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Abstract
With the expansion of electronic publishing, a new dynamics of scientific articles dissemination

was initiated. Still substantially important, citations became a longer term effect. Nowadays, many

works are widely disseminated even before publication, in the form of preprints. Another important

new element concerns the views of published articles. Thanks to the availability of respective data

by some journals, such as PLoS ONE, it became possible to develop investigations on how scientific

works are viewed along time, often before the first citations appear. This provides the main theme

of the present work. More specifically, our research was motivated by preliminary observations

that the view profiles along time tend to present a piecewise linear nature. A methodology was

then delineated in order to identify the main segments in the view profiles, which allowed several

related measurements to be derived. In particular, we focused on the inclination and length of each

subsequent segment. Basic statistics indicated that the inclination can vary substantially along

subsequent segments, while the segment lengths resulted more stable. Complementary joint statis-

tics analysis, considering pairwise correlations, provided further information about the properties

of the views. In order to better understand the view profiles, we performed respective multivariate

statistical analysis, including principal component analysis and hierarchical clustering. The results

suggest that a portion of the polygonal views are organized into clusters or groups. These groups

were characterized in terms of prototypes indicating the relative increase or decrease along subse-

quent segments. Four respective distinct models were then developed for representing the observed

segments. It was found that models incorporating joint dependencies between the properties of the

segments provided the most accurate results among the considered alternatives.
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I. INTRODUCTION

Science can be understood as a social activity, conceived and applied by humans. As

a consequence, communication plays a critical role in scientific development, allowing im-

portant results to be disseminated and used. Interchange is important not only between

scientists working on related fields, but also between those deriving results and those apply-

ing these results. In the beginnings of science, communication proceeded mostly in terms

of letters (see e.g. (Peat 2002)), which were exchanged between scientists in order to share

their most recent results. Letters gave rise to proceedings, journals and, more recently,

World Wide Web-based dissemination. The study of how scientific articles are read and

cited is of great importance because such knowledge provides insights about the efficiency

at which science is disseminated.

Many of the existing studies in scientometrics, the area aimed at studying how science

unfolds, consider citations as the main indicator of usage and interest of scientific articles.

Until recently, this was one of the few available objective measurements of scientific dissem-

ination (Amancio et al. 2012, Bollen et al. 2005, Waltman 2016). Yet, with the introduction

of the Internet and the WWW, other statistics became available, such as the number of

views, shares and downloads of articles published online. Indeed, before the Internet and

the WWW, it was very difficult to count how many times a journal or article was taken

from the shelves and read. The availability of these new indicators paved the way to many

interesting investigations in scientometrics, motivating the new area of altmetrics (Sud and

Thelwall 2014).

Among the new scientific indicators, the number of views has some particularly interesting

features. First and foremost, it takes place at a relatively high speed, involving little delay:

once published online, a work starts being viewed almost immediately. Contrariwise, the

first citation of a work can take months or even years to take place. Given that views

tend to be faster, they can provide insights about current trends, allowing predictions to be

made. Views also tend to take place in larger numbers than citations, therefore providing

a potentially more complete sample that can lead to more accurate statistical analysis.

Studying views is also intrinsically important as a means to better understand its relationship

with citations.

One of the few limitations intrinsic to views is that they provide a somewhat weaker
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indication of the use of the knowledge in the visualized work. Indeed, some views can

be the consequence of actions of Web crawlers or surveys, without a direct implication

that the reported knowledge has been somehow transferred or applied. All in all, views-

based scientometrics has potential for contributing substantially to our knowledge about

how scientific information is disseminated.

Being mostly based to online publication, and by providing several statistics, the PLoS

ONE journal Note1 represents a good resource for performing scientometric/altmetric studies

focusing views as main indicators. In particular, the number of views of each article is

provided along time in a month-by-month fashion. Figure 1 illustrates some view profiles

for 6 randomly chosen articles.
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FIG. 1. Profiles of 6 randomly chosen PLoS ONE articles showing, in each case, the cumulative
number of views along successive months. Interestingly, several of these profiles present approximate
polygonal shape, with sharp turns followed by relatively straight segments.

Interestingly, some of the patters in Figure 1 suggest a polygonal organization, including

relative increases and decreases of views along subsequent segments. This is even more

interesting than the former effect, because it shows that some sort of events occur that are

capable of changing substantially the visibility of a given article along time. The study about

how frequent these patterns are, and their possible organization into respective categories,

constitute the main question addressed in the present work.

More precisely, viewing profiles are obtained for almost every article published in PLoS

ONE. These signatures are then analysed by using state of the art numerical methods,
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namely segmented regression (Muggeo 2003), capable of fitting contiguous straight line seg-

ments along each signature, to match its original profile. The slope and transition points of

these segments, corresponding to abrupt slope changes, can then be identified and used for

statistical analysis and derivation of statistical models. Indeed, the current approach focuses

on the derivation of these models as the means for trying to understand the properties of

the considered view profiles.

The proposed models are based on variables describing the inclination angle and the

extension of each subsequent linear-piecewise portion. Conditional densities are estimated

from the experimental data, allowing the generation of synthetic profiles. We consider

independent densities as well as Markov-1 univariate and multivariate dependencies between

variables. Then, by comparing the congruence between the original and synthetic profiles,

we can estimate which of the considered models tend to be more accurate. The so-obtained

model is then studied in order to identify and understand possible mechanisms producing

the observed profiles.

Several interesting results are reported. First, the linear-piecewise approximation was

found to be more congruent with the real-world view profiles than with synthetic profiles

obtained from uniformly random events. This supports the hypothesis that the real-world

profiles tend to present a polygonal structure, therefore being potentially well-represented

and modeled by using this type of curve. The several parameters observed for each set

of views, considering the same number of segments, revealed two relatively well-defined

clusters corresponding to two main types of polygonal profiles exhibiting sequences of varying

slopes. For instance, in the case of profiles containing 3 segments, one of the detected

clusters is characterized by a relatively low initial slope followed by a higher slope, which is

then reduced in the final segment. The other type of cluster presented opposite structure.

Among the several types of statistical models considered in this work, we found that the use

of conditional densities defined on joint pairs of previous parameters, more specifically by

predicting the slope and interval at each current time in terms of the the previous instances

considered jointly, led to the most accurate results. This suggests that each segment along

the polygonal structures can be, to a good extent, estimated by the previous segment,

corresponding to a memory-1 Markov dynamics that may underlies respective real-world

effects.

The remaining of this paper is organized as follows. In Section II, we present the re-
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lated works. In Section III, we describe the dataset, the employed clustering algorithm,

the methodology for curve characterization, and the employed statistical model. In Sec-

tion IV the obtained results are discussed. Conclusions and perspectives for future works

are presented in Section V.

II. RELATED WORKS

Altmetrics indicators have been employed to quantify the quality of some aspects of sci-

ence (Bornmann 2014, Erdt et al. 2016, Galligan and Dyas-Correia 2013, Sud and Thelwall

2014). Some analyses account for the importance of articles (Huang et al. 2018) and oth-

ers for measuring characteristics of scientists (Ioannidis et al. 2014, Larivière et al. 2013).

Interestingly, many altimetric measurements are not found to be correlated to citation

counts (Erdt et al. 2016), which indicates that these metrics can measure different and

complementary information.

The Altimetric Attention Score (AAS) has been used to measure the importance of pa-

pers (Huang et al. 2018). This index measure mentions of papers in social media (e.g.,

Twitter and Facebook). Huang et al. (2018) found correlations between AAS and the num-

ber of citations for some journals. More specifically, by considering papers obtained from

PLoS journals, the authors measured the Spearman correlation between a normalized AAS

and a normalized count of citations. Interestingly, in the case of Medicine articles, this

correlation was not found. In another study that considered highly cited papers, correla-

tions were found in the comparison between metrics obtained from social networks and the

number of citations (Thelwall et al. 2013).

Another important information that can be measured is the difference between the behav-

ior of new and old articles. Due to the fast evolution of computer-related areas, computer

science researchers attribute great importance to conference papers. By considering pa-

pers of journals and conferences, Thelwall (2019) compared the number of citations with

Mendeley Readership. Mendeley Readership measures the number of users that include a

given article to their account. They found that the number of Mendeley reads and the

number of citations is correlated for both journals and conferences. However, in the case

of old conference papers, a similar correlation was not found. Furthermore, Schlögl et al.

(2014) compared citations, downloads, and Mendeley Readership of two information systems
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journals, and found high Spearman correlations when comparing downloads with citation

and downloads with Mendeley Readership. However, in the comparison between Mendeley

Readership with citations, a moderate correlation was found.

One particularly important measurement is the number of views, for which some distinct

aspects have been analyzed. For instance, the number of views can be linearly correlated

with the age of a paper (Priem et al. 2012), in which older articles tend to have more

views. Furthermore, in (de Winter 2015), the authors investigated the relationship between

the number of article’s views and the mentions of articles in Twitter. More specifically,

their study suggests that views obtained from tweets are not related to views and citations.

Other scholars also analyze the number of article views and downloads and found that the

latter is much more correlated with citations than views (Wang et al. 2014). In an analysis

regarding medical papers, the documents with high early views counts tend to be more cited

than others (Perneger 2004). In a comparison among different altmetrics extracted from

PlumX, the measurements of views and downloads were found to have the most extended

life cycles (Ortega 2018). Their results also indicate that mentions in Twitter and blogs can

impact the number of views and downloads.

Researchers have also been comparing the number of downloads with citations (Erdt

et al. 2016). In some studies, a correlation between the number of downloads and citations

was found (Brody et al. 2006, Jamali and Nikzad 2011, Perneger 2004, Watson 2009). A

form of fast transmitting scientific results is publishing papers on arXiv, which is a preprint

repository. In a study that took into account early citations (Shuai et al. 2012), the authors

compared arXiv downloads and Twitter mentions and found that there is a correlation

between tweets and downloads. By considering a given journal, in Moed (2005), the authors

found that in the following three months after a citation, the number of downloads tends to

increase. Additionally, for the same dataset, when downloads and citation distributions are

compared, the older, the more similar (Moed 2005).

Another possibility of analysis is the comparison between altmetric indicators and the

linguistic characteristics of the papers. In Chen et al. (2020), many distinct features were

measured from papers of PLoS, which included text length, lexical diversity, lexical density,

among others. Interestingly, for the majority of the considered characteristics, no significant

correlation was found. However, for some PLoS journals, the title lengths and average

sentence length were found to play an important role in the number of views and downloads.
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This correlation was also found for Jamali and Nikzad (2011). However, Duan and Xiong

(2017) did not find a correlation between the total number of downloads and title lengths.

III. MATERIALS AND METHODS

A. The Dataset

We extracted information from all the papers published in PLoS ONE up to 2016. For

that, we employed a semi-automatic extraction of paper metadata using ALM API. This

data was collected in November 2019. For each article, the dataset contains information

about the number of views per month, as well as other social media features, including the

number of tweets and shares. The latest properties still require some post-processing and

further validation before use. Thus, we only focus on analyzing the number of views along

time, which resulted in a total of 162, 534 view profiles. The total number of publications

views is divided into HTML, PDF, and XML. In order to be compatible with the way in

which views are understood and exhibited in the PLoS ONE web site, we used the sum of

all types, instead of only the HTML or PDF views.

It is important to observe that the consideration of data like in the PLoS ONE dataset

will typically not account for views through other means such as pre-prints, department

reports, etc. However, these views are expected to be relatively less frequent than to those

recorded in the adopted database.

B. Agglomerative clustering

In order to identify groups of related articles regarding their viewing patterns, agglom-

erative clustering (Jain et al. 1999, Müllner 2011) will be applied in the experiments. An

important choice concerns the linkage criterium to be used for aggregating datapoints, which

often consists in adopting Ward’s approach. One disadvantage of this method is that it tends

to identify groups even when the groups are not well-defined or do not exist, which are hence-

forth referred as false positives. The linkage method that is likely most suited for avoiding

false positives is the single-linkage (Tokuda et al. 2020). This simple criterium, which links

two groups based on the smallest distance between any two objects in those groups, only

leads to the detection of clusters if there is a marked separation between the points belonging
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to the clusters. For instance, for uniformly distributed data the single-linkage approach will

result in a dendrogram containing similar cophenetic distances (Sokal and Rohlf 1962), thus

indicating that clusters cannot be derived from the dendrogram. On the other hand, other

common linkage criteria, in particular the Ward’s method, tend to result in dendrograms

indicating clusters in the data.

The robustness of the single-linkage method to false positives has an important conse-

quence. Clusters found by this method are unlikely to be caused by statistical fluctuation,

missing data or noise. Thus, the identified clusters can be considered as being more statis-

tically significant.

C. Curve characterization

Following (Muggeo 2003), a breakpoint is modeled as two straight lines joined at point

ψ, that is,

y = αx+ β(x− ψ)+ (1)

where (x − ψ)+ = (x − ψ)I(x > ψ), with I(A) = 1 if condition A is true and I(A) = 0

otherwise. ψ is the position of the breakpoint, α is the slope of the line before the breakpoint

and α+ β is the slope after the breakpoint. Therefore, β is the difference in slopes between

the two lines. This is illustrated in Figure 2. The term (x− ψ)+ can be rewritten as

y

x

α
ψ

β

FIG. 2. Example of segmented line with one breakpoint.

(x− ψ)+ = (x− ψs)+ + (ψ − ψs)(−1)I(x > ψs) (2)
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which represents a first order Taylor expansion of (x−ψ)+ at ψs. By defining U s = (x−ψs)+

and V s = −I(x > ψs), Equation 1 can be rewritten as

y = αx+ βU s + γV s. (3)

Thus, the piecewise linear curve is represented as a linear combination between variables

x, U s and V s. Representing as x1, x2, . . . , xn and y1, y2, . . . , yn the values measured for,

respectively, the x and y variables, we want to find β, γ and ψs which minimizes the sum

of squared residuals for the model in Equation 3. Muggeo (2003) showed that this can be

done according to the following procedure:

1. Set an initial value for ψs,

2. Calculate U s = (xi − ψs)+ and V s = −I(xi > ψs) for each data point i,

3. Fit the model in Equation 3 using linear regression,

4. Improve the breakpoint estimation according to ψs+1 = γ/β + ψs,

5. Repeat 1-4 until convergence.

In case of multiple breakpoints, the process is similar. The breakpoints are modeled as

y = αx+
N∑
k=1

βk(x− ψk)+ (4)

where N is the number of breakpoints. βk represents the difference in slopes between seg-

ments k and k + 1. Equation 4 can be rewritten as

y = αx+
N∑
k=1

βkU
s
k +

N∑
k=1

γkV
s
k . (5)

The parameters of Equation 5 are found by least squares regression, and the breakpoints

estimates are updated as ψs+1
k = γk/βk + ψs

k.

The segmented regression requires the number of breakpoints to be known a priori.

Muggeo and Adelfio (2010) defined a procedure for finding an appropriate number of break-

points. First, the aforementioned segmented regression method is applied using a large

number of candidate breakpoints. Then, during the optimization procedure a breakpoint is
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removed if βk ≈ 0, which indicates that the slopes of segments k and k+1 are too similar, and

if two breakpoints are too close to each other. Next, breakpoints that do not significantly

contribute to the residual are removed using the least-angle regression algorithm (Efron et al.

2004).

For our analysis, the segmented regression was applied using the segmented package in

the R language. The first point of each viewing profile was removed since it represents the

number of article views along the first calendar month when the article was published. Thus,

if the article was published at the end of the month, it will have an unreasonably low number

of views for that month.

D. Statistical Model

To better understand the linear-piecewise nature observed in the studied view profiles,

we propose a set of simple statistical models. Each of the models progressively incorporate

more information about the data. In particular, it takes into account more relationships

among parameters recovered from approximating the view profiles by using the segmented

regression algorithm.

We start the analysis by applying the segmentation algorithm to all the curves, resulting

in a set of piecewise linear curves. Each curve is given in terms of the breakpoints and slopes

that estimates the original view profile. By considering only the curves with a fixed number

N of segments, we extract the piecewise parameters given by the algorithm: li (1 ≤ i ≤ N),

representing the length of the ith segment between two breakpoints, and αi (1 ≤ i ≤ N),

the inclination of the ith segment relative to the x-axis.

One of our goals is to produce synthetic profiles according to statistical models providing

support to understand the real-world profiles. Here, we propose four types of models: null

model, independent distribution model, Markov-1 univariate, and multivariate models.

For the models, we consider that li and αi are random variables given by probabilities

P (αi+1|αi), P (li+1|li), P (li+1|li, αi), and P (αi+1|li, αi) and employ the conditional probability

equation, as follows

P (B|A) = P (A ∩B)

P (A)
. (6)

In our simplest model, which we call null model, αi and li are generated following uniform

distributions. Each αi is drawn between [0, 90) and the li in the range [0, 1). The indepen-
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dent distribution model takes into account independent densities. For samples obtained

for a variable X, the probability density function (PDF) of the variable is estimated using

kernel density estimation with a Gaussian kernel. The PDFs of the αi and li variables were

estimated from the articles data and used for generating synthetic values.

In the Markov-1 univariate model, given a sequential random variables Xi, the values

of the next state i + 1 are drawn from the univariate conditional probabilities given by

the current state Xi. More specifically, starting from an initial independent distribution of

X1, the first state is generated. The next state is drawn from P (Xi+1|Xi). To estimate

P (Xi+1|Xi), both the αi and li parameters obtained for the data were partitioned into bins.

Finally, the Markov-1 multivariate model uses the combined joint probabilities for αi

and li to calculate αi+1 and li+1. More specifically, the initial independent joint distribu-

tion P (α1, l1) is used to generate the first states (α1 and l1 values), then the distributions

P (αi+1|αi, li) and P (li+1|αi, li) are employed to calculate the next corresponding states.

IV. RESULTS AND DISCUSSION

In this Section, we discuss the adherence of the real data to segmented lines in Sec-

tion IVA. The basics statistics of the real data are discussed in Section IVB. In Section IVC,

we analyze the correlation between the parameters of the segmented lines describing the evo-

lution of paper views. In Section IVD, we present a discussion on the clustering behavior of

the segmented view profiles. Finally, in Section IVE, we provide an evaluation of the model

aimed at reproducing the behavior of paper views along time.

A. Segmented regression adherence

The first step of the analysis is the application of the segmented regression algorithm to

all the obtained view profiles. In order to do so, each view profile was normalized to the

range [0, 1] in both the time and number of views axes. Therefore, the cumulative number of

views of an article for the most recent month in the dataset (September of 2019) is always 1.

A preliminary analysis by visual inspection suggested that most of the profiles contain 5 or

less linear segments. In order to check which curves best adhere to a structure of segmented

lines, we computed the Root Mean Square Error (RMSE) (Hyndman and Koehler 2006)
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FIG. 3. RMSE distribution for the segmented regressions of the view profiles. The red line indicates
the threshold RMSE value; only the curves on the left were selected to be used in the experiments.
With the established threshold, roughly 80% of all view curves were analyzed.

between the curves derived from the algorithm and the original data. Figure 3 shows the

distribution of the RMSE for the considered view profiles.

To test if the curves adhere to the segmented regression model, we chose a conservative

threshold based on the obtained RMSE values. More specifically, we selected only the curves

for which the regression resulted in an RMSE value lower than 0.01 (shown as a red line in

Figure 3). Figure 4 shows two examples of views profiles (green dots) – characterized by

a higher (a) and lower (b) adherence to the model – and their respective piecewise curves

(red segments) together with the breakpoints (gray vertical lines). About 80% of the curves

have been found to pass the RMSE test and were selected for further analyses.

In order to validate the hypothesis that real-world view profiles tend to present a polygo-

nal structure, control synthetic profiles were generated. For each original profile, a synthetic

one with the same number of points was created. Synthetic views were generated following a

discrete uniform distribution [0, hM) for the number of views an article received in a month,

where hM is the largest number of views among all articles in the real data. We found a

similar adherence compared to the original profiles when the segmented method was applied

with the same parameters in synthetic profiles: about 78% of the lines passed the RMSE

test. Despite this, there is a significant difference between the angle distribution in original

and synthetic piecewise curves (see Figure S1 of the Supplementary Information (SI)). The
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(a) Example of a valid profile for
segmented regression (RMSE = 0.006).
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(b) Example of a invalid profile for
segmented regression (RMSE = 0.0142).

FIG. 4. Examples of view profiles and corresponding linear-piecewise curves. The segmented re-
gression result is the red lines, the original values are the green points, and the breakpoints occur
where there are the gray vertical lines.

latter is centered on 45-degree values. The differences between the above mentioned syn-

thetic profiles and the real curves mean that the observed view curves for PloS ONE articles

cannot be explained by this simple stochastic process.

B. Basic Statistics

We analyzed some basic statistics of the considered views curves, i.e., those that passed

the segmented regression test described in Sections III C and IVA. Figure 5 shows the

lifetime and cumulative views distributions of the views curves. The lifetime is the number

of years since a certain article was published (up to 2016), and ranges predominantly between

4 and 7 years according to Figure 5(a). Also, most papers have from 1, 500 to 3, 500 views,

as shown in Figure 5(b).

Most of the curves passing the RMSE test have been found to be modeled best by 5

linear segments. The proportion of curves found to be described by 2, 3, 4 and 5 intervals

are: 0.1%, 4.5%, 26.4% and 69.0%, respectively. It is not a surprise since the segmentation

algorithm chooses the best number of segments, and the tendency is to have more segments

to better adhere to the regression and the original data. We also found that the lifetime

average (and standard deviation) seems to increase with the number of segments of the
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(a) Lifetime distribution
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(b) Views distribution

FIG. 5. Distributions of (a) lifetime (in years) and (b) number of views of the selected view profiles
(after removing outliers). From a given profile, lifetime is the period since its publication to the
moment data was collected, and views refer to the total paper views along its lifetime.

curves, this is shown in Figure S2 of the SI. This effect indicates that, as could be expected,

the intricacy of the views profiles tend to increase with time.

From the segmented patterns, we extracted the parameters describing the curves ac-

cording to the proposed segmentation method, more specifically, the angles αi and segment

lengths li. The respective parameter distributions are shown in Figure S4 of the SI. We found

that the angles tend to become smaller along the consecutive segments, possibly reflecting

the loss of visibility with time. The lengths of segments distributions become narrower with

time, meaning that the monthly views of articles tend to change more rapidly as the article

gets older.

C. Joint Distributions

An important step to understanding how subsequent segments are related is the analysis

of the joint distributions among their parameters. In particular, we focus our analysis on

the bivariate distributions of αi and li for subsequent segments.

Figure 6 shows the joint density plots for li and li+1 and their respective Pearson corre-

lations, ρ, which displayed moderate negative values. In general, the first segment is small,

as illustrated in Figure 6(a), which can be an effect of the time of response, given by outside

factors, such as dissemination on the web, conferences, advertisements on magazines, posts

on social networks, media coverage, the popularity of the topic, and citations from other
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(d) ρ = -0.44

FIG. 6. Joint density plots and corresponding marginal probabilities of li and li+1 for profiles with
five segments. ρ is the Pearson correlation.

papers. Furthermore, similar outcomes were found for αi and αi+1 (see Figure S3 of sup-

plementary material). In this case, we observe correlations that are not particularly strong.

Two groups seem to be present on all the plots. A more detailed analysis of the groups in

the profiles is performed in Section IVD.

We also considered the relationships between αi and li at subsequent segments. The

ellipses plots shown in Figure 7 represent the correlations between the different parameter

combinations of subsequent segments. In more detail, the colors and inclination indicate the
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sign of the correlations, and negative correlations are plotted in blue while positive relations

in red. The bigger the correlation magnitude, the stronger the color tone is, and more

elongated are the ellipses. We found stronger correlations between αi and li in the initial

segments compared to those found for the subsequent segments. In general, given a linear

segment i, the correlations are negative: high inclination angles occur jointly with short

segments, and lower inclination angles tend to occur for longer segments. Contrariwise, in

consecutive segments, the correlation is positive. This result indicates that short segments

tend to be followed by low inclination angles and long segments by high inclination angles.

A possible explanation of this effect could be related to a sudden increase in views following

the dissemination of the paper. In general, this surge of interest is not sustained along time.

l1

l2

l3

l4

l5

α 1 α 2 α 3 α 4 α 5
−0.55 0.14

0.28 −0.36 0.29

0.26 −0.49 −0.02

0.36 −0.16 −0.05

0.47 0.06

FIG. 7. Correlations between the variables of the piecewise curves shown as ellipses. The Pearson
correlation coefficients were calculated by considering only the curves with five segments.

D. Clustering Analysis

Before proposing a stochastic model to reproduce the observed view profiles, it is inter-

esting to check if we can find different patterns of view profiles that could be understood

as clusters. This type of analysis can give us insights regarding the proposed model. More

17



specifically, knowing about the existence of groups, it is possible to create separate models

incorporating the singularities of the models. For that, a clustering analysis was performed

in the measured segmented curves parameters. Groups were obtained by running a Hi-

erarchical Clustering algorithm with the single-linkage criteria and considering Euclidean

distances. We set the number of clusters to a maximum of three since other values led to

less defined groups. For that analysis, each curve is represented by their set of segmented

parameters αi and li.

The number of parameters defining the curves is at least four, corresponding to the

simplest case in which only one breaking point exists. Thus, for view purposes, we employed

a Principal Component Analysis (PCA) projection to reduce the dimensionality of the set

of parameters (Gewers et al. 2018). The panels in Figure 8 show the clusters of curves for

each of the adopted number of segments. In each of these scatterplots, each point represents

a curve in the projected space. We named the three groups as Ai, Bi, and Ci, where i refers

to the number of segments. In the figure, the marginal distributions help to distinguish

between the overlapping groups. Groups C tend to be more well-defined and separated from

the others. The first two Principal Components accounts for 97.6% of the total variance in

Figure 8(a), 75.86% in Figure 8(b), 58.86% in Figures 8(c) and 8(d), 43.24% in Figures 8(e)

and 8(f). In the case of 2 and 3 segment clusters, only two principal components are enough

to explain the variance of the data. However, for 4 and 5 segments, the third principal

component is needed. This component is also shown in Figure 8(a) for these cases.

In general, the obtained clusters tend to overlap more as the number of segments increases.

The marginal distributions are more separated when the curves have two or three segments

in the PCA, their peaks being considerably distinct (Figures 8(a) and 8(b)). When the

curves have four or five segments, the distributions become flatter and indicate a larger

overlap among the groups (Figures 8(c) and 8(d)). One possible explanation for the change

in the clustering structure is the progressive increase of view profile types with the number

of segments.

In the following analysis, we investigate and determine which are the typical features of

the views of papers in groups {A3,A5}, {B3,B5} and {C3,C5}. More specifically, the curve

obtained for each view was assigned symbols “+” and “−” reflecting if the subsequent angle

increased or decreased respectively to the previous angle of the previous segment. Note that

this analysis starts on the second angle. The resulting lists of “+” and “−” are then compared
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FIG. 8. Scatter plots showing the clusters of the view profiles and the respective marginal distri-
butions. The points correspond to the PCA projection of the angle and length of the segments of
the profiles. The colors (orange, blue, and red) refer to the three detected groups, while the gray
points correspond to views not assigned to these 3 groups.
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and organized into prototypes. For instance, in the case of 3 segments, we have: “−−”, “−+”,

“+−”, and “++”. The relative frequencies of each of these prototypes for papers in clusters

A, B and C was then estimated, and the most frequent patterns are depicted in Figure 9.

The signatures respective to the views with 3 and 5 segments are shown in Figures 9(a-c)

and (d-f), respectively. In the case of the views with 3 segments, the most frequent group (a)

is characterized by successive decreases of the view rates, indicating progressive assimilation

by the respective research community. Contrariwise, the situations in the groups shown in

(b) and (c) are characterized by a relative increase of views along the intermediate segment.

This could have been implied by an event like dissemination in the news, meetings, or social

networks. In the case of groups shown in (c), the increase in views occurs at a shorter time

span than in (b).

The results for the articles with 5 segments obtained for the least frequent group (e),

similarly to the group (a), was characterized by successive reductions of the viewing rate

(“−−−−”). The other two groups, (d) and (f), are characterized by respective prototypes

“−−+−” and “−+−−”. Therefore, cases (e) and (f) share the same prototype as (b) and

(c).

E. Models Adherence

In this section, we check if the proposed Markov models can reproduce the joint distribu-

tions of the curves parameters (αi and li) as expressed in terms of their principal component

projections, shown in Figure 10. Observe that each line in this figure corresponds to one

of the four considered models (see Section IIID). The marginal densities are also depicted

along the respective axes. For each of the four types of models, the cases corresponding

to each of the three identified clusters were adjusted separately, and then combined when

obtaining the principal component projection.

Then, the obtained density surfaces were compared by calculating absolute point-to-

point differences (ε) between the original and synthetic 2d histograms of the PCA data

(third column in Figure 10), and then adding all these values into the single error parameter

ε, computed as

ε =
∑
x

∑
y

|πo(x, y)− πs(x, y)|, (7)
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FIG. 9. Average curves obtained for the most frequent prototype of each cluster. The legend indi-
cates the percentage of curves characterized by the most frequent prototype. The x-axis represents
time, and the y-axis represents the cumulative number of views along time.

where πo and πs are the surfaces corresponding to the original and synthetic data, respec-

tively. Lower values of ε indicate more accurate models.

As expected, the Null model resulted in the worst approximation of the curves (as seen

in Figure 10(c)), and the quality of the models increases as we incorporate additional sta-

tistical information. The independent distribution model, shown in Figure 10(d-f), better

approximates the original profiles without considering conditional probabilities (i.e. mem-

ory). However, this model is unable to capture the medium scale details in the original

distribution, and also broke the cluster.

The models based on Markov-1 take into account not only the independent conditional

distributions but also the parameters of consecutive segments. The Markov-1 univariate

synthetic profiles resulted in better approximations of the real view profiles (Figure 10(g-i)).
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FIG. 10. Comparison of the original profiles and the synthetic profiles produced according to the
considered models. The three columns correspond respectively to the original data distributions
along the PCA axes, the synthetic distributions and the difference. Note that the differences in
density at the center of plot (c) are too small compared to the differences caused by the peaks of the
original profiles. Note that for each model, a new PCA projection is obtained since it incorporate
both the real and synthetic data.

Finally, the Markov-1 multivariate model produced synthetic profiles more similar to the
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original counterparts (Figure 10(j-l)). The bivariate distribution of α and l provide the best

approximation of the original data among the considered models, as it yields the smallest

ε value. This suggests that not only the angles of previous segments but also their lengths

are important subsidies in predicting the parameters of the next segments.

All in all, the obtained results confirm to a good extent the initial hypothesis that the

view profiles are not trivial or random and have intrinsic structure that were progressively

reflected by modeling approaches taking into account additional information. This implies

that there are interesting real-world effects and mechanisms implementing the types of ob-

served structure. In particular, we have memory effects and time dependencies, in the sense

that the properties of one segment tend to correlated with subsequent segments. These ef-

fects could be hypothetically related to tendencies such as a brief surge of interest, e.g. caused

by media dissemination, would be followed by a longer period of less intense inclination.

V. CONCLUDING REMARKS

Science is inherently a collaborative endeavor. Therefore, the speed of dissemination

of new ideas has a relevant impact in the development of novel theories and experiments.

Traditionally, the impact of papers has been studied in terms of the number of citations, but

since the World Wide Web became the main medium for publishing papers, the development

of new data aggregation tools led to the definition of many alternative metrics (Sud and

Thelwall 2014). One of the simplest of such metrics is the number of page views. Measuring

page views is relatively simple and can usually be done with arbitrary granularity (hourly,

daily, monthly, etc). Compared to citations, the number of views also tends to display a

much lower delay to important events such as publication and conference presentation.

Here, we studied to what extent the monthly number of views for articles published in

the PLoS ONE journal present a polygonal structure, which constitute the main question

of the present work. A key observation regarding the number of views of the articles in the

PLoS ONE dataset was used in the analysis: articles tend to display periods of relatively

constant number of monthly views, with sharp changes in views between such periods. This

hypothesis was investigated throughout the work by considering the cumulative number of

article views. If the hypothesis is true, the cumulative number of views should be correctly

represented by a piece-wise linear function.
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A segmented least squares regression methodology (Muggeo 2003) was applied to identify

breakpoints between linear segments in cumulative article views, and the length li and angle

αi of each segment were measured and used as parameters of four models for generating

synthetic article views profiles. The models took into account progressively more information

about the profiles, so as to allow the identification of the most relevant properties.

Several interesting results were obtained. It was verified that the segmented regression

led to a lower RMSE than in the case of synthetic profiles generated from a model which

took into account randomly generated number of monthly views. The result indicates that

representing the cumulative number of article views by a piece-wise linear function led to

a relatively low regression error. Thus, the profiles can be modeled by linear segments.

Another important result was the observation of two view profiles, one corresponding to

a relatively low initial slope followed by a higher slope and another presenting only slopes

that decrease with time. In order to better interpret these groups, additional metadata

is necessary and is a future development of this work. Regarding the synthetic models,

it was found that curves generated from αi and li sampled independently with the same

distribution as the real data led to profiles that approximated well the real profiles. Taking

into account conditional probabilities between subsequent segments and between αi and

li led to improved models. Although we found many interesting results, our study also

includes some limitations. The analysis was performed only with a single dataset, obtained

from PLoS ONE papers, and cannot be generalized for all journals.

For future developments, additional metadata about the papers can be taken into account

in the analysis. In particular, it would be interesting to investigate how the views dynamics

changes according to the subject area and authors institution. It would also be interesting to

associate social network data with the observed profiles. For instance, verify if the identified

breakpoints correlate with messages published by power users (Eysenbach 2011) in a social

network about the article. It is also worth investigating how bibliometric networks can affect

view patterns along time (Costa 2006, de Arruda et al. 2017). Finally, we could also analyze

if other factors such as authors and topics visibility can affect the patterns of view profiles

in papers (Amancio 2015, Corrêa Jr et al. 2017, Larivière et al. 2016, Lu et al. 2019).
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SUPPLEMENTARY INFORMATION
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FIG. S1. Angles distributions of real-world (green) and control (red) synthetic profiles. The distri-
butions are clearly different, and a higher deviation in angles is observed for the real data.
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(a) Lifetime distribution for 2-segment profiles.
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(b) Lifetime distribution for 3-segment profiles.
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(c) Lifetime distribution for 4-segment profiles.
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(d) Lifetime distribution for 5-segment profiles.

FIG. S2. Distributions of lifetime grouped by profiles with the same number of segments. Lifetime
average and standard deviation are shown at the upper right corner.
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FIG. S3. Joint density plots and corresponding marginal probabilities of αi and αi+1 for profiles
with five segments. ρ is the Pearson correlation.
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FIG. S4. Distribution of the segment parameters among all the obtained curves.
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