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Abstract 
 
In the double rank analysis of research publications, the local rank position of a country 
or institution publication is expressed as a function of the world rank position. 
Excluding some highly or lowly cited publications, the double rank plot fits well with a 
power law, which can be explained because citations for local and world publications 
follow lognormal distributions. We report here that the distribution of the number of 
country or institution publications in world percentiles is a double rank distribution that 
can be fitted to a power law. Only the data points in high percentiles deviate from it 
when the local and world µ parameters of the lognormal distributions are very different. 
The likelihood of publishing very highly cited papers can be calculated from the power 
law that can be fitted either to the upper tail of the citation distribution or to the 
percentile-based double rank distribution. The great advantage of the latter method is 
that it has universal application, because it is based on all publications and not just on 
highly cited publications. Furthermore, this method extends the application of the well-
established percentile approach to very low percentiles where breakthroughs are 
reported but paper counts cannot be performed. 
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1. Introduction 
 
Research assessment is an absolute requirement to perform a competent research policy. 
States and private institutions invest large amounts of funds in research, and society and 
private investors must know the efficiency of these investments by evaluating research 
outputs (Martin and Irvine, 1983; Garfield and Welljams-Dorof, 1992; Martin, 1996). In 
the case of applied research directly focused on the improvement of products or services 
these outputs have many possibilities of assessment attending to their economic 
benefits. In contrast, this assessment is much more difficult for basic research. In this 
case, the assessment can be analyzed in two contexts: the achievement of discoveries 
and scientific advancements, and the economic benefits as in applied research. 
However, the latter neither can be easily established nor is the only target of basic 
research (Salter and Martin, 2001; Bornmann, 2012); even the method that should be 
applied to this economic analysis is under debate (Abramo and D'Angelo, 2014, 2016; 
Bornmann and Haunschild, 2016b; Glanzel et al., 2016). Therefore, it seems that the 
best evaluation of basic research must be done by attending to its scientific 
achievements. However, even by focusing the assessment of basic research exclusively 
on these achievements, the assessment is intrinsically difficult because of the intangible 
nature of the product to be measured (Martin and Irvine, 1983). 
 
Scientific publications are tangible and easily measured. However, although scientific 
achievements are communicated in publications not all publications communicate real 
scientific advances. In fact, a large proportion of the published research is “normal 
science” (Kuhn, 1970) that supports real achievements, but a very low proportion of all 
publications reports important achievements. 
 
As a consequence of the described needs and difficulties, in the last twenty years, there 
has been a Cambrian explosion of metrics (van Noorden, 2010) or metric tide (Wilsdon 
et al., 2015). In this scenario, it has been suggested that no more metrics should be 
added unless their added value is demonstrated (Waltman, 2016). Many of these metrics 
are based on the number of publications, but, using a sports simile, counting 
publications in research is somewhat like counting the kicks in European football rather 
than counting the goals (Rodriguez-Navarro and Narin, 2017). The weakness of this 
simile is that football goals are easily recognizable but this easiness does not apply to 
scientific achievements. Therefore, many metrics and indicators “are based on count 
what can be easily counted rather than what really counts” (Abramo and D'Angelo, 
2014, p. 1130). In fact, 45 years ago, Francis Narin stated that “the relationship between 
bibliometric measures and other measures may only be validated using a “rule of reason 
approach” (Narin, 1976, p. 82), which explains the causes for a more recent feeling of 
Harnad (2009, p. 149): “so we have thus far been rather passive about the validation of 
our scientific and scholarly performance metrics, taking pot-luck rather than 
systematically trying to increase their validity, as in psychometrics.” 
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Citation analysis is apparently the solution for grading the importance of results of 
research, because citation counts seem to correlate with expert assessments (a review of 
old literature is in Narin, 1976; examples of more recent publications are: Rinia et al., 
1998; Aksnes and Taxt, 2004; Allen et al., 2009). However, the debate is still open 
(MacRoberts and MacRoberts, 1989, 1996; Adler et al., 2009) and the conceptual 
clarity of citation analysis has been questioned (Martin and Irvine, 1983), because it 
possibly reflects “impact” or “influence” but the relationship of these concepts with 
“quality”, “importance,” or “scientific advance” is less clear. In any case, although 
citation counts correlate with certain dimensions of research assessment they do not 
measure it, which implies that it cannot be applied to low aggregation levels: individual 
researchers or small groups (van-Raan, 2005; Allen et al., 2009; Ruiz-Castillo, 2012). 
 
Another difficulty of citation analysis is the skewed distribution of publications 
attending to the number of citations (Seglen, 1992; Albarrán et al., 2011a), which makes 
it difficult to extract relevant information for research assessment from the analysis of 
simple citation counting. Several approaches have been proposed to extract this 
information considering citation distribution (Glanzel and Schubert, 1988; Adams et al., 
2007; Bornmann et al., 2008; Leydesdorff and Bornmann, 2011; Leydesdorff et al., 
2011; Bornmann et al., 2013c; Li et al., 2013; Bornmann and Mutz, 2014; Glanzel et 
al., 2014; Albarrán et al., 2015; Bornmann and Haunschild, 2016a; Schneider and 
Costas, 2017), including some that specifically attend to both the number of highly and 
lowly cited papers (Albarrán et al., 2011c; 2011b; 2011d). All these methods have been 
developed under strict mathematical and statistical considerations but all have the 
aforementioned problem of difficult validation.  
 
Citation analysis can be focused on counting the number of highly cited papers, which 
might give an estimate of the number of important scientific achievements (Martin and 
Irvine, 1983; Plomp, 1994; Martin, 1996; Tijssen et al., 2002; Aksnes and Sivertsen, 
2004; Bonaccorsi, 2007; Rodríguez-Navarro, 2012; Rons, 2013; González-Betancor and 
Dorta-González, 2017). The simplicity of this idea, however, conceals many difficulties, 
starting with its own definition: “highly cited,” “top-cited,” “most frequently cited,” etc. 
(Bornmann, 2014), which implies the arbitrariness of selecting the citation level that 
should be used (Schreiber, 2013a) and, more importantly, with the question about 
whether highly cited publications really reflects high scientific influence (Waltman et 
al., 2013). 
 
Citation counts must be field normalized (Li et al., 2013; Ruiz-Castillo and Waltman, 
2015; Waltman, 2016); among the different normalization procedures that can be used 
there is a method of citation analysis: the percentile rank approach, which intrinsically 
implies normalization of the citation count data. This approach, which has advantages 
over other approaches, has been extensively investigated (Bornmann, 2010; Bornmann 
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et al., 2013a; Bornmann et al., 2013b; Waltman and Schreiber, 2013), and allows 
generating a single measure of citation impact by giving different weights to different 
percentile rank classes (Bornmann and Mutz, 2011; Leydesdorff and Bornmann, 2011; 
Leydesdorff et al., 2011; Rousseau, 2012; Bornmann, 2013). 
 
With this same idea of obtaining a single measure of citation impact Rodríguez-Navarro 
(2011) used a different approach. Firstly, he focused only on the percentiles in the high-
citation tail of the citation distribution, assuming that this tail contains the information 
to estimate the number of important scientific achievements, as described above. 
Secondly, he did not fix the weights for the percentile rank classes but calculated them 
through linear regression analysis maximizing the correlation of the single measure with 
the number of Nobel Prize achievements in several high-level research institutions and 
advanced countries. The resulting index showed high correlation with the number of 
Nobel Prize achievements and with the articles published in Nature and Science. 
Interestingly, a further study of this approach showed that its success occurred because 
the upper tails of the citation distributions across countries and institutions do not 
deviate very much from a power law, independent of whether other functions might 
explain more accurately tail distribution (Price, 1976; Ruiz-Castillo, 2012; Brzezinski, 
2015; Katz, 2016). The power law adjusted to the tail allows estimating the frequency 
of very highly cited papers or the likelihood of publishing them (Rodríguez-Navarro, 
2016). 
 
This finding, however, was more conceptual than useful for research assessment. The 
difficulty lies in the fact that the proportion of publications that can be treated as a 
power law in the upper tail can be very low (Ruiz-Castillo, 2012; Brzezinski, 2015). 
Therefore, an ideal method would be one that produces the same results by using most 
of the publications and not just those highly cited. This goal was achieved with the 
double rank analysis, in which the ranking number of a publication in a country or 
institution is expressed as a function of its world ranking number. The resulting function 
can be well fitted by a power law, which allows estimating the likelihood of any country 
or institution producing a very highly cited paper (Rodríguez-Navarro and Brito, 2018; 
RNB, henceforth). 
 
Therefore, the double rank function for research assessment produces an indicator based 
on all types of publications, and not just on highly cited publications, and this indicator 
can be validated in terms of Nobel Prize achievements. However, such an indicator has 
the intrinsic problem of requiring a specific method of calculation, which is completely 
different from the well-established procedure of the aforementioned percentile-based 
research assessment. Fortunately, intuition suggests that a percentile distribution of 
publication according to the number of citations is in fact a double rank distribution, and 
therefore, it should be well described by a power law. 
 



 5

Attending to this intuition, this study aimed to find whether the percentile distribution of 
publications is a double rank distribution that can be well fitted to a power law and used 
to estimate the likelihood of publishing very highly cited papers. For this purpose this 
study is divided in four sections. The first section analyzes the percentile double-rank 

plots in lognormal distributions that have µ and σ values characteristic of citation 
distributions. The second section compares percentile and normal double rank plots 
using the data obtained in a previous study (RNB). In the third section, we compare the 
USA/EU research performance ratios previously obtained by analyzing the high-citation 
tails (Rodríguez-Navarro, 2016) with those obtained using the percentile-based double 
rank analysis. Finally, in the fourth section, we demonstrate that the Leiden ranking 
percentile data (http://www.leidenranking.com/) fit well with power laws. 
 
2. Methods 
 
2.1. Mathematical modeling 
 
We assumed that the citation distribution obeyed a continuum lognormal function 
(Redner, 2005; Radicchi et al., 2008; Stringer et al., 2010; Evans et al., 2012; Thelwall 
and Wilson, 2014a; 2014b), of parameters “µ” and “σ” that varied within narrow limits. 
For an institution that publishes N papers, the number of papers that receive between c 
and c + dc citations is given by the lognormal distribution with the form: 

   ���; �, �, �	 = 	 �

�√�� 	exp �−	

����
	�	�	�
��� � ��	       [1]  

which is appropriately normalized, so that the integration from c = 0 (no citations) to c 
= ∞ (arbitrarily large number of citations) equals the total number of papers N: 

    � ���; �, �, �	�� = ��
          [2] 

In the expressions above, it is implicit that the distribution of citation is a continuum 
variable, instead of a discrete variable, as it is the case in real citation counts. However, 
we assume a continuum citation variable as the mathematical analysis become simpler 
than in the case of a discrete variable (Li et al., 2013), but it is also possible to use 
discrete variables. 
 
For the percentile analysis, two distributions are required: A first one for all the papers 
published in the world in the studied area, and a second one for the papers published by 
the institution. Therefore, we need two sets of parameters (N, µ, σ), one for the world 
and a second one for the institution or country. The parameters for the world will be 
denoted by the subindex “w”. The parameters are determined by using a two- or three-
year counting window for the world and for countries and institutions that represent the 
highest level of scientific performance and a reasonable minimum. For comparisons, we 
use the same parameters as in our previous study (RNB; Table 2); they are recorded in 
figures. 
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2.2. Retrieval and counting methods in section 3.2 
 
We applied the percentile-based double rank analysis to the data obtained in a previous 
study (RNB), in which the methods for paper retrieval and counting are described. 
Briefly, data were obtained from the Web of Science using the “Advanced search” 
feature in the research areas (SU=) of Plant Sciences and Physiology, and topic (TS=) 
of graphene, and for the research countries (CU=) and years (PY=) recorded in each 
case. In all cases we counted domestic publications. The retrieved publications were 
ordered by using the WoS feature “Times cited - - highest to lowest” and downloaded 
by using the WoS feature “Create Citation Report.” 
 
To determine the number of publications in each percentile, we ordered the world 
publications in a field and year from the highest to lowest number of citations and 
counted the number of publications in each percentile (x%), starting at the top of the list 
(the x% percentile contains the top x·N/100 papers rounded to the closest integer; N 
includes the publications with cero citations). In this type of apportionment, the paper in 
the x·N/100 position may be in the middle of several publications with the same number 
of citations both in the world and country or institution lists. This is a significant 
problem for the calculation of some percentile indicators (Schreiber, 2013b). Here, after 
ordering the publications by their number of citations in the recorded period (e.g. two-
year citation window), tied publications remained ordered by the total number of 
citations recorded in the database at the moment of the search; the world x% set was 
constituted by the top x·N/100 papers. In this set of publications we counted the number 
of those corresponding to the investigated country. 
 
2.3. Retrieval and counting methods in section 3.3 
 
The percentile distribution of publications in the research areas (SU=) of Chemistry, 
Physics, and Biochemistry & Molecular biology OR Microbiology were obtained using 
the features provided by the WoS and the total number of citations from the publication 
year either 2006 or 2007 up to the date of the search, August 15, 2017. We retrieved the 
papers for the world, the USA, and the EU using the “advanced search” feature as 
previously described (Rodríguez-Navarro, 2016), and the retrieved papers were ordered 
from the highest to the lowest number of citations. To calculate the percentile data 
without downloading hundreds of thousands of papers, we determined the number of 
papers corresponding to each percentile in the world set (Nx = x·N/100), for each 
percentile we recorded the number of citations of the paper with the rank number 
corresponding to the number of papers (Nx) in each percentile. Because in some 
percentiles the number of citations was repeated in many papers, we also recorded the 
rank numbers of the first and last papers with the same number of citations. Then, in the 
USA and EU paper sets, we determined the number of papers included in each 
percentile of the world set by first using the number of citations found in the world set. 
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Because in some cases many papers had this number of citations we again recorded the 
rank numbers of the first and last papers with this number of citations. Then, we fixed 
the number of papers in each x% percentile by adding to the ranking number of the first 
paper with the corresponding number of citations a number of papers that was equal to 
the USA or EU/world ratio of the numbers of tied papers. This method assumes that 
considering a certain number of citations, the tied USA and EU papers are 
homogeneously distributed among the tied world papers (e.g. USA papers are not 
ordered first in the world list). We used this method because it is a simple formal 
solution to the problem of papers with the same citation counts (Schreiber, 2013b). 
However, we found that the inclusion of all papers with the same number of citations in 
the same percentile would have not affected the results of this study. We recorded 12 
percentiles: 100, 50, 30, 20, 10, 8, 5, 3, 2, 1, 0.5, and 0.2. 
 
We compared our results to previous ones obtained from the analysis of the upper tail 
(Rodríguez-Navarro, 2016). For two cases, “Chemistry” and “Physics,” the searches 
were identical to the previous ones but in one case, the research area of (SU=) 
“Biochemistry & Molecular Biology” was complemented with the research area of 
“Microbiology.” We added “Microbiology” to have a more similar number of papers in 
the three areas of study. This addition does not affect the comparison of present and 
previous results, because the USA/EU performance ratios in “Biochemistry & 
Molecular Biology” and “Microbiology” are similar (the same conclusion might not be 
reached from the data in Herranz and Ruiz-Castillo, 2011, but the treatment of the data 
in Herranz and Ruiz-Castillo, 2011 and Rodríguez-Navarro, 2016 are different). To 
compare these results it was necessary to know the percentile that corresponds with a 
Nobel Prize-level publication. For this purpose, we assumed that the USA obtained 1.1, 
0.9, and 0.9 Nobel Prize achievements per year in chemistry, physics, and biology 
(Rodríguez-Navarro, 2016) and operated as explained below when these data were 
applied. 
 
2.4. Fits of Leiden ranking data 
 
The purpose of section 3.4 of our study was to calculate the goodness of fit of the 
Leiden indicators: P, Ptop50%, Ptop10%, and Ptop1% to a power law function. For this 
purpose we used the Leiden Ranking 2017 
(http://www.leidenranking.com/ranking/2017/list), fractional counting in the fields of 
“biomedical and health sciences,” “life and earth sciences,” and “physical sciences and 
engineering,” and in the time periods: 2012-2015, 2011-2014, 2010-2013, and 2009-
2012, which gave 12 fittings for each university. Then we selected six universities in the 
Leiden ranking with the condition that the Ptop1% indicator, calculated using fractional 
counting, was as variable as possible, but having a minimum value of approximately 10 
to avoid that the variability of this indicator had a strong influence on our fitting 
calculations. Because in all these universities a high research level could be expected 
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we added two universities in which Ptop1% could be as low as 4. Attending to these 
conditions we selected the following universities: MIT, Toronto, Duke, Queensland, 
Copenhagen, Ghent, Milano, Barcelona, Porto, and Bath. 
 
2.5. Fits of power laws 
 
The fits of power laws to empirical data present some difficulties and, in some cases, 
least-squares fittings to log transformed data are not recommended (Clauset et al., 
2009). However, our case was special for three reasons: (i) we did not observe 
fluctuations in the tails (Fig. 1), (ii) different fitting methods give different weights to 
high and low percentile data and we had to select the method that give more weight to 
low percentiles, where we had maximum interest, (iii) both the log-log plots (e.g., Fig 
1) and R2 values (20-0.2% in Table 1) showed that we were dealing with real power 
laws. Attending to these considerations, we used least-square fittings to log-transformed 
data. The R2 values were obtained comparing the empirical data to those obtained from 
the fitted equation. 
 
3. Results 
 
3.1. Mathematical percentile-based double rank plots from lognormal distributions 
 
We hypothesized that the plot of the number of publications in percentiles is a double 
rank plot as defined previously (RNB). The rationale of this hypothesis is that in the 
double rank plot the rank position in the y-axis is also the number of publications that 
exceed a certain number of citations. Now if we plot the number of publications of a 
country that are contained in the world x% percentile, we are really plotting the number 
of country publications that exceed the number of citations fixed by the publication in 
position x·N/100 in the world, which means a double rank plot. 
 
In order to construct the percentile double rank plot, first we need to determine the 
number of citations required to be in the top x%. That is, in the top x% enter all the 
publication that get more than a threshold amount of citations, which we denote by c0. 
Assuming that the citation counts follow a lognormal distribution, this number c0 is 
calculated by solving the equation for the world parameters (Nw,µw,σw): 

    � ���; �!�

" , �!, �!	�� = 	 #�$%     [3] 

The quantity c0, as defined above, is the number of citation that a paper requires to be in 
the top x%. The integration of equation [3] gives an analytical expression for c0: 

   � = exp&�! −	√2	�!Erf�%�2+/100 − 1	/  [4] 

where Erf is the error function (Gautschi, 1965). Once c0 is determined, we can 
calculate the number of papers of an institution in the top x% as: 

  ��+	 = 	� ���; �, �, �	�� = 	��
�

" 	�1 + Erf	 1����	�
"	√�� 2�             [5] 
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Applying this procedure we calculated the number of papers as a function of the 
percentile and constructed the percentile-based double rank plots. As described above 
(section 2.1), the simulation of a double rank plot requires two series of simulated 
citations: one for the world and another for the country or institution. We used four 
series that simulated country or institution publication (series parameters are given in 
the figure), which were assembled with a series of data points that simulated the world 
publications (Nw = 150,000; µw = 1.7; σw = 1.0). Fig. 1 shows that the resulting log-log 
plots deviated very little from straight lines. Maximum deviation (Fig. 1a) occurred in 
the series with the highest µ parameter, which simulated the most efficient research 
institution (e.g., Massachusetts Institute of Technology). Fig. 2 contrasts the percentile-
based double rank plots for two simulated institutions, in which the µ parameter of the 
institution with the higher number of publications is lower than in the other. This 
simulation shows that if research is evaluated by measuring the number of papers at a 
high percentile, the institution with the largest production performs better. However, the 
advantage of the mass production of papers is lost in benefit of high quality papers if the 
evaluation is taken at high citation levels (at a percentile x < 0.5% in this case). The red 
squares in Fig. 2 correspond to an institution with the same parameters µ and σ than 
those of the simulated world publications. In such case, Eq. [5] can be solved 
analytically giving a power law of exponent 1, which is a straight line. 
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3.2. Percentile-based versus normal double rank plots 
 
Next, we constructed the percentile-based double rank plots with the same empirical 
data that we used previously to describe the normal double rank plots (RNB): 
publications of several countries in graphene and plant sciences. In all cases, the 
resulting plots deviated very little from straight lines and the data fitted well with power 
laws with R2 values higher than 0.98; the percentile-based double rank plots showed a 
high similarity with our previous double rank plots. For example, comparing Fig. 3 to 
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Fig. 5 in (RNB), both constructed with the same data, similarities are evident; the 
obvious deviations in the lower part of the plots are softened in Fig. 3. The slight 
differences in the upper part of the plots might be explained, because, in the present 
study but not in the previous one, the publications with zero citations were included. 
 
More interesting is the comparison of Fig. 4 of the present study to Fig. 3 in (RNB). The 
studied data correspond to the publications in 2012 in the WoS research area of “plant 
sciences” from Germany, Spain, and Brazil. As described above for Fig. 3, deviations 
from a straight line in the log-log plots were softened in the percentile-based plot. 
Because of deviations and variability in the normal double rank plots, the lower 30 
points were omitted. In contrast, in the percentile-based double rank analysis, all points 
fitted well with a power law (fitting results are shown in the legend for Fig. 4). In 
(RNB) the likelihood of Germany, Spain, and Brazil to publish the most cited paper was 
0.06, 0.007, and 9.0·10-5, respectively. To compare these likelihoods with those 
obtained from the percentile distribution, it was necessary to use the equivalence 
between the most cited paper—first in the rank—and a certain percentile, which implies 
a simple calculation, considering the total number of papers published. This number 
was 17,501, and the equivalent percentile was 0.0057%. Using this value of x in the 
equations given in Fig. 4, the likelihood was 0.05, 0.003, and 3.3·10-5, to be compared 
with the figures above. Considering that, in our previous calculations, we omitted the 
lower 30 points and the publications with zero citations, the similarities are evident. 
 

 
 
The comparison of the plots in Fig. 5 to those for graphene in Fig .4 in (RNB) reveals 
that the double rank plots and percentile distributions are also very similar. In this case, 
the likelihood to publish the most cited paper was not reported; we calculated them now 
and they are 0.189, 0.030, and 0.0019 for the USA, South Korea, and Germany, 
respectively. Similar calculations for the percentile distributions were 0.098, 0.029, and 
0.0083, respectively. Again the similarities are evident although there are some 
differences, that can be explained by the fact that extrapolations are very sensitive to 
fluctuations. 
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3.3. Comparison of percentile-based double rank and upper tail assessments 
 
To further test the percentile-based double rank analysis, we compared this method of 
assessment to the previously used assessment of the differences between the USA and 
EU based on the high-citation tail (Rodríguez-Navarro, 2016). For this purpose we 
generated the percentile-based plots for the publications in the WoS research fields of 
Chemistry, Physics, and Biochemistry & Molecular Biology and Microbiology in 2007 
and 2006. Fig. 6-8 show that the plots for 2007 in log-log scales are almost perfect 
straight lines. 
 

 
 

However, we have shown in section 3.1 that, when µ and σ of the lognormal 
distribution of papers by citations of a country or institution differ significantly from the 

µ and σ of the world lognormal distribution, the percentile-based double rank plot 
showed a slight deviation from the power law in the upper part of the plot (Fig. 1a). 
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These parameter differences occur in our comparison of the USA and EU. The µ values 
in the EU and world are similar but in the USA they are higher. Consistent with this 
notion, fitting all the USA data points with a single power law, from 100% to 0.2% (not 
shown), produced a quite high R2 value (> 0.9) but fitting the data in the 20-0.2% 
interval produced a higher R2 value (> 0.998). In the EU these differences did not 
occurred. This suggests that the power law is a good model in the whole percentile 
interval for the EU but that in the USA the model is better in the 20-0.2% interval. To 
reveal more clearly these differences between the fittings for the USA and EU, Table 1 
records the fittings in two percentile intervals, 20-0.2% and 100-5% showing that they 
produce different power laws in the USA but not so different in the EU. As a 
consequence of the differences in the µ values, the exponents of the double rank power 
laws were around 0.87 in the USA and 1.0 in the EU (i.e., the plot of the untransformed 
data is close to a straight line, which indicates that the EU and world research 
performances are similar). 
 

 
 
Next, we compared the percentile-based double rank approach to a previous approach 
that uses the publications in the power law tail to calculate the frequency of Nobel 
Prize-level publications (Rodríguez-Navarro, 2016; Rodriguez-Navarro and Narin, 
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2017). For this purpose, we had to determine the Nobel Prize-level percentile and this 
was calculated by using the number of publications from the USA and assuming that 
that the USA obtained 1.1, 0.9, and 0.9 Nobel Prize achievement per year in chemistry, 
physics, and biology (Rodríguez-Navarro, 2016; percentiles are recorded in Table 2). 
With the percentile data and the power law equations defined in Table 1 we calculated 
the theoretic frequencies of Nobel Price level papers for the USA and the EU. Using 
these data, Table 2 summarizes the USA/EU performance ratios calculated fitting the 
power law equations into the 20-0.2% range, in which fitting was more accurate. 
 

 
 
The results obtained by the percentile-based method were 1.4 times higher than those 
previously reported using the upper tail method (Rodríguez-Navarro, 2016; Rodriguez-
Navarro and Narin, 2017). Then, we determined that at the 0.01% percentile, the 
percentile-based double rank and the power-law tail produced the same results. 
 
3.4. Fitting of the Leiden data to power laws 
 
The results presented so far corresponded to domestic papers and a high level of 
aggregation, the EU, and single countries. Therefore, we wondered whether, at a lower 
level of aggregation (e.g., institutions), fractional counting, and more complex 
elaboration of the research areas, the percentile-based double rank plot could be still 



 15 

well fitted to a power law. For this purpose the data for the Leiden ranking (Waltman et 
al., 2012; Mutz and Daniel, 2015) offered an excellent opportunity. The ranking only 
provides data for four percentiles: P, Ptop50%, Ptop10%, and Ptop1%, but for many 
universities, seven time periods, and three research fields in natural sciences. Even 
eliminating the universities in which the Ptop1% is too low, the number of universities 
that can be tested is very high. We performed 132 tests with eleven universities, four 
time periods, and in the three natural sciences fields (Table 3). In nine universities, the 
Ptop1% was always higher than 10 or slightly lower. In the other two universities, Bath 
and National Autonomous of Mexico, in some cases the Ptop1% was 4; the total number 
of publications was much higher in the latter than in the former. 
 

 
 
Visually, the log-log plots of the percentile-based double rank data were straight lines. 
Fig. 9 shows the plots of three universities in the Leiden field of “biomedical and health 
sciences,” with power law exponents ranging from 0.6 in the Massachusetts Institute of 
Technology to 1.4 in the National Autonomous University of Mexico. Consequently, 
fitting to power laws showed high R2 values. These values were slightly lower in the 
universities with the lowest values of α, Massachusetts Institute of Technology and 
Duke University, than in the rest of the universities: 0.97 versus 0.99, approximately 
(Table 3). 
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Using the Leiden ranking indicators, in the equation     
    Nx = A xα  
where N is the number of publications in percentile x, the two parameters of the power 
law function can be calculated as 
    A = Ptop1%  

    α = lg Ptop10% - lg Ptop1% 
These formulas demonstrate that the number of publications in the 1% most cited papers 
(e.g., King, 2004) is an imperfect indicator because it does not reveal the real capacity 
to make an important breakthrough, which is described by smaller percentiles.  
 
4. Discussion 
 
This study shows that the frequency distribution of publications on a percentile basis 
(e.g., Bornmann and Mutz, 2011) is a double rank plot (RNB), which has the property 
of being well described by a power law. This can be checked by a mathematical 
approach deriving it from two series of lognormal distributed probability functions, a 
large series simulating the world publications and a small series simulating country 
publications. Following this approach, we found that only the upper part of the plot 
slightly deviated from the power law when the µ parameter of the simulated country 
lognormal distribution was very different from the corresponding value in the world 
distribution.  
 
In comparison to a normal double rank plot, in which the rank number in the country or 
institution is a function of the world rank number, the percentile-based double rank plot 
shows lower variability (e.g., compare Fig. 4 to Fig. 3 in RNB). This behavior can be 

explained by the compression of the scale in the x axesfor the same data, the scale in 
Fig. 4 varies from 0.5 to 100, while in Fig. 3 in RBN, it varies from 1 to 16,043. 
Another interesting difference is that the deviation in the upper part of the plot that 
occasionally occurred in the normal rank plot is much lower in the percentile-based one. 
Again this might be the effect of the compression although we cannot rule out that the 
inclusion of the publications with zero citations, which we make in this study but not in 
the previous one (RNB), also has an effect. 
 
The comparison of research assessments based on the same publications by the two 
double rank methodsthe percentile-based and normal onewere very similar (section 
3.2). Certainly, the likelihood of publishing the most cited paper of the year showed 
certain method dependence. In some cases the results were identical but in others we 
found variations. Because the results of the two methods should coincide from a 
mathematical point of view, we assume that differences occur for a more difficult fitting 
in the normal double rank plot, in which the 30 most cited publications had to be 
eliminated. 
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Research assessment based on the upper, power law tail of citation distribution (highly 
cited papers) is reliable and can be validated in terms of Nobel Prize achievements 
(Rodríguez-Navarro, 2016). However, it does not have practical application because the 
power-law tail includes a low proportion of publications (Ruiz-Castillo, 2012; 
Brzezinski, 2015), which implies that in many research institutions this tail cannot be 
analyzed. Therefore, we investigated whether the power law tail and the double rank 
methods produce similar results; Table 2 summarizes the comparison. Attending to the 
20-0.2% interval, the results obtained with the percentile-based double rank are 
absolutely consistent with those based on the analysis of the upper tail. However, on 
average, the results obtained with the percentile double-rank method were 40% higher 
than those obtained analyzing the upper tail. In principle, the two methods should give 
comparable results; and a possible explanation for the 40% deviation using the Nobel 
Prize percentile and the similarity at the 0.01% percentile comes from the extrapolation 
required to get such data. While this explanation is found, considering that the results 
obtained from the upper tail coincide with the garnering of Nobel Prizes (Rodríguez-
Navarro, 2016; Rodriguez-Navarro and Narin, 2017), evaluating at the 0.01% percentile 
level seems to be a reasonably solution. In any case, the percentile-based double rank 
method allows selecting the percentile by the evaluation agency or institution. 
 
Our results shown in Table 1 were obtained at a high level of aggregation, and through 
considering only domestic publications. Therefore, our next goal was to test the method 
at the level of research institutions, applying fractional counting. For this purpose, the 
data of the Leiden ranking provided an outstanding opportunity. The Leiden indicators 
P, Ptop50%, Ptop10%, and Ptop1% are four data points that can be used for the percentile-
based double rank analysis. As shown in Sect.3.4, a power law is defined by two 
parameters, which implies that two data points are sufficient to define a power law. 
Despite of this, four data points is a low number of points for fitting tests. However, 
considering that the data points cover two orders of magnitude and that the tests can be 
repeated 19,000 times with the Leiden ranking data900 universities, three research 

fields in natural sciences, and seven time periodsthe testing opportunity is really 
outstanding. 
 
We performed 132 tests with the Leiden data observing good fittings to power laws 
(Table 3). The R2 values were slightly lower in the most than in the least research-active 
universities: 0.97 versus 0.99, approximately, which are high values for only four 
points. Although the low number of data points (Fig. 9) in each case does not allow 
drawing firm conclusions from the plots, it seems possible that in the most research-
active universities, the upper data points (top 100% and perhaps 50%) deviate from the 
straight line fitted to the other data points, as described in section 3.3 for the USA plots. 
Apart from these considerations, the analyses of the Leiden indicators demonstrate that 
real data of research evaluation in institutions using fractional counting behaved exactly 
as observed in simulations and country analyses. 
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Although the percentile-based double rank analysis is based on the same properties of 
the citation distributions as the normal double-rank analysis (RNB), it is much more 
convenient, independently of a higher statistical robustness that in a general comparison 
has minor importance. In the first place, the percentile approach is based on a percentile 
apportionment, which has been extensively investigated (Bornmann, 2010; Bornmann 
and Mutz, 2011; Leydesdorff and Bornmann, 2011; Leydesdorff et al., 2011; Rousseau, 
2012; Bornmann, 2013; Bornmann et al., 2013a; Bornmann et al., 2013b; Waltman and 
Schreiber, 2013). In fact, the percentile based double rank approach here reported is not 
a new method of assessment but the application of a mathematical property to an 
evaluation approach that is extensively used. Thus, while the normal double rank 
approach requires a specific treatment of the data and fractional counting cannot be 
performed, the percentile based double rank analysis does not require new data 
treatments. In addition to many reports, the percentile assessment is used in the Leiden 
Ranking as already described, SCIMAGO (http://www.scimagoir.com, accessed 
01/22/2018), and “Mapping Scientific Excellence” (www.excellencemapping.net/, 
accessed 01/22/2018). These rankings could include Ptop x% indicators at low values of x 
if their authors consider it interesting and this can be done without changing their 
methods of assessment. Furthermore, from previously published rankings containing the 
Ptop10% and Ptop1% indicators, more stringent percentile indicators can be easily obtained. 
For example, in Table 4 we have added the Ptop0.1%, Ptop0.01%, and Ptop0.001% indicators to 
the indicators published previously (Bornmann et al., 2015). The convenience of the use 
of these more stringent indicators can be ascertained by comparing Switzerland and 
Spain. Attending to the Ptop10%, Switzerland and Spain show similar research 
performances, 49,275 versus 50,797, that no expert would corroborate. In contrast, the 
Ptop0.01% and Ptop0.001% indicators suggest a much better performance of Switzerland, 
which is a much more reasonable assessment. In Table 4, other comparisons are also 
interesting. 
 
The second and perhaps more important advantage of the percentile based over the 
normal double rank method is that the arbitrariness of selecting the assessment level can 
be eliminated. Similarly to the problem of evaluating by highly cited papers (Schreiber, 
2013a) the threshold for the normal double rank approach does not have a formal 
method to fix it. In contrast, in the percentile based approach the percentile can be fixed 
according to the criterion of experts. For example, to fix the percentile in the topic 
“electronics” in which there are approximately 6,000 publications in a year, we would 
ask the experts in electronics how many papers they consider report real breakthroughs 
in a year. If the answer were six, the right percentile would be 0.1%. The selection of 
the percentile in this way might have some difficulties because different fields or topics 
might have different thresholds, but arbitrariness is eliminated. 
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Table 4. Addition of the Ptop0.1%, Ptop0.01%, and Ptop0.001% indicators to previously 
published Ptop10%, and Ptop1% indicators for 30 countries worldwide with the 
highest percentage of most frequently cited papers (sorted in descending order 
by Ptop0.001%)a 
 

Country Ptop10% Ptop1% Ptop0.1% Ptop0.01% Ptop0.001% 
US 858,703 96,146 10,765 1205.33 134.96 
UK 201,588 20,855 2,158 223.20 23.09 
Germany 159,250 15,738 1,555 153.71 15.19 
Canada 100,307 10,474 1,094 114.20 11.92 
France 112,965 10,971 1,065 103.48 10.05 
Switzerland 49,275 5,859 697 82.84 9.85 
The Netherlands 64,667 7,060 771 84.15 9.19 
Italy 74,378 7,150 687 66.07 6.35 
Japan 109,249 9,371 804 68.95 5.91 
Australia 58,612 5,854 585 58.40 5.83 
China 75,537 6,827 617 55.77 5.04 
Sweden 41,792 4,327 448 46.38 4.80 
Denmark 25,022 2,832 321 36.28 4.11 
Belgium 29,419 3,102 327 34.49 3.64 
Spain 50,797 4,526 403 35.93 3.20 
Austria 17,785 1,919 207 22.34 2.41 
Israel 22,266 2,180 213 20.90 2.05 
Finland 18,247 1,837 185 18.62 1.87 
Norway 14,312 1,493 156 16.25 1.69 
Poland 12,042 1,170 114 11.04 1.07 
Korea 25,233 2,037 164 13.28 1.07 
New Zealand 10,361 1,026 102 10.06 1.00 
Russia 15,887 1,413 126 11.18 0.99 
Brazil 16,025 1,309 107 8.73 0.71 
Greece 10,134 913 82 7.41 0.67 
South Africa 7,159 661 61 5.64 0.52 
India 22,320 1,530 105 7.19 0.49 
Taiwan 18,612 1,332 95 6.82 0.49 
Turkey 10,100 793 62 4.89 0.38 
Mexico 6,169 531 46 3.93 0.34 

 
a The countries and Ptop10% and Ptop1% indicators have been reproduced from 
Table 1 in Bormann et al. (2015). 
 



 21 

The finding that the percentile distribution of publications fits well to a power law 
across universities or countries reveals the impossibility of describing the research 
performance by the number of papers in a single percentile, because the results of 
comparative performances will depend on the selected percentile. This conclusion is 
graphically shown for simulated institutions in Fig. 2 and for the comparison of the 
USA and EU in Fig. 6-8. The power law function has two parameters, the coefficient 
and the exponent. The Ptop1% is the coefficient and the lg of the Ptop10%/Ptop1% ratio is the 
exponent. This exponent varied from 0.6 to 1.4 (Table 3), which implies very different 
likelihoods of publishing a very highly cited paper for universities that have the same 
Ptop1% indicator. 
 
It is a fact that in a certain number of universities in middle positions of the Leiden 

ranking the exponents of the double rank plots are close to 1.0, which implies that the µ 
parameters of their lognormal distributions are similar to that of the world distribution. 
This value implies that the double rank plots are close to straight lines and that the 
comparative performance is the same or very similar counting the total number of 
publications or estimating the likelihood at any percentile. In these universities the use 
of a single percentile for ranking them is correct but this approach cannot be extended to 
all universities and research institutions. 
 
Unfortunately, we could not find a simple expression for the function that describes the 
percentile-based double rank plot in all cases. However, this should not be an 
inconvenience for evaluation, because we found that the power law was an excellent 
model for percentiles lower than 20%. Although we did not determine the lowest 
percentile that can be used for university evaluations and ranking attending to statistical 
considerations, it seems clear that the useful percentile range is sufficiently large. In the 
three fields of natural sciences of the Leiden ranking, in a significantly high proportion 
of universities (not less than 50%) the 1% indicator amounts to 5 or less, which might be 
too low of a value to fit the power law. However, in practically all universities a 
hypothetic Ptop5% indicator would be 8 or higher. Furthermore, the 20% upper limit 
applies only to top-level universities in which the Ptop1% indicator is high. Even if the 
20% limit were uniformly applied to all universities and research institutions, the 20-5% 
percentile interval would allow a reliable calculation of the parameters of the double 
rank power law. 
 
Finally, current results strengthen our previous results (RNB) showing that the 
likelihood of making an important discovery can be estimated by the citation 
distribution of publications that receive a low number of citations. This interdependence 
of the numbers of highly and lowly cited papers indicates that a research system is a 
complex system. Therefore, the research policy of a country should aim to improve the 
proportion of highly versus lowly cited papers, considering, however, that lowly cited 
papers are in the basis of highly cited papers and cannot be eliminated. Further studies 
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about the bases of the complexity of the research system could help to establish 
effective country’s research policies. 
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