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Abstract

The exponential growth in the number of scientific papers makes it increasingly difficult for researchers to
keep track of all the publications relevant to their work. Consequently, the attention that can be devoted
to individual papers, measured by their citation counts, is bound to decay rapidly. In this work we make
a thorough study of the life-cycle of papers in different disciplines. Typically, the citation rate of a paper
increases up to a few years after its publication, reaches a peak and then decreases rapidly. This decay can
be described by an exponential or a power law behavior, as in ultradiffusive processes, with exponential
fitting better than power law for the majority of cases. The decay is also becoming faster over the years,
signaling that nowadays papers are forgotten more quickly. However, when time is counted in terms of the
number of published papers, the rate of decay of citations is fairly independent of the period considered.
This indicates that the attention of scholars depends on the number of published items, and not on real
time.
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1. Introduction

Scientific publications in peer reviewed journals serve as the standard medium through which most of
the progress of science is recorded. Besides offering a mechanism for claiming priorities and exposing results
to be checked by others, publishing is also a way to attract attention of other scientists working on related
problems. Attention, measured by the number and lifetime of citations, is the main currency of the scientific
community, and along with other forms of recognition forms the basis for promotions and the reputation
of scientists (Petersen et al. [2014). As Franck [1999), Klamer and van Dalen (Klamer and Dalen)
have pointed out, there is an attention economy at work in science, in which those seeking attention
through the production of new knowledge are rewarded by being cited by their peers, whose own standing
is measured by the amount of citations they receive.

The attention economy is also at work in many other fields besides science, ranging from entertainment to
marketing, and is responsible for the phenomenon of stars, i.e., people whose income in attention far exceeds
the norm in their own endeavors. Moreover, attention is a strong motivator of productivity. Recently, it has
been shown that the productivity of YouTube videos exhibits a strong positive dependence on the attention
they receive, measured by the number of downloads (Huberman et al.,|2009)). Conversely, a lack of attention
leads to a decrease in the number of videos uploaded and the consequent drop in productivity, which in
many cases asymptotes to no uploads whatsoever.

Decision making and marketing, among others, are based on the mechanisms ruling how attention is
stimulated and maintained (Kahneman| 1973; Pashler} |1998; Pieters et al., [1999; |[Dukas, 2004; Reis), 2006).
Over the past years, thanks to the Internet, a huge amount of data has allowed a thorough investigation of
the dynamics of collective attention to online content, ranging from news stories (Dezso et al., [2006; [Wu and
Huberman| 2007; Ghosh and Huberman| 2014)), to videos (Crane and Sornette| 2008) and memes (Leskovec
et al. [2009; Matsubara et al.| 2012} [Weng et all, 2012). Here attention is measured by the number of users’
views, visits, posts, downloads, tweets. It is also noted that the attention decays over time, not only because
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novelty fades, but also because the human capacity to pay attention to new content is limited. A typical
temporal pattern is characterized by an initial rapid growth, followed by a decay. The decay turns out to
be slower than exponential: power law fits give the best results, stretched exponentials being preferable in
particular cases (Wu and Huberman, 2007).

In this paper we focus on the decay of attention in science, on the basis of scientific articles, which like
any other content, become obsolete after a while. Typically this happens because their results are surpassed
by those of successive papers, which then “steal” attention from them. The problem of the obsolescence
of scientific contents has received a lot of attention in scientometrics. The typical approach is to study
the evolution of the number of citations received by a paper in a given time frame (usually one year),
since its publication. The nature of the decay has been controversial, between claims of an exponential
trend (Avramescul, [1979; Nakamoto, |1988}; Medo et al. [2011) and analyses supporting a slower power law
curve (Pollman, 2000; [Redner}, 2005} |Bouabid), [2011; Bouabid and Lariviere, 2013). This is partly due to the
different types of analysis and the use of distinct data sources. Note that patterns of individual papers are
usually noisy, as one cannot count on the high statistics available for online contents: the number of tweets
posted on a single popular topic may exceed the total number of scientific publications ever made.

On the other hand, in contrast to online sources, bibliographic databases enable one to perform a
longitudinal study of the life cycles of papers. In this work we make a systematic analysis of papers’
life cycles, across different scientific fields and historical periods. We find that the decay of attention for
individual papers can be described both by exponential and power law behaviors. Exponential fits turn
out to be preferable in the majority of cases. These results are compatible with a relaxation of attention
modeled by ultradiffusion, as observed for the popularity of online content (Ghosh and Huberman) 2014).
We also found that attention is dying out more rapidly with time. However, due to the ongoing exponential
growth of scientific publications, which is known to influence citation patterns (Egghel [2000; [Yang et al.|
2010) , we conjecture that the faster decay observed nowadays is a consequence of the much larger pool of
papers among which attention has to be distributed. In fact, if time is renormalized in terms of the number
of papers published in the corresponding period (e.g., in each given year), we find that the rescaled curves
die out at comparable rates across the decades.

2. Material and methods

2.1. Data description

Our data set consists of all publications (articles and reviews) written in English till the end of 2010
included in the database of the Thomson Reuters (TR) Web of Science. For each publication we extracted
its year of publication, the subject category of the journal in which it is published and the corresponding
citations to that publication. Based on the subject category of the journal (determined by TR) of the
publication, the papers were categorized in broader disciplines such as Physics, Medicine, Chemistry and
Biology (see Table 1). Most analyses are carried out using the top 10% papers (based on their total number
of citations), as it allows to include a sufficient number of papers from older times, but still keeping the
number of yearly citations large enough to allow for a statistically valid analysis. The analysis of papers
with relatively lower citations follow qualitatively similar behavior and is shown in the Appendix.

2.2. Data fitting and F-statistics

We measure the trend in the temporal evolution of the different plots using the least square method.
We consider the F-statistics for a significant linear regression relationship between the response variable and
the predictor variable. We used it to compare the statistical models that best fit the population from which
the data were sampled. As the F-score takes into account both the number of data points available for the
fit and the number of degrees of freedom of the model, it is possible to compare the accuracy of the fit for
different models with different parameters or between data sets of different size.
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Figure 1: The citation life-cycle is both field dependent and time dependent. (Top) Normalized number of citations per year
received by papers in Physics and Biology published in the same year, for different publication years. Normalization is done
by dividing the number of citations by the peak value reached by the paper. (Bottom) The decay in the (normalized) citation
trajectory of papers in both fields after the peak year. For both disciplines, the averaged citation trajectories are calculated
for papers in the top decile (top 10%) based on their total number of citations.

3. Results and discussions

3.1. FEvolution of the number of citations

We first look at the way citations received by a paper change with time. Since different scientific fields
are characterized by different volumes of publications and citations, many features of the citation trajectory
are field dependent. However, for most fields the number of yearly citations ¢;(¢) to a given paper i rises after
its publication and peaks within 2-7 years. The peak is followed by a decay in the number of citations that
reflects the obsolescence of older knowledge. Fig. [1| (top panels) shows the normalized citation trajectory
¢;(t) = ¢;(t)/cP®* of papers in Physics and Biology. Here, ¢** is the maximum number of citations received
by paper 7 in any given year after its publication. Fig. 2] shows a summary of the renormalization process
and different measures used for analysis. For both disciplines, the citation trajectories of papers published
over different years show systematic changes with time. New papers have higher citation rates for the first
few years, whereas over longer periods of time old papers have higher citation rates. Some irregularity in
the tail of the citation trajectories might be due to the heterogeneity in the time to reach the peak number

Table 1: Basic statistics of the different scientific fields we considered: Clinical Medicine, Molecular Biology, Chemistry and
Physics. They represent the most active fields in terms of the total volume of publications. Here, Np is the number of
publications in a given field, ¢max is the maximum number of citations to a given paper in that field and (c) is the average
number of citations to all the papers in that field.

Field Np Cmax (c)
Clinical Medicine 10833626 25604 11
Molecular Biology 2849144 296498 24
Chemistry 4565197 134441 14
Physics 5583183 31759 13
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Figure 2: Schematic representation of the citation evolution of a typical paper.

of citations Atpeak. The change in the citation rate over time is more evident when we group the papers
based on their peak year, i.e., year in which they receive the maximum number of citations. Thus, the peak
year represents the year in which a paper is at the peak of its attention. Fig. [1| (bottom panels) show that
the decay pattern is more robust when the papers were aggregated according to their peak year as compared
to their publication year. This is true for other groups of papers as well: Appendix Fig. B1 shows the same
pattern for the papers in the [11-30] percentile.

3.2. Evolution of the time to peak

Next we investigate whether the time to reach the peak in the number of citations At,eaik changes with
time. In Fig. |3 (a-d) we plot the distribution of At,eax for papers published in the same year, for all four
disciplines and for several years. The majority of the papers peak within a few years since publication. Papers
in Biology are characterized by small Atyeak as compared to papers in Medicine, Physics and Chemistry. For
all fields the distribution of Atpeax is time dependent, with its value decreasing steadily in time. Fig.|3| (e,f)
shows the time evolution of the mean of Atye,x for different fields and two groups of papers: the most cited
10% and the [11-30] percentile. The decreasing mean of the time to peak indicates that in recent times
papers are taking less time to reach the peak of their attention. This result seems to be consistent with
previous findings (Egghel 2010; [Lariviere et al., |2008]) showing, both theoretically and empirically, that the
average reference age is an increasing function of time. This would suggest that more recent papers are
able to dig deeper in scientific literature, reducing the amount of attention available for papers published in
recent years and therefore causing a shortening of the time needed to peak. Also, this behavior is shown to
be independent of the citation volume of the papers, although papers with fewer citations take less time to
reach the peak. Biology shows again a unique behavior, with its values being constantly below the ones of
the other fields, indicating an intrinsic faster peak time.

3.8. Functional form of citation decay

To investigate the time evolution of the change in attention we first determine the functional form of the
citation decay of each paper. We fit the normalized citation trajectories ¢;(t) = ¢;(t)/c*®* using both the
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Figure 3: Time to reach the peak attention Atyeai is both field and time dependent. (a-d) Distribution of At,eax for papers
in the top 10% published in the same year, for different fields and publication years. (e,f) Time evolution of the mean values
of Atpeak for top 10% and [11-30]% percentiles. The mean value (Atpeak) decreases linearly in time. The linear fit, 95%
confidence interval and the slopes of the linear fits are also shown. Papers peaking after 2005 are not considered as their peak
years might still be subject to change.

exponential and power law curves. We used an additional parameter in both fitting functions because the
normalized citation curves after the initial decay eventually converge to a nonzero plateau. The exponential
fitting function is given by ¢;(t) = S exp(—a.t) + 7. whereas the power law fitted function is given by
¢i(t) = Bpt~*» + 7,. We fit the normalized citation trajectories of each paper and determine the best fit
parameters using the least square method. First, we found that for the majority of the papers both the
exponential and power law decrease could fit the decaying behavior, since the p-value of the fit is less than
10—3. However, comparing the two fits for each paper using F-statistics, we found that the exponential fits
better the decaying behavior. Fig.[dshows that for most paper F-statistics is much larger for the exponential
fit as compared to the power law fit. Interestingly, in recent years the fraction of papers that fits a power-law
curve has been increasing systematically. Fig. 4| (e) shows the time evolution of the fraction of papers whose
F-score in the exponential fitting exceeds the F-score for the power law case for the top 10% decile. All
the four fields show a trend where the power law fit gradually improves in time. This phenomenon may be
linked to the smaller impact of the convergence to the final plateau, on the fit. On average the convergence
to the plateau takes more than 20 years, and papers in recent years might not have reached this plateau in
their decay.

3.4. Ultradiffusion and decay in attention

A trademark of the evolution of the number of citations of a paper is their decline after reaching a
peak. Here, we provide an explanation of this decay. Each citation is considered an event and the temporal
evolution of the number of citations (after the peak) is taken as a counting process. The observed counting
process could be rationalized as ultradiffusive if it has signatures associated with an ultradiffusive process.
Ultradiffusion is a stochastic process where every timestamp of a timeseries {¢;} (t; <t;if i <j) Vi€ 0---n
is associated with an event {X,, _ }. State X, _4, is analogous to the event of citing the paper. All the
other states are associated with not citing the paper. Unlike the Poisson process, which assumes that events
occur independently of each other, ultradiffusion elicits that a later event might be caused by or correlated to
an earlier event or a combination of earlier events. The earlier event in turn might be independent or might

5



1500 - = 1.0 T T T T
. 7 b - Biology| ~ e - [0,101%
0.9 | -
" d b PO d s " ®
. s s { e s o L0
1000 — §0‘8': FPetstea® e e sw oo
- L ]
o R L LK B2
% . AO]"“‘Itt.:‘ ® +,’00"’ h
L] L]
3 * * By L e * e EErY
- o | * LEERE R * 5
500 1 £ o6 L K g *“’:0’4, L]
L]
4 MR
0.5 = ® Medicine  ® Chemistry T
© Biology ® Physics
0.4 ! T r . !
508 L 1960 1965 1970 1975 1980 1985 1990
Peak Year
Y 1.0 T T T T
; f- [11-30]%
Y 0.9 | -
* @ Medicine ® Chemistry
1000 - @ Biology ® Physics
o o8| -
B
5 o .
AN 0.7TF,. & & ™ .
= N LRI s g0
500 4 » st Pogt,
2 0.6} H - Poeve o ?y
Sy *t:g,;f;g.p . . 1
L] L] ] [ ]
os | e ® ‘i¢'4§tt,!$‘+‘4
0 L L L L 0.4 | ! ! I I
0 500 1000 15000 500 1000 1500 1960 1965 1970 1975 1980 1985 1990
F pow F pow Peak Year

Figure 4: Comparison of exponential fits with power law fits as described by the F-statistics. (a-d) Papers peaking in 1980,
with the number in the box indicating the percentage of papers better fitted by exponentials than by power laws. In particular,
it is worth noticing that there is a significant density of points in the high Fezp-low Fpow area, showing a series of papers
for which the power law fit was clearly outperformed by the exponential fit. There is no trace of the opposite scenario, with
papers better fitted by power-law lying close to the diagonal line. (e, f) The time evolution of the fraction of papers for which
exponentials are better descriptors than power laws, according to the F-score, for the top 10% and [11-30]% percentiles papers
over different years.

be correlated to a combination of even earlier events. This leads to a hierarchical causal/correlational model
of prior event occurrences which can be used to predict the occurrence of a new event. Thus, ultradiffusion
proposes that the observed pattern of events is a consequence of an underlying hierarchy of states. In this
hierarchical model, an event temporally nearer to the occurring event has a greater probability of affecting
it. In other words, the correlation between two events is determined by a notion of “closeness” or distance
between them.

For any ultradiffusive process there must be an ultrametric space on which distances between occurrences
are defined. In this case the distance between two events X;, and X;, can be defined as

lmazx(ty, —ti,t, —t;)|, ifi# 7,

d( X, X)) =
(Xei, Xt,) 0, otherwise.

(1)

The above definition of distance satisfies the ultrametric distance metric properties because:

1. d(Xy,, X¢;) > 0 (non-negative)

2. d(Xy,, Xy;) = 0if i = j (identity of indiscernibles)

3. d(Xy,, Xy,) = d(Xy,, Xy,) (symmetry)

4. d(Xy,, Xt,) < max(d(Xy,, Xv,,),d(Xe,, X¢;)) (ultrametric property).

Therefore the associated space is ultrametric (Ghosh and Huberman| 2014). For an unltradiffusive process,
the autocorrelation Py, (t) , i.e., the probability of finding the system at the initial state X;, after time
t can be calculated analytically. The autocorrelation function has an exact solution for an ultrametric
space defined by a hierarchical tree. Assuming that the rate of transition between states is X;, and X,
is e M(Xe: X)) and the probability of citing the paper is 1 when the peak in the number of citations is
reached, the probability of citing the paper at time ¢ is given by Px, (t). When the number of states is
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Figure 5: Attention to publication is decaying faster in time. (a-d) Distribution of parameter « for exponential fits in different
years for the four disciplines. For recent years the tail of the distribution becomes progressively fatter. (e-f) Time evolution
of the median of the distributions of the decay rates «, along with linear fit, 95% confidence interval and slopes. The top
panel refers to the top 10% most cited papers, the bottom panel to the [11-30] percentile. The data suggests a “grouping” of
Medicine and Biology vs Physics and Chemistry, with the two groups having nearly identical numbers for the fit. Moreover,
for the [11-30] range the coefficients are nearly doubled compared to [0-10]. This means that the speed of the decay depends
on the citation volume of each paper.

finite, such an autocorrelation function is exponential in nature, otherwise it follows a power law behavior
(Bachas and Huberman), [1987).

3.5. Evolution of the decay exponent

Fig. [5] shows the distributions of the exponential decay rates «. for papers grouped by their peak years.
The distributions for different disciplines show that majority of papers have a characteristic rate. Moreover,
for all the disciplines the shape of the distribution is broader for papers peaking in recent years. The
median of the distributions shows a systematic increase in time (Fig. [5e,f). Such a faster decay behavior is
independent of the fitting ansatz. Furthermore, this pattern is independent of the group of papers chosen
for the analysis (top 10% for top panel, [11-30] percentile for bottom panel). This suggests that the later a
paper peaks, the shorter is its life cycle, implying a faster decay of scientific attention in terms of absolute
time. The decay rates and their relative increase with time appears to be field dependent. For example, for
Physics and Chemistry the decay is faster compared with Biology and Medicine.

3.6. Ezxponential increase in number of publications

The progressively faster decay in attention we observe is compatible with the intuitive picture of scientific
theories and papers constantly replaced by other competing results. As the number of publications is also
growing with time, it takes less time to replace or update older scientific results. Thus, the rapid increase
in the number of papers could provide an explanation. In Fig. [6] we report the growth of the number of
publications in different fields with time, fitted by the function N, = Ny exp®. All the fields show an
exponential increase, as observed for the total number of publications.

Hence, the process of attention gathering needs to take into account the increasing competition between
scientific products. With the increase of the number of journals and increasing number of publications in
each journal (not to mention the growth of online journals, which do not have physical constraints in their
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Figure 6: Increase in the number of publications with time since 1960 along with exponential fits, 95% confidence intervals and
rates.

publication volume), a scientist inevitably needs to filter where to allocate its attention, i.e. which papers to
cite, among an extremely broad selection. This may also question whether a scientist is actually fully aware
of all the relevant results available in scientific archives. Even though this effect is partially compensated by
the increase of the average number of references, one needs to consider the impact of increasing publication
volume on the attention decay.

3.7. Half-life

To check the robustness of our result that the citation decay rate is becoming faster for recent papers, we
measure the half-life of each publication. The half-life of a paper is a metric regularly adopted to evaluate

the typical life-cycle of a paper. The half-life of a paper is the time after which the normalized citation
1

rate ¢;(t) is never above 5. Similarly, instead of 1/2, other thresholds o of the citation rate can also be

considered. In mathematical terms:

1
t? =max{t s.t. ¢(t) >

?

}- (2)

N =

1
The value t? is the year of the last “sub-peak” of attention for paper i as it quantifies the last moment in
the history of the paper at which it has been able to gather sufficient attention. Fig. m(top panels) shows the

time evolution of the half-life measure. The mean of the absolute measure (t?) decreases linearly with time
for all the four fields. This decrease is consistent with the linear increase in the decay rate of the citation
trajectory. Also, there is an interesting grouping between Medicine/Biology and Chemistry/Physics: they
start off widely separated but they converge pairwise to similar values in recent years.

3.8. Rescaling time

The half-life of a paper can also be used to analyze the impact of the growth of system size. Using the
data shown in Fig. [6] we are able to convert its value from a measure of time into a measure of number
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1 1

terms of the number of publications is relatively constant. The panels show the evolution of (¢2) (top) and <ZE ) (bottom) for
the four different fields and for the top 10% (left) and for the [11-30]% percentile (right). The latter values are divided by a
large constant to get small values on the y-axis, which are easier to display. The error bars indicate the standard errors. Linear
fits along with their 95% confidence level intervals are also shown. In the legend the values of the linear coefficients are shown
for both absolute (gy) and renormalized (g,) time. The dashed line represents the linear fit. Despite its noisy behavior, the
renormalized half-life shows a relatively stable trend throughout the years, possibly with the only exception of Medicine and
Biology, which show a slightly rising pattern for recent times.

1
of publications in the paper’s discipline that have been published between the peak of the paper and ¢}.

1
Therefore we are able to define a renormalized version of t7 as:

12
3 1 !
tiy = Ny (#) 3)
t=tpeak 4]

where tP°% stands for the peak year and Ng (t) indicates the number of publications in field f of paper ¢ for
year t.
Fig. bottom panels) shows the time evolution of the renormalized half-life measure. Contrary to the

previous measure, the evolution of the renormalized half-life (f;% f> shows a relatively stable behavior. Note
that, this observation is highly non-trivial as the stable renormalized half-life is only expected in the case
when the exponential increase in the number of publications exactly compensate for the decay in citation
rate. A similar behavior is also observed when lower thresholds o are used, i.e., by forcing the drop to
be more significant (see Appendix Fig. C2 a). The renormalized half life defined in equation [3| provides a
measure of the time required for a paper to fall below a certain arbitrarily defined threshold of attention
in terms of number of publications, which can be seen to represent the amount of ”competition” a paper is
about to withstand before dropping to significantly lower values of attention.

Interestingly, the picture changes if we consider the half-life to be the first time when the normalized
citation rate ¢;(t) decreases below % In this case, the renormalized half-life shows an increasing pattern
with time (Appendix Fig. C2 b). Such alternative measure quantifies the time taken to have the first lowest
drop of attention. However data suggests that such value seems to be stable across years for each field as an
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initial drop in attention appears to be structurally inevitable. This inevitably leads, after renormalization,
to a significantly increasing behaviour.

Fig. [7] suggests that, even though papers are now taking on average less time to drop below a certain
threshold of attention, the number of published papers after which a work becomes obsolete does not show
the same behavior. On the contrary, our data indicates an approximately constant value throughout the
time period of the study. So, the growing number of publications proportionally increases the likelihood of
a paper to become obsolete, but the contribution of each paper to this process is about the same, regardless
of the age of the paper.

4. Conclusions

We have studied how attention towards scientific publications diminishes over time, due to the obsoles-
cence of knowledge. For millions of papers in four different disciplines we find that after reaching a peak,
typically a few years since publication, the number of citations goes down relatively fast. We find that
exponential decays are to be generally preferred over power law decays, though the latter are providing
better and better descriptions of the data for recent times. The existence of many time-scales in citation
decay and our ability to construct an ultrametric space to represent this decay, leads us to speculate that
citation decay is an ultradiffusive process, like the decay of popularity of online content. Interestingly, the
decay is getting faster and faster, indicating that scholars “forget” more easily papers now than in the past.
We found that this has to do with the exponential growth in the number of publications, which inevitably
accelerates the turnover of papers, due to the finite capacity of scholars to keep track of the scientific lit-
erature. Although search engines and digitalization have made it easier for scientists to discover relevant
information, the amount of information that can be successfully processed is still limited. In fact, by mea-
suring time in terms of the number of published works, the decay appears approximately stable over time,
across disciplines, although there are slight monotonic trends for Medicine and Biology. However, we must
emphasise that we normalized time by using the number of published papers in the discipline at study. This
is the simplest choice to make, but it is not necessarily the most sensible one. The fields we considered
are rather broad, and subdivided in many different topics. Scholars working on any of such topics will be
affected mostly by the literature of the topic, and hardly by anything else. It is very difficult to isolate the
relevant literature case by case. Still, considering the whole bulk of publications in each single discipline
is a way to discount the exponential growth of scientific output and we have found that this suffices to
counterbalance (at least to a large extent) the apparent faster decay of attention observed in recent years.
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Appendix A. Description of the categories

To categorize each paper according to its field of publication we use the Thomson Reuters (TR) subject

categories. We then aggregated these subject categories into broader scientific fields. A detailed description
is provided in Table
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Fields TR subject categories

Physics IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY; PHYSICS, APPLIED;
OPTICS; INSTRUMENTS & INSTRUMENTATION; PHYSICS, CONDENSED MAT-
TER; PHYSICS, FLUIDS & PLASMAS; PHOTOGRAPHIC TECHNOLOGY; PHYSICS,
ATOMIC, MOLECULAR & CHEMICAL; ACOUSTICS; PHYSICS; PHYSICS, MATH-
EMATICAL; MECHANICS; PHYSICS, NUCLEAR; SPECTROSCOPY; THERMODY-
NAMICS; PHYSICS, PARTICLES & FIELDS; NUCLEAR SCIENCE & TECHNOLOGY;
PHYSICS, MULTIDISCIPLINARY; ASTRONOMY & ASTROPHYSICS;

Chemistry CHEMISTRY, INORGANIC & NUCLEAR; ELECTROCHEMISTRY; CHEMISTRY,
PHYSICAL; CHEMISTRY, ANALYTICAL; POLYMER SCIENCE; CHEMISTRY, MUL-
TIDISCIPLINARY; CRYSTALLOGRAPHY; CHEMISTRY, APPLIED; CHEMISTRY;
CHEMISTRY, ORGANIC;

Molecular Biology BIOCHEMICAL RESEARCH METHODS; BIOCHEMISTRY & MOLECULAR BIOLOGY;
BIOMETHODS; BIOPHYSICS; CELL & TISSUE ENGINEERING; CELL BIOLOGY; CY-
TOLOGY & HISTOLOGY; MATHEMATICAL & COMPUTATIONAL BIOLOGY; MI-
CROSCOPY;

Physiology or Medicine CYTOLOGY & HISTOLOGY; BIOCHEMISTRY & MOLECULAR BIOLOGY; CELL
BIOLOGY; BIOCHEMICAL RESEARCH METHODS; CELL & TISSUE ENGINEER-
ING; MATHEMATICAL & COMPUTATIONAL BIOLOGY; BIOPHYSICS; BIOMETH-
ODS; MICROSCOPY; ENGINEERING, BIOMEDICAL; IMMUNOLOGY; MEDICAL
LABORATORY TECHNOLOGY; MEDICINE, RESEARCH & EXPERIMENTAL; PAR-
ASITOLOGY; PHYSIOLOGY; ANATOMY & MORPHOLOGY; PATHOLOGY; ONCOL-
OGY; RHEUMATOLOGY; VASCULAR DISEASES; PSYCHIATRY; GERIATRICS &
GERONTOLOGY; DENTISTRY, ORAL SURGERY & MEDICINE; OPHTHALMOLOGY;
DENTISTRY ORAL SURGERY & MEDICINE; MEDICINE, LEGAL; EMERGENCY
MEDICINE & CRITICAL CARE; CLINICAL NEUROLOGY; TRANSPLANTATION;
HEMATOLOGY; INFECTIOUS DISEASES; RESPIRATORY SYSTEM; PERIPHERAL
VASCULAR DISEASE; MEDICINE, GENERAL & INTERNAL; PEDIATRICS; EMER-
GENCY MEDICINE; INTEGRATIVE & COMPLEMENTARY MEDICINE; GASTROEN-
TEROLOGY & HEPATOLOGY; DERMATOLOGY; REHABILITATION; ANESTHESI-
OLOCY; TROPICAL MEDICINE; MEDICINE, MISCELLANEOUS; ENDOCRINOLOGY
& METABOLISM; NEUROIMAGING; ANDROLOGY; ORTHOPEDICS; OBSTETRICS
& GYNECOLOGY; ALLERGY; CRITICAL CARE MEDICINE; OTORHINOLARYN-
GOLOGY; RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING; SURGERY;
CARDIAC & CARDIOVASCULAR SYSTEMS; DERMATOLOGY & VENEREAL DIS-
EASES; AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY; RADIOLOGY & NU-
CLEAR MEDICINE; UROLOGY & NEPHROLOGY; CRITICAL CARE; CARDIOVAS-
CULAR SYSTEM;

Table A.1: Aggregation of TR subject categories in broader fields.

Appendix B. Evolution of the number of citations for other decile

Fig. is the analog of figure Fig. [1| of the main text, but is focused on the top [11-30]% papers (based
on their total number of citations). Compared to the original figure the values of (¢(t)) is lower, linked to
the fact that these papers have accumulated fewer citations. The top panels (A,B), where the papers are
grouped by their publication year, show that the average peak is more concentrated in the initial years and
is followed by a more rapid decay. Finally, the citation trajectories reach a plateau that is significantly lower
than the respective one for the top decile. Similarly, the papers grouped by their peak year (bottom panels,
C,D), also show a larger drop in (¢(¢)) in the first few years followed by a lower value of the final plateau.

Appendix C. Evolution of half-life for different values of o and alternative definition of half-
life

Fig. (a,b) is the analogous of Fig. |z| with ¢ = 0.3. This implies choosing a lower threshold for the
definition of the point below which a paper is considered to have completed its life cycle. Data suggests that
the pattern shown in the paper is retained for other choices of parameters. However, at 0 = 0.3, Physics
also shows a slight decreasing patter, whereas Medicine and Biology retain their increasing trends.
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Fig (c,d) is the analog of the previous figure, with the alternative half-life defined as

1 - 1
tié =min{t s.t. ¢(t) < 5}

(C.1)

whereas t is defined still in the same way as in Eq. [3] but using the previously defined value for ¢. In th
framework the half life of the paper is considered as the first year in its life cycle where its citations have
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dropped below a certain threshold. The figure shows that with this definition the values of £ lose their
decreasing pattern in favour of a field specific value, which is retained in the years. Similarly, the behavior
for ¢ shows a deviation from the previously constant pattern in favor of a significant increase in its values.
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