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The importance of collaboration in research is widely accepted, as is the fact that articles 
with more authors tend to be more cited. Nevertheless, although previous studies have 
investigated whether the apparent advantage of collaboration varies by country, discipline, 
and number of co-authors, this study introduces a more fine-grained method to identify 
differences: the geometric Mean Normalized Citation Score (gMNCS). Based on comparisons 
between disciplines, years and countries for two million journal articles, the average citation 
impact of articles increases with the number of authors, even when international 
collaboration is excluded. This apparent advantage of collaboration varies substantially by 
discipline and country and changes a little over time. Against the trend, however, in Russia 
solo articles have more impact. Across the four broad disciplines examined, collaboration 
had by far the strongest association with impact in the arts and humanities. Although 
international comparisons are limited by the availability of systematic data for author 
country affiliations, the new indicator is the most precise yet and can give statistical 
evidence rather than estimates.  
Keywords: Citation indicators; impact indicators; scientific co-authorship; gMNCS, MNCS; 
geometric Mean Normalized Citation Score; geometric new crown indicator; research 
collaboration. 

1. Introduction 
Cooperation in research is promoted by many funding agencies in the belief that 
collaborative research tends to have more impact. This originates from the theoretical 
argument that interdisciplinary collaboration is often necessary to solve important societal 
problems (Gibbons, Limoges, Nowotny, Schwartzman, Scott, & Trow, 1994) and is supported 
by studies showing that collaborative research is often more highly cited than comparable 
solo studies (e.g., Thurman & Birkinshaw, 2006). International collaboration seems to be 
also promoted for partly political purposes, such as the European Union funding 
programmes that require at least three different member states to be represented within a 
funding bid (EC, 2014). These initiatives have presumably contributed to an increase in 
research collaboration in most fields (Wuchty, Jones, & Uzzi, 2007). Nevertheless, the value 
of collaboration seems to vary between fields, nations and type (e.g., national vs. 
international) and so it is important to understand where it is beneficial so that it can be 
promoted when it is most useful and perhaps even discouraged when it is problematic. 
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 Although, as discussed below, previous studies have assessed factors that influence 
the success of collaborations, at least as reflected in the citation counts of the resulting 
publications, it is difficult to get a clear understanding of differences between collaboration 
types. This is because citation counts are highly skewed (e.g., Seglen, 1992) and so 
comparing arithmetic mean citation rates between different types of articles is unreliable, 
needing large sample sizes to give reasonable statistical power. Moreover, analyses need to 
harness large sets of articles in order to reliably distinguish between the average impacts of 
sets of articles with similar properties (e.g., articles with two authors compared to articles 
with three authors). Hence a more precise method is needed to compare the effects of 
collaboration on collections of articles, such as the geometric mean. This may not be 
enough, however, since the geometric mean can only be applied to articles from a single 
year and field because of differences in average citation counts. Hence, an indicator is 
needed that combines the ability of the geometric mean to deal with skewed data with the 
ability of the Mean Normalized Citation Score (MNCS) (discussed below) to combine citation 
counts from multiple fields and years. In response, this article introduces a variant of the 
MNCS, the geometric MNCS (gMNCS), and applies it to assess the effect of field, year and 
country on the extent to which the average citation impact of collaborative research articles 
varies with the number of authors. Geometric variants of several standard bibliometric 
indicators have previously been proposed, following their initial introduction (Zitt, 2012). 
These include geometric journal impact factors (Thelwall & Fairclough, 2015) and a basic 
average citation indicator for individual subjects and years (Fairclough, & Thelwall, 2015).  

2. Background 
Academic collaboration is the combining together of the expertise of multiple people in the 
production of research (Katz & Martin, 1997). In practice, even apparently solo research 
projects are sometimes collaborative to some extent through informal discussions with 
colleagues and help from support staff. Whilst these are important parts of the research 
process, collaborations that combine a substantial amount of academic expertise from the 
contributors are of particular interest because of its promotion by funding agencies in the 
belief that it tends to produce better research. In practice, quantitative studies of 
collaboration almost always focus on work that leads to published findings (there are many 
qualitative exceptions, e.g.: Latour & Woolgar, 1979) and use the authorship list as a proxy 
for the set of people that have substantially contributed to a study. Other contributors are 
sometimes recognised in an acknowledgement (Cronin, McKenzie, & Stiffler, 1992; Cronin, 
2001a) but these are rarely analysed on a large scale. 

The authorship list is a simplification of the concept of collaboration because it may 
omit important contributors (ghost authorship: Gotzsche, Hróbjartsson, Johansen, Haahr, 
Altman, & Chan, 2007) and include non-contributors (gift/honorary authorship: Cronin, 
2001b; Drenth, 1998; Smith, 1994). Scientists also do not have a uniform understanding of 
concept of research collaboration and frequently do not grant co-authorships to people that 
have helped in research (Laudel, 2002). Moreover, although the authors are normally 
assumed to have contributed equally, in most fields the first author probably contributes 
more than the others (Vinkler, 1993). This is not true in all fields, with exceptions including 
mathematics, business and economics (Levitt & Thelwall, 2013) and there is no agreed 
formula to estimate the likely relative contributions of authors based on their order in the 
authorship list. It is becoming more possible to detect the value of the different authors for 
a paper because some journals require specific information about individual contributions 
(Bates, Anić, Marušić, & Marušić, 2004) but this falls short of giving a formula to estimate 
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the relative importance of each one. In this context, it seems reasonable to accept the 
simplification that all authors’ contributions are equally important.  
 Academic collaboration leading to co-authorship can be of very different types. A 
common type is probably junior-senior co-authorship where the main author is a PhD 
student and the second author is their main supervisor. Here, the student may have done 
most of the work but the supervisor may have provided expertise in the form of ideas and 
overall guidance on topic areas and specific advice about the research design, methods, 
analysis, write-up and publication venue. The exact nature of the relationship may vary by 
discipline, however (e.g., Barnes & Randall, 2012). In contrast, some collaborations involve 
sets of experienced researchers that provide complementary expertise from different fields, 
subfields, or tasks (e.g., statistics, interviews), in order to conduct studies that they could 
not perform as well individually. Other collaborations may also be between researchers with 
essentially identical skill sets but with their combined insights helping to solve a problem 
that they could, in theory, have addressed individually. For a large scale bibliometric analysis 
of publications no method has yet been developed to distinguish between these types of 
contributions and so there is no alternative to treating all types of collaboration as the 
same. When interpreting the results, however, the different types of collaboration should 
be considered as possible explanations for any patterns found. 

Many, but not all (Bornmann, Schier, Marx, & Daniel, 2012; Haslam, Ban, Kaufmann, 
Loughnan, Peters, Whelan, & Wilson, 2008), studies investigating the connection between 
collaboration and citation have found that articles with more authors tend to be more cited 
(e.g., Thurman & Birkinshaw, 2006; Vieira, & Gomes, 2010). Most articles cannot be easily 
generalised, however, due to a focus on a set of publications with a specific attribute, such 
as originating from a single university, country, journal or field. There have also been 
variations in the types of collaboration examined, from a course grained comparison of solo 
with collaborative research, to comparisons of types of collaboration (e.g., intra-
institutional, international) and different numbers of authors. 

Not all types of collaboration have equal apparent impact. It seems that 
collaboration is particularly likely to generate higher (arithmetic mean) impact research if 
the collaborators are from different countries (Didegah & Thelwall, 2013; Glänzel, 2001; 
Katz, & Hicks, 1997), except perhaps in the social sciences (Didegah & Thelwall, 2013), and 
for authors at prestigious universities (e.g., Gazni & Didegah, 2010). Domestic collaborations 
seem to have the same impact whether multiple institutions are involved or not, however 
(Didegah & Thelwall, 2013). Moreover, collaboration within an institution associates with 
lower impact papers that solo research in at least one field (Leimu & Koricheva, 2005). The 
advantage of collaboration can also vary by country. For example, a study of biochemical 
research found that collaboration with the USA associated with increased citation impact for 
authors from other countries, but collaboration with some other countries was associated 
with decreased citation impact (Sud & Thelwall, in press). 

Focusing on a single country can reveal the extent to which collaboration is 
advantageous for that nation. For economics, collaborative research has been shown to be 
at least as highly cited as solo research across 18 different countries and 12 different states 
in the USA, although the extent to which this was true for 5 other different states depended 
on the indicator used (Levitt, & Thelwall, 2010). This example illustrates the importance of 
using the most precise indicator when comparing impact. 

The impact of collaboration varies by field, as confirmed above by the finding that 
international collaboration is apparently not beneficial in the Social Sciences, in comparison 
to two other Web of Science (WoS) categories (Biology & Biochemistry and Chemistry, 2000-
2009). In the humanities, solo research is particularly valued in the form of the monograph 



4 
 
(Williams, Stevenson, Nicholas, Watkinson, & Rowlands, 2009), and collaboration does not 
generate more monograph citations (Thelwall & Sud, 2014). A study of 11,196 journal 
articles and reviews within WoS from 2000, 2003 and 2005 with at least one author from 
South Africa in 18 natural and life science fields found solo authored papers to be more 
cited than collaboratively authored papers in some cases (e.g., Psychiatry, Biochemistry) but 
the converse was true for others (Engineering, Plant Sciences) (Sooryamoorthy, 2009). No 
statistical tests were conducted, however, and no allowances were made for skewed 
citation count data, the citation counts from the different years were not normalised and 
the sample sizes were small and so the findings are indicative rather than robust. A large 
scale study of the articles, letters and notes (in the Web of Science predecessor) of 50 
nations in 1995/96 compared eight different broad fields: Clinical Medicine; Biomedical 
Research; Biology; Chemistry; Physics, Mathematics; Engineering; Earth and Space Sciences 
(Glänzel, 2001). Citation counts were used with a three year citation window. An indicator 
was used to assess the extent to which internationally-co-authored papers attracted more 
citations than did domestically authored publications within each of the 8 fields (i.e., 50x8 
calculations; see Table 3 on p. 89: Glänzel, 2001). Internationally collaborative articles 
tended to attract more citations than did domestically authored articles, whether 
collaborative or not, in most cases but the results did not distinguish between international 
and domestic collaboration (e.g., by excluding non-collaborative domestic articles) and the 
indicator used did not take into account skewed citation patterns. This article also found 
that collaborations between specific pairs of nations may be particularly advantageous for 
one or other of the collaborators in terms of attracting more citations than domestic 
research in the same field (Glänzel, 2001). 
 Regression analyses of citation data can help to check whether collaboration is likely 
to be a cause of articles being more cited or whether it is an indirect effect of other 
properties of an article that more directly associate with higher citation counts. For 
example, if collaboratively produced articles tended to have clearer abstracts and be cited 
more as a result of this, then a regression analysis that included both author counts and an 
abstract clarity metric could distinguish between the effects of both variables. A regression 
analysis of a large number of variables has confirmed that papers with more authors tended 
to be more cited, however, irrespective of the nature of the collaboration (e.g., national or 
international) (Didegah & Thelwall, 2013). This was found to be true for all three of the 
subject areas analysed (Biology & Biochemistry, Chemistry and Social Sciences). 
 Many of the studies reviewed above have explicitly or implicitly assumed that 
research that is more highly cited tends to be better, other factors being equal. The use of 
citation counts as a proxy for quality is problematic, however, and at best they are an 
indicator of academic impact. Moreover, citation comparisons may not be fair for 
collaborative research since the additional citations may accrue from the wider audience 
generated by the extra authors rather than from higher quality research (Wallace, Larivière, 
& Gingras, 2012). National biases within a citation index can also influence citation counts 
for authors based on their nationality (Van Leeuwen, Moed, Tijssen, Visser, & Van Raan, 
2001) because of the tendency for national self-citations (Lancho-Barrantes, Guerrero-Bote, 
& de Moya-Anegón, 2013; see also: Thelwall & Maflahi, 2015) and publishing in the national 
literature. A second order effect can also come from collaborating countries that tend to 
cite each other (Lancho-Barrantes, Guerrero-Bote, & de Moya-Anegón, 2013). Some 
apparent advantages or disadvantages of collaboration may therefore be indirect effects of 
the coverage of the citation database used. Nevertheless, there is evidence from Italy that 
peer ratings of collaborative articles tend to be higher than peer ratings of solo articles 
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(Franceschet, & Costantini, 2010), suggesting that collaboration tends to be advantageous 
overall. 

3. The Geometric Mean Normalized Citation Score (gMNCS) 
Field normalisation is important when analysing collections of academic articles because 
fields may have different average numbers of citations per article so that it is not reasonable 
to combine raw citation counts from different fields. The MNCS approach is to convert each 
citation count to a normalised version by dividing it by the mean number of citations per 
paper for the field and year of publication. Articles with a normalised score greater than 1 
have therefore attracted more citations than average for their field and year. Hence, if the 
number of citations for an article in field f and year y is 𝑐𝑓𝑦 then the normalised value is 

𝑐𝑓𝑦/𝑐𝑓𝑦̅̅ ̅̅ , where the mean is taken over all articles published in the field and year. After this 

normalisation, articles from different years and fields could reasonably be compared against 
each other or combined into sets for analyses of their properties (Waltman, van Eck, van 
Leeuwen, Visser, & van Raan, 2011a,b). 
 A problem with the MNCS is that citation counts are highly skewed (Thelwall, & 
Wilson, 2014a; Wallace, Larivière, & Gingras, 2009) and the arithmetic mean used in its 
formula is therefore an imprecise central tendency measure (Bland & Altman, 1996). 
Particularly, for smaller data sets, the arithmetic mean is vulnerable to having a non-trivial 
fraction of its value attributable to a single highly cited article. A solution to this problem is 
to use the geometric mean instead of the arithmetic mean, as previously noted in other 
contexts for citation data (Zitt, 2012). With a standard offset of 1 to deal with uncited 

articles, the geometric mean of a set of articles is exp (
1

𝑛
∑ log(1 + 𝑐𝑓𝑦)) − 1, where the 

sum is over all articles from the field and year (Thelwall & Wilson, 2014b).  Essentially, this 
transforms the data using a logarithmic transformation, calculates the arithmetic mean, and 
then uses the exponential function to undo the effect of the transformation. For 
convenience, a curve above a variable will be used here to denote the geometric mean �̆� 
and MNCS with the geometric mean instead of the arithmetic mean 𝑐𝑓𝑦/𝑐𝑓�̆� will be called 

the geometric MNCS. 
 After normalisation as above, sets of articles could be reasonably compared. For 
example, if one set of articles was of solo-authored research and the other was of 
collaborative research then the average impact of the two sets could be compared to see 
which tended to attract the most citations for its field and year. Although this could be 
achieved, for example, by comparing the arithmetic mean of the set of solo articles with the 
arithmetic mean of the set of collaborative articles, this is not ideal because of the skewed 
nature of citation counts, even after normalisation. A more precise and more powerful way 
to compare the averages of the two sets would be to calculate the geometric mean of the 

normalised citation counts of each set. Here the formula would be exp (
1

𝑛
∑ log(1 +

𝑐𝑓𝑦/𝑐𝑓�̆�)) − 1, where n is the number of articles in the set and the sum is over all the 

articles in the set (i.e., a double use of the geometric mean). Confidence intervals can be 
calculated using confidence interval formulae for the normal distribution by omitting the 
reverse transformation exp(∙) − 1 stage, in which case the data should be approximately 
normally distributed (because citation counts fit the discretised lognormal distribution well: 
Evans, Hopkins, & Kaube, 2012; Radicchi, Fortunato, & Castellano, 2008; Thelwall & Wilson, 
2014c), then applying the reverse transformation exp(∙) − 1 to the confidence interval 
limits (Thelwall & Wilson, 2014a). This confidence interval is not symmetric about the 
central estimate and is an approximation since the transformed citation data is not exactly 
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normal. This double geometric mean approach should make the average estimates as 
precise as possible, hence having the most power to distinguish between different sets of 
articles, as well as allowing their precision to be estimated so that the significance of any 
differences detected can be checked. 
 The problem of using the arithmetic mean in the MNCS has been previously 
identified and the median has been proposed as an alternative (Leydesdorff & Opthof, 
2011). The geometric mean is more useful, however, because it is more fine grained and is 
not subject to sudden incremental increases with the addition of a single moderately cited 
article. In practice, however, the geometric MNCS suffers from other problems that are the 
same as those of the MNCS: the difficulty of effectively normalising multiply-classified 
articles; and reliance upon the classification scheme used to categorise the articles during 
normalisation (Leydesdorff & Opthof, 2011).  

4. Research Questions 
This article uses the geometric MNCS to assess the impact of collaboration on the average 
citation impact of research. The study is driven by the following research questions. 
Although they have previously been partially answered with different indicators, they are 
addressed again here for the new variant of average impact and with the hope of generating 
statistical evidence to answer each question. 

 How does the average citation impact of collaboratively produced articles vary with 
the number of collaborators? 

 Does the average citation impact of collaboratively produced articles vary with the 
country of the collaborators? 

 Does the average citation impact of collaboratively produced articles vary over time? 

 Does the average citation impact of collaboratively produced articles vary with 
discipline? 

5. Data and Methods 
The overall research design was to gather a large sample of articles from different 
disciplines and time periods in order to compare the average impact within each set based 
upon the number of authors and their nationalities. Scopus was chosen in preference to 
WoS because it seems to have greater coverage (Leydesdorff, de Moya‐Anegón, & Nooy, in 
press), including wider international coverage (López-Illescas, de Moya-Anegón, & Moed, 
2008) which is particularly important for international comparisons, although it has a bias 
towards English language publications (de Moya-Anegón, Chinchilla-Rodríguez, Vargas-
Quesada, Corera-Álvarez, Muñoz-Fernández, González-Molina, & Herrero-Solana, 2007).  

To investigate overall changes over time, the first data set included 25 varied Scopus 
categories from 2009 to 2015 in order to give wide coverage of scholarship: Animal Science 
and Zoology; Language and Linguistics; Biochemistry; Business and International 
Management; Catalysis; Electrochemistry; Computational Theory and Mathematics; 
Management Science and Operations Research; Computers in Earth Sciences; Finance; Fuel 
Technology; Automotive Engineering; Ecology; Immunology; Ceramics and Composites; 
Analysis; Anesthesiology and Pain Medicine; Biological Psychiatry; Assessment and 
Diagnosis; Pharmaceutical Science; Astronomy and Astrophysics; Clinical Psychology; 
Development; Food Animals; Complementary and Manual Therapy. This is a systematic 
sample of categories from Scopus with each being the third categories in a broad Scopus 
category (e.g., Animal Science and Zoology 1103 is the third category in the Agricultural and 
Biological Sciences 1100 broad category). The complete set is therefore reasonably 
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representative of journals classified by Scopus with the exception that the (small) broad 
category Dentistry is not represented because its third category, Dental Hygene 3503, had 
no data in some years. The third category was a relatively arbitrary choice and the second or 
fourth could equally have been chosen. The first category is Miscellaneous in all cases and 
Veterinary has only four categories. The data was downloaded from Scopus between 
September 15 and 30, 2015. A fixed citation window was not used but all citations to date 
were included to give the maximum power for the data set. This is a limitation for 
comparisons over time, however, because differences between years could be caused by 
the variable citation windows or by underlying changes in research. The year 2015 was 
included despite it being incomplete and having very limited and therefore unreliable 
citation counts. This is because the policy makers that call for international comparisons 
typically need current data to assess the influence of recent policies and so, although not 
answering a research question, it is useful to include results from this year in order to 
confirm that older data is needed for reasonable results. 

For each article, the country affiliations of the authors were extracted from Scopus, 
when present. Articles were categorised as purely national if only one country was 
recorded. This information was available for a minority of articles. The articles without 
nationality information were used to construct the world average for citations but were not 
included in any country set. 

To investigate disciplinary differences, the second data set consisted of journal 
articles (excluding reviews and all other non-article types) in all subcategories of the Scopus 
sections: Arts and Humanities (13 subcategories); Business, Management and Accounting 
(10 subcategories); Chemistry (7 subcategories); and Pharmacology, Toxicology and 
Pharmaceutics (5 subcategories). These were selected relatively arbitrarily to represent four 
different types of scholarship: humanities, social science, medicine, and natural science. The 
data included up to 10000 articles for each year 2009-2013 and for each subcategory. The 
Scopus API returns a maximum of 5000 results per query and returns them in date order 
and so queries with up to 10000 matches can get complete results by submitting two 
versions of the query, with the second reversing the date sorting option. For years with over 
10000 articles, the first 5000 and last 5000 in the year were retrieved using the Scopus sort 
by date option. Although it is not ideal to use a subset of articles, this subset is at least a 
balanced set of the most recent and oldest articles. The years 2009-2013 were chosen to 
give enough recent years for a large data set, but excluding the most recent two years for 
which there may be few citations. For each article, the Scopus-indexed citation counts were 
extracted between the 2nd and 6th of October 2015. The same information as for the first set 
was extracted. 

National comparisons were made for nine countries, selected to include major 
research producers and other countries of interest: United States; Germany; France; 
Canada; Japan; China; United Kingdom; Italy; Russian Federation. Other than the major 
research nations represented, the inclusion of selected others is a relatively arbitrary choice 
and was made to follow an independent source: an international comparison made for the 
UK government (Elsevier, 2013). Comparisons were made for articles with 1-10 authors to 
compare different levels of collaboration. The cut-off point of 10 was chosen as a round 
number that was large enough to encompass most common collaboration sizes. In some 
fields, such as high energy physics, very large collaborations are common but these are not 
of primary interest here. More generally, larger collaborations are more common in some 
fields than others and so the results will reflect different relative contributions of disciplines 
for different numbers of authors, which is a limitation of the approach. The first data set 
was used to compare countries and time, so the geometric MNCS was applied to all 25 
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subcategories separately in each year. The second data set was used to compare disciplines 
and countries, so the geometric MNCS was applied to each of the Scopus sections, 
normalising each subcategory and year separately. Standard normal distribution formulae 
were used to calculate 95% confidence intervals for the geometric MNCS values before the 
exponential reverse transformation, since the log transformed data was approximately 
normally distributed.  

The processed data for the results and the R code used to process the raw data can 
be found online: http://dx.doi.org/10.6084/m9.figshare.1609702. 

6. Results 
The graphs show, as expected, that the average impact of research varies substantially by 
nation because the country lines tend not to overlap much. A more detailed examination of 
the graphs is needed to answer the research questions, however. 

Figures 1 to 8 confirm that the overall trend is for papers with more authors to have 
increased average citation impacts. This is clear from the lines for the complete data sets in 
every year except 2015, for which there are too few citations and so the confidence limits 
are wide enough that any trends visible are likely to be spurious. The error bars for the 
complete data set (Figure 8) are narrow enough to be invisible on the graphs for early years 
and so the positioning of the points can be accepted as being essentially accurate. In this 
context, any deviations from a smooth line are of interest. By far the largest overall increase 
is from the average impact of solo authored research to research with two authors in every 
year before 2014. Additional authors after the second are much less influential in attracting 
extra citations. Surprisingly, however, the seventh to the tenth authors increase the average 
citation rate more than do the third to the sixth authors (i.e., the slopes of the All line 
increases at the seventh author point. This cannot be explained by disciplinary differences 
(e.g., medical research being more highly cited and tending to have larger teams) because 
the normalisation process accounts for disciplinary differences in average citation rates. 
Instead it suggests that in at least some disciplines, and perhaps in most or all, large team 
sizes tend to produce higher impact research. This could be, for example the result of a 
substantial number of large-scale medical or epidemiological studies that are particularly 
highly cited. 
 There are clear international differences in the citation impact of collaborations. In 
all data sets before 2015, solo research from Russia has higher average impact than does 
collaborative research and the overall trend seems to be that Russian national collaboration 
is somewhat disadvantageous from the perspective of attracting citations, although 
additional authors after the fourth or fifth start to increase the average citation rate. The 
robustness of the pattern is compromised by the wide confidence intervals for solo 
authored research, which contain the data point for two authors in most years. However, 
the exceptions (2011 and 2012), the similar trend for most years, and the data point for one 
author being outside of the confidence limits for the data point for two authors in most 
graphs make this conclusion robust.  
 

http://dx.doi.org/10.6084/m9.figshare.1609702
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Figure 1. GNCI values for articles with all author affiliations from a single country, using 
journal articles from 25 Scopus categories in 2009. Confidence limits use normal distribution 
formulae. Jitter has been added to x axis values to prevent the error bars from overlapping 
(n=170,184). 
 
 

 
Figure 2. GNCI values for articles with all author affiliations from a single country, using 
journal articles from 25 Scopus categories in 2010. Confidence limits use normal distribution 
formulae. Jitter has been added to x axis values to prevent the error bars from overlapping 
(n=174,194). 
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Figure 3. GNCI values for articles with all author affiliations from a single country, using 
journal articles from 25 Scopus categories in 2011. Confidence limits use normal distribution 
formulae. Jitter has been added to x axis values to prevent the error bars from overlapping 
(n=181,171). 
 

 
Figure 4. GNCI values for articles with all author affiliations from a single country, using 
journal articles from 25 Scopus categories in 2012. Confidence limits use normal distribution 
formulae. Jitter has been added to x axis values to prevent the error bars from overlapping 
(n=187,145). 
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Figure 5. GNCI values for articles with all author affiliations from a single country, using 
journal articles from 25 Scopus categories in 2013. Confidence limits use normal distribution 
formulae. Jitter has been added to x axis values to prevent the error bars from overlapping 
(n=189,921). 
 

 
Figure 6. GNCI values for articles with all author affiliations from a single country, using 
journal articles from 25 Scopus categories in 2014. Confidence limits use normal distribution 
formulae. Jitter has been added to x axis values to prevent the error bars from overlapping 
(n=177,187). 
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Figure 7. GNCI values for articles all with author affiliations from a single country, using 
journal articles from 25 Scopus categories in 2015. Confidence limits use normal distribution 
formulae. Jitter has been added to x axis values to prevent the error bars from overlapping 
(n=149,180). 
 
Changes over time in the average impact of articles with different numbers of co-authors 
seem to be slight overall, but there are statistically significant changes, as indicated by the 
confidence intervals from specific years not overlapping with the corresponding points from 
other years (Figure 8). In particular, 2015 stands out as substantially different from the 
other years, and 2014 follows it somewhat in being relatively low for 2-7 authors. This 
seems more likely to be due to the relatively special reasons why articles attract early 
citations within their publication year than to fundamental changes in the relationship 
between co-authorship and impact, however. Nevertheless, there are other statistically 
significant differences between years. For example, the normalised average impact of solo 
articles 2012-2014 is significantly lower than the average impact of articles 2009-2011, 
suggesting that there is a trend for solo authorship to attract increasingly few citations, 
relative to collaborative articles. 
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Figure 8. GNCI values for journal articles from 25 Scopus categories 2009-2015. Confidence 
limits use normal distribution formulae. Jitter has been added to x axis values to prevent the 
error bars from overlapping (n=1,228,982). 
 
In terms of disciplinary differences, there are statistically significant differences in the (field 
and year normalised) average number of citations for articles with different numbers of 
authors in the four areas examined (Figure 9). Most strikingly, in the Arts and Humanities, 
co-authorship has the most substantial association with higher average citation rates.  
Nevertheless, there are also statistically significant differences in the field normalised 
average citation rates for most numbers of authors between the other three areas as well. 
Also of interest is the fact that Pharmacology, Toxicology and Pharmaceutics has a faster 
increasing rate of citations with increasing co-authorship than does Chemistry, and so large 
numbers of co-authors are more useful in this area than in Chemistry. 
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Figure 9. GNCI values for journal articles from four broad Scopus categories 2009-2013. 
Confidence limits use normal distribution formulae. Jitter has been added to x axis values to 
prevent the error bars from overlapping (n=779,377). 
 
For individual disciplines (Figures 10-13), the country patterns are not always the same as 
for the multiple discipline graphs (Figures 1-7). Whilst solo authorship associates with higher 
impact research for Russia overall (Figures 1-5), the reverse is true in Chemistry (Figure 12) 
and probably also in Pharmacology, Toxicology and Pharmaceutics (Figure 13). This shows 
that discipline and country are both factors in the association between co-authorship and 
average citation rates. 
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Figure 10. GNCI values for articles all author affiliations from a single country, using journal 
articles from all subcategories of the Scopus broad category of Arts & Humanities, published 
2009-2013. Confidence limits use normal distribution formulae. Jitter has been added to x 
axis values to prevent the error bars from overlapping (n=211,056). 
 

 
Figure 11. GNCI values for articles all author affiliations from a single country, using journal 
articles from all subcategories of the Scopus broad category of Business, Management and 
Accounting, published 2009-2013. Confidence limits use normal distribution formulae. Jitter 
has been added to x axis values to prevent the error bars from overlapping (n=155,346). 
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Figure 12. GNCI values for articles all author affiliations from a single country, using journal 
articles from all subcategories of the Scopus broad category of Chemistry, published 2009-
2013. Confidence limits use normal distribution formulae. Jitter has been added to x axis 
values to prevent the error bars from overlapping (n=268,531). 
 

 
Figure 13. GNCI values for articles all author affiliations from a single country, using journal 
articles from all subcategories of the Scopus broad category of Pharmacology, Toxicology 
and Pharmaceutics, published 2009-2013. Confidence limits use normal distribution 
formulae. Jitter has been added to x axis values to prevent the error bars from overlapping 
(n=144,444). 
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7. Discussion 
An important limitation of this study is that the country graphs only included domestic 
collaborations. Although this is necessary to avoid the possibility that some of the effect of 
collaboration would derive from the research strength of the collaborating nations, it is an 
oversimplification because international collaboration is an important aspect of research. As 
can be seen from additional graphs online, if international collaborations are included then 
the patterns are broadly the same, however (at the bottom of the “a” versions of 
worksheets of the supporting files – see the end of the methods section for URL). Whilst the 
nature of collaborations could have been taken into account with a regression modelling 
approach (e.g., Thelwall & Maflahi, 2015), this is likely to have generated much wider 
confidence limits and hence would have given less detailed and less (statistically) robust 
results. 
 Another limitation is that the classification system used is that of Scopus, which 
applies at the level of entire journals rather than individual articles. Since some research is 
multidisciplinary and any classification system is necessarily a simplification of the complex 
situation of evolving and overlapping research fields, the results are likely to be affected by 
the system used (Rafols & Leydesdorff, 2009). In particular, the apparent extreme 
association between impact and collaboration for the Arts and Humanities may be caused 
by the collaborative articles being predominantly either multidisciplinary or articles from 
other areas but published in arts or humanities journals, due to the normal scattering of 
articles across journals (Bradford, 1934). For example, the journal Criminology and Public 
Policy was categorised within the Literature and Literary Theory subcategory, presumably as 
a minor classification, and its papers tended to be relatively highly cited and co-authored. 
Similarly, the Journal of Archaeological Science within the History subcategory tended to 
have highly cited and co-authored papers, presumably being an interdisciplinary research 
area. This would explain the apparent contradiction that solo work is particularly valued 
(and particularly common – see Figure 1 in: Larivière, Gingras, & Archambault, 2006) in 
humanities scholarship, albeit primarily in the form of the monograph (Cronin & La Barre, 
2004; Williams, Stevenson, Nicholas, Watkinson, & Rowlands, 2009), for which collaboration 
associates with fewer citations (Thelwall & Sud, 2014). 

There are two further reasons why the trends in the graphs may be misleading to 
some extent. Since not all subjects collaborate to the same extent, the relative contribution 
of subjects is different for different numbers of co-authors and so some of the trends could 
be due to changes in the subject mix rather than to changes in impact due to collaboration. 
Similarly, some subject areas attract citations at a more rapid rate than others and these 
subjects would be able to exhibit a greater difference between high and low impact articles 
for recent years, even after normalisation. They could therefore have a disproportionate 
influence on the results. 
 The results should not be taken as proof that collaboration is the cause of higher 
impact research in any case. The data shows an association but not whether there is a cause 
and effect relationship between the two. There are many possible explanations for the 
association other than collaboration helping to produce better research. Collaborations may 
attract more attention to an article if not all of the authors have the same community in 
which they have name recognition. This may be particularly important for international 
collaboration (Thelwall & Maflahi, 2015). In addition, researchers that produce higher 
impact research may naturally attract collaborators or good doctoral students, and so high 
impact research would cause increased collaboration in subsequent articles. The same 
directional relationship would also occur if researchers producing high impact research were 
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more likely to be successful in large funding applications that required collaboration (but 
see: Van den Besselaar & Leydesdorff, 2009). Similarly, more expensive research that 
requires a larger team may also tend to be more cited (e.g., Luukkonen, Persson, & 
Sivertsen, 1992), perhaps because it is rarer, more carefully conducted because of the 
expense, or more important. Finally, it may be that more collaborative research tends to 
derive from fields that conduct more highly cited research (e.g., see: Franceschet & 
Costantini, 2010; Wuchty, Jones, & Uzzi, 2007), and so the association between impact and 
collaboration at the disciplinary level may reflect collaborative types of research tending to 
be in higher impact research subfields. 
 The unusual result for Russia, where solo authorship overall associates with higher 
impact research may be due to different authorship practices within Russia. Perhaps solo 
research is primarily conducted by senior researchers, whereas research with multiple 
authors may tend to be the work of junior researchers, with the main co-author being a 
senior researcher. Evidence from Canada suggests that in many fields the work of PhD 
students is less cited than average (Larivière, 2011). If this were to be true then co-
authorship in Russia may tend to reflect a different type of collaboration than in some other 
countries. Russia’s apparently high level of state support for research related to defence, 
the disruption caused by the demise of the USSR (Wilson & Markusova, 2004), centralisation 
of researchers within a few elite research institutes and the importance of international 
collaboration for highly cited research (Pislyakov & Shukshina, 2014) may also be factors in it 
having an unusual profile for domestic collaboration. 

The unstable results for 2015 (e.g., Figure 7) are due to low citation counts and, in some 
cases, small numbers of papers. This confirms that international comparisons are not 
possible for very recent data. This is important to check because policy makers making 
international comparisons need to have the most recent useful data in order to make an up 
to date evaluation of policy changes. 

8. Conclusion 
The results confirm that domestic collaboration associates with more highly cited research 
overall, and that adding a second author to a study makes a much larger difference than 
each subsequent additional co-author. The results vary by country, however, with solo 
authorship being advantageous in Russia. Overall, the value of collaboration seems to have 
increased in the sense that the normalised average impact of solo articles was relatively 
higher before 2012, although solo articles always have below average impact overall in the 
data. There are substantial differences between broad disciplines in the extent to which 
multiple authorship associates with higher impact research as well as in the trend in this 
relationship (e.g., the overlapping lines in Figure 9). Moreover, the overall trends in impact 
for domestic collaboration in individual countries vary by discipline, for example, with 
Russian domestic collaboration associating with higher impact research in Chemistry but not 
overall. 

From the perspective of the geometric MNCS, its more precise estimation of the 
average citation impact of collections of articles from multiple fields and/or years has 
allowed a fine grained examination of patterns in the results, with conclusions that are 
probably more robust than could have been made with previous indicators. In addition, the 
confidence limits associated with the indicator have allowed the level of confidence in the 
conclusions to be estimated. Hence it seems to be a useful and practical new indicator for 
comparing the citation impact of sets of articles from multiple fields and/or years.  
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