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Abstract 

Background: Despite the significant advances in life science, it still takes decades to translate a basic drug 

discovery into a cure for human disease. To accelerate the process from “bench-to-bedside”, interdisciplinary 

research (especially research involving both basic research and clinical research) has been strongly recommend 

by many previous studies. However, the patterns and the roles of the interdisciplinary characteristics in drug 

research have not been deeply examined in extant studies. 

 

Objective: The purpose of this study was to characterize interdisciplinarity in drug research from the perspective 

of translational science, and to examine the role of different kinds of interdisciplinary characteristics in 

translational research for drugs.  

 

Methods: In this paper, we analyze the interdisciplinary of drug research from a novel bibliometric perspective, 

i.e., a translational science perspective. 18 FDA approved drugs belonging to 6 categories are used as the research 

proxies. We propose four bibliometric indicators (i.e., Diversity of Research, Symmetry of Research, Persistence 

of Research and Stability of Research) for characterizing interdisciplinarity in drug research at both the macro 

and micro levels. We also design a bibliometric indicator (i.e., Translation Intensity) for quantifying the result 

of a drug’s translation. Correlation analysis was also used to examine the relationships between these 

interdisciplinary characteristics of drug research and the translation intensity of drugs. 

 

Results: Multidisciplinary research (especially the research involving both basic and clinical disciplines) is still 

rare for all the 18 drugs and they generally occurred later than intra-disciplinary research in the timelines of drug 

research. The four interdisciplinary characteristics of drug research and the translation intensity of drugs both 

vary according to drugs. At the macro level, the diversity and symmetry of research have evident positive 

relationships with the translation intensity of drugs. At the micro level, the persistence of all seven kinds of 

research positively correlated with the translation intensity of drugs; and the persistence of multidisciplinary 

research have stronger relationships with the translation intensity of drugs than those of intra-disciplinary 

research except for the research within the cell/molecular discipline (CC research), which showed the most 

impressive correlations with the translation intensity of drugs. In addition, the stability of all kinds of research 

did not show a significant influence on the translation intensity of drugs. 

 

Conclusions: Interdisciplinary research engaging both basic science and clinical science should be encouraged 

in translational research for drugs. The basic research within the cell/molecular discipline needs more persistence 

to shorten the translational lags in drug research. Moreover, the methodology in this paper showcases a feasible 

way to characterize interdisciplinarity of research and measure the results of translation in drug research, and it 

can be adopted and improved for other domains, such as vaccine, medical devices. 
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1. Introduction 

1.1. Background 

In spite of ongoing advances in science and technology, it has taken significantly longer than expected for a 

basic drug discovery to be translated into a treatment for human diseases. Only around 0.1% of the new drug 

candidates can finally receive approval from the U.S. Food and Drug Administration (FDA), with a cost of $2.6 

billion for each approved drug. Almost 90% of the drug candidates failed before they ever tested in human trials, 

which is known as “the valley of death”; and around 50% of the drugs that have entered into clinical trials died 

in their phase III trials (Li et al., 2020; Seyhan, 2019). The failure rate of clinical trials of drugs has actually 

increased over recent years despite the increasing predictability of tests on cell/molecular or animal models 

(Leenaars et al., 2019). The main reasons are inadequate effectiveness or badly side effects (Waring et al., 2015). 

Therefore, it is crucial to improve the success rate of the translation of drugs and cut down the translation lags 

(Ogier et al., 2019; Parrish et al., 2019). 

        Most of the previous studies on translational research for drugs have focused on the roadblocks hindering 

the success of “bench-to-bedside” translation, such as insufficient research funding (Hörig et al., 2005), 

imperfect reward system (Fishburn, 2013), knowledge gap between basic and clinical scientists (Rocca, 2017), 

misuse of statistical methods (Vidgen & Yasseri, 2016), difficulty in cohort recruitment (Segura-Bedmar & Raez, 

2019), irreproducibility of basic experiments (Jarvis & Williams, 2016), and insufficient understanding of 

translational science (Seyhan, 2019). To clear these roadblocks, interdisciplinary research, especially those 

involving both basic and clinical science, has been highly recommended as one of the solutions to accelerate 

drug translation (Ameredes et al., 2015; Bahney et al., 2016; Rocca, 2017). On the one hand, drug translation is 

an intricate task that requires a range of diverse skills, such as pharmacology, epidemiology, statistics, genetics, 

clinical studies and computer science (Kumar & Sattigeri, 2018). Interdisciplinary research has shown the 

effectiveness to breed and amplify innovations during the process of translation (Xu et al., 2015) and improve 

the quality and reproducibility of research (Barba, 2016), by allowing scientists in various disciplines to 

exchange innovative ideas and share their resources and experience (C. Zhang et al., 2018). Moreover, 

interdisciplinary collaborations between researchers from various organizations including funding agencies and 

government departments bring more funding and higher clinical impact to translational research (Gil-Garcia et 



al., 2019). But on the other hand, other studies have indicated several drawbacks of interdisciplinary research 

and collaborations for translational medicine, such as communication gaps (Grippa et al., 2018), time-consuming 

(Bu, Ding, Xu, et al., 2018), leadership (Folkman et al., 2019), and intellectual barriers (Banner et al., 2019). 

Establishing a persistent and stable interdisciplinary research team is definitely a challenge (Seyhan, 2019). 

        Hence, interdisciplinary research arguably plays many roles in the translation of drug discoveries, yet it has 

been a subject of few quantitative studies in the translational research for drugs. Besides, previous studies on 

interdisciplinary research focused mainly on the perspectives of journals (L. Zhang et al., 2016), articles 

(Leydesdorff & Ivanova, 2021), and authors (Bu, Ding, Xu, et al., 2018). However, in the process of translating 

drug discoveries into therapies, there is a variety of research types. In particular, the biomedical studies can be 

classified into seven different categories by using the translational triangle of biomedicine originally proposed 

by (Weber, 2013): animal related research (A), cell/molecular related research (C) and human related research 

(H) and the combinations of these three (i.e., AC, AH, CH, ACH). In this paper, we divided drug research into 

the corresponding seven categories: (1) A-A; (2) C-C; (3) H-H; (4) A-C; (5) A-H; (6) C-H; and (7) A-C-H. (1), 

(2) and (4) are research within basic science; (3) research within clinical science; (5), (6) and (7) are research 

involving both basic science and clinical science. To our best knowledge, the patterns and the roles of the 

different kinds of research in translational process for drugs, which can provide us insights on how to shorten 

the translation lags in drug research and development, have not been deeply examined in the extant studies. For 

example, would more persistent and stable interdisciplinary research involving both basic science and clinical 

science lead to better results in the translation of drugs? The more diverse the research, the more likely the 

translation of drugs will be successful?  

1.2. Objective 

To analyze these patterns and roles, in this paper, we first characterized the patterns of interdisciplinarity in 

translational research for drugs at both the macro and micro levels. Specifically, for the macro level, we 

employed the entropy concept to quantify the diversity of drug research by treating the relationships between 

research categories and the related articles of a drug as a bipartite graph (Corrêa Jr. et al., 2017; Lu et al., 2019). 

Then, the normalization of the diversity of research was used to calculate how the evenness of the distribution 



of different categories of drug research is, that is, the symmetry of research. For the micro level, we further 

extended two bibliometric indicators originally proposed for measuring the persistence and stability of the 

collaboration between an author pair by (Bu, Ding, Liang, et al., 2018; Bu, Murray, Ding, et al., 2018), to 

quantify the persistence and stability of each category of drug research.  

        To examine the role of different kinds of research in translational process of drugs, in this paper, we 

proposed a bibliometric indicator (translation intensity) to quantify the result of a drug’s translation, which is 

based on the approximate potential to translate of a biomedical article proposed by (Hutchins et al., 2019). Then, 

correlation analyses (including Pearson and Spearman correlation analysis) were used to explore how the 

aforementioned interdisciplinary characteristics of different drug research had influenced the translational 

intensity of drugs.  

        We selected 18 approved drugs from the FDA website (http://fda.gov/Drugs) as the research proxies. These 

drugs belong to 6 different drug classes, which are common and well-studied (Kissin & Bradley, 2012). Each 

drug class includes one first-in-class drug (FICD) and two follow-on drugs (FOD) since it is significant to 

identify the differences in the patterns between real drug breakthroughs and the follow-on drugs (Kissin & 

Bradley, 2012).  

2. Related work 

2.1 Studies on characterizing the interdisciplinarity of scientific research 

Interdisciplinary research, which integrates ideas, methods, techniques, theories, or knowledge from multiple 

disciplines (Rosenfield, 1992), has been considered to have a high probability of success. Understanding how 

interdisciplinary research affects scientific success can be enhanced by measuring and analyzing the 

interdisciplinarity of scientific research (Leydesdorff & Ivanova, 2021). Diversity, evenness and disparity are 

considered as three main dimensions of interdisciplinarity of research (L. Zhang et al., 2016). Specifically, 

diversity (also called variety) measures how many categories of disciplines there are in a study. In bibliometrics, 

the predefined disciplinary categories, such as the Leuven-Budapest subject classification system, the subject 

categories in Web of Science or Elsevier, has been used for calculating the diversity of research or journals, from 

the perspectives of citation or collaboration. Meanwhile, with the development of text mining techniques such 



as topic modeling, entity extraction and text clustering, the research topics, the specialty of authors has also been 

counted to represent the diversity of research (Bu et al., 2018). The interdisciplinary score of a research gets 

higher if the measurement object is more diverse in the categories. Although simple and clear, these indicators 

suffer from the redundant classification system, the synonyms of entities, and inaccurate topic clustering (Zuo 

& Zhao, 2018). From the perspective of networks, the between centrality has been calculated in co-citation 

networks and co-author networks to measure the diversity of research or journals (L. Zhang et al., 2016). 

However, these methods considered only the topological information of networks and ignored the nodal 

information. Besides, the diversity of research has also been examined from other perspectives, such as different 

regions, different h-index, different countries and different term functions (Bu, Ding, Xu, et al., 2018; Lu et al., 

2019). 

Evenness (also called balance or symmetry) measures how much of each category of discipline there is in 

a research. The evenness has a positive relationship with the diversity, that is, the more even the evenness, the 

higher the diversity. In fact, evenness and diversity are often treated as a “dual-concept” index, and the evenness 

of research was always calculated by the normalization of the diversity (Leydesdorff & Ivanova, 2021). For 

example, Corrêa Jr. et al. (2017) and Lu et al. (2019) employed the Shannon’s entropy to normalize the diversity 

of author contributions and keyword term function for their calculating the evenness. Except for the Shannon’s 

entropy, the Gini index and Simpson index have also been used for capturing the evenness in previous studies 

(L. Zhang et al., 2016). Finally, disparity quantifies how different from each other are the disciplinary categories 

in a research. It also has a positive relationship with the diversity. The Rao-Stirling diversity index was a typical 

measure for the disparity based on network structure. However, it was demonstrated to be not convincing for 

measuring the interdisciplinarity of journals by (Leydesdorff & Rafols, 2011) and (Zhou et al., 2012). The 

distance of disciplines that were operationalized by the cosine distance of topic terms or texts was also employed 

to quantify the disparity. For example, (Bromham et al., 2016) developed a co-classification-based indicator to 

measure the disparity. In the citation or collaboration networks, the shortest distances between nodes are also 

used for quantifying the disparity.  

In this paper, at the macro level, we mainly discuss the diversity and the symmetry of research for the 

translation of drugs. Specifically, for a specific drug, we employ a Shannon entropy diversity (i.e., the true 



diversity) based on a bipartite graph that links the research categories to the drug’s articles list, to quantify the 

diversity of research of the drug. Then the normalization of the diversity can be used to measure the symmetry 

of research of the drug, which indicates how even the drug research is. We choose this method because the 

similar bibliometric indicators have been successfully used for measuring the diversity and symmetry of the 

contributions of authors (Leydesdorff & Ivanova, 2021) and the term function of author keywords (Lu et al., 

2019).  

At the micro level, we also use two indicators (including the persistence of research and the stability of 

research) to analyze the patterns and the roles of interdisciplinary research in drug research. In the previous 

studies, Bu et al. (2018) proposed two bibliometric indicators, i.e., the Persistent Scientific Collaboration (based 

on the intervals and the skip years without collaborations) and the Stability of Collaboration (based on the year-

to year publication output of collaborations), to measure the persistence and stability of collaborations for an 

author pair over time. The results of their studies on a large-scale dataset demonstrated the reliability and 

effectiveness of the two indicators (Bu, Ding, Liang, et al., 2018; Bu, Murray, Ding, et al., 2018). Therefore, in 

this paper, we replace the publication output of a specific author pair with the publication output of the specific 

category of research for a drug, and used the intervals and skip years without the specific category research (the 

Persistence of the Research) and the year-to-year publication output of the specific category of research (the 

Stability of Research) to quantify the persistence and stability of different categories of drug research, 

respectively.  

 

2.2. Studies on translational research for drugs  

Translational research for drugs (also known as translational pharmacology) is defined as the process of 

translating the drug discoveries in laboratory into clinical applications for human diseases (Kumar & Sattigeri, 

2018). Despite the significant investment in drug research, research findings at molecular or animal levels are 

far from being fully translated to patient level (Contopoulos-Ioannidis et al., 2008; Madlock-Brown & Eichmann, 

2015; Seyhan, 2019). Much of recent studies on translational pharmacology have been focused on identifying 

the key factors affecting this bench-to-bedside process (Rocca, 2017; Segura-Bedmar & Raez, 2019; Seyhan, 

2019; Stubbs & Uzuner, 2019). For examples, Ioannidis (2016) systematically analyzed the reason for “useless 



clinical studies” and pointed out that a number of research findings published in medical journals are not robust 

as the authors has claimed and can’t be reproduced mainly because of their poor study design. Fajardo-Ortiz et 

al. (2014) explored how the structure of knowledge of research teams affects the translation of a cancer drug 

(liposomal doxorubicin). Seyhan (2019) reviewed the challenges facing translational pharmacology and 

suggested that a number of “culprits” lead to “the lost in translation”, such as inappropriate research hypothesis, 

irreproducibility of biomedical studies, misuse of statistical methods (i.e., p-value), and insufficient 

understanding of translational science. Agache et al. (2019) found that insufficient research funding and the 

reward mechanism were also important factors hindering the translation of drugs in the field of allergy. Dueñas 

et al. (2016) considered that most of the NIH funding often funds the small studies because they can be finished 

in a short time and get results published rapidly, while long-term studies with large patient cohorts sometimes 

can’t be conduct because of insufficient resources available to the scientists. Almost all these studies 

recommended that interdisciplinary research, especially those involving both basic science and clinical science, 

should be encouraged to accelerate the “bench to bedside” process. These studies, however, were generally based 

on the qualitative analysis or manually systematic review. They have not yet to attempted to address the 

translational roadblocks by improving our understanding of the relationships between the interdisciplinarity of 

drug research and the translation of drugs. 

2.3. Studies on literature-based translational research in biomedicine 

With the advances in data availability and text analysis technologies, literature-based translational research in 

biomedicine has also become a popular subject in the field of bibliometrics and health informatics. Natural 

language processing has facilitated these bibliometric studies by enabling biomedical entity recognition (Xu et 

al., 2020), entity relationship reasoning (Lee et al., 2019) and entitymetrics (Li et al., 2020; Yu et al., 2021), etc. 

Researchers have also explored how to assess or track the translational progress of biomedical studies using 

automated literature mining. For example, Lewison and Paraje (2004) employed the clue words in the article 

titles to distinguish “basic” journals from “clinical” journals. Tijssen (2010) proposed a knowledge utilization 

triangle and classified the journals into six application domains according to their application orientation. 

However, these studies were not enough to represent the translational progress of articles. To go further, Boyack 



et al. (2014) trained a used a logistic regression model with article titles, abstracts and references to group more 

than 25 million articles from Scopus into different research levels. Meanwhile, MeSH terms indexed by experts 

have been widely used for tracking translational research. For example, Petersen et al. (2016) proposed a triple 

helix framework based on the “C”, “D” and “E” groups of MeSH terms to describe the evolution of research 

focus over time. Weber (2013) developed a biomedicine triangle to identify translational science in three 

dimensions (i.e., “animal”, “cell/molecular” and “human”). In addition, Hutchins et al. (2019) combined weber’s 

biomedicine triangle and citation network information to predict the translational progress of biomedical studies 

from the perspective of knowledge flow. They pointed out that distinct knowledge pathways are significantly 

associated with the success of translation.  

3. Methodology 

To explore the interdisciplinarity of drug research from the perspective of translational science, we propose a 

four-step research framework: (1) data collecting and pre-processing; (2) characterizing interdisciplinarity of 

drug research; (3) translational analysis; and (4) pattern analysis. (Illustrated in Figure 1) 

 

Figure 1. The overview of research design. (Note, A [Animal], C [cell/molecular], H [Human], FICD [first-in-class drug], FOD 

[follow-on drug].) 

 



3.1. Data collecting and pre-processing 

In this step, we first selected drugs for the analysis from the U.S. Food and Drug Administration (FDA) website 

(http://fda.gov/Drugs) based on two criteria: (a) drugs had to have been well-studied and approved by the FDA 

between the 1960’s and 2000’s; (b) each drug category had to have three (1 first-in-class and 2 follow-on) drugs 

included. Finally, 18 drugs belonging to 6 categories were selected: (1) angiotensin converting enzyme inhibitors 

(ACEIs ), including captopril, enalopril and moexipril; (2) beta blockers (propranolol, atenolol and bisoprolol); 

(3) proton pump inhibitors (PPIs), containing omeprazole, lansoprazole and pantoprazole; (4) statins (lovastatin, 

simvastatin, and pitavastatin); (5) triptans (sumatriptan, almotriptan, and frovatriptan); and (6) nucleoside 

reverse transcriptase inhibitors (NRTIs), including zidovudine, lamivudine, and emtricitabine.  

To obtain the related articles for these drugs, we downloaded over 30 million PubMed articles in XML 

format in August 2021. For each article, we extracted the bibliographic information such as title, abstract, MeSH 

terms and publication time using a dom4j-based XML parsing script. We next employed BioBERT (Lee et al., 

2019), a biomedical language model pretrained on PubMed and PubMed Central, to extract biomedical entities 

(drugs) from the titles and abstracts. For each recognized drug entity, we assigned it a unique entity id with a 

multi-type biomedical entity normalization tool based on probability decision rules (Kim et al., 2019). 146,663 

articles regarding these 18 drugs were finally filtered as research dataset and stored in a local MySQL database.  

        To track drugs along the translational continuum using aforementioned articles, it is crucial to distinguish 

basic articles from clinical articles. In this paper, we classified articles into Animal (A) related, Molecule/Cell 

(C) related, Human (H) related and combinations of these three (i.e., AC, AH, CH and ACH) using the MeSH 

terms assigned (Weber, 2013). Specifically, terms with MeSH codes starting with subcategory code A11, B02, 

B03, B04, G02.111.570 or G02.149 are C terms; terms with MeSH codes starting with subcategory code M01 

or B01.050.150.900.649.801.400.112.400.400 are H terms; and terms with MeSH codes beginning with 

subcategory code B01 except for B01.050.150.900.649.801.400.112.400.400 are A terms. Each article could 

have one or more of the three kinds of MeSH terms, or none of the three (Hutchins et al., 2019; Weber, 2013). 

According to the article type, we divided research of drugs into 7 categories, i.e., AA, CC, and AC (research 

within basic science); HH (research within clinical science); CH, AH and ACH (interdisciplinary research 

involving both basic science and clinical science). The details on the research dataset are shown in Table 1. 



        In order to explicitly understand the interdisciplinarity in drug translational research, for each drug, we 

searched the PubMed (https://pubmed.ncbi.nlm.nih.gov/) and Derwent Innovation Index for the year of the 

earliest articles with different research types, the year of the first FDA approval, and the year of the first awarded 

patent. We also searched the Wikipedia and DrugBank (Wishart et al., 2018) to cross-verified this information, 

which are used to form the timelines of milestones for the 18 drugs. Finally, these information are mapped onto 

the Triangle of Biomedicine (Hutchins et al., 2019; Weber, 2013) for analysis.  

 

Table 1. Overall information about the 18 drugs. 

Category Drug Name Level 
# of articles 

in PubMed 
AA CC HH AC CH AH ACH 

FDA  

approval 

year 

ACEIs captopril FICD 13,624 3,504 247 6,373 1,653 725 473 291 1981 

enalopril FOD 8,847 1,886 93 4,863 752 406 254 124 1984 

moexipril FOD 127 21 9 61 4 6 1 3 1995 

Beta 

blockers 

propranolol FICD 45,682 14,753 893 15,176 9,562 2,864 1,217 967 1964 

atenolol FOD 8,427 1,318 356 4,467 778 554 198 149 1975 

bisoprolol FOD 1,829 87 49 1,238 74 117 44 35 1986 

PPIs omeprazole FICD 13,129 873 282 5,234 997 4,247 262 342 1988 

lansoprazole FOD 3,042 91 116 1,185 153 1,142 48 95 1992 

pantoprazole FOD 2,217 71 98 1018 83 527 39 64 1994 

Statins lovastatin FICD 12,812 1,274 253 5,317 2,189 1,916 339 863 1987 

simvastatin FOD 11,437 1009 208 5,412 1,289 1,411 328 593 1992 

pitavastatin FOD 1,054 72 18 390 117 135 43 100 2003 

Triptans sumatriptan FICD 3,363 351 32 2,047 216 139 165 103 1991 

almotriptan FOD 301 8 6 241 2 5 18 4 2000 

frovatriptan FOD 253 9 5 176 1 0 19 4 2001 

NRTIs zidovudine FICD 12,673 246 456 4,356 631 5,793 162 571 1987 

lamivudine FOD 10,513 67 227 3,318 157 5,613 83 268 1995 

emtricitabine FOD 3,315 22 79 947 51 1,256 34 73 2006 

 Total  152,645 25,662 3,427 61,819 18,709 26,856 3,727 4,649  

 

3.2. Characterizing interdisciplinarity of drug research 

In this section, we propose four indicators to quantitatively characterize interdisciplinarity of drug research from 

the perspective of translational science, that is, the diversity of research (Dd), the symmetry of research (Sd), the 

persistence of research (Pc,d), and the stability of research (STc,d). The Dd and Sd measure the diversity and 

evenness of the distribution of research of a given drug d at the macro level, respectively; while the Pc,d and 

STc,d quantify the persistence and stability of a kind of research c ( 𝑐 ∈ 𝐶𝑇, 𝐶𝑇 =



{𝐴𝐴, 𝐶𝐶, 𝐻𝐻, 𝐴𝐶,𝐴𝐻, 𝐶𝐻, 𝐴𝐶𝐻}) of a given drug d at the micro level. The detailed explanations for these 

indicators are as follows. 

 

 
Figure 2. An example of a bipartite graph representing the relationship between drug related articles and the category of drug 

research. Note, the total number of articles assigned to particular research categories vary according to drugs. 

 

        Diversity of research (Dd). To quantify the diversity of research of a drug from the perspective of 

translational science, for each drug, the relationship among related articles and their research categories is treated 

as a bipartite graph (Corrêa Jr. et al., 2017; Lu et al., 2019), which is a graph with edges linked only among 

nodes belonging to two distinct groups. As illustrated in Figure 2, the bipartite graph derived from each drug 

establishes edges between drug related articles and their possible research categories. Each article is linked to 

one research category, while one research category can have multiple articles assigned.  

        For a specific research category 𝑐 (𝑐 ∈ 𝐶𝑇, 𝐶𝑇 = {𝐴𝐴, 𝐶𝐶,𝐻𝐻,𝐴𝐶,𝐴𝐻, 𝐶𝐻, 𝐴𝐶𝐻}) , its strength in the 

research of a drug, 𝐼𝑐, is given by: 

𝐼𝑐 =
∑ 𝜔𝑐𝑖𝑖 𝑀𝑐𝑖

∑ ∑ 𝜔𝑐𝑖𝑀𝑐𝑖𝑖𝑐
                                (1) 

where 𝑀𝑐𝑖 denotes the relationship between the research category 𝑐 and the i-th article in the research of a drug, 

i.e., if the research category of i-th article is 𝑐, 𝑀𝑐𝑖 =  1; else, 𝑀𝑐𝑖 =  0. Meanwhile, according to the research 

type of each article, we use the weight 𝜔𝑐𝑖  to represent its importance to the drug research, i.e., if 𝑐 =

 𝐴𝐴 𝑜𝑟 𝐶𝐶 𝑜𝑟 𝐻𝐻, 𝜔𝑐𝑖 = 1; if 𝑐 =  𝐴𝐶 𝑜𝑟 𝐴𝐻 𝑜𝑟 𝐶𝐻, 𝜔𝑐𝑖 = 2; else, 𝜔𝑐𝑖 = 4. Notably, the range of 𝐼𝑐 is from 

0 to 1, and we can use the entropy concept to quantify the diversity of the distribution of the different categories 



of research for a drug (Corrêa Jr. et al., 2017; Lu et al., 2019). Thus, for a given drug 𝑑, the diversity of its 

research, 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝐷𝑑), is expressed as: 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝐷𝑑) = exp (−∑ 𝐼𝑐𝑙𝑜𝑔𝐼𝑐
𝑐∈𝐶𝑇

)                    (2) 

        Symmetry of research (Sd) for a specific drug d means the evenness of the distribution of the strength for 

different categories of research of a drug. In this paper, we use the normalization of the diversity of research (𝐷𝑑) 

to calculate how even the research of the drug (Corrêa Jr. et al., 2017; Lu et al., 2019). Therefore, for a given 

drug 𝑑, the symmetry of its research, 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 (𝑆𝑑), is calculated as: 

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 (𝑆𝑑) =
𝐷𝑑

𝑛𝐶𝑇
                                       (3) 

 

where 𝑛𝐶𝑇(1 ≤ 𝑛𝐶𝑇 ≤ 7) denotes the number of the categories of research of a drug. 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 (𝑆𝑑) measures 

the symmetry of research of a drug and it ranges between 0 and 1. If different categories of research occur equally 

for a drug, 𝑆𝑑 will reach its maximum value, i.e., 𝑆𝑑 = 1. 

        From the translational science perspective, we extend the two author-level bibliometric indicators (i.e., the 

degree of PSC and the stability of scientific collaboration) originally proposed by Bu et al. (Bu, Ding, Liang, et 

al., 2018; Bu, Murray, Ding, et al., 2018), to quantify the persistence and stability of the 7 kinds of drug research.  

        Persistence of research (Pc,d) is defined as the continuity of a specific category of research 

𝑐 (𝑐 ∈ 𝐶𝑇, 𝐶𝑇 = {𝐴𝐴, 𝐶𝐶, 𝐻𝐻, 𝐴𝐶, 𝐴𝐻, 𝐶𝐻,𝐴𝐶𝐻})  of a given drug 𝑑 . We calculate 𝑃𝑐,𝑑  by considering the 

number of years without 𝑐 research and whether these years are adjacent or not. Specifically, for a given drug 𝑑, 

we assume that the total number of 𝑐  research in 𝑌  years is 𝑃𝑐 , and we use a vector 𝑃𝑐
⃗⃗  ⃗ =

(𝑝𝑐,1, 𝑝𝑐,2, … 𝑝𝑐,𝑞 , … , 𝑝𝑐,𝑦)  to represent the yearly number of 𝑐  research among 𝑌 -year time, in which 

∑ 𝑝𝑐,𝑞 = 𝑃𝑐
𝑌
𝑞=1 . We then define 𝑃𝑐,𝑚

⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑚 ≤ 𝑌) based on three criteria, i.e., 𝑃𝑐,𝑚
⃗⃗ ⃗⃗ ⃗⃗  ⃗  have to (1) be a consecutive sub-

vector of  𝑃𝑐
⃗⃗  ⃗; (2) contain 𝜇 components (1 ≤ 𝜇 ≤ 𝑌); (3) cater to the following restrictions (1 < 𝑥1 < 𝑥2 … <

𝑥𝜇 ≤ 𝑌): 

{

𝑝𝑐,𝑥1
= 𝑝𝑐,𝑥2

= ⋯ = 𝑝𝑐,𝑥𝜇
= 0

𝑝𝑐,𝑥1−1 ≠ 0 (𝑥1 ≠ 1) 𝑂𝑅 𝑥1 = 1

𝑝𝑐,𝑥𝜇+1 ≠ 0 (𝑥𝜇 ≠ 𝑌) 𝑂𝑅 𝑥𝜇 = 𝑌

                      (4) 

          



        Then, the number of sub-vectors( 𝑃𝑐,𝑚
⃗⃗ ⃗⃗ ⃗⃗  ⃗) that meet the criteria in 𝑃𝑐

⃗⃗  ⃗ is denoted as 𝑏𝑐 (i.e., max(m) = 𝑏𝑐), 

which essentially means the count of intervals without 𝑐 research within the given 𝑌 years. On the other hand, 

we define the number of years without 𝑐 research (𝑝𝑐,𝑞 = 0) among the 𝑌-year time as 𝑆𝑌𝑐. Therefore, for a 

given drug 𝑑, the persistence of 𝑐 research, 𝑃𝑐,𝑑, is calculated by:  

𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 (𝑃𝑐 ,𝑑 ) = 𝑌 − 𝑆𝑌𝑐 +  𝜃𝑏𝑐                 (5) 

where 𝜃 ranges in the interval (0,1) and is a fit parameter for this model. 𝑃𝑐,𝑑 ∈ (1, 𝑌] and each category of 

research of a drug can only have one value of 𝑃𝑐,𝑑. 

        Stability of research (STc,d) of a specific category of research 𝑐 in the studies of a given drug 𝑑 among 𝑌-

year time is defined as: 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑆𝑇𝑐,𝑑) = 1 −
∑ |𝑝𝑐,𝑞+1 − 𝑝𝑐,𝑞|

𝑌−1
𝑞=1

(𝑌 − 1) × [max(𝑝𝑐,𝑞) + 1]
               (6) 

where the value of 𝑆𝑇𝑐,𝑑 ranges in [
1

ma x(𝑝𝑐,𝑞)
, 1]. Specifically, if the yearly number of 𝑐 research in the studies 

of drug 𝑑 is a consistent number, then the value of 𝑆𝑇𝑐,𝑑 equals to 1; while, when the year number alternate 

between max(𝑝𝑐,𝑞) for one year and zero the next year, the value of 𝑆𝑇𝑐,𝑑 will equal to 
1

max(𝑝𝑐,𝑞)
.   

3.3. Measuring the result of translation for a drug 

The translation of a drug is a reiterative and continuous process (Seyhan, 2019). Many basic drug discoveries, 

such as captopril, aspirin and metformin (Spector et al., 2018), have been successfully translated to more than 

one human diseases. Hence, in this paper, we propose an indicator (i.e., translation intensity) to quantify the 

translation result of the whole research process of a drug, not limited to the first translation.    

        Translation Intensity (TId) measures the intensity to translate for the research of a drug. For a given drug 

𝑑 with 𝑁 related articles in PubMed during the period of Y years, we employ the approximate potential to 

translate (𝐴𝑃𝑇), a machine-learning based indicator that measures the probability for an article to be cited in 

later clinical trials or guidelines (Hutchins et al., 2019), to quantify the translation intensity of each article related 

to the drug 𝑑 . The APT of each article in PubMed can be freely obtained from the iCite website 

(https://icite.od.nih.gov/api) hosted by the NIH. Thus, the translation intensity of the drug 𝑑, 𝑇𝐼𝑑, is expressed 

as: 



𝑇𝐼𝑑 =
∑ 𝐴𝑃𝑇𝑎

𝑁
𝑎=1

𝑌
                (7) 

3.4 Pattern analysis 

In this paper, we investigate the interdisciplinarity in drug research from the translational science perspective. 

Using 18 FDA approved drugs as research proxies, we first examine the first years of different kinds of research, 

the translation lag and the distribution of different kinds of research mapped onto the Triangle of Biomedicine 

from a bird’s eye. Then, with the indicators proposed in this paper, we conduct descriptive analysis on the 

distribution patterns of the interdisciplinary characteristics of drug research, including the diversity of research, 

the symmetry of research, the persistence of research and the stability of research. We also describe the 

distribution of the translation intensity of the 18 drugs. The differences in these indicators are compared between 

all drugs, the first-in-class and the follow-on drugs as well as the 6 drug categories. Finally, we employ both the 

Pearson and Spearman correlation analysis to analyze the relationships between the translation intensity of drug 

and the interdisciplinary characteristics of drug research. 

4. Results 

4.1. overview  

The median of the translation lags (Contopoulos-Ioannidis et al., 2008) for the 18 drugs from the earliest 

PubMed article or patent to their first FDA approval is 14 years (interquartile range, 7 to 17 years), with 

essentially no difference between the first-in-class drugs and the follow-on drugs. In fact, the actual translation 

lag could be longer because of technical protection and trade secrets by pharmaceutical companies. For example, 

captopril was originally synthesized in 1975, but until 1977, it was first awarded patent; and until 1978, the first 

article on captopril was recorded in the PubMed. This indicates the long length of time to translate basic 

discoveries into clinical applications of drugs, which confirms the findings of (Spector et al., 2018) and (Weber, 

2013).  

        Figure 3 shows the first research of different categories, the first patents and the first FDA approvals along 

the timelines of the 18 drugs, which reveals three important findings. First, in drug research, intra-disciplinary 

research (e.g., AA and HH) occurred much earlier than interdisciplinary research involving both basic science 



and clinical science, such as AH, CH or ACH. Frequently, multidisciplinary research (ACH) appeared later than 

the first FDA approval of the drug, for examples, the beta blockers, the triptans and the NRTIs. Second, the 

sequences of first research in the timelines vary according to drugs. For instance, the first CC research of three 

triptans appeared at the last place of their timelines, while that of lamivudine ranked the first place. The 

differences among categories are larger than these of drugs in the same drug category. These differences in the 

structures of research among drugs may be caused by the intellectual structure and research progress of different 

drugs. Third, there is no significant difference in patterns between the first-in-class drugs and the follow-on drug.   

 

 

Figure 3.  The first research of different categories, the first patents and the first FDA approvals mapped onto the timelines of the 

18 drugs. 

 

        In Figure 4 and Figure 5, we mapped different categories of research of the 18 drugs during 1950-2018 

from the perspective of translational science using the Triangle of Biomedicine originally proposed by Weber 

(2013) and modified by Hutchins et al. (2019), in which the three dimensions (Animal, Cell/molecular, and 



Human) were scored into a Cartesian coordinate system and the research (articles) were represented by circles. 

The colors filled in circles vary according to the categories of research; the size of circles can reflect the number 

of studies (articles) sharing the same coordinate; and the location of a circle can indicate the A-C-H composition 

of the research of the drug. More details on the Triangle of Biomedicine can be found in (Hutchins et al., 2019; 

Weber, 2013). 

 

 
Figure 4. Different categories of research of ACE inhibitors, Beta blockers and PPIs mapped onto the Triangle of Biomedicine 

during the period of 1950-2018. 

 

        We note several general patterns when observing the distribution of research mapped onto the Triangle of 

Biomedicine in Figure 4 and Figure 5. First, for intra-disciplinary research, the total amount of HH research, 

whose mean percentage in all 18 drugs is 49.74% (interquartile range, 38.7% to 56.6%), possesses an absolute 

advantage over that of AA and CC research in all drugs. Nevertheless, knowledge discovered in basic science 

typically did not directly flows into human trials (Narin et al., 1976; Weber, 2013), which means discoveries in 

fundamental research was not successfully translated into clinical applications. Second, the total number of 



interdisciplinary research, especially for the research involving both basic science and clinical science (e.g., 

ACH), are much less than the intra-disciplinary research in drug research. Specifically, the total number of ACH 

research has been always ranking the last place for all drugs, and that of AH research is a clear second to the last. 

Besides, we also find that A and C are dominated in ACH research for all drugs when observing the positions of 

ACH research in the triangle.  

 

 
Figure 5. Different categories of research of Statins, Triptans and NRTIs mapped onto the Triangle of Biomedicine during the 

period of 1950-2018. 

 

        Third, the numbers of different categories of research of the first-in-class drugs are much larger than those 

of the follow-on drugs with the same drug category. This could be because the follow-on drugs “stand on the 

shoulders” of the first-in-class drugs and share progresses unveiled in the previous research of the first-in-class 

drugs. In addition, we can also find that the distributions of research for the first-in-class drugs are much more 

diverse. 



         The aforementioned observations raise questions about the relationships between the interdisciplinary 

characteristics of research and the translational research of drugs. For example, multidisciplinary research 

involving both basic science and clinical science could play a role in translational research for drugs through 

interdisciplinary ideas, resource sharing, science communication, talent training. Therefore, in the following 

sections, we further quantified the diversity, the symmetry, the persistence and the stability of research for drugs 

from the perspective of translational science, and we also examined the relationships between these four 

indicators with the translation intensity of the 18 drugs. 

4.2. Results of descriptive analysis  

Diversity of research 

To explore how interdisciplinarity vary in drug research, we employed “diversity of research” (Dd) as a measure 

of the variability, as described in the methodology section. As shown in Figure 6, the red bars denote the diversity 

of research observed in the 18 drugs, with the grey bars as the reference when the category of research is ignored 

(i.e., 𝜔𝑐𝑖  constantly equals to 1). We can make three observations. First, the diversity of research (Dd) varies 

according to drugs (mean, 4.33; and interquartile range, from 3.32 to 5.32). Specifically, the Dd of propranolol 

(5.85) is highest among these 18 drugs, captopril (5.80) is a clear second, and moexipril (2.14) ranks at the last 

place. Second, the diversity of research (Dd) has a relative strong correlation with the drug category. The mean 

value of Dd of Beta blockers (5.25) is much higher than Triptans (3.10). Third, the Dd of the first-in-class drugs 

possess a significant advantage over the follow-on drugs across all six categories of drugs, confirming that the 

structures of research of the first-in-class drugs are much diverse than the follow-on drugs. Besides, all the 

deviations from the reference of the Dd for all drugs are positive (the green arrows), indicating that 

interdisciplinary research contributes to the increase of diversity of drug research. 

 



 

Figure 6. Diversity of research of the 18 drugs. Note, in each subgraph, the first drug is first-in-class drug and the following two 

are follow-on drugs. The grey bars are baselines when the category of research is ignored. 

 

Symmetry of research 

We examined the irregularity of research in drug research in terms of “symmetry of research” (Sd). As illustrated 

in Figure 7, we can find the corresponding value of Sd. The blue line represents the curve obtained by linking 

the values denoting the average symmetry of research of each drug, and the red one is the reference line when 

the category of research is ignored. Overall, the mean value of Sd is 0.64 (interquartile range, from 0.45 to 0.76), 

indicating a lack of evenness in drug research, especially for moexipril (0.32) and frovatriptan (0.43). Meanwhile, 

the evenness of different categories of research in the first-in-class drugs is significantly better than the follow-

on drugs in the same drug category by the value of Sd. However, PPIs is an exception, in which the Sd of 

pantoprazole (0.57) is slightly larger than omeprazole (0.54). Moreover, the values of Sd of all 18 drugs show a 

clear advantage over the references represented by the orange lines, although the values of Sd vary according to 

drugs. Similarly, this demonstrates that interdisciplinary research can enhance the evenness of drug research. 

 



 
Figure 7. Symmetry of research of the 18 drugs. Note, in each subgraph, the first drug is first-in-class drug and the following two 

are follow-on drugs. The orange lines are baselines when the category of research is ignored. 

 

Persistence and stability of research 

In this section, we visualized the persistence and the stability of different categories of research for the 18 drugs 

using heatmaps. As shown in Figure 8a, the persistence of research of a given drug d is represented by a line 

comprised of seven cells, whose values (c, Pc,d) denote the value of the persistence (Pc,d) of the c research of the 

drug d. In our results, the degree of persistence for drugs is broad, ranging from 1.5 to 56. The colors of cells 

reflect the degree of persistence of research (Pc,d), that is, the higher the degree of Pc,d is, the color is redder; or, 

the color will be bluer.  

        The visualization of persistence of drug research in Figure 8a led to several interesting findings. Overall, c 

the research of the first-in-class drugs, whose names are in bold, is evidently persistent than that of the follow-

on drugs. In particular, for ACE inhibitors, the mean persistence of seven categories of research of the first-in-

class drug captopril is 40.29, while those of the follow-on drugs are much lower, for example, 23.14 for enalopril 

and 10 for moexipril. As expected, the values of the persistence of research within disciplines (i.e., AA, CC and 

HH) are significantly higher than the research involving both basic science and clinical science (i.e., AH, CH 

and ACH). Furthermore, in research within disciplines, the persistence of AA or HH research has an advantage 

over that of CC research. This indicates that animal trials and human trials are important for the success of 

translation for drugs, although they are difficult to succeed and time-consuming. In addition, it can be found that, 



in most cases, the persistence of ACH research is the lowest compared to other six categories of research of the 

same drug.  

 

 
Figure 8. Persistence and stability of different categories of research for the 18 drugs. a. Heatmap of persistence of different 

categories of research for the 18 drugs. b. Heatmap of stability of different categories of research for the 18 drugs. Note, the name 

of the first-in-class drugs are in bold to distinguish from the follow-on drugs. 

 

        Similarly, as illustrated in Figure 8b, the stability of research of a given drug d is represented by a line 

comprised of seven cells, whose values (c, STc,d) denote the value of stability (STc,d) of the c research of the drug 

d. The heatmap shows that the values of STc,d for the 18 drugs ranges from 0.68 to 1. The colors of cells represent 

the degree of the stability of research. 

        Overall, the values of STc,d of research within disciplines (i.e., AA, CC and HH) possess an absolute 

advantage over the research involving both basic science and clinical science (i.e., AH, CH, and ACH). However, 

there are some exceptions, such as the stability of AA research of lansoprazole is the lowest (0.68), while that of 

CH research of frovatriptan is the highest (1). This could because that the basic issues on these two follow-on 

drugs have been well researched in the corresponding first-in-class drugs. Like the persistence of research, the 

stability of ACH research evidently ranks at the last place, and that of HH research shows the absolute advantage. 

However, there is no essential difference observed in the stability of research between the first-in-class drugs 

and the follow-on drugs.  

Translation Intensity 



We quantified the translation intensity (TId) by using the normalized sum of probabilities for all articles in the 

research of a drug d to be cited in later clinical trials or guidelines. The results are shown in Figure 9, in which 

the TId of the first-in-class drugs is represented by the red bars for distinguishing from the follow-on drugs (in 

black). The scale of translation intensity of the 18 drugs (mean, 60.2; interquartile range, from 19.64 to 91.67) 

is also broad, ranging from 0.86 to 149.19. 

 

 
Figure 9. Translation intensity of the 18 drugs. Note, FICD [first-in-class drug] and FOD [follow-on drug]. 

 

        Overall, the translation intensity of the 18 drugs varies according to drugs. Even for the drugs belonging to 

the same categories, there are significant differences between them. For example, the values of the translation 

intensity (TId) of ACE inhibitors are 72.63 for captopril, 67.41 for enalopril and only 0.86 for moexipril, 

respectively. Meanwhile, one can observe that, the first-in-class drugs (in red) usually have higher translation 

intensity values that surpassed the average level in most cases. This indicates that the research of the first-in-

class drugs are more likely to be cited in clinical trials and guidelines, and they are easier translated into clinical 

applications.  



         The aforementioned findings we observed in the descriptive analysis drive us to ask a question: what are 

the relationships between the translation intensity and the interdisciplinary characteristics of (diversity, 

symmetry, persistence and stability) of drug research?    

4.3. Relationships between the translation intensity and the interdisciplinary characteristics of drug 

research  

In this section, the translation intensity of drugs was measured with the characteristics of interdisciplinarity in 

drug research. First, in terms of diversity of research (Dd), as presented in Figure 10a and Table 2, the result of 

correlation analysis shows a significant positive relationship between the diversity of research (Dd) and the 

translation intensity (TId): rPearson = 0.719, p = 0.000; rSpearman = 0.764, p = 0.000.  

 

 
Figure 10. The relationship between the translation intensity and the diversity of research (a) or symmetry of research (b) in drug 

research.  

 

Table 2. Correlation analysis of the translation intensity and the diversity (symmetry) of research in drug research. 

 Pearson p Spearman p 

Diversity 0.719 (***) 0.000 0.777 (***) 0.000  

Symmetry 0.677(**) 0.001 0.753 (**) 0.001 

(Note: P < 0.05, *; P < 0.01, **; P < 0.001, ***; two-tailed.) 

    

        Examining Figure 10b, we can observe that the value of translation intensity of drugs increases as the 

symmetry of research in drug research increases, indicating that there is also a relative strong positive association 



between the translation intensity (TId) and the symmetry of research (Sd) in drug research: rPearson = 0.677, p = 

0.001; rSpearman = 0.753, p = 0.001 (Table 2).   

        We then examined the translation intensity of drugs with the persistence (Pc,d) of seven different categories 

of drug research. As shown in Figure 11 and Table 3, there are significant positive relationships between the 

translation intensity (TId) and the Pc,d of all seven kinds of drug research. As expected, the strength of the positive 

relationship between the translation intensity and the persistence of the ACH research is quite impressive: rPearson 

= 0.807, p = 4.13*10-5; rSpearman = 0.792, p = 0. 000. Notably, the persistence of the CC research has a significant 

correlation with the translation intensity of drugs, with Pearson correlation coefficient high at 0.818 (p = 0.000) 

and Spearman correlation coefficient high at 0.835 (p = 5.7*10-5). Moreover, the relationships between the 

translation intensity of drugs and the persistence of interdisciplinary research (AC, AH, CH and ACH) are 

stronger than those between the translation intensity of drugs and the persistence of research within disciplines 

(AA, CC and HH). In addition, the persistence of research involving both basic science and clinical science (AH, 

CH and ACH) has a stronger relationship with the translation intensity than the interdisciplinary research within 

basic science (AC). Eventually, when comparing the results in Table 2 and Table 3, we find that the persistence 

of interdisciplinary research (AC, AH, CH and ACH) has stronger correlation with the translation intensity than 

the diversity and the symmetry of research. 

 

 
Figure 11. The relationship between the translation intensity of drugs and the persistence of drug research. 
 



Table 3. Correlation analysis of the translation intensity of drugs and the persistence (Stability) of drug research. 

 Persistence   Stability 

 Pearson P Spearman P  Pearson P Spearman P 

AA 0.663 (**) 0.003 0.691 (**) 0.000  0.465 0.316 0.543 0.071 

CC 0.818 (***) 0.000 0.835 (***) 5.7*10-5  0.246 0.137 0.193 0.053 

HH 0.637 (**) 0.002 0.666 (**) 0.002  0.497 0.057 0.377  0.130 

AC 0.715 (**) 0.001 0.729 (**) 0.001  0.241 0.400 0.160 0.029 

AH 0.738 (**) 0.001 0.752 (***) 0.000  0273 0.278 0.242 0.598 

CH 0.728 (**) 0.001 0.714 (**) 0.001  0.437 0.196 0.433 0.812 

ACH 0.807 (***) 4.13*10-5 0.792 (***) 0.000  0.163 0.821 0.097 0.222 

(Note: P < 0.05, *; P < 0.01, **; P < 0.001, ***; two-tailed.) 

 

        The relationships between the translation intensity of drugs and the stability (STc,d) of seven different kinds 

of drug research were finally explored, noted in Figure 12 and Table 3. We can see that, although there are trends 

for positive relationships between the translation intensity and the stability of research, these relationships are 

not statistically significant.  

 

 
Figure 12. The relationship between the translation intensity of drugs and the stability of drug research. 

 

5. Discussion and conclusion 

Translational pharmacology is today playing an important role in drug development by linking basic discoveries 

to clinical needs (Dolgos et al., 2016; Kumar & Sattigeri, 2018). In this paper, we analyze the interdisciplinarity 

in drug research from a novel bibliometric perspective, i.e., the translational science perspective. 18 FDA 

approved drugs belonging to 6 categories are used as the research proxies. Specifically, we propose four 

bibliometric indicators (i.e., the Diversity of Research, the Symmetry of Research, the Persistence of Research 



and the Stability of Research) for characterizing interdisciplinarity in drug research at both the macro and the 

micro levels. We also design a bibliometric indicator (i.e., Translation Intensity) for quantifying the degree of 

clinical translation for drugs. We analyze the relationships between the interdisciplinary characteristics of drug 

research and the translation intensity of drugs. 

We find that it takes a long length of time to translate a laboratory discovery for human disease (Figure 3). 

Interdisciplinary research involving both basic science and clinical science have been suggested in many 

previous studies to accelerate this process ( Banner et al., 2019; Kumar & Sattigeri, 2018; Seyhan, 2019); 

however, they (especially ACH research) are still rare in the research of all the 18 drugs (Figure 4 and 5) and 

they generally occurred later than intra-disciplinary research in the timelines (Figure 3). Furthermore, the 

descriptive analysis indicates that the interdisciplinary characteristics of drug research and the translation 

intensity of drugs both vary and show different patterns according to drugs (Figure 6, 7, 8, and 9), raising the 

question about the relationships between these interdisciplinary characteristics of drug research and the 

translation intensity of drugs. Correlation analyses show that several interdisciplinary characteristics of drug 

research, such as the diversity of research and the persistence of ACH research, have significantly influenced 

the translation of drugs.   

Actually, several research in scientometrics have demonstrated that the importance of the diversity to 

radical innovations, academic impact, and the success of scientific career (Amjad et al., 2017; Gil-Garcia et al., 

2019; Xu et al., 2015). High diverse research and collaborations can promote translational research because of 

more financial support (Seyhan, 2019) as well as talents who come from various cultures, backgrounds and 

experiences (Xu et al., 2015). We find that drugs whose research have higher diversity and symmetry are usually 

those more successful drugs (i.e., the first-in-class drugs) with higher values of translational intensity, such as 

propranolol and captopril, indicating that the diversity and symmetry of research have contributed to enhance 

the translation of basic discoveries in drug research. 

        Another factor that has influenced the translation intensity of drug is the persistence of research. The 

persistence of all kinds of research has positive correlations with the translation intensity of drugs, and the 

relationship between the CC research and the translation intensity is very impressive. These findings verify that 

the old saying “success lies in perseverance” also applies to the field of drug research. The persistent efforts in 



basic research at cell/molecular level is significant for the translation of drugs. Meanwhile, the persistence of 

interdisciplinary research, especially those involving both basic and clinical science, have stronger relationships 

with the translation intensity of drugs than those of intra-disciplinary research. This can be explained by the 

finding of (Bu, Ding, Liang, et al., 2018; Bu, Ding, Xu, et al., 2018) that interdisciplinary research needs a high 

degree of persistence to generate high-impact outputs, while the intra-disciplinary research requires only a 

moderate degree of persistence.   

         We find that the stability of research did not show a significant influence on the translation intensity of 

drugs. Compared with the persistence of research, the stability of research puts more emphasis on the changes 

of the number of research over time in drug research (Bu, Murray, Ding, et al., 2018; Ioannidis et al., 2014). This 

finding indicates that the persistence of research means a lot to the translation intensity of drugs, while the 

amount of research and its changes over time do not. 

        This paper has several implications. Methodologically, this study showcases how to investigate the 

interdisciplinarity in drug research from the perspective of translational science, which provides a novel 

bibliometric perspective for the research community and could be applied to other domains. Meanwhile, there 

are significant difference detected between breakthroughs (the first-in-class drugs) and the follow-on drugs by 

the 5 indicators proposed in this paper, including the 4 bibliometric indicators for characterizing 

interdisciplinarity of drug research and the translation intensity of drugs. This demonstrates that these 5 

indicators could be valuable for pharmaceutical companies, policymakers and researchers to predict the success 

of drugs. In addition, the indicators proposed in this paper could be adopted and duplicated to other objects, such 

as medical devices, vaccines and human genes. 

        There are several limitations of this study. First, our analysis considers only seven kinds of research in drug 

research from the translation perspective, which ignores the research at other levels, such as research involving 

the industry, the academia, the funding agencies and the government departments. The landscape of research 

among these different agencies could have influenced the translation of drugs. Second, the data used in our 

analysis is limited to the PubMed articles. Some other data source on drug research and development, such as 

patents, clinical trials, government files and web pages, in which interdisciplinary information were recorded, 

should be included. In our future work, we will integrate different categories of data sources for investigating 



multiple attributes of drug research and take into consideration other types of research at other levels (e.g., author, 

institution and biomedical entities). In addition, these findings in this paper mainly based on the 18 FDA 

approved drugs; although these drugs belong to six different drug categories used for different diseases, we don’t 

know whether they can be generalized to all drugs. In future work, we will aim to test the proposed measures on 

other drugs to see whether generalized patterns exist in different translation processes. we also plan to use data 

driven methods and regression analysis on a large-scale drug-related dataset to understand the role of different 

kinds of research and their interdisciplinary characteristics in translating basic drug discoveries to therapies for 

human diseases. 
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