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Empirical modeling of the impact factor distribution

Michal Brzezinski

Faculty of Economic Sciences, University of Warsaw, Poland

Abstract

The distribution of impact factors has been modeled in the recent infor-
metric literature using two-exponent law proposed by Mansilla et al. (2007).
This paper shows that two distributions widely-used in economics, namely
the Dagum and Singh-Maddala models, possess several advantages over the
two-exponent model. Compared to the latter, the former give as good as
or slightly better fit to data on impact factors in eight important scientific
fields. In contrast to the two-exponent model, both proposed distributions
have closed-from probability density functions and cumulative distribution
functions, which facilitates fitting these distributions to data and deriving
their statistical properties.

Keywords: impact factor, two-exponent law, Dagum model,
Singh-Maddala model, maximum likelihood estimation, model selection

1. Introduction

The distribution of journal impact factors has been recently studied in
the informetric literature from both theoretical and empirical perspectives.
Mansilla et al. (2007) proposed the two-exponent law to model rank-frequency
distributions of impact factors. This model was used by Campanario (2010)
to study empirically changes in the distribution of impact factors over time.
A theoretical derivation of the rank-frequency distribution of impact factors
was derived by Egghe (2009); see also Egghe (2011) and Egghe & Waltman
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(2011).1 Mishra (2010) has fitted several well-established statistical distribu-
tions to data on impact factors for journals from several scientific disciplines.
The two-exponent law introduced by Mansilla et al. (2007) has been recently
studied by Sarabia et al. (2012). The authors have obtained the probabilis-
tic quantile function corresponding to the two-exponent law as well as de-
rived several statistical measures and tools associated with this law like the
moments, Lorenz and Leimkuhler curves and the Gini index of inequality.
Moreover, they fitted the two-exponent law to data on impact factors for
eight science categories and found that the fit of the model was satisfactory.

The present paper contributes to the literature on empirical modeling of
the journal impact factor distribution by verifying in a statistically rigorous
way if the two-exponent law is consistent with data on impact factors. In
particular, the paper fits the two-exponent law do data using the maximum
likelihood approach, which is more efficient than the least squares approach
used in previous studies (Mansilla et al., 2007; Sarabia et al., 2012). The fit
of the model to data is evaluated using an appropriate goodness-of-fit test.
Finally, the two-exponent law is compared to alternative models using a
likelihood ratio test. As alternatives we have chosen the Singh-Maddala and
Dagum statistical models (see, e.g., Kleiber & Kotz, 2003), which are widely-
used in economics to model the distribution of income and other variables.2

The analysis is performed for impact factors from eight science categories
studied previously by Sarabia et al. (2012).

The reminder of the paper is structured as follows. Section 2 introduces
definition and basic properties of the two-exponent law and the compared
alternative models. Statistical tests used to assess goodness of fit to data
and tests used for model selection are presented as well. Section 3 describes
our data on impact factors, while Section 4 presents and discusses empirical
findings. Finally, Section 5 concludes.

1Waltman & Van Eck (2009) have criticized the approach of Egghe (2009) from an
empirical point of view.

2These distributions, among others, were previously used by Mishra (2010) to study the
distribution of impact factors. However, they were not compared with the two-exponent
model.
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2. Methods

2.1. The two-exponent law versus Dagum and Singh-Maddala models

In order to model the distribution of impact factors, Mansilla et al. (2007)
introduced the two-exponent law in terms of rank-frequency distribution tak-
ing the form:

f(r) = K
(N + 1− r)b

ra
, (1)

where a > 0, b > 0 are shape parameters, K > 0 is a scale parameter, N is
the total number of sources (journals in the case of modeling impact factors),
r = 1, 2, ..., N is the ranking number and f(r) it the impact factor. If b = 0,
then (1) reduces to Zipf’s law (Egghe, 2005); if a = b it becomes the Lavalette
law (Lavalette, 1996), and when a = 0 it becomes a power law. Sarabia et al.
(2012) derive the quantile function that corresponds to the two-exponent law
(1), which takes the form:

F−1(u) = K
ub

(1− u)a
, for 0 < u < 1. (2)

The distribution defined by (2) was introduced in statistical literature by
Hankin & Lee (2006), who called it the Davies distribution. Unfortunately,
neither probability density function (pdf) nor cumulative distribution func-
tion (cdf) for (2) is available in closed form except for some special cases like
the Zipf’s law, the power law or the Lavalette law. However, they can be
calculated numerically by inverting the quantile function (2).

The Singh-Maddala and Dagum models were introduced in economics in
the context of modeling income distribution by, respectively, Singh & Maddala
(1976) and Dagum (1977). In statistics, these distributions appeared first in
the system of distributions of Burr (1942) and are known as Burr XII distri-
bution (Singh-Maddala) and Burr III distribution (Dagum). For the Singh-
Maddala and Dagum distributions, the pdfs, cdfs and quantile functions are
available in closed forms. Specifically, for a sample of positive impact factors
in a given scientific filed, x1, ..., xN , the cdf for the Singh-Maddala distribu-
tion is given by:

F (x) = 1−
[

1 +
(x

b

)a]−q

, (3)

where a > 0, q > 0 are shape parameters and b > 0 is a scale parameter.
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The cdf for the Dagum distribution is

F (x) =

[

1 +
(x

b

)

−a
]

−p

, (4)

where a > 0, p > 0 are shape parameters and b > 0 is a scale parameter. The
Singh-Maddala and Dagum distributions are closely related in the following
way: X ∼ Dagum(a, b, p) ⇐⇒

1

X
SM(a, 1

b
, p)), where ∼ means “is distributed

as”. The upper tail of the Singh-Maddala distribution is governed by two
parameters (a and q), while the lower tail by a only (Kleiber, 1996). The
opposite holds for the Dagum model (two parameters govern the behaviour
of the lower tail and only one shapes the upper tail) and for this reason this
model is more flexible in the lower tail. Therefore, the two models can be con-
sidered complementary as they have advantages in modeling different parts
of the data. Theoretical properties of the Singh-Maddala and Dagum distri-
butions are very well known; see Kleiber (1996, 2008) and Kleiber & Kotz
(2003) for a detailed discussion.3 In particular, while Sarabia et al. (2012)
offer expressions for the Lorenz curve and the Gini index of inequality for the
two-exponent distribution, in case of the Singh-Maddala and Dagum models
expressions for a wide variety of inequality measures exist (Kleiber & Kotz,
2003; Jenkins, 2009). Moreover, the conditions that allow for testing Lorenz
dominance (i.e. inference on inequality robust to the choice of an inequality
measure) are available (Wilfling & Krämer, 1993; Kleiber, 1996).

When a = b the two-exponent law becomes the Lavalette law (Lavalette,
1996). As noticed by Sarabia et al. (2012), the Lavalette law is known in
the economic literature as the Fisk (or log-logistic) distribution. The Fisk
distribution is a special case of both the Singh-Maddala model (with q set to
1) and the Dagum model (with p set to 1). Kleiber & Kotz (2003) discuss
the properties of the Fisk distribution in more detail.

The Singh-Maddala and Dagum distributions were shown to fit income
distributions well. McDonald (1984) studied the fit of several three- and four-
parameter statistical models to grouped income distribution data and found
that the Singh-Maddala model performed best among the three-parameter
distributions and even better than one four-parameter distribution. Dastrup et al.

3The Singh-Maddala and Dagum distributions are nested within a four-parameter Gen-
eralized Beta of the Second Kind (GB2) model introduced by McDonald (1984). We have
experimented with fitting this model to data on impact factors, but the gains from the
additional complexity were small.
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(2007) found that for the disposable income variable the Singh-Maddala
model was the best-fitting distribution as often as the Dagum distribu-
tion in the group of three-parameter distributions. On the other hand,
Bandourian et al. (2003) compared several distributional models for 82 data
sets on gross income data and found that the Dagum model is the best three-
parameter model in 84% of cases.

2.2. Estimation methods, goodness-of-fit and model selection tests

We estimate all models using maximum likelihood (ML) estimation. The
log-likelihood functions for the Singh-Maddala and Dagum models are avail-
able in Kleiber & Kotz (2003). The log-likelihood for the two-exponent
model can be calculated by numerical inversion of the quantile function (2)
(Hankin & Lee, 2006). Parameter estimates are obtained by numerical max-
imization of the log-likelihood functions. The variance matrix is calculated
as the negative inverse of the Hessian evaluated at the parameter estimates.

Sarabia et al. (2012) estimate the parameters of the two-exponent law
using ordinary least squares (OLS) approach, which was earlier proposed by
Hankin & Lee (2006). However, Hankin & Lee (2006) show in a simulation
study that the OLS approach should be used only when the exponents a and
b in (2) are equal. Since there is no theoretical reason to assume that, this
paper uses rather the ML approach to estimate the parameters and their
variances of the two-exponent law.4

In order to assess whether our samples of impact factors are consistent
with a given statistical model, we follow Clauset et al. (2009) in using a
goodness-of-fit test based on parametric bootstrap approach. In particular,
we use the well-known Kolmogorov-Smirnov test defined by:

KS = max
x

∣

∣

∣
F (x)− F (x; θ̂)

∣

∣

∣
, (5)

where F (x) is the cdf of the data, F (x; θ̂) is the cdf of a tested model and θ̂
is the vector of the model’s parameter estimates obtained, for example, using

4Notice also that Sarabia et al. (2012) estimate standard errors for parameter estimates
of the two-exponent model by directly taking the standard errors from the OLS regression
of logged sample order statistics (or observed quantiles) on their expected values. However,
this approach does not take into account the covariance between order statistics and
produces erroneous results. Hankin & Lee (2006) provide a correct method of calculating
standard errors for parameters of (2) estimated using the OLS.
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ML estimation. The distribution of the KS statistic is known for data sets
drawn from a given model. However, when the underlying model is not known
or when its parameters are estimated from the data, which is the case studied
in this paper, the distribution of the KS must be obtained by simulation.
The appropriate simulation is implemented in the following way. First, we
fit a given model, F (x; θ), to our data set obtaining a vector of estimated
parameters θ̂. Next, we calculate a KS statistic for the fitted model and
denote it by KSorg. Third, we draw a large number, B, of synthetic samples

of the original size from a fitted model F (x; θ̂). For each simulated sample, we
fit the model F (x; θ) and calculate its KS statistic denoted by KSb. Finally,
the p-value for the test is obtained as the proportion of KSb greater than
KSorg. The hypothesis that our data set follows F (x; θ) is rejected if the
p-value is smaller than the chosen threshold (set to 0.1 in this paper).

We also compare formally whether the two-exponent law gives a better
fit to the impact factor data than the the Singh-Maddala and Dagum dis-
tributions. To this aim, we use the likelihood ratio test, which tests if the
compared models are equally close to the true model against the alternative
that one is closer. The test computes the logarithm of the ratio of the likeli-
hoods of the data under two competing distributions, LR, which is negative
or positive depending on which model fits data better. Vuong (1989) showed
that in the case of non-nested models the normalized log-likelihood ratio
NLR = n−1/2LR/σ, where σ is the estimated standard deviation of LR, has
a limit standard normal distribution. This result can be used to compute a
p-value for the test discriminating between the competing models.

3. Data

We use data on impact factors from the latest available (2012) edition of
Thompson Reuters Journal Citation Reports (JCR). Following Sarabia et al.
(2012), we use impact factors for scientific journals belonging to the follow-
ing scientific fields: Chemistry, Economics, Education, Information Science
and Library Science (abbreviated further as Information SLS), Mathemat-
ics, Neurosciences, Psychology and Physics.5 We have removed journals with

5In some cases, we have grouped several JCR subject categories into one science cat-
egory. For example, our category “Mathematics” consists of the following JCR subject
categories: “Mathematical & Computational Biology”, “Mathematics”, “Mathematics,
Applied” and “Mathematics, Interdisciplinary Applications”.
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zero impact factors from our samples. Descriptive statistics for our data sets
are presented in Table 1.

Table 1: Descriptive statistics for the impact factors in eight scientific fields (N denotes
the number of journals within a given field).

Field N Mean Median Std. Dev. Gini
Chemistry 513 2.703 1.684 3.669 0.513
Economics 333 1.062 0.795 0.922 0.440
Education 254 0.868 0.679 0.686 0.404
Information SLS 84 1.001 0.755 0.928 0.465
Mathematics 573 0.950 0.717 0.769 0.379
Neurosciences 252 3.574 2.872 3.486 0.419
Psychology 556 1.766 1.361 1.852 0.435
Physics 381 2.535 1.400 4.514 0.568

Comparing our data with data used by Sarabia et al. (2012), we observe
that the number of journals indexed in JCR has increased between JCR
2010 Edition and JCR 2012 edition for each science category analyzed; the
increases lie in the range between 5% and 20%. Other descriptive statistics
are close to those reported by Sarabia et al. (2012).

4. Empirical results and discussion

Table 2 presents results of fitting the two-exponent law to the data. Beside
parameter estimates and their standard errors, we give also the value of log-
likelihood and the p-value from the goodness-of-fit test described in Section
2.2.

Table 2: Maximum likelihood fits of the two-exponent law to data on impact factors in
selected fields of science. Standard errors in parentheses.
Field K b a Log-likelihood p-value
Chemistry 1.8972 (0.1371) 0.6331 (0.0459) 0.4997 (0.0372) -982.63 0.650
Economics 1.1403 (0.0892) 0.7827 (0.0618) 0.3197 (0.0361) -343.19 0.615
Education 0.8453 (0.0791) 0.6155 (0.0615) 0.3334 (0.0448) -198.02 0.013
Information SLS 1.0459 (0.1832) 0.8308 (0.1246) 0.3466 (0.0841) -82.99 0.006
Mathematics 0.6730 (0.0377) 0.3334 (0.0290) 0.4386 (0.0337) -427.29 0.105
Neurosciences 3.4131 (0.2438) 0.6386 (0.0558) 0.3213 (0.0330) -549.75 0.002
Psychology 1.5840 (0.0845) 0.6096 (0.0384) 0.3577 (0.0278) -819.86 0.314
Physics 1.2452 (0.0827) 0.4722 (0.0388) 0.5965 (0.0444) -657.62 0.008

Our estimates of the parameters are in general close to the OLS estimates
obtained by Sarabia et al. (2012). However, our estimates of standard errors
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are roughly one order higher than those of Sarabia et al. (2012). As pointed
out before, this is due to the fact that Sarabia et al. (2012) do not account in
their approach for the dependence between order statistics. For this reason,
their standard errors are severely underestimated.

The goodness-of-fit test used suggests that the two-exponent model is a
plausible hypothesis for impact factors of journals in Chemistry, Economics,
Mathematics and Psychology.

We can use our estimates to test for the Lavalette law, which holds that
a = b. Using Wald test (see Sarabia et al., 2012), we cannot reject the
hypothesis that a = b at the 5% level for Mathematics and Physics (with
p-values equal to 0.063 and 0.075, respectively). Also, the significance level
of the test is close to 5% for Chemistry (p-value = 0.048). For other science
categories, the hypothesis tested is rejected even at the 1% level. Our results
with respect to the Lavalette law are inconsistent with those of Sarabia et al.
(2012), who found that the law was rejected for each of the science category
studied. This inconsistency is due to the previously mentioned fact that
Sarabia et al. (2012) substantially underestimated the variance of the pa-
rameter estimates of the two-exponent law.

Tables 3-4 presents our results of fitting the Singh-Maddala and Dagum
models. In most of the cases, the parameters are estimated with sufficient
precision. There are some exceptions, especially in case of fitting the Singh-
Maddala distribution to impact factors for Economics, Education, and In-
formation SLS. However, even in these cases all three parameters are jointly
different from zero in a statistically significant way.

Table 3: Maximum likelihood fits of the Singh-Maddala model to data on impact factors
in selected fields of science. Standard errors in parentheses.
Field a b q Log-likelihood p-value
Chemistry 1.6208 (0.1030) 2.2040 (0.3789) 1.3613 (0.2477) -982.60 0.759
Economics 1.3534 (0.1004) 3.6112 (2.1859) 5.5194 (3.4980) -341.64 0.916
Education 1.6679 (0.1536) 1.4947 (0.5821) 2.8249 (1.2977) -197.07 0.061
Information SLS 1.2895 (0.1962) 3.1271 (3.8256) 4.7948 (5.7605) -82.44 0.043
Mathematics 2.8287 (0.2140) 0.6471 (0.0602) 0.7957 (0.1303) -428.15 0.037
Neurosciences 1.7098 (0.1354) 4.8304 (1.1260) 2.1769 (0.5982) -552.07 0.001
Psychology 1.7595 (0.0980) 2.0466 (0.3225) 1.8321 (0.3432) -821.01 0.085
Physics 2.1123 (0.1623) 1.0978 (0.1274) 0.7382 (0.1133) -657.02 0.038

The goodness-of-fit test suggests that both models are plausible for im-
pact factors of journals in Chemistry and Economics. The Dagum model
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Table 4: Maximum likelihood fits of the Dagum model to data on impact factors in selected
fields of science. Standard errors in parentheses.
Field a b p Log-likelihood p-value
Chemistry 1.9727 (0.1454) 2.0778 (0.2616) 0.7701 (0.1191) -982.87 0.528
Economics 2.7042 (0.3041) 1.3517 (0.1585) 0.4420 (0.0835) -344.56 0.648
Education 2.7038 (0.3170) 0.9520 (0.1276) 0.5702 (0.1248) -198.64 0.016
Information SLS 2.4773 (0.7232) 1.2474 (0.4136) 0.4605 (0.2290) -83.73 0.005
Mathematics 2.3283 (0.1400) 0.5924 (0.0704) 1.4299 (0.2592) -426.87 0.146
Neurosciences 3.0261 (0.3013) 4.1831 (0.3626) 0.4615 (0.0741) -547.63 0.014
Psychology 2.6482 (0.1986) 1.8506 (0.1547) 0.5701 (0.0775) -819.85 0.293
Physics 1.7539 (0.1255) 1.1489 (0.1890) 1.2473 (0.2334) -658.09 0.020

seems also to be consistent with data for Mathematics and Psychology. The
Singh-Maddala model has a higher probability of being consistent with data
for Education, Information SLS, and Physics than both the two-exponent
law and the Dagum model. Neither model seems to be consistent with data
for Neurosciences.

We can also test for the Lavalette law (Fisk distribution) using fitted
Singh-Maddala and Dagum models. For the Singh-Maddala model this
amounts to testing the hypothesis that q = 1, while for the Dagum model the
relevant hypothesis is that p = 1. Using Wald tests, we have found that at
the 5% level both the Singh-Maddala and Dagum models can be reduced to
the Fisk distribution in case of Chemistry and Mathematics. Moreover, the
Singh-Maddala model can be reduced to the Fisk distribution in case of Eco-
nomics, Education, and Information SLS, while the Dagum model reduces to
the Fisk model in case of Physics.6 These results suggest that in modeling
the distribution of impact factors, the Lavalette law should be treated as a
serious alternative to the three-parameter distributions, especially for formal
and natural sciences.

The results of model selection tests based on the approach of Vuong
(1989) are reported in Table 5. The compared models are empirically in-
distinguishable for impact factors of journals in Chemistry, Mathematics,
Psychology and Physics. For Economics, Education, and Information SLS,
the Singh-Maddala model is preferred to both the two-exponent model and
the Dagum model. Finally, the Dagum distribution is preferred for data in

6However, these results for the Singh-Maddala model may be due to the previously
discussed insufficient precision of the estimates for the parameter q.
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Neurosciences.

Table 5: Model selection tests for impact factor distributions, selected science fields. “A ≻

B” denotes that distribution A gives a better fit than distribution B. Positive values of
LR indicate that the likelihood for the two-exponent model is higher than the likelihood
for the alternative.
Science category Two-exp. vs. Dagum Two-exp. vs. SM Conclusion

LR p-value LR p-value
Chemistry 0.237 0.483 -0.027 0.939 Distributions are indistinguishable
Economics 1.365 0.071 -1.554 0.094 Two-exp. ≻ Dagum, SM ≻ Two-exp.
Education 0.623 0.184 -0.949 0.058 Two-exp. ≻ Dagum, SM ≻ Two-exp.
Information SLS 0.746 0.022 -0.545 0.089 Two-exp. ≻ Dagum, SM ≻ Two-exp.
Mathematics -0.416 0.336 0.864 0.117 Distributions are indistinguishable
Neurosciences -2.115 0.005 2.322 0.020 Dagum ≻ Two-exp., Two-exp. ≻ SM
Psychology -0.017 0.981 1.148 0.214 Distributions are indistinguishable
Physics 0.472 0.234 -0.599 0.137 Distributions are indistinguishable

The models can be also compared visually using quantile-quantile (q-q)
plots. Figure 1 plots empirical quantiles versus theoretical quantiles for the
two-exponent law and the better of the two alternatives (Singh-Maddala or
Dagum) for these cases, when results from Table 5 suggest that the two-
exponent law is worse fit to the data. If the estimated model fitted the data
perfectly, the q-q plot would coincide with the 45-degree line. Figure 1 shows
that the differences between compared models are in general small. However,
it is clearly visible that the two-exponent law gives a slightly worse fit in these
cases, especially for the highest quantiles.

Overall, both our formal tests and visual inspection from the q-q plots
suggest that compared to the two-exponent law, the Singh-Maddala and
Dagum models offer as good as or slightly better fit to data on impact factors.

5. Conclusions

The distribution of impact factors has been modeled in the recent in-
formetric literature using the two-exponent law proposed by Mansilla et al.
(2007). This paper shows that two distributions widely-used in economics,
namely the Singh-Maddala and Dagum models, possess several advantages
over the two-exponent model. They are either empirically indistinguishable
from the two-exponent law or give slightly better fit to data on impact fac-
tors in eight important scientific fields. Contrary to Sarabia et al. (2012),
the present paper also found that the Lavalette law (Lavalette, 1996), which
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Figure 1: Quantile-quantile plots for the two-exponent law vs. the better of the Singh-
Maddala and Dagum models. Left panels show bottom and middle quantiles, right panels
show upper quantiles.

11



is a special case of both the two-exponent law and the Singh-Maddala and
Dagum models, often cannot be rejected as an appropriate distribution for
impact factors, especially for formal and natural sciences.

In contrast to the two-exponent model, both models proposed in this
paper have closed-from probability density functions and cumulative distri-
bution functions. This advantage allows one to estimate model parameters
in a more straightforward way without the need for numerical estimation
of the model’s basic functions. There exists also a well-developed litera-
ture (see, e.g., Kleiber & Kotz, 2003; Kleiber, 2008), that explores various
theoretical properties of the Singh-Maddala and Dagum distributions, in-
cluding ready-made expressions for several inequality measures as well as
conditions required for Lorenz ordering or stochastic dominance of various
degrees. These properties may be exploited in modeling the distribution of
impact factors and other informetric variables. For these reasons, this pa-
per suggests that the Singh-Maddala and Dagum models are more useful
for empirical modeling of the distribution of journal impact factors than the
two-exponent law.
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