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The citations to a set of academic articles are typically unevenly shared, with many articles 
attracting few citations and few attracting many. It is important to know more precisely how 
citations are distributed in order to help statistical analyses of citations, especially for sets of 
articles from a single discipline and a small range of years, as normally used for research 
evaluation. This article fits discrete versions of the power law, the lognormal distribution 
and the hooked power law to 20 different Scopus categories, using citations to articles 
published in 2004 and ignoring uncited articles. The results show that, despite its popularity, 
the power law is not a suitable model for collections of articles from a single subject and 
year, even for the purpose of estimating the slope of the tail of the citation data. Both the 
hooked power law and the lognormal distributions fit best for some subjects but neither is a 
universal optimal choice and parameter estimates for both seem to be unreliable. Hence, 
only the hooked power law and discrete lognormal distributions should be considered for 
subject-and-year-based citation analysis in future and parameter estimates should always 
be interpreted cautiously. 
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1. Introduction	
Citation counts are known to be highly skewed in the sense that, after a few years, many 
articles in a typical collection will have received few citations and a few articles will have 
received many citations (Price, 1965). Other phenomena also exhibit similar behaviour. For 
example, web hyperlink counts are also highly skewed, with a small number of pages 
attracting huge numbers of hyperlinks whereas many pages attract few (Barabási, & Albert, 
1999). A mathematical distribution that has the same property, and which has been argued 
to model citations, either for all papers with at least one citation or for all papers with at 
least a moderate number of citations, is the power law (e.g., Albarrán, Crespo, Ortuño, & 
Ruiz-Castillo, 2011; Clauset, Shalizi, & Newman, 2001, 2009; Redner, 1998; Wen & Hsieh, 
2013). This is the simple formula 1/��  with one parameter, �. For example, if a power law is 
applied to the number of citations to a set of articles, then for some fixed value  � it would 
be true that the probability that a randomly selected article had received � citations would 
be proportional to 1/��. Nevertheless, other mathematical distributions have also been 
proposed, such as a discrete version of the lognormal distribution (Radicchi & Castellano, 

2012) with continuous probability density function 
�

�√	
� �
��������
��� , where � and � are its 

two parameters. For other types of data, investigations have shown that, despite initial 
claims, power laws are less appropriate than the lognormal distribution (e.g., Downey, 2001; 
Mitzenmacher, 2004) and so it is important to assess whether power laws, or variants, are 
appropriate for citation distributions. 
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An alternative possible distribution, based on the formula 1/�� � ���, where B > -1, 
and called here the hooked power law, is an extension of the power law where � is a second 
parameter. This distribution was derived for web links (Pennock, Flake, Lawrence, et al., 
2002 – see below) but seems to have not been used for citations although it is a logical 
alternative distribution, given the acknowledged parallels between hyperlinks and citations. 
This article assesses whether the hooked power law is a better fit than the lognormal and 
power law distributions for citation data for a single year and subject. Although a previous 
study has suggested that citation distributions from all fields can be scaled to give the same 
shape (Radicchi, Fortunato, & Castellano, 2008), this has subsequently been shown not to 
be the case (Waltman, van Eck, & van Raan, 2012) and so the issue is still unresolved. 
Moreover, a citation distribution that fits for long periods of time will not necessarily fit 
time-sliced data, such as that for all citations within a given year. Scientometric evaluations 
that use citations often compare articles separately that are published within a single year 
or within a short time window (e.g., for the main UK research evaluation, expert panels 
consider articles from several years but, if they use citations, are given field-based citation 
averages separately for each year under consideration) and so it is important to identify 
distributions that fit the type of data that is used in practice. 

The question of which statistical model best fits citations is an abstract mathematical 
one, but the answer has both theoretical and practical implications (e.g., Glanzel, 2007; 
Ruiz-Castillo, 2013). It has practical implications for the use of citation analysis in research 
evaluation because power laws can be generated by feedback loops, and this appears to be 
the most common explanation for natural phenomena that obey power laws. In 
bibliometrics, the feedback loop is known as the Matthew effect (Merton, 1968) and 
elsewhere it is known as rich-get-richer (e.g., Adamic & Huberman, 2000). In other words, if 
citations obey a power law then, once cited, articles generate citations primarily because of 
their existing citations rather than because of their intrinsic value. If true, then this would be 
an argument against using citations in research evaluation. In contrast, a hooked power law 
is consistent with a process in which articles attract new citations partly due to their existing 
citations and partly due to other factors (Pennock, Flake, Lawrence, Glover, & Giles, 2002), 
such as their intrinsic worth. This would be more consistent with citations being used in 
research evaluation but would nevertheless be an argument against counting the citations 
to particularly highly cited articles (i.e., citation classics: Garfield, 1987) at face value 
because a high proportion may be due to existing citations rather than the intrinsic worth of 
the article. In bibliometrics, this may be related to the previously observed phenomena of 
the perfunctory citations given to works that appear to be merely concept markers (Case & 
Higgins, 2000). Although the hooked power law behaves like a power law when � is much 
greater than �, the additional parameter � suggests that another factor is also at work (see 
Appendix A). 

It is also important to assess which distributions fit citation data best because this 
can help when conducting theoretical studies of factors that affect citation counts, such as 
the role of collaboration and countries (Didegah, & Thelwall, 2013; Peters, & van Raan, 
1994) as well as when using citation counts for research evaluation purposes – typically for 
articles within a single subject and a single year or small time window. Such studies can 
potentially be more powerful if they use statistical methods that are best tailored to the 
appropriate citation distribution. 



2. Research	questions	
The following questions address the goal of deciding which mathematical distribution is the 
most appropriate for citations from a single subject and year, and whether the distributions 
are suitable.  

• Which out of the power law, the hooked power law, and the (discrete) lognormal 
distribution is the best model for the distribution of counts of citations to articles in 
individual subjects and years? 

• In the above case, is the power law exponent extracted from an optimal fit similar to 
the corresponding hooked power law exponent? 

• In the above case, can the parameters for the best fitting distributions be estimated 
to a high degree of precision?  

3. Methods	
In order to test the different distributions for the first two research questions, twenty 
different subject areas were selected from Scopus in order to cover a wide range of 
different potential citation norms. This is important because different areas of scholarship 
cite at different speeds and with different goals (Amin & Mabe, 2000). The subject areas 
include some from the arts, humanities, social sciences, physical sciences, formal sciences 
and medicine. Scopus was chosen in preference to the Web of Science for its larger 
coverage (de Moya-Anegón, Chinchilla-Rodríguez, Vargas-Quesada, et al., 2007) but this 
choice seems unlikely to affect the results. 

In order to give approximately ten years to attract citations, which should be enough 
to give substantial numbers of citations even in the slowest moving fields, articles were 
selected from the end of 2004, up to a maximum of 5000 (a Scopus search interface 
limitation). Due to the Scopus search interface the data sets included some articles from 
very early 2005 (typically 1 January 2005) but this should not bias the citation distributions 
extracted much. The most significant difference between the subjects is that some include a 
full year of articles (e.g., Algebra and Number Theory) whereas others contain only articles 
from later in 2004 (e.g., Biochemistry) but this should also not bias the results much because 
of the long time period (over ten years) involved (Table 1). For each subject the number of 
citations to each article (excluding reviews) was extracted from Scopus. 
 
  



Table 1. The 20 Scopus subjects selected and the number of articles (excluding reviews and 
documents that are not articles) extracted from them from the end of 2004 (maximum 5000 
articles). The data, including citations, was collected in May 2014. 

Scopus subject Abbreviation Articles General subject area 

Accounting Accounting 1178 Business, Management and Accounting 
Algebra and Number 
Theory Algebra 528 Mathematics 

Applied Mathematics AppliedMaths 5000 Mathematics 

Biochemistry Biochem 5000 Biochemistry, Genetics and Molecular Biology 

Dermatology Dermatology 3184 Medicine 

Developmental Biology Developmental 4541 Biochemistry, Genetics and Molecular Biology 
Ecology, Evolution, 
Behavior and Systematics Ecology 5000 Agricultural and Biological Sciences 

Genetics Genetics 5000 Biochemistry, Genetics and Molecular Biology 

History History 5000 Arts and Humanities 

Horticulture Horticulture 3009 Agricultural and Biological Sciences 
Literature and Literary 
Theory Literature 5000 Arts and Humanities 

Logic Logic 4547 Mathematics 

Marketing Marketing 1550 Business, Management and Accounting 

Oncology Oncology 4646 Medicine 

Rehabilitation Rehab 5000 Medicine 

Soil Science Soil 4347 Agricultural and Biological Sciences 

Statistics and Probability StatsProb 5000 Mathematics 
Tourism, Leisure and 
Hospitality Management Tourism 608 Business, Management and Accounting 

Urology Urology 5000 Medicine 
Visual Arts and Performing 
Arts Visual 4096 Arts and Humanities 

 
When a statistical distribution is believed to be suitable for given data, the first step for 
verifying this is to estimate the parameters of the distribution. Statistical distributions are 
often fitted to data according to the maximum likelihood principal (ordinary least squares 
regression is also common for some contexts). This asserts that a distribution should be 
fitted to data by choosing values of parameters that maximise the likelihood that the data 
was derived from the distribution. For any set of parameters (e.g., �, � in the case of the 
hooked power law) this means calculating the probability that each data point could have 
been derived from the formula for those parameters, and then multiplying the probabilities 
together for all of the data points. Because this usually generates very small numbers, the 
log of this figure is used, which is called the log-likelihood of the parameters. The 
distribution is then fitted to the data by developing an algorithm to find values of the 
parameters that maximise the log-likelihood (or minimise it if, as in the current paper, the 
log-likelihood values are multiplied by -1 for convenience). The distributions in this paper 
were fitted using an analytical process (based on derivatives) for the power law and the 
lognormal distribution and a simple iterative gradient descent algorithm for the hooked 
power law (see Appendix B). 



 Data sets often have different behaviours at zero or small numbers than for large 
numbers. In response, zero-inflated models have been developed to help analyse datasets 
where the zeroes are distributed differently to the rest of the numbers (e.g., Hilbe, 2011). 
Similarly, power laws are often fitted to only the tails of data sets, ignoring all points less 
than a specified minimum value in the belief that low numbers may be driven by different 
processes than are high numbers (Clauset, Shalizi, & Newman, 2009). In terms of citations, 
this would mean picking a number, ����, and ignoring all articles with less than ���� 
citations when fitting the distribution. The standard procedure for this, which is used here, 
is to try different values of ���� and fit the distribution for each value, keeping the ���� for 
which the best fit can be obtained (Clauset, Shalizi, & Newman, 2009). 

The three candidate distributions (discrete versions of the power law, lognormal and 
hooked power law) were fitted to the data and compared against each other under three 
conditions and for each subject. 

• Optimal conditions for the power law: For each subject, the minimum number of 
citations was set to give the power law the best fit to the data and then the other 
two distributions were also fitted with this same minimum. 

• Optimal conditions for the lognormal: For each subject, the minimum number of 
citations was set to give the lognormal distribution the best fit to the data and then 
the other two distributions were also fitted with this same minimum. 

• All cited articles: For each subject, the minimum number of citations was set to 1 to 
include all the citation data and then all three distributions were fitted with this 
minimum. 

All three of the distributions are continuous but fitted here to discrete data. One way to 
perform this conversion, which is used here, is to use the continuous Probability Density 
Function (PDF) as the basis of the probability mass function for the discrete case. This can 
cause a problem because, whilst the integral of the continuous PDF is 1, the sum of all 
integer values of the PDF might not be 1, in which case it would not be a valid probability 
mass function. To correct for this issue, the continuous PDFs were converted to discrete 
probability mass functions by dividing them by their sum from one to infinity (or an 
approximation) of the original point estimates. For example, if ���� is the lognormal PDF, so 

that � ���� 
! " 1, then the point mass function (evaluated only at positive integer x) is 

����/ ∑ ��$� 
�%� . See Appendix B for specific details for the three distributions used. 

The Vuong (1989) test is typically used to compare distributions. In the case of different 
types of distributions (non-nested distributions) the Vuong statistic is normally distributed 
and is calculated by comparing the log-likelihoods of the distributions, correcting for the 
sample size, the differing number of free parameters in each distribution, and the variability 
of the data. The Vuong test was used to compare the lognormal distribution against the 
power law and the lognormal distribution against the hooked power law. The power law 
distribution was compared against the hooked power law distribution with the Likelihood 
Ratio Test (LRT) (Wilks, 1938) because the former is nested within the latter (by setting B=0). 
The LRT test statistic is double the difference in the log-likelihoods, which follows the chi-
square distribution with 1 degree of freedom (for the extra parameter B), giving critical 
values of 3.841 for p=0.05 and 6.635 for p=0.01. 
 For the third research question, simulations were run on the hooked power law and 
lognormal distributions in order to assess the precision of the parameter estimates. 



4. Results	
When fitting all three distributions to the data with the optimal minimum threshold for 
citations set for the power law (Table 2), in almost all cases all three distributions fit the 
data equally well. The exceptions are that the lognormal fits Developmental significantly 
better than does the power law and the hooked power law fits both History and Urology 
significantly better than does the lognormal distribution. The hooked power law also fits 
four subjects significantly better than does the power law. Moreover, for 19 of the 20 
subjects the Vuong statistic for comparing the lognormal and the power law is negative, 
suggesting (but not giving statistical evidence) that the lognormal is a marginally better fit. 
Similarly, in about half of the cases the hooked power law is a better fit than the lognormal 
distribution, suggesting that the two are broadly equivalent for this data. Taken together, it 
seems reasonable to claim that although most of the time the three distributions fit the tail 
of the citation distributions equally well, the lognormal and hooked power law are both 
marginally better fits than the power law, even for the length of tail that the power law fits 
best. 

When fitting all three distributions to the data with the optimal minimum threshold 
for citations set for the lognormal distribution (Table 3), the minimum citation thresholds 
are typically lower than for the power law (i.e., the distributions are less truncated). In all 
cases the hooked power law and lognormal distributions both fit the data significantly 
better than does the power law, showing that the lognormal distribution is consistent with 
citation counts over a greater range of their values. Overall, the hooked power law fits the 
data for this range about as well as the lognormal distribution and hence it also fits citation 
distributions over a greater range than does the power law. 

When fitting all three distributions to all of the articles with at least one citation 
(Table 4), the hooked power law and lognormal distributions fit statistically significantly 
better than does the power law. The lognormal distribution fits statistically significantly 
better than does the hooked power law in only three subjects, whereas the hooked power 
law fits better for nine subjects. Whilst this suggests a slight preference for the hooked 
power law overall, the statistically significant results in both directions give confirmation 
that citations do not necessarily follow the same distribution or laws in all subjects. Figures 
1 and 2 shows a case where the hooked power law fits better than the lognormal 
distribution and Figure 3 shows a reverse case. 



Table 2. Comparison of the power law, hooked power law and lognormal distributions with the optimal minimum number of citations for the 
power law. Articles are taken from the first up to 5000 articles reported in Scopus in each subject for the year 2004.* 

Subject 

Min. 

cit. Articles 

Pl 

alpha 

LN 

mean 

Ln 

SD 

Hooked 

alpha 

Hooked 

B 

LL 

pl 

LL 

ln 

LL 

hook 

Vuong 

(pl-ln) 

Vuong 

(ln-h) 

LRT 

(hook-pl) 

Accounting 59 146 2.982 3.6 0.81 7.620 212.9 713.89 710.29 710.22 -1.628 -0.196 7.3 

Algebra 12 73 3.152 0.8 1.06 4.609 11.6 229.52 228.87 228.86 -0.604 -0.158 1.3 

AppliedMaths 58 154 3.062 -28.9 4.06 3.144 3.4 741.25 741.24 741.24 -0.093 -0.034 0.0 

Biochem 58 487 3.152 -640.4 17.33 3.152 0.0 2313.27 2313.30 2313.27 0.793 -0.816 0.0 

Dermatology 37 119 3.538 1.2 1.11 4.720 23.9 483.21 482.66 482.75 -0.702 1.195 0.9 

Developmental 55 761 2.671 2.4 1.26 3.672 53.4 3868.13 3859.46 3860.29 -2.517 1.600 15.7 

Ecology 86 201 3.667 -1.4 1.57 4.162 21.9 973.37 973.13 973.18 -0.414 0.579 0.4 

Genetics 118 316 2.822 -4.9 2.42 3.072 25.4 1806.00 1805.75 1805.68 -0.376 -0.296 0.6 

History 5 824 2.238 0.7 1.31 3.229 6.9 2560.85 2541.14 2542.87 -3.819 2.181 36.0 

Horticulture 38 327 3.307 0.5 1.31 4.276 22.8 1380.70 1379.50 1379.17 -0.666 -1.024 3.1 

Literature 9 51 4.129 -0.3 0.98 5.653 5.5 118.77 118.59 118.64 -0.418 1.136 0.3 

Logic 58 176 3.765 -2.2 1.59 4.184 11.9 773.76 773.58 773.66 -0.397 0.941 0.2 

Marketing 47 247 2.882 -13.4 3.11 3.081 7.6 1170.51 1170.42 1170.35 -0.189 -0.374 0.3 

Oncology 88 486 2.754 -11.3 3.10 2.899 11.7 2663.33 2663.17 2663.11 -0.346 -0.294 0.4 

Rehab 49 208 3.348 2.4 0.97 5.256 57.0 926.44 924.57 924.69 -1.092 0.759 3.5 

Soil 63 184 3.831 0.5 1.23 4.673 25.3 818.41 817.99 818.09 -0.595 1.408 0.6 

StatsProb 79 159 2.692 -11.2 3.14 2.792 7.6 863.03 862.98 862.99 -0.237 0.154 0.1 

Tourism 32 127 2.846 3.0 0.84 6.997 113.4 556.13 552.66 552.64 -1.673 -0.055 7.0 

Urology 58 380 3.172 1.7 1.21 4.174 39.2 1799.82 1797.61 1797.99 -1.350 2.113 3.7 

Visual 5 144 3.216 -608.8 16.66 3.216 0.0 313.92 313.93 313.92 -0.042 -0.107 0.0 

* pl = power law, ln = lognormal, hooked = hooked power law, LL = minus log likelihood – lower values indicate a better fit; Vuong = Vuong z 
values – bold if significant at p=0.05, where positive values indicate that the first bracketed model is a better fit than the second. 
  



Table 3. Comparison of the power law, hooked power law and lognormal distributions with the optimal minimum number of citations for the 
lognormal distribution. Articles are taken from the first up to 5000 articles reported in Scopus in each subject for the year 2004.* 

Subject 

Min. 

cit. Articles 

Pl 

alpha 

LN 

mean 

Ln 

SD 

Hooked 

alpha 

Hooked 

B 

LL 

pl 

LL 

ln 

LL 

hook 

Vuong 

(pl-ln) 

Vuong 

(ln-h) 

LRT 

(hook-pl) 

Accounting 5 865 1.637 2.8 1.13 3.956 55.8 3912.554 3766.5 3766.3 -10.892 -0.198 292.5 

Algebra 1 455 1.519 1.4 1.01 6.064 24.4 1413.146 1268.9 1270.4 -10.740 0.661 285.5 

AppliedMaths 3 3180 1.686 2.0 1.15 3.495 20.6 11979.6 11534.6 11534.0 -17.766 -0.316 891.2 

Biochem 8 3751 1.835 3.0 0.92 5.212 77.5 16479.15 15913.6 15914.5 -16.189 0.133 1129.3 

Dermatology 3 1941 1.818 1.7 1.10 3.834 16.4 6520.661 6313.6 6314.7 -12.459 1.552 411.9 

Developmental 19 2409 2.156 2.7 1.19 3.455 41.4 11173.66 11083.9 11085.0 -7.965 0.838 177.3 

Ecology 7 3788 1.767 3.0 0.84 7.857 143.4 16825.45 15994.2 16026.8 -24.945 4.977 1597.3 

Genetics 44 1238 2.435 1.6 1.53 3.113 35.8 6324.049 6312.1 6311.8 -2.530 -0.229 24.5 

History 2 1774 1.871 0.8 1.29 2.994 5.0 4872.115 4766.6 4769.0 -8.782 1.588 206.2 

Horticulture 13 1260 2.288 2.8 0.84 5.953 67.3 5103.5 5016.3 5016.4 -6.958 0.117 174.2 

Literature 1 1652 1.983 0.2 0.99 4.742 4.5 2754.194 2632.8 2632.8 -9.208 -0.070 242.8 

Logic 15 1293 2.345 2.9 0.84 6.295 78.9 5330.786 5248.6 5249.0 -7.510 0.646 163.6 

Marketing 2 1368 1.443 2.6 1.25 3.465 39.3 6144.25 5767.0 5763.9 -17.678 -1.330 760.7 

Oncology 6 3526 1.590 3.2 1.13 3.671 70.5 17340.97 16654.9 16651.5 -22.212 -1.201 1378.9 

Rehab 22 714 2.649 2.6 0.95 4.898 48.7 2980.591 2961.6 2961.8 -3.663 0.684 37.6 

Soil 14 1711 2.292 2.8 0.85 6.308 79.7 7052.42 6936.9 6936.9 -8.981 0.024 231.0 

StatsProb 2 3987 1.523 2.1 1.26 3.111 19.9 15923.78 15119.9 15112.4 -23.931 -2.520 1622.8 

Tourism 7 429 1.836 2.8 0.93 6.085 86.2 1822.283 1758.9 1759.1 -7.155 0.234 126.4 

Urology 12 2214 2.034 2.9 0.95 4.968 71.2 9690.694 9495.1 9495.3 -11.703 0.258 390.8 

Visual 1 982 1.924 0.2 1.06 4.103 3.9 1749.381 1677.2 1675.8 -6.144 -1.160 147.2 

* pl = power law, ln = lognormal, hooked = hooked power law, LL = minus log likelihood – lower values indicate a better fit; Vuong = Vuong z 
values – bold if significant at p=0.05, where positive values indicate that the first bracketed model is a better fit than the second. 
  



Table 4. Comparison of the power law, hooked power law and lognormal distributions for all articles with at least one citation. Articles are 
taken from the first up to 5000 articles reported in Scopus in each subject for the year 2004.* 

Subject 

Min. 

cit. Articles 

Pl 

alpha 

LN 

mean 

Ln 

SD 

Hooked 

alpha 

Hook 

B 

LL 

pl 

LL 

ln 

LL 

hook 

Vuong 

(pl-ln) 

Vuong 

(ln-h) 

LRT 

(hook-pl) 

Accounting 1 1089 1.320 2.6 1.30 3.728 48.4 5131.4 4637.8 4631.9 -22.112 1.493 987.2 

Algebra 1 455 1.519 1.4 1.01 6.064 24.4 1413.1 1268.9 1270.4 -10.740 -0.661 288.4 

AppliedMaths 1 4111 1.413 1.8 1.30 3.289 17.4 15605.5 14387.3 14373.4 -30.917 3.284 2436.4 

Biochem 1 4811 1.302 2.8 1.07 6.848 130.0 23754.0 20579.4 20574.5 -54.364 0.260 6349.2 

Dermatology 1 2687 1.465 1.6 1.18 3.816 16.1 9196.3 8420.4 8421.2 -25.146 -0.253 1551.8 

Developmental 1 4480 1.285 3.0 1.11 5.024 105.1 23183.3 20171.2 20233.2 -58.542 -4.010 6024.2 

Ecology 1 4654 1.302 2.8 1.09 10.914 233.7 22961.5 19953.7 19841.8 -51.523 5.589 6015.6 

Genetics 1 4710 1.290 2.9 1.32 3.525 61.0 24019.5 21661.9 21611.0 -47.320 5.569 4715.2 

History 1 2637 1.646 0.6 1.36 2.769 3.7 6703.2 6434.6 6440.2 -13.955 -2.549 537.2 

Horticulture 1 2820 1.356 2.3 1.16 6.118 70.3 12151.3 10825.6 10782.1 -34.037 4.732 2651.4 

Literature 1 1652 1.983 0.2 0.99 4.742 4.5 2754.2 2632.8 2632.8 -9.208 0.070 242.8 

Logic 1 3755 1.381 2.1 1.28 4.107 33.2 15273.0 13962.5 13918.9 -32.735 5.890 2621.0 

Marketing 1 1459 1.328 2.5 1.32 3.437 38.5 6723.6 6112.2 6104.5 -23.784 1.929 1222.8 

Oncology 1 4226 1.285 3.0 1.32 3.664 70.3 21902.3 19735.1 19670.6 -44.781 6.715 4334.4 

Rehab 1 2904 1.415 1.6 1.67 2.514 10.3 10981.5 10485.3 10540.2 -19.362 -5.799 992.4 

Soil 1 3961 1.352 2.3 1.18 5.873 69.5 17231.1 15397.8 15332.9 -40.102 6.317 3666.6 

StatsProb 1 4455 1.382 2.0 1.33 3.056 18.8 18061.4 16626.7 16611.0 -33.728 3.729 2869.4 

Tourism 1 593 1.327 2.5 1.13 6.812 103.4 2738.3 2409.5 2404.9 -17.965 0.963 657.6 

Urology 1 4250 1.343 2.4 1.35 3.900 42.7 18873.9 17263.2 17196.6 -36.482 7.146 3221.4 

Visual 1 982 1.924 0.2 1.06 4.103 3.9 1749.4 1677.2 1675.8 -6.144 1.160 144.4 

* pl = power law, ln = lognormal, hooked = hooked power law, LL = minus log likelihood – lower values indicate a better fit; Vuong = Vuong z 
values – bold if significant at p=0.05, where positive values indicate that the first bracketed model is a better fit than the second. 



 

 
Figure 1. The hooked power law and the lognormal distribution fitted to the complete data 
set of Urology articles from 2004, together with the power law fitted to its optimal range 
(articles with at least 58 citations). The broomstick shape of the tail of the data in 
comparison to the curves of the distributions is due to the former being realised values and 
the latter being probability predictions. Both axes are on a logarithmic scale. 

 

 



Figure 2. The same data as for Figure 1 except that the cumulative probabilities for the 
Urology data are plotted for the lognormal and hooked power law distributions, showing 
the closer fit for the hooked power law distribution. 
 

 
Figure 3. Cumulative probabilities for the Rehab data for the lognormal and hooked power 
law distributions, showing the closer fit for the lognormal distribution. 

 
In answer to the second research question, the power law alpha coefficients in Table 2 are 
substantially lower (range: 2.238 to 4.129) than the alpha coefficients for the hooked power 
law (range 2.792 to 7.620). Assuming that the hooked power law is the more suitable 
distribution, this suggests that fitting a pure power law to the tail of the distribution is likely 
to give an unreliable underestimate of the exponential component (scaling parameter) of 
the distribution. This conclusion is supported by the fact that the hooked power law alpha 
coefficients in tables 3 (range 2.994 to 7.857) and 4 (range 2.514 to 10.914), which are fitted 
to larger sets of data and hence may be more reliable, are also substantially larger than the 
power law coefficients in Table 2. The reason for the problem is clear from Figure 1: there is 
a noticeable curve to the hooked power law for the points in which the power law is fitted 
(see also Appendix C). 

4.1 Parameter estimate precision 

In answer to the third research question, the hooked power law estimates of the alpha and 
B coefficients for the same subject vary substantially between tables 2 to 4, showing that 
the sample chosen to fit the distribution has a significant impact on the results. The closest 
matches between tables 3 and 4 are History, Marketing and StatsProb, all of which have the 
same data except for excluding articles with a single citation in Table 3. Despite this small 
difference, the coefficients change from 2.994 and 5.0 to 2.769 and 3.7 (History), 3.465 and 
39.3 to 3.437 and 38.5 (Marketing) and 3.111 and 19.9 to 3.056 and 18.8 (StatsProb). The 



differences are even more marked for other cases, such as Ecology (7.857 and 143.4 to 
10.914 and 233.7). Hence it seems unlikely that the hooked power law parameter estimates 
in Table 4 are within, say, 10% of the true value, assuming that the data is taken exactly 
from a hooked power law. The same is true for the lognormal distribution. For example, the 
coefficients change from 0.8 and 1.29 to 0.6 and 1.36 (History), 2.6 and 1.25 to 2.5 and 1.32 
(Marketing) and 2.1 and 1.26 to 2.0 and 1.33 (StatsProb). Although confidence intervals for 
the parameters in tables 2 to 4 could have been estimated using a bootstrapping approach, 
the results may have been misleading since the high citation counts are important for the 
distribution and these could not be dealt with effectively with bootstrapping. Instead, the 
next subsections discuss the accuracy of parameter estimates in general, using simulated 
data. 

4.1.1	Hooked	power	law	parameter	estimates	

In order to systematically assess the accuracy of the estimates of the key parameter of the 
hooked power law distribution, simulations were run at different sample sizes of about the 
magnitude of a single year of citation data. For each value of alpha in the range 2 to 10 and 
for each sample sizes of 500, 1000, 2000, and 4000, a distribution was simulated 500 times 
by selecting data points at random from the distribution for a range of alphas and B = 10. 
From each set of 500 simulations a 90% confidence interval was constructed for alpha and 
the width of the confidence interval was measured. From the results in Figure 4, it is clear 
that the alpha estimates are less variable at higher sample sizes, which is unsurprising, but 
also that for high values of alpha the estimates are extremely variable. The smallest 
confidence interval width in the graph is 0.12, which is for alpha=2 and a sample size of 
4000 and so it is clear that sample sizes of above 4000 are needed to get one decimal place 
accuracy, even for low values of alpha and for data that perfectly fits the distribution. 

The relative sizes of the confidence intervals can also be seen from the fact that the 
range of the alpha values in Table 4 is 8.4 and so the confidence intervals in Figure 4 for a 
sample of size 500 vary from 5% to about 45% of this range.  

 



 
Figure 4. Confidence interval widths for simulated hooked power laws at different values of 
alpha, with B=10, and for different sample sizes (500 simulations per data point). 

 
The reason for the poor precision of the alpha estimates and also the � estimates (not 
shown) is that the alpha and � values can offset each other to some extent on the sampled 
data. To illustrate this, Figure 5 shows data randomly sampled from a distribution with 
alpha=3 and � " 2, where the best fit to the randomly sampled data is alpha = 4.8 and 
� " 24.3. The closeness of fit to the data of both the correct distribution and the best fit 
distribution is clear in Figure 5. If the fitted alpha is combined with the correct � value, 
however, the fit is very poor, suggesting that the increase in alpha in the best fit solution has 
been compensated for by the increase in B. To test for this, a contour plot of log-likelihoods 
for different values of alpha and � was plotted (Figure 6). The linear shape in Figure 6, which 
is replicated for the other samples (not shown) confirms that increasing alpha can be 
compensated for by increasing �. 

 



 
Figure 5. A set of 500 sample citations taken from a hooked power law distribution with 
alpha=3 and B=10, together with corresponding figures from the original (correct) 
distribution, the hooked power law best fitting the sample data (alpha = 4.8 and � " 24.3) 
and a hybrid distribution (alpha = 4.8 and � " 10). 
 
 



 
Figure 6. A contour plot of log-likelihoods for different hooked power law parameters for 
the Soil data. Lower values indicate a better fit.  

4.1.2	Lognormal	parameter	estimates	

The widths of the 90% confidence intervals for the mean and standard deviation of the 
lognormal distribution based on 500 simulations of random sampling from pure 
distributions are much narrower than the 90% confidence intervals for alpha in the hooked 
power law (figures 7-10 – a surface plots are used rather than a line graph similar to Figure 4 
because the two parameters behave differently), suggesting that the parameters in the 
lognormal distribution can be fitted much more precisely than can hooked power law 
distributions, at least in absolute terms. The confidence intervals are smallest, and hence 
the precision highest, when the mean is larger and the standard deviation is smaller. When 
the sample size is 500, the mean and standard deviation are likely to have a precision of 
zero decimal places (figures 7, 9), and so there should be little confidence about the first 
decimal place. When the sample size is 4000, the mean is likely to have a precision of about 
0.25, but one decimal place in the case of high means and low standard deviations (Figure 
8). At this sample size, the standard deviation is likely to have a precision of one decimal 
place for many combinations of mean and standard deviation but for other values, the first 
decimal place could be out by 0.1 or 0.2 (Figure 10). 

The relative sizes of the confidence intervals can be seen from the fact that the 
range of the means in Table 4 is 2.8 and so the mean confidence intervals in Figure 7 for a 
sample of size 500 vary from about 4% to about 25% of this range. Similarly, the range of 
the standard deviations in Table 4 is 0.68 and so the mean confidence intervals in Figure 9 
for a sample of size 500 vary from about 6% to about 41% of this range. 
 



 
Figure 7. A contour plot of 90% confidence interval widths for the mean of the lognormal 
distribution for different values of the mean and standard deviation and a sample size of 
500 (500 simulations per data point).  
 

 
Figure 8. A contour plot of 90% confidence interval widths for the mean of the lognormal 
distribution for different values of the mean and standard deviation, and a sample size of 
4000 (500 simulations per data point).  
 



 
Figure 9. A contour plot of 90% confidence interval widths for the standard deviation of the 
lognormal distribution for different values of the mean and standard deviation and a sample 
size of 500 (500 simulations per data point).  
 

 
Figure 10. A contour plot of 90% confidence interval widths for the standard deviation of 
the lognormal distribution for different values of the mean and standard deviation and a 
sample size of 4000 (500 simulations per data point).  
 
Figure 11 is a contour plot for the log-likelihood of the lognormal distribution for different 
values of the mean and standard deviation for the Soil data set. In contrast to the similar 
contour plot for the hooked power law (Figure 6), there is a clear focal point (mean: 2.3; 
deviation: 1.2) and it is not possible to compensate for increases in the mean by changing 
the standard deviation, and vice versa. Hence, the values of parameters in fits of the 
lognormal distribution should intuitively be more precise than the values of parameters in 
fits of the hooked power law, in the sense of being less subject to random fluctuations in the 
samples analysed, confirming the discussion above.  
 



 
Figure 11. A contour plot of log-likelihoods for different lognormal parameters for the Soil 
data. Lower values indicate a better fit. 

5. Conclusions	
The results suggest that fitting a power law to citation data on the scale here (up to 5000 
papers) is not appropriate and has no use. Even for the tail of the data for which the power 
law fits best, the hooked power law and lognormal distributions probably fit marginally 
better (even accounting for the benefits of their extra parameter, as the Vuong test does) 
and they both fit substantially better when more of the tail is included. Moreover, the 
exponent alpha estimated from the power law from the optimal tail size is typically a 
substantial underestimate of the exponent alpha from the hooked power law and so even 
this estimate has no value. Most previous studies of citation distributions have focused only 
on modelling the tail, however, and these findings may not apply in this context. 
 The results also suggest that the hooked power law and lognormal distributions are 
approximately equivalent in their fit to citation data of the type analysed (a maximum of 
5000 articles from one subject and one year and about 10 years of citation data). Although 
the hooked power law fits better than the lognormal distribution for the full data sets (for 
articles with at least one citation) more often than the other way around, both fit 
statistically significantly better than each other for some subjects and so it is not possible to 
claim that one is universally the best fit. A possible explanation is that the data has 
anomalies at low citation counts (e.g., caused by low impact special issues of journals) which 
obscure the underlying distribution. Ultimately, however, all statistical distributions will not 
fully account for all factors associating with citations and hence both the hooked power law 
and lognormal distributions can only be approximate fits.  

The clear advantage of the hooked power law and lognormal distributions over the 
power law suggests that either would be reasonable to use for modelling single subjects and 
years. Nevertheless, the unreliability of the parameter estimates for both distributions, but 
particularly for the hooked power law, suggests that their values cannot be calculated with a 
high precision and, therefore, that any attempt to compare two citation distributions (e.g., 
biochemistry vs. chemistry or USA vs China) to assess whether they are the same would 
need to take this into account. The slightly greater accuracy with which the lognormal 
distribution can be fitted makes it the distribution of choice for analyses of citations to 
academic articles for a single subject and year, however. 
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Appendix	A:	The	hooked	power	law	for	citations	
Translating the original hyperlink context (Pennock et al., 2002) to citations, the hooked 
power law assumes that the probability of a new reference pointing to a previously-
published page $ is: 

+ ,�
2-. � �1 / +� 1

-! � . 

Here + is the probability that a cited paper is chosen on the basis of the rich-get-richer 
mechanism underlying the power law (the probability that a paper receives a new citation is 
proportional to the number of citations that it already has) and 1 / + is the probability that 
the cited paper is chosen at random. In the formula, t (=1,2,…) is the time when the tth new 
paper is added to the system, -! is the number of papers when the process starts, - is the 
(fixed) number of references (to other papers in the system) in each new paper, and ,�  is 
the number of references already received by the paper (i.e., its current citation count). 
 This formulation is an oversimplification of the situation for citations. Although, as 
discussed above, it plausible that papers sometimes get cited because of their citations and 
so the first half of the calculation seems possible, the second half does not. Presumably 
articles are almost never cited purely at random, even if there is a degree of arbitrariness 
about the selection of articles to cite, and so the right hand side of the expression should 
take into account the fact that the quality or utility of articles is not equal so a purely 
random selection process is unrealistic. The problems caused by this oversimplification may 
tend to even out if enough data is collected, but this cannot be assumed. A necessary (but 
not sufficient) condition for this would be to assess whether the assumption leads to a 
distribution that approximately fits real-world data. 

If many papers are added to a system in a way that obeys the above rule then the 
probability that a random paper has received , citations is (Pennock et al., 2002): 

0�,� " 12-�1 / +�2�/31+, � 2-�1 / +�2
�
�/3 
At a fixed point in time, the only variable in the above formula is k, the citation count, and 
so the above simplifies to the hooked power law formulation for the probability of an article 

receiving ,  citations 5/�� � ,�� , where 5 " 12-�1 / +�2�/3+
�
�/3 , � " 2-�1 / +�/+ 
and ∝" 1 � 1/+ . The simpler form is used in the remainder of this article. 



Appendix	B:	Fitting	truncated	distributions	
A probability distribution for articles with at least ���� citations is a formula 7��� for the 
probability that an article has x citations. It must have the properties that 0 8 7�9� 8 1 for 
all positive integers � and ∑ 7��� " 1 �%�:;� . 

A hooked power law probability distribution has two parameters, � and �, and is 
given by 7��� " 5/�� � ���, where A is a constant chosen to ensure that ∑ 7��� " �%�:;�
1. If � " 0 then this is a simple power law rather than a hooked power law. The constant A 
is equal to 1/ ∑ 1/�� � ��� �%�:;� . This is a formula without a simple analytical solution. For 

example, if B=0 and ���� " 1 then it simplifies to the Riemann zeta function and if B>0 and 
���� " 0 and � < 1 then it coincides with the Hurwitz zeta function. When needed, these 
values were approximated by taking the sum of the first 10,000 terms of the series. 
Although this approximation is not recommended, its accuracy was checked by comparing 
the results with known values of the Riemann zeta function, such as =	/6 for B=0 and � "
2. The same procedure (summing the first 10,000 terms) terms was also used to calculate 
normalising constants for the lognormal distribution, when needed (e.g., Figure 1 and the 
Voung tests). 

 The power law and lognormal distributions were fitted to the data using the 
poweRlaw R package, which implements the procedures described by Clauset, Shalizi, and 
Newman (2009). The hooked power law was fitted using a numerical variant of the classical 
gradient descent method, implemented in R. Although the gradient descent problem, in 
general, can get trapped in local minima, testing on the data sets suggested that this was 
not likely to happen when fitting the hooked power law to large data sets for which is it is a 
reasonable fit. Vuong tests for the fit between the power law and lognormal distribution 
were taken from R and Vuong tests for the fit between the hooked power law and the 
lognormal were implemented in R, following Voung's (1989) formula. 

Appendix	C:	Poor	estimates	of	alpha	from	truncated	power	

laws	
In order to demonstrate that power law exponents cannot be estimated from fitting 
truncated power laws unless only papers with a very high numbers of citations are used, 
assume that the hooked power law is the correct distribution for a set of citations and 
consider the graph of the hooked power law ? " 5/�� � ���  on the logarithmic scale, 
where the estimate for /� essentially depends on the slope of the curve at a point. Let 
X=log(x) and Y=log(y) so that the graph of Y against X on standard axes would be the same as 
the graph of y against x on double logarithmic scale, with formula @ " log�?� "
log D E

�FG��HI " JKL5 / � log�� � �� " JKL5 / � log�� � �M�. Now the derivative of Y is 

@′ " 
�O�

FGO�  and this is the slope of the graph and hence is used to estimate alpha. Assume 

that this gradient must be close to alpha, say within a tolerance of P�. For example if T=0.01 
then the gradient (slope) would have to be within 1% of the true value of alpha. Now at this 

tolerance @Q " /� � P� and substituting the derivative above, 

�O�

FGOR " P� / � . Solving this 

equation for X gives �M " �
S
S � or � " �
S

S �. Hence, for example, the slope of the hooked 

power law graph starts to be within 10% of the value of alpha when x, the number of 
citations, equals 9B. So if B=55 (the average value in Table 4) then the slope would get 
within 10% of the value of alpha only for articles with above 9x55=495 citations, which is 



much too high to be practical as an ���� value, but with smaller values of B then the alpha 
estimate would likely be too low by about 5% (assuming averaging over the interval initially 
10% too steep to exactly the right slope). 


