed data set in particular, higher-level collaboration 

networks (i.e., country-level collaboration networks) tend to yield more accurate prediction 

outcomes than lower-level ones (i.e., institution- and author-level collaboration networks). Based 

on the recommended collaborations of the data set, this study also finds that prediction results by 

SimRank are the least consistent with other link predictors. In the meantime, neighbor-

information-based approaches are more collocated than topology-based ones on the 

multidimensional scaling map. Additionally, this study has proposed a succinct way to integrate 

collaboration recommendations obtained from multiple predictors.  

Note that the findings only refer to the application of the employed link predictors on one 

particular data set. Results may vary for different data sets. By relating the findings of this study 

with those obtained from previous ones (e.g., Huang, Li, Chen, 2005; Liben-Nowell & Kleinberg, 

2007; Guns, 2011), we have discovered that the following observations are consistent across 
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these studies: (1) Katz and Preferential Attachment are among the best performing link 

predictors; (2) Common Neighbors outperforms normalized forms like Jaccard; and (3) link 

predictors perform better when applied to denser networks at higher levels of aggregation. 

Although these observations are subject to further verifications, they are not trivial and should 

inform the selection of link predictors for ongoing studies of collaboration dynamics.  
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