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Highlights: 

• Cognitive distance between publication portfolios of scientific units is determined. 

• The importance of scale invariance in determining cognitive distance is explained. 

• Two similarity-based methods in N dimensions are proposed. 

• Low dimensional and N-dimensional methods are compared in a small case study. 
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Abstract 

We study the problem of determining the cognitive distance between the publication 

portfolios of two units. In this article we provide a systematic overview of five different 

methods (a benchmark Euclidean distance approach, distance between barycenters in two and 

in three dimensions, distance between similarity-adapted publication vectors, and weighted 

cosine similarity) to determine cognitive distances using publication records. We present a 

theoretical comparison as well as a small empirical case study.  Results of this case study are 

not conclusive, but we have, mainly on logical grounds, a small preference for the method 

based on similarity-adapted publication vectors. 

Keywords: cognitive distances; barycenters; similarity matrices; similarity-adapted 

publication vectors; weighted cosine similarity; bootstrapping; research expertise. 
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1. Introduction 

In this article, we address the research question: How can we obtain, using publication data, a 

meaningful distance or proximity measure which represents the cognitive distance or 

proximity between two units? This is in fact a rephrased version of a problem we discussed 

earlier (Rahman et al., 2015), where we asked ‘How can we quantify the overlap of expertise 

between two entities, e.g., a research group and a panel, using publication data?’.  

In our investigation, entities or units are either experts, panels of experts, or research groups. 

One can easily think of other informetric contexts in which the calculation of cognitive 

distances is relevant, e.g. the search of suitable peer reviewers for the evaluation of journal 

submissions, for grant applications or in hiring/promotion decisions, the exploration of 

potential collaborations, and distinguishing between different ‘modalities’ of 

interdisciplinarity (Molas-Gallart, Rafols & Tang, 2014). Rafols, Porter and Leydesdorff 

(2010) suggest several possible uses of overlay maps in research management that depend on 

cognitive distance, such as benchmarking and comparing the research profiles of 

organizations, and exploring complementarities and possible collaborations. In this regard 

they point out that “successful collaborations tend to occur in a middle range of cognitive 

distance, whereupon collaborators can succeed at exchanging or sharing complementary 

knowledge or capabilities, while still being able to understand and coordinate with one 

another.” Our quantitative approaches are complementary to visual approaches like overlay 

maps (Leydesdorff, & Rafols, 2009; Rafols, Porter, & Leydesdorff, 2010; Leydesdorff, Carley, 

& Rafols, 2013).  

In this contribution, we focus on theoretical-logical aspects of the calculation of cognitive 

distance. As an application and to keep a clear link with our previous work we re-use the data 

and framework of (Rahman et al., 2015). In that article, publications were assigned to Web of 

Science Subject Categories, in short WoS SCs. We admit that the use of WoS SCs was a 

convenience approach, which has meanwhile been refined by applying a journal level 

approach (Rahman, Guns, Leydesdorff, & Engels, 2016a). More precisely, instead of 

assigning publications to WoS SCs, publications were assigned to the journal in which they 

were published. 

2. Measuring cognitive distance 

Nooteboom (2000) defines cognitive distance as “a difference in cognitive function”. He 

explains this as follows: “This can be a difference in domain, range, or mapping. People could 
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have a shared domain but a difference of mapping: two people can make sense of the same 

phenomena, but do so differently”.  Hence, the term ‘cognitive distance’ refers to the way in 

which two persons, and by extension, two organizations or groups of persons, are different, 

not only in terms of knowledge, but also in the way they perceive and interpret external 

phenomena. Like many other notions used in the social sciences – the notions of impact, 

inequality, visibility come to mind –, the notion of cognitive distance must be operationalized. 

This operationalization can be done in many different ways.  

Here, as in (Rahman et al., 2015, 2016a; Wang & Sandström, 2015) we consider the 

publication portfolio of the involved researchers to reflect the position of the unit in cognitive 

space and, hence, to determine cognitive distance. Expressed in general terms we measure 

cognitive distance between units based on how often they published in the same or similar 

journals. Similarity between journals can be measured in a direct way or via the WoS SCs to 

which they belong. Details are provided further on. In the case study presented in this paper, 

similarity is determined by the citation-based similarity of WoS SCs to which journals belong. 

The research groups are either research groups in physics or in chemistry working at the 

University of Antwerp, Belgium. For details we refer to Rahman et al. (2015). 

One can think of other informetric ways to determine cognitive distance between scientists. 

Wang & Sandström (2015) for example use bibliographic coupling and topic modelling to 

determine cognitive distance between publication portfolios. Besides using publication 

portfolios, one could also measure cognitive distance between patent portfolios, in terms of 

conference participation, in terms of diplomas, and so on. Moreover, cognitive distance is 

relevant in many other social and political contexts as well, e.g. when hiring employees, when 

comparing the programs of political parties, or to understand cultural differences.    

We recall (Rahman et al., 2016b) that in order to obtain meaningful cognitive distances these 

values must be scale-invariant. This means that the distance between points P and Q must be 

the same as the distance between the points P and cQ, where c is a strictly positive number. 

Indeed: the total output of a research group can be several orders of magnitude larger than that 

of one expert. For the applications we have in mind this difference must not play a role in 

determining cognitive distances. Scale-invariance can be obtained through normalization as 

illustrated (for 3 dimensions) in Fig. 1. All points situated on the straight line through the 

origin are represented by the same point in the plane with equation x+y+z = 1.  
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Fig. 1. Normalization, leading to a scale invariant approach 

 

This is so-called L1-normalization: by dividing each coordinate by the sum of all coordinates 

one obtains a new array for which the sum of all coordinates is one (taking into account that 

no coordinate is negative). One could equally well divide by an array’s Euclidean length (so-

called L2-normalization) but as we do not see an advantage for any of the two approaches we 

applied L1-normalization as is done in diversity studies.  

 

3. Representing researchers’ publication profiles 

Researchers’ publication profiles and their (dis)similarities will be represented in five 

different ways: a benchmark, two methods using barycenters (one in two and one in three 

dimensions), a fourth method using similarity-adapted publication vectors (in short: SAPVs) 

and a fifth one using weighted cosine similarities (in short: WCS). The benchmark and the last 

two values are applied in N dimensions, where N denotes the total number of SCs. In each 

case we start from a publication vector M = (mj)j, with j=1,…,N. The coordinates of this 

vector are the number of publications belonging to category j. Each panel member and each 

research group has a corresponding publication vector. In the applications only publications 

during a specific publication window and included in the Web of Science are considered, but 

the approach is independent of the used publication window or data source.  

Throughout the remainder of the text, we will work with the example of determining 

cognitive distances between expert panels and their members on the one hand and research 
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groups on the other (in the context of research evaluation). However, we stress the fact that 

the methods presented are more general and can also be applied in other contexts and for other 

purposes. 

3.1 The benchmark 

Scientists and research groups are represented as N-dimensional publications vectors. As a 

start (benchmark) we just calculate the Euclidean distance between the L1-normalized arrays 

of each panel member and each research group.  Recall that the Euclidean distance between 

two vectors a = (an)n=1,…,k and b = (bn)n=1,…k in Rk , for any strictly positive integer k, is given 

as: 

 𝑑(𝑎, 𝑏) = �(𝑎1 − 𝑏1)2 + ⋯+ (𝑎𝑘 − 𝑏𝑘)2 (1) 
 

In this paper we will use formula (1) for k = 2, k=3 and k = N. 

3.2 Second and third method: barycenters  

To answer our research question the second method uses a 2-dimensional base map. We note 

that this base map can be considered to be universal and hence has nothing to do with the 

concrete data at hand. Each SC has a place on this map, characterized by corresponding 

coordinates, denoted as (Lj,1, Lj,2), j = 1, …, N. In the application that will follow, the 2-

dimensional barycenter approach is based on a VOS (visualization of similarities) (Van Eck & 

Waltman, 2007) map (taken from Leydesdorff et al., 2013), but other 2-dimensional mappings 

are feasible. Now for each panel member and for each research group a barycenter derived 

from their publication profiles is calculated. Coordinates of these barycenters (in 2 dimensions) 

are given as 

𝐶1 =
∑ 𝑚𝑗𝐿𝑗,1
𝑁
𝑗=1

𝑇
  ;  𝐶2 =

∑ 𝑚𝑗𝐿𝑗,2
𝑁
𝑗=1

𝑇
                                                        (2) 

where mj is the number of publications of the unit under investigation (panel member, 

research group) belonging to category j; this category j has coordinates (Lj,1, Lj,2) in the base 

map; 𝑇 = ∑ 𝑚𝑗
𝑁
𝑗=1   is the total number of publications of the unit under investigation. We note 

that in the case study performed further on, T is larger than the total number of publications as 

full counting of WoS SCs has been used, which means that publications belonging to multiple 

WoS SCs are counted multiple times. Euclidean distances between units, as represented by 
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their barycenters, can be calculated leading to quantitative results answering our research 

question.  

The barycenter method explained above and in particular formulae (2) satisfy the scale-

invariance requirement as multiplying all mjs with the same strictly positive factor leads to the 

same barycenter.  

Although it is convenient to perform visualization and to determine cognitive distance in the 

plane, there is no theoretical reason to perform these acts in two dimensions. Likewise, there 

are no strong reasons to do both in the same dimension. The barycenter method can, at least in 

theory, be applied in any strictly positive dimension smaller than or equal to N. Not wanting 

to go too deep into this largely theoretical issue we will just check how results for our case 

studies compare in two and three dimensions, leading to the third method, namely the use of 

barycenters in three dimensions. 

For three dimensions, we again use the VOS algorithm, but now resulting in a three 

dimensional base map. This map was based on the network in 

http://www.leydesdorff.net/overlaytoolkit/map10.paj and obtained using Pajek, which 

implements the VOS algorithm both in 2 and 3 dimensions. 

Again each SC has a place on this map, characterized by corresponding coordinates, denoted 

as (Lj,1, Lj,2, Lj,3), j = 1, …, N, and for each panel member and for each research group a 

barycenter derived from their publication profiles is calculated. Coordinates in 3 dimensions 

are given as 

𝐶1 =
∑ 𝑚𝑗𝐿𝑗,1
𝑁
𝑗=1

𝑇
  ;  𝐶2 =

∑ 𝑚𝑗𝐿𝑗,2
𝑁
𝑗=1

𝑇
;  𝐶3 =

∑ 𝑚𝑗𝐿𝑗,3
𝑁
𝑗=1

𝑇
                                         (3) 

The meaning of the symbols T and mj in formulae (3) is the same as in formulae (2).  

 

3.3 Fourth method: Similarity-adapted publication vectors (SAPV) 

In Rahman et al. (2015) we used another quantitative approach (mistakenly also referred to as 

a barycenter method, but corrected in Rahman et al., 2016b), this time in N dimensions. In 

that approach, we used a matrix of similarity values between the WoS SCs as made available 

by Rafols, Porter & Leydesdorff (2010) at 

http://www.leydesdorff.net/overlaytoolkit/map10.paj. These authors created a matrix of citing 

to cited SCs based on the Science Citation Index (SCI) and Social Sciences Citation Index 

http://www.leydesdorff.net/overlaytoolkit/map10.paj
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(SSCI), which was cosine-normalized in the citing direction. The result is a symmetric N×N 

similarity matrix (here, N=224) which we denote by S = (sij)ij.  

The multiplication  𝑆 ∗ 𝑀 , i.e. applying the linear map with matrix representation S to the 

publication vector M leads to a new vector which we termed a similarity-adapted publication 

vector, SAPV in short. If we ignore similarity then S is the identity matrix and publication 

columns stay unchanged. We consider the SAPV method to be quite interesting as it provides 

a solution to the problem that WoS SCs overlap and are sometimes poorly defined, the SC 

Information Science & Library Science being a well-known example. 

 

 

 

 
 

 

 

 

 

 

Fig. 2. Workflow for determining distances between SAPVs  

In Rahman et al. (2015), we determined the distance for SAPVs (although they were referred 

to as N-dimensional barycenters). As these vectors were not normalized the obtained results 

were not scale-invariant. It suffices though, to follow the workflow shown in Fig.2.  

Hence, a normalized SAPV of a research group or panel member is determined as the 

vector 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑁), with coordinates Ck determined as:  

 
𝐶𝑘 =

∑ 𝑠𝑘𝑘𝑚𝑗
𝑁
𝑗=1

∑ ∑ 𝑠𝑖𝑖𝑚𝑗
𝑁
𝑗=1

𝑁
𝑖=1

=
(𝑆 ∗ 𝑀)𝑘
‖𝑆 ∗ 𝑀‖1

  
(4) 

 
where 𝑠𝑘𝑘 denotes the similarity value between the 𝑘-th and the 𝑗-th WoS SC, and 𝑚𝑗 is the 

number of publications in WoS SC 𝑗  of the research group or the panel member. The 

numerator of Equation (4) is equal to the 𝑘-th element of 𝑆 ∗ 𝑀, the multiplication of the 

 

Distance 

 

Research group 

 

Similarity-adapted publication 
vector 

 

Normalized vector 

 

Panel member 

 

Similarity-adapted publication 
vector 

 

Normalized vector 
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similarity matrix 𝑆 and the column matrix of publications 𝑀 =  �𝑚𝑗�𝑗. The denominator is the 

L1-norm of the unnormalized vector. We observe that the L1-norm of the normalized vector C 

is indeed equal to 1. 

3.4  Fifth method: Weighted cosine similarity 

Finally, we mention a weighted cosine similarity method (in short: WCS). The WCS between 

panel member (PM) k and research group m, according to Zhou et al. (2012) is: 

      
∑ 𝑀𝑖

𝑘𝑁
𝑖=1 �∑ 𝑅𝑗

𝑚𝑠𝑗𝑗𝑁
𝑗=1 �

��∑ 𝑀𝑖
𝑘𝑁

𝑖=1 �∑ 𝑀𝑗
𝑘𝑠𝑗𝑗𝑁

𝑗=1 ��.�∑ 𝑅𝑖
𝑚𝑁

𝑖=1 �∑ 𝑅𝑗
𝑚𝑠𝑗𝑗𝑁

𝑗=1 �� 
 

=  
( ) * *

tk mM S R

� ( ) * *
tk kM S M .� ( ) * *

tm mR S R
                                                  (5) 

The numerator is nothing but the matrix multiplication: ( ) * *
tk mM S R , where t denotes 

matrix transposition, S is the similarity matrix, Mk denotes the column matrix of publications 

of panel member k and Rm denotes the column matrix of publications of research group m. 

Similarly, the two products under the square root in the denominator are: ( ) * *
tk kM S M  and  

( ) * *
tm mR S R . The result is the WCS value between panel member k and research group m. 

Formula (5) is clearly scale-invariant: multiplying Mk or Rm with a fixed constant does not 

change the result. Note that if S is the identity matrix (similarity is not taken into account), 

formula (5) reduces to regular cosine similarity. A similarity or proximity can be considered 

as the opposite of a distance: the higher the similarity the better the match – the closer the 

distance – between a panel member and a research group. This value too is calculated for each 

panel member and each research group. We note that this fifth method may lead to 

mathematical problems when applied in general vector spaces, but that these do not occur in 

the particular framework used in this article (in mathematical terms: we work in the positive 

cone (R+)N, where R denotes the real numbers). Details are provided in Appendix B. 

4. Results 

As in our previous paper (Rahman et al., 2015), we calculate the cognitive distance between 

different research groups and panel members. Group names have been standardized using the 

first four letters of the corresponding department, for example, CHEM-A for chemistry 

research group A, PHYS-B for physics research group B. The panel member names are 
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standardized as PM1, PM2 etc. , but refer to different colleagues depending on the panel in 

question. 

Yet, another problem must be solved before we can really state that one panel member is 

closer to a research group than another. Small differences in distance or similarity bear little 

meaning and should not be used to make claims that, for instance, one panel member is a 

‘better’ choice than another. We therefore use a bootstrapping method (Efron &  Tibshirani, 

1998) leading to 95% confidence intervals for distances and similarities. Details of the 

bootstrapping method we applied are explained in (Rahman et al., 2016a). A more detailed 

explanation can be found online 

(http://nbviewer.jupyter.org/gist/rafguns/6fa3460677741e356538337003692389 and 

http://nbviewer.jupyter.org/gist/rafguns/faff8dc090b67a783b85d488f88952ba). If the 

confidence interval of the panel member who is closest to a given research group overlaps 

with that of the panel member who ranks second (and maybe even with the panel members 

ranking third or fourth) we say that there is no (statistical) difference in cognitive distance. In 

order to facilitate a comparison between the five methods, results for the barycenter method in 

2D, although already published in (Rahman et al., 2015) are included in Appendix A. These 

results are recalculated (leading to small differences) and information about the calculated 

confidence intervals is added. Hence we begin the presentation of shortest distances between 

panel members and research groups with the benchmark case (Tables 1 and 2), followed by 

the 3D barycenter case (Tables 3 and 4), the SAPV method (Tables 5 and 6) and finally the 

WCS method (Tables 7 and 8). For each research group we determine the panel member at the 

shortest distance. The number in the row corresponding to this panel member is indicated in 

bold and underlined. Distances whose confidence intervals overlap with that of the shortest 

distance are in bold (same column). We will use the same way of showing results for all the 

tables. 

 

 

 

 

 

 

http://nbviewer.jupyter.org/gist/rafguns/6fa3460677741e356538337003692389
http://nbviewer.jupyter.org/gist/rafguns/faff8dc090b67a783b85d488f88952ba
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Table 1: Euclidean distances in N dimensions between normalized publication arrays of research 
groups and panel members of the Chemistry department. 

 CHEM-
A 

CHEM-
B 

CHEM-
C 

CHEM-
D 

CHEM-
E 

CHEM-
F 

CHEM-
G 

CHEM- 
H 

CHEM-
I 

CHEM- 
J 

CHEM- 
K 

CHEM- 
L 

PM1 0.607 0.697 0.646 0.459 0.627 0.743 0.656 0.652 0.674 0.646 0.607 0.667 
PM2 0.507 0.565 0.402 0.588 0.300 0.240 0.316 0.377 0.269 0.356 0.445 0.531 
PM3 0.540 0.573 0.381 0.598 0.279 0.405 0.288 0.257 0.242 0.350 0.468 0.561 
PM4 0.542 0.601 0.441 0.608 0.331 0.340 0.217 0.372 0.336 0.360 0.464 0.556 
PM5 0.180 0.157 0.482 0.604 0.500 0.659 0.547 0.499 0.515 0.520 0.500 0.368 
PM6 0.715 0.762 0.726 0.255 0.693 0.809 0.738 0.731 0.749 0.729 0.693 0.745 
PM7 0.684 0.770 0.741 0.758 0.732 0.825 0.746 0.744 0.761 0.741 0.713 0.739 

 

Table 2: Euclidean distances in N dimensions between normalized publication arrays of research 
groups and panel members of the Physics department. 

 PHYS-A PHYS-B PHYS-C PHYS-D PHYS-E PHYS-F PHYS-G PHYS-H PHYS-I 

PM1 0.716 0.793 0.699 0.114 0.519 0.786 0.730 0.806 0.662 

PM2 0.953 0.466 0.788 1.048 0.801 1.008 0.956 0.457 0.899 

PM3 0.639 0.741 0.654 0.819 0.634 0.759 0.701 0.705 0.621 

PM4 0.600 0.663 0.476 0.738 0.481 0.663 0.278 0.662 0.523 

PM5 0.510 0.376 0.171 0.667 0.296 0.559 0.494 0.410 0.387 

PM6 0.618 0.224 0.388 0.736 0.379 0.576 0.568 0.241 0.531 
 

Table 3: Euclidean distances between barycenters of research groups and panel members of the 
Chemistry department using the 3-dimensional WoS SCs map. 

 CHEM-
A 

CHEM-
B 

CHEM-
C 

CHEM-
D 

CHEM-
E 

CHEM-
F 

CHEM-
G 

CHEM- 
H 

CHEM-
I 

CHEM- 
J 

CHEM- 
K 

CHEM- 
L 

PM1 0.037 0.032 0.043 0.033 0.064 0.059 0.018 0.006 0.014 0.043 0.103 0.033 

PM2 0.110 0.108 0.114 0.045 0.017 0.022 0.062 0.075 0.063 0.060 0.035 0.110 

PM3 0.051 0.047 0.056 0.019 0.050 0.044 0.006 0.015 0.007 0.040 0.090 0.048 

PM4 0.069 0.063 0.074 0.012 0.037 0.032 0.013 0.033 0.023 0.050 0.084 0.064 

PM5 0.030 0.027 0.034 0.040 0.069 0.064 0.028 0.007 0.019 0.038 0.103 0.029 

PM6 0.057 0.052 0.062 0.013 0.044 0.038 0.007 0.021 0.010 0.039 0.085 0.054 

PM7 0.023 0.016 0.028 0.049 0.080 0.075 0.034 0.018 0.030 0.053 0.117 0.017 
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Table 4: Euclidean distances between barycenters of research groups and panel members of the 
Physics department using the 3-dimensional WoS SCs map. 

 PHYS-A PHYS-B PHYS-C PHYS-D PHYS-E PHYS-F PHYS-G PHYS-H PHYS-I 

PM1 0.453 0.054 0.084 0.011 0.067 0.064 0.162 0.048 0.257 

PM2 0.408 0.007 0.032 0.043 0.016 0.044 0.112 0.008 0.211 

PM3 0.392 0.024 0.037 0.050 0.026 0.013 0.105 0.026 0.196 

PM4 0.361 0.049 0.018 0.091 0.035 0.061 0.062 0.054 0.163 

PM5 0.393 0.014 0.017 0.056 0.003 0.041 0.096 0.019 0.195 

PM6 0.409 0.006 0.034 0.040 0.017 0.041 0.113 0.004 0.211 

 

The recalculation with respect to what was obtained in N dimensions in (Rahman et al.. 2015). 

leads to the distances reported in Tables 5 and 6 for the cases of chemistry and physics.  

 

Table 5. Euclidean distances between SAPVs of research groups and panel members of the 
Chemistry department using the similarity matrix of WoS SCs.  

 CHEM-
A 

CHEM-
B 

CHEM-
C 

CHEM-
D 

CHEM-
E 

CHEM-
F 

CHEM-
G 

CHEM- 
H 

CHEM-
I 

CHEM- 
J 

CHEM- 
K 

CHEM- 
L 

PM 1 0.081 0.079 0.108 0.061 0.124 0.119 0.116 0.104 0.093 0.129 0.141 0.085 

PM 2 0.082 0.074 0.079 0.054 0.036 0.032 0.055 0.046 0.036 0.075 0.071 0.070 

PM 3 0.082 0.074 0.080 0.066 0.057 0.058 0.040 0.040 0.042 0.075 0.086 0.073 

PM 4 0.106 0.099 0.104 0.085 0.064 0.070 0.027 0.063 0.071 0.085 0.094 0.091 

PM 5 0.015 0.013 0.034 0.074 0.100 0.102 0.077 0.053 0.050 0.082 0.096 0.024 

PM 6 0.093 0.087 0.111 0.025 0.085 0.080 0.096 0.090 0.080 0.113 0.116 0.088 

PM 7 0.068 0.068 0.097 0.072 0.128 0.125 0.113 0.099 0.089 0.125 0.140 0.075 

 

Table 6. Euclidean distances between SAPVs of research groups and panel members of the 
Physics department using the similarity matrix of WoS SCs. 

 PHYS-A PHYS- B PHYS-C PHYS- D PHYS-E PHYS- F PHYS- G PHYS- H PHYS-I 

PM 1 0.376 0.358 0.373 0.098 0.328 0.301 0.371 0.358 0.367 

PM 2 0.172 0.019 0.038 0.272 0.054 0.127 0.115 0.019 0.133 

PM 3 0.156 0.065 0.080 0.256 0.069 0.100 0.116 0.063 0.111 

PM 4 0.144 0.060 0.039 0.271 0.051 0.129 0.066 0.063 0.103 

PM 5 0.157 0.023 0.016 0.271 0.044 0.125 0.095 0.027 0.115 

PM 6 0.165 0.012 0.035 0.258 0.037 0.111 0.106 0.015 0.125 

 

Tables 5 and 6 are analogues of respectively, Tables 1 and 3 of the supplementary online 

material (part 2) of Rahman et al. (2015). This ends the presentation of the results obtained by 
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the barycenter and SAPV method. Tables 7 and 8 contain the WCS results, where we recall 

that this is a similarity approach (not a distance based one) and hence largest values refer to 

entities that are closest. 

Table 7. WCS values of research groups and panel members of the Chemistry department using 
the similarity matrix of WoS SCs.  

 CHEM-
A 

CHEM-
B 

CHEM-
C 

CHEM-
D 

CHEM-
E 

CHEM-
F 

CHEM-
G 

CHEM- 
H 

CHEM-
I 

CHEM- 
J 

CHEM- 
K 

CHEM- 
L 

PM1 0.709 0.667 0.445 0.922 0.469 0.449 0.395 0.440 0.507 0.323 0.273 0.661 

PM2 0.670 0.713 0.726 0.675 0.914 0.945 0.837 0.847 0.947 0.703 0.527 0.713 

PM3 0.594 0.655 0.673 0.569 0.839 0.831 0.866 0.880 0.894 0.711 0.403 0.604 

PM4 0.459 0.517 0.504 0.484 0.781 0.777 0.951 0.758 0.769 0.626 0.315 0.549 

PM5 0.983 0.990 0.842 0.669 0.581 0.475 0.614 0.747 0.758 0.573 0.512 0.933 

PM6 0.613 0.600 0.377 0.973 0.545 0.519 0.391 0.410 0.484 0.294 0.280 0.603 

PM7 0.758 0.713 0.503 0.850 0.460 0.439 0.440 0.494 0.550 0.373 0.290 0.700 

 

Table 8. WCS values of research groups and panel members of the Physics department using the 
similarity matrix of WoS SCs.  

 PHYS-A PHYS-B PHYS-C PHYS-D PHYS-E PHYS-F PHYS-G PHYS-H PHYS-I 

PM1 0.030 0.155 0.043 0.996 0.561 0.508 0.028 0.154 0.052 

PM2 0.151 0.982 0.920 0.127 0.806 0.513 0.543 0.977 0.497 

PM3 0.220 0.714 0.625 0.211 0.668 0.526 0.440 0.762 0.544 

PM4 0.182 0.729 0.829 0.129 0.757 0.436 0.895 0.741 0.479 

PM5 0.182 0.965 0.986 0.158 0.852 0.475 0.656 0.957 0.567 

PM6 0.164 0.989 0.930 0.272 0.903 0.643 0.631 0.985 0.516 

 

5. Correlations 

We calculated the Pearson correlation coefficient (r) and the Spearman rank correlation 

coefficient (ρ) between distances/similarities based on the five methods, see Tables 9 and 10. 

These calculations are based on all distances between research groups and individual panel 

members. For calculations involving WCS we show absolute values, as distances and 

similarities are each other’s opposites, and hence correlations are negative.  
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Table 9. Chemistry: Pearson and Spearman correlations for all cognitive distances between 

research groups and individual panel members. 

Pearson 

Spearman 
Benchmark 

Barycenter 

2D 

Barycenter 

3D 
SAPV WCS 

Benchmark 1.00 0.38 0.09 0.72 0.72 

Barycenter 2D 0.34 1.00 0.81 0.75 0.64 

Barycenter 3D 0.06 0.82 1.00 0.42 0.31 

SAPV 0.67 0.72 0.42 1.00 0.92 

WCS 0.67 0.62 0.30 0.92 1.00 

 

In Tables 9 and 10, the upper triangle refers to Pearson correlations while the lower triangle 

refers to Spearman correlations. Clearly SAPV and WCS results in Tables 9 and 10 are highly 

correlated.  

 

Table 10. Physics: Pearson and Spearman correlation for all cognitive distances between 

research groups and individual panel members. 

Pearson 

Spearman 

Benchmark 
Barycenter 2D 

Barycenter 

3D 
SAPV WCS 

Benchmark 1.00 0.12 (0.34) 0.22 (0.27) 0.50 (0.56) 0.63 (0.54) 

Barycenter 2D 0.37(0.48) 1.00 0.99 (0.99) 0.29 (0.87) 0.60 (0.89) 

Barycenter 3D 0.34(0.38) 0.94 (0.96) 1.00 0.35 (0.81) 0.61 (0.85) 

 SAPV 0.60(0.56) 0.64 (0.94) 0.71 (0.86) 1.00 0.86 (0.97) 

WCS 0.65(0.58) 0.71 (0.91) 0.74 (0.83) 0.94 (0.97) 1.00 

 

Values between brackets in Table 10 are correlations calculated after removal of PHYS-D and 

PM1; an explanation for doing this is provided further. Correlations for the benchmark case 

(ignoring all similarities) and the other approaches are moderate at best. Not surprisingly, the 

two N-dimensional approaches (SAPV and WCS) are more correlated with the benchmark 

case than the lower dimensional ones. Correlations between the 2D and the 3D approach are 

high in all cases. This illustrates that the number of dimensions chosen has only limited 

influence on the results based on barycenters. Most other correlations can be described as 

moderate to high. For chemistry we note, however, that the correlations between barycenter 

3D on the one hand, and SAPV and WCS on the other, are lower than expected. Moreover, 
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these values are lower than for the 2D case. We were not able to find an explanation for this 

unexpected difference. We further note a low correlation between SAPV and the barycenter 

methods in physics. For this case, however, we found a convincing explanation. Fig. 3 

illustrates what happened. 

 

 

Fig.3. Scatter plot of the cognitive distances between research groups and individual panel 
members for the 2D barycenter and SAPV methods in the physics department. 

 

This low Pearson correlation is due to the 13 points (including two times two points that 

overlap and cannot be seen) in the upper half of Fig.3. All these points correspond to distances 

involving research group PHYS-D and PM1 (but not both). This group and this panel member 

are active in the same field (Physics, Particles & Fields) and have different scientific interests 

than the other groups or panel members: 99.1% of PM1’s publications belong to the SC 

Physics, Particles & Fields, while for PHYS-D, this SC covers 83.6% of its publications. 

Moreover, their publications cover only four (117 publications) and seven (269 publications) 

WoS SCs respectively while other panel members cover 12 to 26 WoS SCs, and other 

research groups 26 to 50 SCs. Fig. 4 presents the same data as Fig. 3, but leaves out distances 

involving PHYS-D and PM1. In this case, all correlations increase considerably. 
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Fig. 4. Scatter plot of the cognitive distances between research groups and individual panel 

members obtained by the 2D barycenter and SAPV methods in the physics department 

excluding PHYS-D and PM1. 

A more detailed comparison between the five methods follows in the next section. 

6. Comparison between the five methods  

A comparison would be easy if a gold standard existed. Clearly, it does not, but we used the 

labour division decided upon by the panel chair as a proxy. Prior to a site visit, see (Engels, 

Goos, Dexters & Spruyt, 2013) for details, the panel chair appointed a main assessor for each 

of the research groups to be evaluated. This main assessor studied the profile and performance 

of the research group in detail, asked the majority of questions during the site visit and wrote 

the (first draft of) the final assessment of the research group. Assuming that panel chairs 

assigned the best suited panel member as main assessor, a perfect method would always rank 

this main assessor first. However, remember that neither have panel members and research 

groups ever collaborated nor do they belong to the same university, so this assumption does 

not necessarily always hold in practice. 

Tables 11 and 12 show the research groups, the corresponding main assessor, and the panel 

members with the closest distance (for the five methods). The first one in each cell is the 

panel member closest to the corresponding research group; the others are panel members 

whose distances are statistically not different from this shortest distance. We have to point out 

two extra problems for chemistry. The first is that although PM7 was indicated as the main 

assessor for CHEM-C, PM3 thought himself closest to this research group. The second 
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problem was that PM3 was indicated as main assessor of CHEM-F but he himself doubted if 

he could assess this group as an expert. 

Table 11. Chemistry: Top ranked panel members according to five methods  

Research 
group 

Main 
assessor 

Benchmark Barycenter 
2D 

Barycenter 
3D SAPVs WCS 

CHEM-A PM6 PM5 PM5-PM7 PM7- PM5- 
PM1 PM5 PM5 

 
CHEM-B 

 
PM5 PM5 

 
PM5-PM7-

PM1 

 
PM7- PM5- 

PM1 

 
PM5 

 
PM5 

 
CHEM-C 

 
PM7/PM3 

PM3-PM2-
PM4 

 
PM5 

 
PM7- PM5- 

PM1 

 
PM5 

 
PM5 

 
CHEM-D 

 
PM2 PM6- PM1 

 
PM6-PM4-
PM3-PM2-

PM1 

 
PM4- PM6- 
PM3- PM1- 
PM5- PM2- 

PM7 

PM6-PM2-
PM1 PM6-PM1 

 
CHEM-E 

 
PM2 

PM3-PM2-
PM4 

 
PM2-PM4-

PM6 

 
PM2- PM4- 
PM6- PM3 

PM2-PM3 PM2-PM3 

CHEM-F PM3 PM2-PM4-
PM3 

 
PM2-PM6-
PM4-PM3 

 
PM2- PM4- 
PM6- PM3- 
PM1- PM5- 

PM7 

PM2-PM3 PM2 

CHEM-G PM3 PM4-PM3 PM3-PM4 
 

PM3- PM6- 
PM4- PM1 

PM4-PM3 PM4 

 
CHEM-H 

 
PM5 

PM3-PM4-
PM2 

 
PM4-PM3-

PM5 

 
PM1- PM5- 
PM3- PM7- 
PM6- PM4 

PM3-PM2-
PM5 

PM3-PM2-
PM4 

 
CHEM-I 

 
PM4 

PM3-PM2-
PM4 

 
PM3-PM5 

 
PM3- PM6- 
PM1- PM5- 
PM4- PM7 

PM2-PM3-
PM5 PM2-PM3 

CHEM-J PM4 PM3-PM2-
PM4 

 
PM4-PM2-
PM3-PM5 

 
PM5- PM6- 
PM3- PM1- 
PM4- PM7- 

PM2 

PM3-PM2-
PM5-PM4 

PM3-PM2-
PM4-PM5 

 
CHEM-K 

 
PM6 

PM2-PM4-
PM3-PM5 

 
PM2-PM4 

 
PM2 

 
PM2-PM3 

 
PM2- PM5-

PM3- 

 
CHEM-L 

 
PM1 PM5 

 
PM5-PM7-

PM1 

 
PM7- PM5- 

PM1 

 
PM5 

 
PM5 

score  7/12 (2/12) 8/12 (4/12) 10/12 (3/12) 7/12 (2/12) 3/12 (2/12) 
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Table 12. Physics: Top ranked panel members according to five methods 

Research 
group 

Main 
assessor 

Benchmark Barycenter 
2D 

Barycenter 
3D SAPVs WCS 

PHYS-A PM3 PM5 PM4-PM3-
PM5-PM6 

PM4- PM3- 
PM5- PM2- 
PM6 

PM4-PM3-
PM5-PM6 

PM3-PM5-
PM4-PM6-
PM2 

 
PHYS-B 

 
PM2 PM6  

PM6-PM5 
 
PM6- PM2 

 
PM6 

 
PM6-PM2 

 
PHYS-C 

 
PM5 PM5  

PM5-PM4 
 
PM5- PM4 

 
PM5 

 
PM5 

 
PHYS-D 

 
PM1 PM1  

PM1 
 
PM1 

 
PM1 

 
PM1 

 
PHYS-E 

 
PM4 PM5-PM6  

PM5-PM6 

 
PM5- PM2- 
PM6 

 
PM6-PM5 

 
PM6-PM5 

 
PHYS-F 

 
PM1 

PM5-PM6-
PM4 

 
PM3-PM1 

 
PM3 

 
PM3-PM6 

 
PM6 

 
PHYS-G 

 
PM4 PM4 

 
PM4-PM3-
PM5-PM6 

 
PM4- PM5- 
PM3- PM2- 
PM6 

PM4-PM5-
PM6 PM4 

 
PHYS-H 

 
PM6 PM6  

PM6-PM5 
 
PM6- PM2 

 
PM6-PM2 

 
PM6-PM2 

 
PHYS-I 

 
PM3 PM5 

 
PM4-PM3-
PM5 

 
PM4- PM5- 
PM3- PM2- 
PM6 

PM4-PM3-
PM5 

PM5-PM3-
PM6-PM2-
PM4 

Score:  4/9 (4/9) 7/9 (4/9) 7/9 (4/9) 6/9 (4/9) 7/9 (4/9) 

 

In order to gauge the overall correspondence between the methods used by us and the chosen 

main assessor we count how often the method found the chosen assessor, once taking only the 

nearest panel member into account (sum between brackets) and once taking into account that 

some panel members could on statistical grounds (overlapping confidence intervals) not be 

separated, an approach which is assumed to be the better one. In most cases, WCS for 

chemistry being the exception, the benchmark case scores poorest, proving the benefit of 

taking similarities into account. For chemistry, the barycenter methods score slightly better 

than SAPV and WCS, while for physics there is hardly any difference between the four (even 

five) methods. Especially in the case of chemistry, we have several cases where most 

confidence intervals overlap. The barycenter method in 3D clearly has very low 

discriminatory power leading to cases where all confidence intervals overlap (CHEM-F and 

CHEM-J). In these cases the 3D barycenter cannot distinguish between panel members. 

We see that for some research groups the five methods and the chosen assessor coincide 

(taking confidence intervals into account). This perfect result was attained for CHEM-B, 

CHEM-E, CHEM-J, PHYS-C, PHYS-D, PHYS-G and PHYS-H; while only the benchmark 
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case missed PHYS-A and PHYS-L. Hence, this is the case for 3 of the 12 chemistry groups 

and for 4 (or 6) of the 9 physics groups. The smaller number of perfect results in chemistry is 

largely due to the WCS method. For some other groups no method leads to the chosen 

assessor. This is the case for CHEM-A, CHEM-K, and PHYS-E. Mainly due to the 

overlapping confidence intervals the barycenter method in 3D is the only one which included 

the main assessor for CHEM-C and CHEM-I (and the benchmark has PM3 as closest to 

CHEM-C). In all these negative cases, the results obtained by the five methods largely agree. 

A possible explanation for this surprising result might simply be that the panel chair included 

other factors - than pure scientific affinity - in the decision to assign a panel member to a 

research group. In the case of chemistry where the suggested labour division was partly 

contested by PM3, PM5 is identified as the closest to CHEM-C. A possible explanation for 

this specific case could be that PM5 was already the main assessor for two groups so that, for 

purely practical reasons, PM3 became the main assessor of CHEM-C. 

Considering now the individual panel members we see that some are close to several research 

groups, while others are not close to any. For chemistry we see that, according to the 2D 

barycenter method PM4 and PM5 are close to seven research groups, while PM2, PM3 and 

PM5 are closest to seven research groups according to the SAPV method. PM5 is closest to 

six research groups according to the WCS method. Clearly, PM5 was an essential panel 

member. According to the two barycenter-based methods all chemistry panel members are 

closest to at least three groups, but according to the SAPV and the WCS method PM7 is 

closest to none. 

For physics PM5 and PM6 are closest to at least four research groups, and this for the four 

similarity-based methods. PM2 is closest to none according to the 2D barycenter method, but 

closest to four groups according to the WCS method. We observe the special role of PM1 in 

physics who is the only one closest to PHYS-D and this according to the five methods. This 

observation confirms the results seen in the correlation analysis. It, moreover, contains a 

warning that correlation analyses may suggest wrong conclusions. In this case the poor 

correlations between the results obtained by the SAPV method and those obtained by the 

barycenter methods for groups and panel members that have no real importance (they are 

cognitively unrelated) should not distract from the generally better correlations for pairs that 

matter. 

 



19 
 

7. Conclusion 

In this paper, we showed that, besides using barycenters in a two- and three dimensional base 

map, it is possible to derive cognitive distances in N dimensions using the SAPVs and WCS 

methods. Our approach is rather general: it can in principle be applied to all cases where units 

produce publications, which can be situated on a base map or counted in relation to a 

similarity matrix. Of course, other approaches are also possible, such as the one proposed by 

Wang and Sandström (2015), which is based on bibliographic coupling and topic modelling. 

Operationalizing the notion of cognitive distance is essential to several topics in informetrics, 

e.g. peer review processes, evaluation procedures, exploration of collaboration, and the study 

of interdisciplinarity. Indeed, cognitive distance could also be derived from other objects than 

publications, such as patents. Cognitive distance is also of essence in other contexts such as 

hiring decisions, political programs, and cultural differences.  

As pointed out in this paper, calculating cognitive distances between units should be scale-

invariant. Barycenters in a two- and three dimensional base maps satisfy this requirement. We 

note though that distances in a 2- or 3D map are artificial; for instance, Pajek uses coordinates 

in the interval [0, 1] (this also applies to its VOS implementation), whereas coordinates in 

VOSviewer may refer to a wider interval. Hence, only comparisons between distances and not 

their absolute values have meaning. Proper normalization in N dimensions also leads to scale-

invariant distances.  

We have shown that the barycenter method is relatively insensitive to the number of 

dimensions in which it is used. Yet, especially in 3D the barycenter method has little 

discriminatory power. Distances between normalized SAPVs in N dimensions are probably 

less distorted and hence more meaningful. A similar observation applies to the WCS method. 

Hence, our preference, based on mathematical logic, goes to the SAPVs and WCS methods. 

Yet, WCS scores badly in the case of chemistry, so that our final preference goes to the SAPV 

method. Admitting that in our case studies the barycenter methods score slightly better and 

that differences between the results obtained by different methods are rather small, it is 

obvious that the result of this comparison should not be generalized. In future research, we 

intend to make a similar empirical comparison for more disciplines. 

In a previous approach, besides using a VOS map, we also investigated if a map based on the 

algorithm by Kamada and Kawai (1989) could be used. We found out however that a 

Kamada-Kawai map (in two and in three dimensions) can yield very different results, 
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depending on the random seed used. For this reason, we turned to a VOS map, which is much 

more stable. We mistakenly mentioned in (Rahman et al., 2015) that the barycenter results in 

2D were based on a Kamada-Kawai map. Also there we showed barycenter results based on a 

VOS map. We hope that this warning will prevent colleagues from making wrong inferences. 

Finally our investigations led to two unsolved problems. The first one is the unexplained low 

correlation between the barycenter method in 3D and the SAPV and WCS methods for 

chemistry. We checked all calculations related to the barycenter method in 3D but did not 

detect any error. Moreover, consequent investigations related to other departments, in 

particular the biomedical sciences, gave similar low correlations. The second problem is the 

use of the main assessor, as appointed by the panel chair, as a “gold standard”. We admit that 

this is a problematic approach, since it relies on assumptions that are not always met. Yet, for 

the moment, we have not found a better solution. 
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Appendix A. Euclidean distances between barycenters 

Table A1: Euclidean distances between barycenters of research groups and panel 
members of the Chemistry department using the 2-dimensional WoS SCs map. 

 CHEM-
A 

CHEM-
B 

CHEM-
C 

CHEM-
D 

CHEM-
E 

CHEM-
F 

CHEM-
G 

CHEM- 
H 

CHEM-
I 

CHEM- 
J 

CHEM- 
K 

CHEM- 
L 

PM 1 0.167 0.129 0.217 0.165 0.329 0.337 0.179 0.165 0.111 0.394 0.454 0.127 

PM 2 0.350 0.342 0.362 0.129 0.079 0.090 0.145 0.215 0.199 0.259 0.228 0.342 

PM 3 0.171 0.161 0.192 0.129 0.252 0.263 0.053 0.061 0.020 0.269 0.330 0.161 

PM 4 0.269 0.262 0.280 0.108 0.158 0.170 0.063 0.134 0.121 0.232 0.250 0.263 

PM 5 0.056 0.055 0.091 0.232 0.367 0.378 0.154 0.093 0.099 0.315 0.411 0.057 

PM 6 0.302 0.276 0.335 0.027 0.175 0.181 0.161 0.210 0.156 0.366 0.370 0.275 

PM 7 0.116 0.072 0.172 0.235 0.395 0.404 0.216 0.178 0.144 0.410 0.491 0.070 

 

 

Table A2. Euclidean distances between barycenters of research groups and panel 
members of the Physics department using the 2-dimensional WoS SCs map. 

 PHYS-A PHYS- B PHYS-C PHYS- D PHYS-E PHYS- F PHYS- G PHYS- H PHYS-I 

PM 1 1.173 0.123 0.215 0.017 0.145 0.208 0.495 0.120 0.664 
PM 2 1.195 0.067 0.109 0.158 0.118 0.316 0.443 0.056 0.688 
PM 3 1.041 0.146 0.194 0.116 0.113 0.104 0.387 0.157 0.532 
PM 4 1.020 0.168 0.085 0.263 0.132 0.295 0.249 0.179 0.522 
PM 5 1.136 0.046 0.055 0.159 0.069 0.281 0.385 0.050 0.629 
PM 6 1.157 0.031 0.084 0.138 0.078 0.280 0.412 0.026 0.649 

 

Appendix B. A mathematical caveat 

In this appendix we show that weighted cosine similarity cannot be used with any similarity 
matrix but that the problem does not occur for the similarity matrices used by us. We illustrate 
this with the unweighted cosine similarity (the numerator of formula (5)). 

In a general (real or complex) vector space it is possible that if expressions of the form 

( ) * *
tk mM S R  , with S a symmetric matrix, are used as similarity measures, some non-null 

vectors have similarity zero to themselves. This excludes this type of construction as a general 
method for calculating similarities.  

We consider the symmetric matrix 
1 0.8 0.9

0.8 1 0
0.9 0 1

S
 
 =  
 
 

, see (Zhou et al., 2012). and want to 

find a vector X = (u,v,w)t, (u,v,w: real numbers) such that ( ) * *tX S X  = 0. Replacing X by 

(u,v,w)t leads to the requirement: u2+1.6uv+1.8uw+v2+w2 = 0. Taking  u = 1, v ≈ -1.44031 
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and w = -1.1 provides an (approximate) solution. In fact this is just one solution among 
infinitely many. 

If u = 1 and w = K then v1 = ( )2 1.8 * 0.36 0.8K K− − − − +  and v2 = 

( )2 1.8 * 0.36 0.8K K− − − − always provide solutions (some of which may be complex 

numbers). The one given above is v1 with  K = -1.1. This solution was obtained using TI-
nspire software.   

We check now that v1 and v2 as given above, indeed lead to the perfect null solution. Writing 
2 1.8 * 0.36K K− − −  as R and using v1 we find: 

u2+1.6 uv+1.8uw+v2+w2 = 1 -1.6 R – 1.28 + 1.8 K  + (-K2 - 1.8K -0.36) + 1.6 R + 0.64 + K2 = 
(1-1.28-0.36+0.64)+(1.8-1.8)K+ (-K2+K2) +R(-1.6+1.6) = 0 

Similarly, with v2 we obtain:  u2+1.6 uv+1.8uw+v2+w2 = 1 +1.6 R – 1.28 + 1.8 K  + (-K2 – 
1.8K -0.36) – 1.6 R + 0.64 + K2 = (1-1.28-0.36+0.64)+(1.8-1.8)K+ (K2-K2) +R(1.6-1.6) = 0.  

However, this problem cannot occur when the matrix S has non-negative values and when, 
moreover, the vector X has only non-negative values, which is precisely the context in which 
we work. Indeed: under these circumstances the expression  ( ) * *tX S X  is always non-

negative and only zero when X = 0 (the zero-vector) and this in any dimension. Note that the 
example presented above led to a vector X with two negative coordinates. 


