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Summary  

The h-index is a celebrated indicator widely used to assess the quality of researchers and 
organizations. Empirical studies support the fact that the h-index is well correlated with other 
simple bibliometric indicators, such as the total number of publications N and the total number of 
citations C. In this paper we introduce a new formula 	ℎ�� = ℎ����, 	, 
��
�, as a representative 
predictive formula that relates functionally h to these aggregate indicators, N, C and the highest 
citation count 
��
. The formula is based on the ‘specific’ assumption of geometrically distributed 
citations, but provides a good estimate of the h-index for the general case.  

To empirically evaluate the adequacy of the fit of the proposed formula ℎ��, an empirical study 
with 131 datasets (13,347 papers; 288,972 citations) was carried out. The overall fit (defined as the 
capacity of ℎ�� to reproduce the true value of h, for each single scientist) was remarkably accurate. 
The predicted value was within one of the actual value h for more than sixty percent of the datasets. 
We found, in approximately three cases out of four, an absolute error less than or equal to 2, and an 
average absolute error of only 1.9, for the whole sample of datasets. 
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1. Introduction  

The h-index, h, is a widely recognized representative measure of individual scientific achievement, 
so that nowadays it is computed by default in specialized databases (such as Scopus or Web of 
Science – WoS). As well known, the h-index is statistically related to other simple standard 
bibliometric indicators, such as the total number of publications N and the total number of citations 
C. Indeed, on the basis of empirical research data, h has been found to be significantly positively 
correlated with C as well as with N (Van Raan, 2006). It is also well known that mathematically the 
h-index cannot exceed the number of publications (cited at least once) N and, symmetrically, it 
cannot exceed the highest citation count, 
��
. Moreover it cannot exceed �√	�, that is the integer 

part of the square root of the total number of citations C. Then, in symbols ℎ ≤ �����, [√	], 
��
� 
(Bertoli-Barsotti, 2013). Interestingly, in this paper we make use of these three simple indicators (C, 
N and 
��
) not exclusively for determining an upper bound for the Hirsch index, but also for 
estimating its value. For this reason, uncited publications are omitted in the present analysis. In 
what follows, we shall use the following notations: 

- T : total number of publications  
- N : total number of publications cited at least once 
- C : total number of citations 
- 
��
 : citation count of the most cited publication 
- � = 	 �⁄ : mean number of citations per publication 

Generally, the h-index may be interpreted as a function of both N and C because it combines, in 
a loose sense, both productivity, expressed as the total number of papers �, and quality, expressed 
as a mean number of citations per paper � = 	 �⁄  (Prathap, 2010a), in one single measure. On the 
other hand, increasing publications alone, or the total number of citations alone, or 	 �⁄  alone, does 
not have an immediate effect on the h-index. According to Adler et al. (2009) the h-index captures 
only “a small amount of information about the distribution of a scientist’s citations”. Put otherwise, 
the h-index is relatively insensitive to moderate variations of the ‘type’ of the citation distribution, 
and this may be an advantage if, as in the present paper, attention is restricted to finding an estimate 
of this index. 

In fact, the aim of this paper is to present a new mathematically representative predictive model 
for h. More precisely, we introduce a formula that relates h functionally to �, 	 and 
��
, say 
ℎ�� = ℎ����, 	, 
��
�, that is, equivalently, ℎ����,�, 
��
�. To do so, we will assume that 
citations are geometrically distributed. The formula is of interest because it makes it possible, at 
least theoretically, to determine how h changes as a function of the number of publications and the 
number of citations. We note that the idea is not new, in that this approach has already been 
successfully employed by Burrell (2013a; for an in-depth analysis of the probabilistic mechanism 
that governs the citation process, see also Burrell, 2007) – but without giving an explicit formula for 
the h-index. 

But before proceeding with this task, in the next section we briefly survey the methods best 
known in the literature for obtaining mathematical models (that is, mathematical estimators) for the 
h-index. Then, in the subsequent sections we will describe our formula in detail. We will also 
present a case study demonstrating the ability of the formula to produce good estimates of the ‘true’ 
h-index, for single authors. 
 
 
2. Mathematical models for the h-index  

Several alternative mathematical models for the h-index have been proposed in the literature. 
These models essentially depend on the assumption of a specific citation distribution function, say 
����, representing the number of papers which have been cited a total of �	times.  



Regardless of the fact that a single (simple) probability model is perhaps unable to describe 
citation distributions over the whole range of citations (Redner, 1998; van Raan, 2001) – unless a 
relatively large number of parameters is used – examples of models of citation distributions 
(sometimes in terms of a rank-size formulation, and sometimes as size-frequency distribution) are: 
(a) the exponential distribution (Lancho-Barrantes et al., 2010); (b) the Weibull distribution, after 
Weibull (1953; see also Johnson et al., 1994, p.628), also referred to as ‘stretched exponential 
distribution’ (Bletsas & Sahalos, 2009; Laherrère & Sornette, 1998; Iglesias & Pecharroman, 2007); 
(c) the Tsallis distribution, also known as q-exponential distribution (Tsallis, 1998; Tsallis & de 
Albuquerque, 2000; Burrell, 2008; Anastasiadis et al., 2010; Wallace et al., 2009); (d) the so-called 
‘log-normal’ distribution (Redner, 2005; Perc, 2010; Stringer et al., 2008; Radicchi et al., 2008); (e) 
the discrete generalized beta distribution (Martinez-Mekler et al., 2009; Campanario, 2010; Petersen 
et al. 2011; Mansilla et al., 2007); (f) the Yule distribution (de Solla Price, 1976); (g) the 
logarithmic distribution (Bertoli-Barsotti & Lando, in press); (h) the negative binomial, or Pascal 
distribution (Mingers & Burrell, 2006); (i) the Price distribution (Glänzel, 2006); to cite only some. 
In passing, note that some of these (a-d) are continuous random variables, while others (e-i) are 
discrete random variables. The formers here cited assume, typically, a real non negative support, 
while the latters range over positive integers (e-g), or non-negative integers (h-i). All these 
distributions may potentially define, correspondingly, a theoretical model for the h-index, but this 
may not be easy to find, depending principally on the existence of a cumulative distribution 
function in analytically closed form. Moreover, and more importantly, this possible theoretical 
model for h may not depend in a simple way on a few basic standard indicators, such as the total 
number of papers published, the total number of citations, or the mean number of citations per 
paper. In this sense, two Pareto-type citation models of special interest in bibliometrics and in 
citation analysis constitute well-known (positive) exceptions. 
 
1) The power-law/Pareto citation distribution, also known as ‘inverse’ power-law (Burrell, 2008), 
or Lotkaian informetric distribution or Lotka’s law (Rousseau & Rousseau, 2000; Egghe, 2005a; 
Egghe & Rousseau, 2006; Lafouge, 2007), is probably the distribution most known and used in 
Informetrics. According to this probability model, the citation distribution function ���� (or size-
frequency function) is equal to ��� up to a normalizing factor, namely 

 
���� ∝ ���, � ≥ 1, ! > 1.                                                        (1) 

 
To be noted is that in our context the number x of citations is a discrete random variable. 

Accordingly, this probability model should only be viewed as a rough approximation of the 
Riemann zeta distribution (also known as discrete Pareto distribution, or Zipf distribution) ���� ∝
���, � = 1, 2, 3, …	, which is clearly more appropriate, even if more difficult to handle analytically 
(Nicholls, 1987). 
More specifically, from (1) one obtains 
 

 ���� = ��! − 1����, � ≥ 1, ! > 1.                                              (2) 
 
where N is the total number of published papers (receiving at least one citation). This law coincides, 
up to a constant, with a special case (i.e. with support  � ≥ 1� of a Pareto distribution of the first 
kind '�(��1, !�, where ! > 1 is a shape parameter (Arnold, 1983, Johnson et al. 1994, p. 573). In 

order to warrant the existence of its expectation, ) = ��*
��+	, the condition ! > 2 must be assumed 

(unless one considers a truncated version of the same distribution). This model may be represented 
by a linear dependence in a double logarithmic axis plot (log-log plot) of the observed frequency n 
versus the number of citations x. 

Adopting this model and assuming ! > 2, Egghe & Rousseau (2006) obtained the following 
formula for the h-index: 



 
ℎ = �* �⁄ .                                                                    (3) 

 
By reparameterization, this can be rewritten as 
 

ℎ = �
,-.
/,-.                                                                   (4) 

 
(Egghe et al., 2011). This expression depends on unknown parameter values, but a simple estimate 
may be obtained by substituting the expected value ) with its observed counterpart, that is, the 
average number of citations per publication � = 	 �⁄ , yielding the formula 
 

ℎ = �
0-.
/0-. .                                                                (5) 

 
Alternatively, by taking the ‘default’ value of ! = 2 (that, strictly speaking, is correct only for an 
infinitely high value of  �), the alternative simple formula  
 

ℎ = √�                                                                     (6) 
 
may also be deduced (Ye, 2009), but this assumption differs from the conclusion reached by Redner  
(1998), who analysed approximately 800,000 papers and found a typical value of about 3 for the 
parameter ! – at least for the large-citation tail of the citation distribution.  

Note that the latter formula can be rewritten as ℎ = ��1.3√	. In partial agreement with this, in a 
case study Van Raan (2006) found a good correlation between the h-index and the function 
0.42	1.63 ≅ 5.7�1.3	1.63. Besides, Hirsch himself suggested the possible rule ℎ = :�1.3√	, where 
r is a constant ranging between 3 and 5 (Hirsch, 2005, 2007). 
 
2) A similar but different approach (sometimes confused with the one above)  has been considered 
by Glänzel (2006) (see also Schubert & Glänzel, 2007; Glänzel, 2007; Glänzel, 2008). This time, 
starting from a Pareto distribution of the second kind '�((��0, ;, <�, also known as Lomax 
distribution (Johnson et al., 1994, p.575), or Tsallis distribution (Shalizi, 2007), one has 

 
���� ∝ �� + ;��>�*, � ≥ 0, < > 0,                                             (7) 

 
where ; > 0 is a scale parameter, and < a shape parameter (Arnold, 1983, p.44). More specifically, 
one obtains ���� = ?<;>�� + ;��>�* (see Shalizi, 2007, equation (4)). Here, in order to warrant 
the existence of the expectation ) = @

>�*  of the distribution, the condition < > 1 must be assumed. 

Adopting this model (and assuming < > 1), Glänzel (2006) obtained an approximate formula 
(valid only for � ≫ ;) for the h-index, namely: 
 

ℎ ≈ ;> �>C*�⁄ ?* �>C*�⁄ . 
 
In this case also, by taking the ‘default’ value of < = 2 (incidentally, note that Glänzel, 2007, found 
that the most relevant range for this parameter is between 2 and 3.5), the formula simplifies to  
 

ℎ = 
	;+ D⁄ ?* D⁄  
 
where c is a positive real value ‘of order 1’ (Schubert & Glänzel, 2007), and where it is intended 
that the expectation becomes ) = ;. A simple way to estimate h is to substitute the expected value 
) with its observed counterpart, �1 = 	 ?⁄ , yielding  



 
ℎ = 
	�1+ D⁄ ?* D⁄                                                             (8) 

 
though still remaining to be identified and interpreted is the parameter c. A value of c around 0.75 
was found applicable by Schubert & Glänzel (2007), in a study applied to the citation analysis of 

journals, while Iglesias & Pecharroman (2007) suggested the value 
 = E1 4⁄F = 0.63 (see also 
Vinkler, 2009). In words, this rule states that the h-index can be approximated by the product of a 
power function of the sample size and a power function the sample mean. Prathap (2010a) 
interpreted ℎ = �1+ D⁄ ?* D⁄  as a substitute or mock h-index, and renamed it the ‘p-index’ (Prathap, 
2010b). Empirical applications of this formula, with possible small variants, are numerous: see for 
example, Glänzel (2008); Bletsas & Sahalos (2009); Csajbók et al. (2007); Vinkler (2009); Schubert 
et al. (2009).  

A similar approach, starting from a shifted Pareto distribution of the first kind,  
 

���� = ?�! − 1��� + 1���, � ≥ 0, ! > 1,                                          (9) 
 

was proposed by Egghe & Rousseau (2012). It is immediate to see that this model is equivalent to a 
Pareto distribution of the second kind '�((��0, ;, <�, by taking ; = 1 and substituting < = ! − 1. 
They easily obtained the equation ℎ�ℎ + 1���* = ?. Then, after substituting the expected value, 
) = �! − 2��*, with its observed counterpart, �1 = 	 ?⁄ , they deduced the equation  
 

ℎ�ℎ + 1�
0HI.
0H = ?, 

 
which can be solved for h, but unfortunately not in explicit form. 

For empirical comparative studies on some of the above formulas for the h-index see, for 
example, Abbas (2012); Ye (2009, 2011); Burrell (2013b); Malesios (2015). Summarizing, 
according to these formulas, the h-index mainly depends on two factors: productivity, as the 
numbers of published papers, and quality/impact, as the average number of citations per publication 
– also called ‘citedness’ (Vinkler, 2010).  
 
 
3. The main result 

3.1. Power series distributions and the geometric distribution 

Under the assumption of geometrically distributed data, the frequency-size function 
 

���� = �JK�*L,  � = 1, 2, …   �0 < J < 1, L = 1 − J�                              (10) 
 
expresses the number of articles with exactly x citations (e.g. �L	represents the number of papers 
with exactly one citation). Note that this model of citation distribution is based on a shifted 
geometric distribution, because its support does not contain the value � = 0. As said above, our 
declared goal is to express the h index as a function of N, the number of publications cited at least 
once. Then, since the primary interest of this work is the prediction of the value of the h index (and 
not to fit the whole citation distribution), we decided to exclude uncited papers from the analysis. 
Indeed, by definition, the derivation of the h-index does not depend on these publications.  

For an interesting theoretical justification of the proposed geometric distribution, the reader is 
referred to Burrell (2013a, 2007 and 2014). Besides, this model can also be “formally” motivated by 
arguing that this distribution is nothing but the discrete version of the logarithmic transformation of 
the Pareto distribution of the first kind, '�(��1, !�. In particular, it is easy to see that the logarithmic 



transformation of a '�(��1, !� is an exponential distribution. In symbols, under this assumption, the 
citation distribution function is 
 

���� ∝ N�OK. 
 
Unlike the Pareto-type citation models, the exponential random variable has finite moments of all 
orders for every value of its parameter. The n versus x plot on a semilog scale approximates a 
straight line of slope – Q, since	log � = U − Q�; thus semilog plots can be easily used to check this 
model. By substituting < = N�O, we can equivalently write ���� ∝ <K. In its discrete version, the 
model can be  regarded as a special case of a power series distribution (PSD, Johnson et al., 2005). 
Membership of the class confers a number of special properties. A PSD follows the probability 
mass function of the type 	
�*	UK<K, for � = 0,1,2, …	 where UK ≥ 0, θ (< > 0) is the so-called 
power parameter, and 
 = ∑ UW<WX

WY1  is the series function. Then, the geometric probability function 
	
�*JK, � = 1,2, …	, is an instance of a PSD, with J as power parameter, U1 = 0, UK = 1 for every 
� = 1,2, … , and 
 = J L⁄ , L = 1 − J. The distribution is simply qualified by a straight line 
log � = U + Z�, where U represents the logit of p, log [

\, and Z = log J, when plotting log � as a 

function of the number of citations x (semilog plot). 
As can be seen, the citation distribution (10) has two parameters, one for normalization (N), and 

one that characterizes the shape of the citation distribution. The parameter p, or, equivalently, its 
complement to one: that is, the power parameter J = 1 − L, quantifies the ‘fatness’ of the tail; the 
smaller the value of p (the higher the value of q), the fatter the tail. The expectation is ) = 1 L⁄ . The 
role of p can also be interpreted in the light of the level of concentration of the citations (in few 
papers).  

 
3.2. A formula for the h-index 

The assumption of geometrically distributed data enables estimates to be made of the expected 
theoretical value of h. Now, the value �∑ 	JK�*L = ��1 − J]�]

KY*  provides an estimate of the 
number of papers with a number of citations less than or equal to k (i.e. the number of papers 
receiving at most k citations). Then, the complementary cumulative distribution function  
 

^�_� = � − 	��1 − J]� = �J] 
 
provides an estimate of the number of papers receiving at least _ + 1 citations. Hence, the h-index 
is determined by the equality 
 

^�ℎ − 1� = ℎ. 
 

As mentioned above, this equation was firstly proposed by Burrell (2013a) (but without giving an 
explicit solution), with the only slight difference that he considered a non-shifted version of the 
geometric distribution.  

This equation can be solved as follows. First of all, recall that the Lambert W function, 
(Wolfram Research, Inc., 2013; see Fig. 1) is the inverse function  ̀ �a� of the function  
 

a = `	Nb	. 
 
The equation ̂�ℎ − 1� = ℎ is equivalent to J] = _��* +��*, where ℎ = _ + 1. By substituting 
in the above equation _ = −c − 1, we obtain  
 

cJd = −�J�*, 



 
that is equivalent  
 

�log J�	c exp�c log J� = −�log J��J�*. 
 
Then, by substituting in the above equation h = c log J, we obtain  
 

hNi = −�log J��J�*. 
 
Hence, by definition, we have h = j�−�log J��J�*�, which yields the final solution 
 

 ℎ = _ + 1 = −c = − *
klm\j�−�log J��J�*�.                                (11) 

 
 
 
 

 

 
Fig. 1 The Lambert W function for values of its argument in the range (0,10). 
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Fig. 2 The different curves represent the theoretical h-index as a function of the power parameter J = 1 − � 	⁄  for 
different values of � (number of publications cited at least once): for � ranging from 10 to 50, in steps of 5 (2a), and 
for � equal to 60, 70, 80, 90, 100, 125, 150, 200, 250, 300 and 350 (2b). For fixed N, ℎ� is limited from above by N. 

 



To illustrate, in Fig. 2a and 2b we represent the value of that solution jnJ�*� ∙ pqr�J�*�s/
pqr�J�*� as a function of J and N. As can be seen, even if N grows, this does not imply that h 
increases. Indeed, the number of publications should increase for at least an equal value of the mean 
of the number of citations. Note that similar graphs have been obtained by Bletsas & Sahalos 
(2009), but adopting other models, i.e. Tsallis and Weibull distributions. 

For the reader’s information and convenience, in the Appendix the function j�a� is briefly 
tabulated for values of y from 0.5 to 10, in steps of 0.05. Since the h-index is modeled as a non-
negative integer, we will take the integer part of that solution, which we shall denote with ℎ�, 
 

ℎ� = �jnJ�*� ∙ pqr�J�*�s/pqr�J�*��,                                            (12) 
 
where [h] denotes the integer part of h. In passing, note that, as q tends to 1 for fixed N, ℎ� tends to 
� (from below). Indeed, we have 
 

lim\→* ℎ� =	 limx→1
��yx�

x   

 
which is an indeterminate form of the type 0 0⁄ . But, since j′�0� = 1, applying the De I'Hopital's 
theorem we find 
 

limx→1
��yx�

x = limi→1
��i�
i � = �	limi→1

�{�i�
* = �. 

 
Then since, for fixed N,  ℎ� is an increasing function of q, it is always limited from above by N. 
 

3.3. A formula for the estimation of ℎ� 

It is important to distinguish between ℎ� and its empirical counterpart, i.e. its estimate. 
Estimation of the parameter of the geometric distribution is particularly straightforward. Because it 
is a PSD, the maximum likelihood estimation and the method of moments (by considering the first 
order moment equation) lead to the same estimate, for this random variable. It is easy to see that  
L̂ = 1 �⁄ . Then, a simple estimate of ℎ� is obtainable by substituting, in its expression, the 
unknown parameter q with its maximum likelihood estimate (MLE), J} = 1 −��*, where � =
	 �⁄ . We then obtain the formula 
 

ℎ~� = �j � �y
��y ∙ pqr

�
��y� /pqr

�
��y�                                                      (13) 

 
(Remember that, because of the invariance property of the MLE, the MLE of ℎ� = ℎ��J� is 
ℎ~j = ℎ��J}�, where J} is the MLE of J ). 

The problem of how a single or few outliers can disproportionately inflate the statistic 	 is well 
known (Hirsch, 2005). Due to the highly skewed nature of the typical distribution of citations, it is 
often the case that the presence of individual highly cited papers tends to overestimate 	, and 
consequently ℎ�, in comparison to the h-index (h is notoriously insensitive to a single 'big hit', 
outstandingly highly cited, paper). Elsewhere the term ‘king effect’ has been coined (Laherrère, 
1996; Laherrère & Sornette, 1998; Malacarne et al., 2002) to indicate the case of a single high-value 
outlier – that is, the ‘record value’. From a bibliometric point of view, the informative role of the 
most cited paper is controversial; for instance, according to Anderegg et al. (2010), “a single, highly 
cited paper does not establish a highly credible reputation but might instead reflect the controversial 
nature of that paper (often called the single-paper effect)”. In conclusion, to contrast the tendency of 



� = 	 �⁄  to give an estimate almost systematically biased upward, this value should be 
conservatively substituted by a trimmed mean: 
 

�� = 	� �� − 1�⁄ 	 
 

where we write 	� = 	 − 
��
 for short. This trimmed mean is calculated by averaging all but the 
largest observation, 
��
. The same adjustment was proposed by Burrell (2013a, p.779-780), but 
only for the most extreme outliers (chosen ex-post, on subjective basis). Differently, in our formula 
we include 
��
 as a “systematic” bias-reducing adjustment term. Then, our final formula reads as 
follows: 
 

ℎ�� = ℎ����, 	, 
��
� = �j � y�*
*���-. ∙ pqr

*
*���-.	� / pqr

*
*���-.�.                         (14) 

 

Note that we can equivalently write ℎ�� = ℎ����,�, 
��
�. This means that ℎ�� can also be 
interpreted as a function of quantity/productivity, here represented by �, and quality/impact, 
represented by � (Prathap, 2014). Moreover, note the ‘subtractive’ role in our formula of 
��
, 
which is only used here to reduce the upward bias induced by 
��
 itself on the estimate of the 
‘true’ mean �. Technically, our formula ℎ��	can then be interpreted as a trimmed MLE of ℎ�; more 
precisely, a MLE with a bias-reducing adjustment. 
 

 

4. A case study  
 
4.1. Sample database 

In this section we describe a case study that we carried out to evaluate empirically the adequacy 
of the fit of the proposed formula ℎ�� to the ‘real’ h-index, h, calculated from the full publication 
list of an author. For this case study we used a databese containing the publications of applicants to 
the so called “Abilitazione Scientifica Nazionale” (ASN), a nation-wide evaluation based on 
scientific qualification criteria for the recruitment of academic staff in Italy. These data were also 
considered elsewhere for a comparative study concerning 13 different bibliometric indices (Lando 
& Bertoli-Barsotti, 2014).  The ASN involved tens of thousands of candidates. Here we focus on its 
first edition, year 2012 (for candidates, the deadline for applications was November 20, 2012), so-
called ASN 2012. The evaluation relied completely on applicants' research productivity (and it did 
not require any personal interaction between evaluators and candidates).  

For our study, we considered a cohort of 131 physicists (from the original sample of 149 
applicants, 18 scientists were discarded from the analyses due to insufficient citation data – e.g. an 
h-index less than 2 – or difficulties in identifying the single scientist) who were applicants in the 
ASN 2012 for a full professorship. The whole sample can be considered as highly homogeneous, in 
that information regarding individual publications were collected from a single well-defined area 
within Physics, i.e. Condensed Matter Physics, and all candidates had a similar level of scientific 
maturity and similar academic qualifications. The publication and citation data were retrieved from 
Scopus, in January 2014.  

 
4.2. Statistical analysis 

Prior to their applications to the ASN, the applicants had published a total of T=13,347 papers 
(in scholarly refereed journals), N=11,079 of which cited at least once. The total number of 
citations was C=288,972. We did not remove self-citations. The average percentage of uncited 



paper was 17%. Table 1 includes selected summary statistics from our database. We identify 
authors through a progressive number according to the alphabetical order (names not reported), in 
the first column. The following columns show respectively: the total number of publications, ?; the 
total number of publications cited at least once, �; the total number of citations, C; the citation 
count of the most cited publication, 
��
; the percentage of citations of the most cited publication, 
%	
��
 = �
��
 	⁄ �100%; the mean of the number of citations per publication, �; the trimmed 
mean of the number of citations per publication, �� ; the trimmed MLE of the power parameter, J�; 
the Hirsch index, ℎ; the trimmed MLE of ℎ�; the absolute error, �� = �ℎ�� − ℎ�; the absolute 

relative error, �^� = �ℎ�� − ℎ� ℎ⁄ . As can be seen, the publications (cited at least once) received an 

average of 25 citations each (median = 23). The applicants’ h-index values were on average 21.6 
(median = 22), and ranged from a minimum of 2 to a maximum of 53. We found an average h-index 
of 21.6. The maximum observed value for h was 53. In contrast, only 13% of the scientists had an 
h-index smaller than 10. The average percentage of citations of the most cited publication was 16%. 
77% of the authors received at least 1,000 citations, and approximately 44% of the authors had at 
least 100 publications cited at least once. The most prolific author published 405 papers. 

To study closeness of the estimated values to the exact ones, we computed the percentage errors 
in the theoretical values of h-index, ℎ��, as given by formula (5), with respect to the exact values of  
h. More precisely, a comparison between ℎ�� and the ‘true’ value of h was performed by computing 
the ��  and the �^�. To characterize the overall quality of the results, the mean (mean absolute 
error, ���, and mean absolute relative error, ��^�) and the quartiles of these two types of errors 
were also computed. We found a very good fit, provided that, for the whole sample of 131 
researchers considered, the ��^� resulted less than 0.09, and the median of the �^� was 0.056. 
The observed median of the �� was equal to 1. More precisely, approximately two-thirds (63%) of 
all researchers have an absolute error �� not greater than 1, and about three-quarters  (77%) of all 
researchers had an �� not greater than 2. As one can see from Table 1, the ��� was less than 2 
(��� =1.92). 

The precision of the approximation seems to be slightly related to the average number of 
citations per publication. As a general rule, we may say that the approximation works particularly 
well when the mean 	 �⁄ 	(or, equivalently, the concentration) is not extremely high. Indeed, the 
��^� was equal to 0.172 when 	 �⁄ > 30 (33 cases), and it was equal to 0.056 when 	 �⁄ < 30 
(98 cases). The ��^� value grew to 0.233 when 	 �⁄ > 40 (15 cases) versus a value of 0.066 for 
the case of 	 �⁄ < 40 (116 cases). 

It should also be noted that, as expected, high levels of 	 �⁄  seemed to be related to high levels 
of 
��
%. Indeed, for the subset of scientists with 	 �⁄ < 30, we found 
��
% = 13.2: that is, 13.2 
percent of all the citations were concentrated in the single most cited paper, while for the subset of 
scientists with 	 �⁄ > 30, we found that 
��
% grew to 24.2 percent. From this, we can indirectly 
deduce that the geometric distribution is probably less suited to highly concentrated citation 
patterns. Fig. 3 illustrates the effect of different levels of the mean of the number of citations per 
publication (in its trimmed version, �� ) on the ��^�. Note that for 80% of the reaserchers the 
��^� is less than 0.1. Also, we can see a lack of fit as m grows very large. 



  

Fig. 3 Mean absolute error (MARE) of ℎ�� as a function of the mean of the number of citations 
per publication; each point refers to 13 applicants (14 cases for the first group).  

For 80% of the applicants the MARE is less than 0.1 
    

    

Fig. 4 Correlation of  ℎ�� with the (true) h-index. Pearson correlation r = 0.97 
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From a comparative point of view, the new formula appeared to be by far the most accurate 
among the different alternative formulas considered for h, in this case study. Indeed, the Pearson 

correlation coefficient (r) between the h-index and ?
0H-.
/0H-., √?, 
�1+ D⁄ ?* D⁄  (that is, equivalently, 

the so called ‘p-index’) and ℎ��, resulted in : = 0.86, : = 0.79, : = 0.84 and : = 0.97 (see Fig. 4), 
respectively.  

To illustrate the extent, in some cases, of the (problematic) ‘king’ effect, consider for example 
the dataset #24, with rank-citation profile: 1637, 111, 87, 85, 49, 49, 48, 42, 41, 40, 39, 36, 35, 34, 
33, …. For this applicant, we find � = 51, 	 = 2816, 
��
 = 1637 and a very large value of 

��
% =58.1%. (The observed largest value of 
��
%  is 80%, and occurs for the dataset #95). 
Overall, note that the trimmed mean resulted, on average, in a 17.6 smaller than the original mean. 
Excluding the most cited publication, the h-index dropped by 8% on average. 

Finally, to illustrate the dependence of ℎ� on the individual parameters �, 	 and 
��
, let us 
consider four authors: #121(A), #25(B), #2(C) and #62(D) (see Fig. 5), who differ in their mean 
number of citations per publication and/or the number of publications (note that here we also take 
into account here the value of 
��
 by considering the mean number of citations per publication in 
its trimmed version, �� ). Researchers A and B have a similar value of ��  (we find ��=22.23 for both 
researchers, which corresponds to J�=0.955), but a different number of publications, i.e. � = 244 
for researcher A and � = 98 for reseacher B. Then, formula ℎ��  produces a higher value for 
researcher A. Indeed, we find ℎ��(A) = 40 and ℎ���B) = 28 (the observed values for the h-index are 
38 and 25, respectively). Similarly, researchers C and D have a similar value of ��  (one gets 
J�=0.961 for both researchers), but a different number of publications (� = 141 for researcher C 
and � = 96 for reseacher D). Then formula ℎ�� produces a higher value for researcher C. 
Specifically, we find ℎ��(C) = 35 and ℎ����� = 30 (the observed values of the h-index are 34 and 
29, respectively). Moreover, let us consider researchers B and D. They have a similar number of 
publication, 98 for researcher B and 96 for researcher D; but the latter has a higher level of �� . 
Consequently, the corresponding level of ℎ�� is higher for researcher D. Finally, let us consider 
researchers C and A. The former presents a higher level of �� , but a smaller number of publications. 
The formula ℎ�� states that the h-index should yield a higher value for A than for C, as indeed is 
actually observed. In other words, we can conclude that researchers with equal (or similar) numbers 
of publications are directly comparable – as regards the level of h – on the basis of the mean 
number of citations per publication, and vice versa. Moreover, increasing publications alone (or 
citations alone) does not have an immediate effect on the h-index, in general. 
 
 



 

Fig. 5  Comparison between four applicants, #121(A), #25(B), #2(C) and #62(D), with similar levels  
of (trimmed) mean number of citations per publication and/or number of publications  



Table 1.  Basic statistics for the sample of applicants: ? = total number of papers;  � = total number of papers cited at 
least once; C = total number of citations; 
��
 = citation count of the most cited paper; %
��
 = �
��
 	⁄ �100%; � = 

mean of the number of citations per paper; ��  = trimmed version of �; J� = trimmed estimate of q; ℎ = h-index;  ℎ�� = 
trimmed MLE of (4); �� =	absolute error; �^�= absolute relative error. 
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1 80 63 1770 176 9.9% 28.1 25.7 0.961 25 24 1 0.040 
2 145 141 3803 184 4.8% 27.0 25.9 0.961 34 35 1 0.029 
3 10 9 129 37 28.7% 14.3 11.5 0.913 6 5 1 0.167 
4 120 107 1716 82 4.8% 16.0 15.4 0.935 22 23 1 0.045 
5 91 83 1535 197 12.8% 18.5 16.3 0.939 20 21 1 0.050 
6 24 19 550 152 27.6% 28.9 22.1 0.955 10 11 1 0.100 
7 80 57 1020 138 13.5% 17.9 15.8 0.937 17 18 1 0.059 
8 86 71 1427 131 9.2% 20.1 18.5 0.946 22 22 0 0.000 
9 101 74 1538 196 12.7% 20.8 18.4 0.946 22 22 0 0.000 

10 405 328 4309 330 7.7% 13.1 12.2 0.918 31 29 2 0.065 
11 138 116 2740 170 6.2% 23.6 22.3 0.955 30 30 0 0.000 
12 130 114 3056 213 7.0% 26.8 25.2 0.960 27 32 5 0.185 
13 11 9 87 23 26.4% 9.7 8.0 0.875 5 5 0 0.000 
14 16 12 75 14 18.7% 6.3 5.5 0.820 5 5 0 0.000 
15 92 82 1925 318 16.5% 23.5 19.8 0.950 24 24 0 0.000 
16 148 124 2753 106 3.9% 22.2 21.5 0.954 28 30 2 0.071 
17 183 147 7165 2706 37.8% 48.7 30.5 0.967 30 40 10 0.333 
18 49 38 236 31 13.1% 6.2 5.5 0.820 8 8 0 0.000 
19 113 98 2064 171 8.3% 21.1 19.5 0.949 27 26 1 0.037 
20 49 41 481 85 17.7% 11.7 9.9 0.899 12 12 0 0.000 
21 16 11 114 41 36.0% 10.4 7.3 0.863 5 5 0 0.000 
22 50 39 235 23 9.8% 6.0 5.6 0.821 8 8 0 0.000 
23 39 29 74 11 14.9% 2.6 2.3 0.556 5 4 1 0.200 
24 57 51 2816 1637 58.1% 55.2 23.6 0.958 22 21 1 0.045 
25 108 98 2452 296 12.1% 25.0 22.2 0.955 25 28 3 0.120 
26 154 117 1979 107 5.4% 16.9 16.1 0.938 26 25 1 0.038 
27 103 87 1851 129 7.0% 21.3 20.0 0.950 27 25 2 0.074 
28 31 23 298 43 14.4% 13.0 11.6 0.914 9 10 1 0.111 
29 96 85 1786 143 8.0% 21.0 19.6 0.949 26 24 2 0.077 
30 123 99 2645 191 7.2% 26.7 25.0 0.960 30 30 0 0.000 
31 113 101 1211 44 3.6% 12.0 11.7 0.914 20 19 1 0.050 
32 57 52 1913 335 17.5% 36.8 30.9 0.968 22 24 2 0.091 
33 64 56 1726 408 23.6% 30.8 24.0 0.958 20 22 2 0.100 
34 7 7 18 5 27.8% 2.6 2.2 0.538 3 2 1 0.333 
35 135 119 2819 302 10.7% 23.7 21.3 0.953 29 29 0 0.000 
36 59 51 648 99 15.3% 12.7 11.0 0.909 13 14 1 0.077 
37 94 77 1673 152 9.1% 21.7 20.0 0.950 23 23 0 0.000 
38 103 94 2468 206 8.3% 26.3 24.3 0.959 24 29 5 0.208 
39 75 73 5843 1820 31.1% 80.0 55.9 0.982 29 37 8 0.276 
40 28 17 43 8 18.6% 2.5 2.2 0.543 3 3 0 0.000 
41 96 76 1365 108 7.9% 18.0 16.8 0.940 22 21 1 0.045 
42 123 116 8147 1826 22.4% 70.2 55.0 0.982 34 48 14 0.412 
43 249 168 2617 179 6.8% 15.6 14.6 0.932 26 26 0 0.000 
44 118 101 3297 345 10.5% 32.6 29.5 0.966 30 33 3 0.100 
45 99 89 2091 131 6.3% 23.5 22.3 0.955 26 26 0 0.000 
46 62 46 741 103 13.9% 16.1 14.2 0.929 16 15 1 0.063 
47 66 63 2047 617 30.1% 32.5 23.1 0.957 20 23 3 0.150 
48 88 68 816 80 9.8% 12.0 11.0 0.909 16 16 0 0.000 
49 108 89 1494 155 10.4% 16.8 15.2 0.934 20 21 1 0.050 
50 93 64 2429 885 36.4% 38.0 24.5 0.959 18 24 6 0.333 
51 22 12 98 24 24.5% 8.2 6.7 0.851 6 5 1 0.167 
52 173 159 5537 804 14.5% 34.8 30.0 0.967 34 40 6 0.176 
53 67 60 1891 442 23.4% 31.5 24.6 0.959 21 23 2 0.095 
54 130 113 6342 1702 26.8% 56.1 41.4 0.976 34 41 7 0.206 
55 61 52 1403 235 16.7% 27.0 22.9 0.956 19 21 2 0.105 
56 156 133 2634 211 8.0% 19.8 18.4 0.946 27 28 1 0.037 
57 79 70 2179 240 11.0% 31.1 28.1 0.964 23 27 4 0.174 
58 104 85 1581 128 8.1% 18.6 17.3 0.942 22 22 0 0.000 
59 39 35 752 139 18.5% 21.5 18.0 0.945 14 15 1 0.071 
60 111 66 2342 244 10.4% 35.5 32.3 0.969 25 28 3 0.120 
61 52 46 1612 333 20.7% 35.0 28.4 0.965 22 21 1 0.045 
62 100 96 2619 168 6.4% 27.3 25.8 0.961 29 30 1 0.034 
63 65 53 5428 3068 56.5% 102.4 45.4 0.978 27 28 1 0.037 
64 174 141 3610 508 14.1% 25.6 22.2 0.955 29 32 3 0.103 
65 229 167 2278 224 9.8% 13.6 12.4 0.919 22 24 2 0.091 
66 118 100 2043 159 7.8% 20.4 19.0 0.947 25 25 0 0.000 
67 209 152 1251 70 5.6% 8.2 7.8 0.872 18 17 1 0.056 



Table 1. (cont.) 
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68 162 128 2064 234 11.3% 16.1 14.4 0.931 22 24 2 0.091 
69 86 83 4823 1058 21.9% 58.1 45.9 0.978 34 37 3 0.088 
70 142 123 8126 2731 33.6% 66.1 44.2 0.977 38 44 6 0.158 
71 314 239 4002 154 3.8% 16.7 16.2 0.938 30 32 2 0.067 
72 112 95 3511 666 19.0% 37.0 30.3 0.967 28 32 4 0.143 
73 110 90 4319 582 13.5% 48.0 42.0 0.976 28 37 9 0.321 
74 79 66 2153 504 23.4% 32.6 25.4 0.961 22 25 3 0.136 
75 78 72 1159 116 10.0% 16.1 14.7 0.932 19 19 0 0.000 
76 162 134 2028 134 6.6% 15.1 14.2 0.930 25 24 1 0.040 
77 45 37 698 246 35.2% 18.9 12.6 0.920 10 13 3 0.300 
78 264 235 13916 2396 17.2% 59.2 49.2 0.980 53 64 11 0.208 
79 93 79 1156 87 7.5% 14.6 13.7 0.927 19 19 0 0.000 
80 91 82 2067 172 8.3% 25.2 23.4 0.957 27 26 1 0.037 
81 88 76 2771 465 16.8% 36.5 30.7 0.967 27 29 2 0.074 
82 91 80 1821 323 17.7% 22.8 19.0 0.947 21 23 2 0.095 
83 42 35 444 184 41.4% 12.7 7.6 0.869 8 9 1 0.125 
84 109 84 1381 87 6.3% 16.4 15.6 0.936 20 21 1 0.050 
85 106 98 4304 1142 26.5% 43.9 32.6 0.969 27 34 7 0.259 
86 152 141 3204 548 17.1% 22.7 19.0 0.947 30 29 1 0.033 
87 15 14 229 59 25.8% 16.4 13.1 0.924 8 8 0 0.000 
88 27 19 209 81 38.8% 11.0 7.1 0.859 6 7 1 0.167 
89 40 35 2509 882 35.2% 71.7 47.9 0.979 15 22 7 0.467 
90 104 77 1724 268 15.5% 22.4 19.2 0.948 23 23 0 0.000 
91 82 69 2355 391 16.6% 34.1 28.9 0.965 22 27 5 0.227 
92 261 215 3647 179 4.9% 17.0 16.2 0.938 32 31 1 0.031 
93 146 123 2210 155 7.0% 18.0 16.8 0.941 25 26 1 0.040 
94 103 73 948 91 9.6% 13.0 11.9 0.916 17 17 0 0.000 
95 9 5 50 40 80.0% 10.0 2.5 0.600 2 2 0 0.000 
96 66 63 1975 299 15.1% 31.3 27.0 0.963 26 25 1 0.038 
97 144 126 3157 302 9.6% 25.1 22.8 0.956 30 31 1 0.033 
98 111 92 2363 242 10.2% 25.7 23.3 0.957 28 28 0 0.000 
99 76 70 1589 129 8.1% 22.7 21.2 0.953 23 23 0 0.000 
100 80 70 1143 111 9.7% 16.3 15.0 0.933 19 19 0 0.000 
101 80 67 1264 139 11.0% 18.9 17.0 0.941 20 20 0 0.000 
102 67 59 1380 227 16.4% 23.4 19.9 0.950 18 21 3 0.167 
103 90 75 1750 194 11.1% 23.3 21.0 0.952 20 24 4 0.200 
104 108 79 1717 617 35.9% 21.7 14.1 0.929 18 19 1 0.056 
105 75 67 686 49 7.1% 10.2 9.7 0.896 14 14 0 0.000 
106 79 67 1362 122 9.0% 20.3 18.8 0.947 20 21 1 0.050 
107 16 10 399 254 63.7% 39.9 16.1 0.938 6 6 0 0.000 
108 79 69 1414 220 15.6% 20.5 17.6 0.943 19 21 2 0.105 
109 149 90 2088 177 8.5% 23.2 21.5 0.953 25 26 1 0.040 
110 147 135 2271 285 12.5% 16.8 14.8 0.933 25 25 0 0.000 
111 204 181 3431 150 4.4% 19.0 18.2 0.945 31 31 0 0.000 
112 108 98 1682 112 6.7% 17.2 16.2 0.938 25 23 2 0.080 
113 111 86 1211 67 5.5% 14.1 13.5 0.926 19 19 0 0.000 
114 91 61 755 59 7.8% 12.4 11.6 0.914 15 15 0 0.000 
115 87 82 1633 106 6.5% 19.9 18.9 0.947 23 23 0 0.000 
116 78 70 2801 394 14.1% 40.0 34.9 0.971 23 30 7 0.304 
117 42 37 1179 104 8.8% 31.9 29.9 0.967 21 19 2 0.095 
118 100 89 4429 683 15.4% 49.8 42.6 0.977 29 37 8 0.276 
119 146 107 1729 162 9.4% 16.2 14.8 0.932 22 22 0 0.000 
120 31 23 190 32 16.8% 8.3 7.2 0.861 7 8 1 0.143 
121 308 244 6302 899 14.3% 25.8 22.2 0.955 38 40 2 0.053 
122 59 49 1876 261 13.9% 38.3 33.6 0.970 22 24 2 0.091 
123 70 58 1234 79 6.4% 21.3 20.3 0.951 23 21 2 0.087 
124 87 80 1348 84 6.2% 16.9 16.0 0.938 21 21 0 0.000 
125 80 59 492 49 10.0% 8.3 7.6 0.869 11 12 1 0.091 
126 161 123 3323 242 7.3% 27.0 25.3 0.960 32 33 1 0.031 
127 79 61 1459 350 24.0% 23.9 18.5 0.946 20 20 0 0.000 
128 73 60 967 139 14.4% 16.1 14.0 0.929 18 17 1 0.056 
129 129 118 6105 775 12.7% 51.7 45.6 0.978 40 44 4 0.100 
130 155 133 3867 226 5.8% 29.1 27.6 0.964 30 36 6 0.200 
131 94 75 938 82 8.7% 12.5 11.6 0.914 16 17 1 0.063 

                         
Mean 101.9 84.6 2205.9 358.7 16.0% 25.0 20.6 0.93 21.6 23.1 1.9 0.09 
St dev 62.9 51 1935 543 0.12 15.9 10.8 0.074 8.7 10.1 2.52 0.097 

Min 7 5 18 5 3.6% 2.5 2.2 0.538 2 2 0 0.000 
Q1 66 57.5 1157.5 105 8.0% 16.1 14.1 0.929 18 19 0 0.000 
Q2 92 77 1786 177 12.5% 21.3 19.0 0.947 22 23 1 0.056 
Q3 123 104 2692.5 326.5 18.5% 29.9 25.1 0.960 27 29 2 0.116 

Max 405 328 13916 3068 80.0% 102.4 55.9 0.982 53 64 14 0.467 
 



5. Conclusion 

This paper has proposed a formula for the h-index which can be easily computed from three 
simple bibliometric indicators, namely �, 	 and 
��
. More precisely, our formula describes the 
functional relationship between the h-index and the indicators: number of publications, �, and 
mean of an author’s citations, 	. The third factor, 
��
, i.e. the number of citations received by the 
most cited paper, plays the role of a mere (but important) bias-reducing adjustment term. Indeed, 
the choice of a trimmed sample mean limits the bias induced by the ‘big hit’ problem. Our formula 
for the h-index involves two unknown parameters that can vary from author to author: one for 
normalization (N), and one that characterises the shape of the author-specific citation distribution. 
This latter parameter is estimated by calculating a trimmed mean of the number of citations per 
publication.  

To deduce our formula for the h-index, we temporarily assumed that citations follow a 
geometric law. To be noted is that this random variable can also be viewed as the discrete version of 
a special case of a Weibull (stretched exponential) distribution and also as a special case of negative 
binomial (Mingers & Burrell, 2006). Although the geometric distribution is perhaps too restrictive, 
in general, to be satisfactory as a model describing the citations over the whole range of the values 
(but, on the other hand, this was not the purpose of our study), it works well for representing the 
center of the citation distributions (while the Paretian models, instead, are well suited to the high 
citation end of the distribution), and this fact suffices to obtain an excellent proxy for the ‘true’ 
value of h, in the general case. To confirm this finding, in a case study we examined publication and 
citation data for a rather homogeneous cohort of 131 scientists. The preliminary results are 
encouraging: the overall fit (defined as the capacity of ℎ��	to reproduce the true value of h) was 
remarkably good, in that the predicted value ℎ��was within one of the actual value h, for more than 
sixty percent of the datasets. The ��^� was 0.09 for the whole sample of applicants. This value 
decreased to about 0.056 for those applicants with a mean number of citations per publication m not 
greater than 30 (as a general rule, the formula works particularly well for not very high levels of m). 
These findings confirms analogous positive results obtained by Burrell (2013a), on the basis of a 
study of the citation data sets of 15 scientists. 

To conclude, owing to its dependence on a special function (the so-called Lambert W function), 
the presented formula ℎ�� is perhaps slightly less straightforward to compute, with respect to 
formulas such as those given by equations (5), (6) and (8). Nevertheless, its computation is similarly 
simple, in that it needs only (the knowledge of) three standard bibliometric indicators, and its 
precision seems to be far better than that obtained with these alternative methods – at least in regard 
to the data in our analysis. 
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Appendix  
 

Lambert � function tabulated for values of its argument in the range from 0.5 to 10, in steps of 0.05 
 
 

 

y  W(y) y  W(y) y  W(y) y  W(y) y  W(y) y  W(y) 
0.50 0.352 2.10 0.875 3.70 1.160 5.30 1.360 6.90 1.516 8.50 1.643 

0.55 0.377 2.15 0.886 3.75 1.167 5.35 1.366 6.95 1.520 8.55 1.647 

0.60 0.402 2.20 0.897 3.80 1.174 5.40 1.371 7.00 1.524 8.60 1.651 

0.65 0.425 2.25 0.908 3.85 1.181 5.45 1.376 7.05 1.529 8.65 1.654 

0.70 0.448 2.30 0.918 3.90 1.188 5.50 1.382 7.10 1.533 8.70 1.658 

0.75 0.469 2.35 0.929 3.95 1.195 5.55 1.387 7.15 1.537 8.75 1.661 

0.80 0.490 2.40 0.939 4.00 1.202 5.60 1.392 7.20 1.541 8.80 1.665 

0.85 0.510 2.45 0.949 4.05 1.209 5.65 1.397 7.25 1.546 8.85 1.669 

0.90 0.530 2.50 0.959 4.10 1.216 5.70 1.402 7.30 1.550 8.90 1.672 

0.95 0.549 2.55 0.968 4.15 1.222 5.75 1.407 7.35 1.554 8.95 1.676 

1.00 0.567 2.60 0.978 4.20 1.229 5.80 1.413 7.40 1.558 9.00 1.679 

1.05 0.585 2.65 0.987 4.25 1.236 5.85 1.418 7.45 1.562 9.05 1.683 

1.10 0.602 2.70 0.997 4.30 1.242 5.90 1.423 7.50 1.566 9.10 1.686 

1.15 0.619 2.75 1.006 4.35 1.248 5.95 1.428 7.55 1.570 9.15 1.689 

1.20 0.636 2.80 1.015 4.40 1.255 6.00 1.432 7.60 1.574 9.20 1.693 

1.25 0.652 2.85 1.024 4.45 1.261 6.05 1.437 7.65 1.578 9.25 1.696 

1.30 0.667 2.90 1.033 4.50 1.267 6.10 1.442 7.70 1.582 9.30 1.700 

1.35 0.682 2.95 1.041 4.55 1.273 6.15 1.447 7.75 1.586 9.35 1.703 

1.40 0.697 3.00 1.050 4.60 1.280 6.20 1.452 7.80 1.590 9.40 1.706 

1.45 0.712 3.05 1.058 4.65 1.286 6.25 1.457 7.85 1.594 9.45 1.710 

1.50 0.726 3.10 1.067 4.70 1.292 6.30 1.461 7.90 1.598 9.50 1.713 

1.55 0.740 3.15 1.075 4.75 1.298 6.35 1.466 7.95 1.602 9.55 1.716 

1.60 0.753 3.20 1.083 4.80 1.304 6.40 1.471 8.00 1.606 9.60 1.720 

1.65 0.767 3.25 1.091 4.85 1.309 6.45 1.475 8.05 1.610 9.65 1.723 

1.70 0.780 3.30 1.099 4.90 1.315 6.50 1.480 8.10 1.614 9.70 1.726 

1.75 0.792 3.35 1.107 4.95 1.321 6.55 1.484 8.15 1.617 9.75 1.730 

1.80 0.805 3.40 1.115 5.00 1.327 6.60 1.489 8.20 1.621 9.80 1.733 

1.85 0.817 3.45 1.123 5.05 1.332 6.65 1.494 8.25 1.625 9.85 1.736 

1.90 0.829 3.50 1.130 5.10 1.338 6.70 1.498 8.30 1.629 9.90 1.739 

1.95 0.841 3.55 1.138 5.15 1.344 6.75 1.502 8.35 1.632 9.95 1.742 

2.00 0.853 3.60 1.145 5.20 1.349 6.80 1.507 8.40 1.636 10.00 1.746 

2.05 0.864 3.65 1.153 5.25 1.355 6.85 1.511 8.45 1.640     

 
 

The reported values of the Lambert W function were computed using the command LambertW (or, 
equivalently, ProductLog) of the Mathematica® 9.0 software package (Wolfram Research, Inc., 
2012). 
 


