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Abstract

The paper presents a longitudinal analysis of the evolution of new physics
keywords co-occurrence patterns. For that, we explore the documents in-
dexed in the INSPIRE database from 1989 to 2018. Our purpose is to quan-
tify the knowledge structure of the fast-growing subfield of new physics. The
development of a novel approach to keywords co-occurrence analysis is the
main point of the paper. In contrast to traditional co-keyword network anal-
ysis, we investigate structures that unite physics concepts in different doc-
uments and bind different documents with the same physics concepts. We
consider the structures that reveal relationships among concepts as topologi-
cal and call them “physics senses”. Based on the notion of trajectory mutual
information, the paper offers clustering of physics senses, determines their
period of life, and constructs a classification of senses’ “authority”.

Keywords: Co-occurrence analysis, Keywords, New physics, INSPIRE

1. Introduction

Throughout the modern history of physics, high energy physics (or HEP
for convenience) has been and remains one of the main driving forces of
conceptual and methodological innovations. It is also a front-runner in the
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development of scientific tools for publication and communication. E.g., the
INSPIRE1 database is the leading publication platform indexing HEP publi-
cations (Hecker, 2017). All these factors make HEP an interesting subject of
study inside the science of science approach (Fortunato et al., 2018) (here-
after, abbreviated as SciSci). One of the principal objectives of SciSci is
to comprehend the emergence of new knowledge, and HEP can provide a
first-choice object of research in this regard.

The somewhat bureaucratic term of “the Standard Model” tradition-
ally defines the monumental achievement of the twentieth-century HEP—
the product of efforts by thousands of researchers spanning over 50 years
(Langacker, 2017). The Standard Model constitutes a contemporary view
of particle physics that combines theoretical and experimental results of re-
search into the properties and interactions of particles. With no deviations
from the Standard Model discovered to date, it remains on the cutting edge
of our experimentally proven understanding of the fundamental laws of the
microworld. However, there has to be a new physics beyond the Standard
Model—something that researchers have been working to uncover for decades
now. This smart term is used to describe the fundamental layer of the physics
reality at the core of the structure of the universe, destined to replace the
Standard Model as the leading theory.

New physics is not a specific theory, but rather a collective term for
everything that is at variance with the Standard Model (Ghosh et al., 2020).
Judging by abundant circumstantial evidence, new physics does exist but
remains hard to define. For that reason, a multitude of various methods
have been applied in search of its manifestations. Spanning decades, these
concentrated and diverse experimental and theoretical quests for new physics
make it into a unique testing ground for the development of new methods of
the quantitative study of science.

This paper presents a longitudinal analysis of the evolution of new physics
keywords co-occurrence patterns based on the documents indexed in the IN-
SPIRE database from 1989 to 2018. We consider keywords co-occurrence
structure as an operationalization of the new physics knowledge structure.
These patterns reveal the relationships between new physics knowledge en-
tities.

Our purpose is to quantify the knowledge structure of the fast-growing

1https://inspirehep.net
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new physics’ subfield. The issue addressed in the paper is the development
of a novel approach to keywords co-occurrence analysis.

The remainder of this paper is organized as follows. Section 2 refers
to related studies on a given topic. Section 3 presents the methodological
framework. Section 4 explains the data used in our analyses. Section 5
reports our main results and generalizes the findings of the paper. Finally,
in Section 6, we draw the conclusions.

2. Background

Quantitative research on physics, physicists and the discourse of physics
has by now become a well-established tradition (Sinatra et al., 2015; Colavizza and Franceschet,
2016; Battiston et al., 2019; Sun and Latora, 2020). It allows for a shift
from descriptive analysis and general arguments to more keen and detailed
research on the evolution of physics as a scientific field (Liu et al., 2019).
The availability of extensive publication databases and advanced data pro-
cessing tools open the door to new interdisciplinary research opportuni-
ties. Take, e.g., the study of the evolution of research interests or physics
subject areas (Jia et al., 2017; Aleta et al., 2019; Zeng et al., 2019; Coccia,
2020), physics research institutions (Katchanov et al., 2016), careers path-
ways (Deville et al., 2014; Petersen, 2018; Xing et al., 2019), or strategies
and talent of physicists (Pluchino et al., 2019; Tripodi et al., 2020). Due
to its nature, physics has its own information environment, and researchers
have access not only to general commercial databases like Web of Science
or Scopus but also to specific physics publications repositories like arXiv,
INSPIRE, or APS. Thanks to the openness of these specialized data sources,
researchers may use the full range of quantitative methods to study physics.

Quantitative analysis of physics concepts provides a good opportunity
to explore the relations between external classifications of publications and
the outcomes of community detection algorithms (Palchykov et al., 2016).
The authors demonstrated that classifications made by authors had some
discrepancies from automatically retrieved communities. These differences
may carry important information about relations between physics fields that
the external observer does not realize. M. Krenn and A. Zeilinger used a
large corpus of publications covering about a hundred years to train a neural
network and try to predict future trends in physics (Krenn and Zeilinger,
2020). A large body of literature opens the way to interesting studies of
cognitive aspects of science. Thus, S. Milojević compared the growth of
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scientific literature and the lexical diversity of research articles titles. She
found that periods of fast cognitive growth did not coincide with the rise of
publication growth (Milojević, 2015).

Recent advances in text analysis methods have facilitated detailed quan-
titative research on physics concepts. Thus, M. Herrera, using publications
and PACS categories, built physics fields and traced their evolution for a
period of 20 years (Herrera et al., 2010). M. Fontana et al. (Fontana et al.,
2020) analyzed more than 230 thousand articles published in 8 journals of the
American Physical Society and 2.4 million citations to measure novelty and
interdisciplinarity. R.K. Pan et al. studied the evolution of interdisciplinary
research in physics (Pan et al., 2012). They constructed a network of publi-
cations and showed that interactions between physics fields were increasing,
and the area of interdisciplinary research was growing. Using publications
data spanning more than a century, M. Perc explored patterns and trends
of physics terminology. The analysis revealed that the evolution of scientific
paradigms in physics was governed by principles of self-organization (Perc,
2013).

Machine learning methods gained popularity in SciSci in recent years
(Xu et al., 2020a). Thus, K. McKeown et al. (McKeown et al., 2016) pre-
sented a system that predicts the impact of a physics concept; M. Chi-
nazzi et al. (Chinazzi et al., 2019) mapped research space in physics us-
ing the American Physical Society publications database; A. Palmucci et al.
(Palmucci et al., 2020) suggested a representation for the relative movements
of physics’ domains in a multi-dimensional space based on the PACS codes.

Network analysis has a crucial part to play in the SciSci (Zeng et al.,
2017) these days. Given its universal scope, network analysis allows the
study of various aspects of physics as a scientific field. In recent years, a
wealth of research has been produced on co-authorship networks in physics
(Heiberger and Wieczorek, 2016; Silva et al., 2019), co-citation networks (Zhang et al.,
2013; Renoust et al., 2017; de Arruda et al., 2018), and keyword co-occurrence
networks (Palchykov et al., 2021; You et al., 2021; Karimi et al., 2021). In
the past two decades, the application of co-keyword analysis, first used by
Callon et al. (Callon et al., 1983), was both far-ranging and far-reaching, cov-
ering relevant aspects of research topic networks (Cobo et al., 2011; Yi and Choi,
2012; Leydesdorff and Nerghes, 2017; Radhakrishnan et al., 2017; Wen et al.,
2017; Behrouzi et al., 2020; Wang et al., 2021).

When studying co-authorship networks, co-citation or co-keyword net-
works, graph theory is often perceived as a mathematical framework under-
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lying the SciSci (Mingers and Leydesdorff, 2015). At the same time, quanti-
tative science studies are evolving, and so is their mathematical apparatus.
In a number of papers, a depiction produced with customary network tools
is supplemented with that created with tools from applied topology. E.g.,
(Salnikov et al., 2018; Christianson et al., 2020) use a simplicial complex ap-
proach to word co-occurrences in order to explore the conceptual landscape of
mathematical publications. A. Patania et al. (Patania et al., 2017) develop
simplicial descriptions of publications and persistent homology to track the
growth and development of collaborations based on co-authorship data.

3. Methods

3.1. Problem formulation

We apply the co-word analysis technique in order to map the structural
dynamics of the “new physics” subfield. This analysis has proven effective
for the study of relationships and interrelationships among scientific concepts
(van Raan, 2019). The basic principle of co-word analysis is to characterize
the underlying texts through the use of co-occurrence networks consisting of
nodes that represent the keywords and edges between them (Callon et al.,
1991).

Physics knowledge is a complex system, at its basic level consisting of
physics concepts and their interactions. From the SciSci point of view, the
complexity of the physics knowledge system largely results from the vari-
ety of interactions between concepts. The network approach focuses on the
analysis of pairwise relationships between concepts (terms, keywords), in-
variably reducing multidimensional structures and losing information. Nev-
ertheless, the recent decades saw a great number of intellectual structures
described successfully as networks where co-occuring pairs of concepts are
connected by links (Li et al., 2016; Wen et al., 2017; Radhakrishnan et al.,
2017; Lozano et al., 2019). These achievements are prompting the quantita-
tive science studies to develop new methods of analysis (Cheng et al., 2020;
Joslyn et al., 2021).

The scientometrics community is in agreement that system of well-separa-
ted and well-connected clusters representing keywords in a co-occurrence net-
work can ensure an adequate description of a research discourse (van Eck and Waltman,
2014; Hosseini et al., 2021). When such network representation of scientific
discourse is assumed, a strong assumption is made: the overall interplay
among the concepts is suggested to be completely described by pairwise
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co-occurrence data. In reality, however, the constraints in a co-occurrence
network may prove to be fairly weak, and so the identification of the true
structure of research themes may require that more complex interactions are
taken into account that help reveal more interplay among physics concepts.
The problem of the context in which a keyword co-occurrence network is
generated was first described in (Bornmann et al., 2018) and was studied in
more detail in (Cheng et al., 2020). However, the proposed heuristic solu-
tions concern the use a citation network and are beyond the scope of keyword
co-occurrence analysis.

Research communication has a distinguishing feature, which is that all
components of the system influence each other in a direct or indirect way.
Each scientific publication features several concepts simultaneously, and one
should not assume a priori that their interactions can be explained in terms
of dyads (see details in (Battiston et al., 2020)).

3.2. Physics sense: definition

The sense of a physics concept cannot be fully explained by its formal
definition. Its understanding is greatly improved by a series of examples
illustrating its use in documents. For working physicists, these examples
represent both motivation and the sense of a concept. It is for this reason
that exploring the co-occurrence of physics concepts can prove to be a sig-
nificant element in the study of the cognitive structure of physics. The sense
helps to reveal the essence of a physics concept in the research context. A
physics sense determines the place of the concept in scientific communication.
The sense introduces the “whole—part” relationship, making the concept es-
sential as part of a whole which is the system of a physics discourse.

Specification of documents that mention a physics concept is imperative
for the understanding of its physics sense. We consider a physics sense in
the framework of an “information field”. The concept of the field emerges
naturally as one analyzes the forming of a physics sense within a system
of relationships between physics concepts. Information field is a holistic
structure that describes both direct and indirect mutual influences of physics
concepts in documents. In this paper, the intuitive viewpoint is that an
information field that determines a physics sense is a topological space of
physics concepts and their properties.

Following the generally accepted definition (see, e.g., (Klement, 2001;
Deleuze, 1993)), one understands physics sense as a proposition including a
set of physics concepts. The intellectual value of a concept is the result of its
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position in a complex network of semantic relations. The study of physics
discourse in its entirety involves a structural comparison of the concepts. Our
methodology supposes that to study physics concepts, one needs to construct
statistical relations between them. This type of relations we call “sense”.

3            

3 

3 

2

2

1

(A) (B) (C)

Orbit �A Support XA Sense A

Figure 1: Construction of physics sense. Part A shows how the documents are related
together in the orbit OA of the concept xα0 ≡ c1 (marked with a dark circle). Part B
depicts the support XA of a sense A. Part C displays the sense A.

For our further reasoning we will need auxiliary concepts. Let us refer to
the set of all documents that mention the physics concept xα0 as the orbit OA

of that concept. We will understand the spectrum SA of physics concept xα0

as a set of physics concepts xα0, xα1, . . . , xαk corresponding to the orbit OA.
(Clearly, xβ0 ∈ SA ⇔ xα0 ∈ SB, etc.) Let XA (with or without indices) be
a sample of M physics concepts that occur in the orbit OA with frequencies
mα0, mα1, . . . , mαk, such that

∑
αmα = M .

Let σA be a configuration of the set XA = {xα}α∈A. The configuration
σA can be represented in the form

(∀xα ∈ SA ⊂ OA) : σA =

(
xα0 xα1 . . . xαk

mα0 mα1 . . . mαk

)
. (1)

The set XA will be called hereafter the support of a physics sense A (see
Fig. 1). A topological structure on the support XA is a collection τA of
subsets of XA which includes the empty set ∅ and the whole support XA

and which is such that: a) the intersection of any number of elements of τA
belongs to τA and b) the union of any set of elements of τA belongs to τA
(Singh, 2019). In our case, the collection of all subsets of XA is a topology
on XA, and τA is called the discrete topology.
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One can think of SA as having been obtained by “identifying” each pair of
equivalent elements of the support XA. Hence, the surjective map π : XA →
SA carries each point of the support XA to the equivalence class ω containing
it. In the quotient topology induced by π, the set Ω such that Ω = ∪α∈Xωα

is called a quotient space of XA (Singh, 2019). For further details, we refer
to Appendix A.

In this paper, a physics sense A of concept xα0 is a finite topological
space (XA, τA)—a support XA with a discrete topological structure τA. By
putting it this way, we symbolically equate the space (XA, τA) with its focal
point—the concept xα0. The main point here is to realize that the topological
structure τA is the elementary property of physics sense as a whole. It means
this structure refers to the physics concepts collection XA, but not to its
parts or connections between these parts.

Knowing the configuration σA Eq.(1) of the physics sense A enables us
to define a state function h(A) = −

∑
p(ω) ln p(ω) =

∑
α p(α) ln p(α) (see

Eq. (A.4))—the topological entropy, where p(α) is the probability of the
realization of the physics concept xα in the orbit OA. The interpretation
of entropy h(A) is that it is a measure of the number of arrangements the
physics concepts could be in.

3.3. Basic quantities

3.3.1. Dimension

The quantity of dimension dim(A) Eq. (A.1) is the number of the physics
concepts in the spectrum SA. It is possible to interpret a dimension as a
number of degrees of freedom of the information field of a physics sense. A
more straightforward interpretation of a dimension is that dim constitutes
the number of information channels that connect a single sense with others.

3.3.2. Trajectory mutual information

Thus, we attempted to describe the sense of a physics concept through
a configuration of the information field where the concept functions in the
discourse. In order to characterize the thematic structure of physics dis-
course itself, we need to examine the configuration of the field induced by
all relevant physics senses. Since we have conceptualized a physics sense as
a topological space of concepts within a single orbit, it is only natural to
consider the interaction of physics senses as a topological space constructed
on the intersection of respective orbits. If the orbits of physics concepts in-
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tersect, it indicates that the concepts share a common context and we can
evaluate its significance using the concept of topological entropy.

Let us consider physics senses A and B, i.e., topological spaces (XA, τA)
and (XB, τB) with orbits OA and OB and spectra SA and SB so that xα0 ∈ SB

(and, respectively, xβ0 ∈ SA). On the intersection of orbits OA and OB as
well as spectra SA and SB, a topological space (XAB, τAB) is defined that
describes the interplay between the physics senses A and B. One can easily
define the support XAB = XA ∩XB

(OA ∩ OB) (∀xαβ ∈ SA ∩ SB) : XAB = {xαβ}αβ∈AB
, (2)

the discrete topology τAB on XAB, and the quotient space (ΩAB, ̟AB) as
shown in Appendix A.

We can relate the trajectory of the physics sense AT =
{
A1, A2, . . . ,Al

}
in

time T = {t} with the trajectories of all other physics senses {Bt
γ} from the

totality Γ \ {At}. Our goal here is to characterize information transmission
between senses’ trajectories via their path mutual information

µ
(
AT

)
=

∑

t∈T

dim(A)∑

γ=1

p(At,Bt
γ)(α, β) ln

p(At,Bt
γ)(α, β)

pAt(α)pBt
γ
(β)

, (3)

where p(A,B)(·) is the joint probability mass function of A and B, pA(·) and
pB(·) are the marginal probability mass function of A and B, respectively.
The quantity µ

(
AT

)
will be called the trajectory mutual information (TMI,

from now on) of physics sense A.
To derive a distribution of probabilities µ

(
AT

)
, we must characterize the

principle whereby out of the set of all possible quotient spaces {(ΩA, ̟A)}
(see Appendix A), we select those that are realized. The comparison of
quotient topological spaces we have drawn here allows for formulation of an
extreme principle for the changeability of a physics sense: from the given
state (ΩA, ̟A) the sense tends towards a state (ΩB, ̟B) with the maximum
value of P{B} (Eq. (A.3)). We now admit that the actual trajectory of the
physics sense represents a most probable trajectory. This is equivalent to the
transition to a physics sense with the maximum value of the TMI. It is easy
to derive the Fréchet extreme distribution for TMI.

The challenge facing us at this point is to approximate the probability
distribution function of µ

(
AT

)
. The quantity of TMI represents a sum total

of the information activity of a physics sense, understood as a sum of its own
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activity and that of the senses whose orbits intersect its own. We are dealing
here with values of the sums of the form

Zγ =

dim(A)∑

γ=1

ζγ =

dim(A)∑

γ=1

∑

t∈T

p(At,Bt
γ)(α, β) ln

p(At,Bt
γ)(α, β)

pAt(α)pBt
γ
(β)

,

such that µ
(
AT

)
= Zγ. Since we postulated that the true trajectory of

the physics sense A is corresponding to the maximum of µ
(
AT

)
, we must

consider the limit behavior of extremes

(d → ∞) (dim(A) → ∞) : Ẑdγ = max
1≤δ≤d

∑

γ

ζδγ . (4)

Let the variables (δ, γ ≥ 1) : ζδγ be mutually independent and have a com-
mon distribution F . We assume that F belongs to the class of subex-
ponential distributions (Foss et al., 2013): the convolution tail F∗F (u) is
equivalent to 2F (u) as u → ∞, where F (u) = 1 − F (u). Assume also
that F belongs to the class of distributions with regularly varying tails, i.e.,
F (u) ∼ u−aL(u), u → ∞, where a > 0 and L(u) is a slowly varying func-
tion (Bingham et al., 1987). This is not necessarily true, but it represents a
reasonably good approximation in a large number of subsystems of science
(Zeng et al., 2017). Under the conditions considered here, can be obtained

that the family of extremes similar to Ẑdγ has well-known Fréchet extreme
distribution P{Z ′ ≤ z} → exp(−z−a), 0 < a < 2 (Lebedev, 2005). It means,
among other things, that bigger TMI values are normally a result of individ-
ual senses having higher information activity rather than a combined activity
of a large number of senses.

3.4. Assistant quantities

3.4.1. Similarity

To derive similarity between (XA, τA) and (XB, τB), one should keep in
mind that the value Eq. (A.3) characterizes the probability of a particular
state of a physics sense. It follows that the similarity between physics senses
A and B will be given by

sAB = ln
p(A,B)(α, β)

pA(α)pB(β)
.

This expression is nothing but the point-wise mutual information.
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3.4.2. Normalized entropy

To suppress the dependence of the entropy h(A) on k in Eq. (A.4) and
keeping in the mind Eq. (A.1), we consider the normalized entropy hn(A)
defined as followed:

hn(A) =
h(A)

ln dim(A)
. (5)

3.4.3. Complexity

Following (López-Ruiz et al., 1995; Martin et al., 2006; Rosso et al., 2007),
we computed the values of the so-called statistical complexity

c(A) = hn(A)d(A), (6)

where the “disequilibrium” d(A), which measures the deviation of the prob-
ability distribution P{A} from uniform probability distribution, is defined
as

d(A) =

dim(A)∑

α=1

(
p(α)−

1

dim(A)

)2

.

By construction, the quantity d(A) vanishes for probability distributions
P{A} that correspond to absolute order and maximal randomness.

3.4.4. Transitivity

The fraction of pairs of physics senses that are themselves intersected
defines the sense’s transitivity tr(A) (Newman, 2018):

tr(A) =
# pairs of senses whose orbits intersect with OA

# pairs of senses
. (7)

The transitivity is an important quantity, which informs on the density of a
sense’s information field.

3.4.5. Citation rate

To construct the citation rate of the concepts, we used a three-year ci-
tation window and fractional counting. It means the citation rate of the
concept x of document y is a share of all other concepts of this document.
Thus the total concept citation rate is the sum of all its fractional citations
in all documents where it is used.
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4. Data

The publication data for this study comes from the INSPIRE database.
INSPIRE is a leading information system in HEP (Xu et al., 2020b) that pro-
vides open access to more than 1 million scientific publications. It continues
the SPIRES physics literature information system. The INSPIRE database
is the result of close collaboration between such institutes as CERN, DESY,
Fermilab, and SLAC. It brings together information from arXiv.org, NASA–
ADS, PDG, and other HEP publishers. In addition to documents, INSPIRE
integrates information about authors, institutes, journals, conferences, and
jobs in the field of HEP. This complex integrated system provides oppor-
tunities to analyze information processes in HEP from different points of
view. The INSPIRE system is of interest not only to physicists but also to
researchers in quantitative science studies (Zingg et al., 2020). Researchers
who have worked with INSPIRE datasets pointed out that the data is well-
curated and easily accessible (Jang and Ko, 2019; Strumia and Torre, 2019).

Another significant aspect of the INSPIRE information system is the
keywords that accompany documents. The keywords are automatically ex-
tracted with the help of regular expressions from full-text papers by the
BibClassify extraction algorithm2. This algorithm draws upon a controlled
vocabulary resulting from the HEP Index (HEPI). The HEPI thesaurus is
maintained by the German High Energy Physics Laboratory DESY since
1963. It is prepared by the subject specialists and updated occasionally.
The HEPI thesaurus is actively used by the principal HEP institutes and
information databases. The BibClassify algorithm extracts two types of key-
words: single keywords and composite keywords. Composite keywords are
combined with several single keywords. If single keywords are placed next
to each other, they form a composite keyword. The words of composite
keywords are separated by a colon e.g. “Higgs particle: mass” or “CP: viola-
tion”. The final keyword list consists of top 20 first best single and composite
keywords. These keywords serve as an information base for the study.

Our dataset counts documents with the term “new physics” in titles,
abstracts, or keyword lists published in 1989—20183. To make the sample

2For details, http://cds.cern.ch/help/hacking/bibclassify-extraction-algorithm,
last accessed on 08 December 2020.

3Data was retrieved from the INSPIRE database in October 2019. Processing of the
XML dump, data preparation, and statistical analysis were performed with the R pro-
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more stable and consistent, we excluded some irrelevant documents and con-
cepts. First of all, we removed the documents featuring only one physics
concept or no concepts at all. Secondly, we removed keywords having er-
rors due to the indexing procedure and keywords, denoting document types
like “book”, “thesis”, “report”, and so on. After these procedures, the final
dataset counted 19,830 documents and 8,822 physics concepts. The collection
of documents thusly obtained was subjected to further statistical analysis.

5. Results and discussion

5.1. Statistical features of new physics discourse

Fig. 2A illustrates the number of new physics unique concepts indexed in
INSPIRE in the years 1989—2018. It can be seen that the figures gradually
increase from between 1989 and 1995. Then they show some fluctuation to
proceed with rapid growth after 2006. In 2006—2015, one can note a quick
rise of numbers and even a spike in 2013 and 2015. In 2015, the number
of concepts reached its maximum value of 4259 items, followed by the curve
dropping sharply to 3557 concepts in 2018. For the whole 30–year period,
the number of unique concepts rises from 373 to 4259 items, and the curve
fits the exponential regression line (cf. (Milojević, 2015)).

Fig. 2B, Fig. 2C, and Fig. 2D show approximations of the probability den-
sity functions of dimension, citation, and TMI, respectively. One can spot at
a glance the qualitative difference of the dimension and the TMI probability
distributions from that of citation. Indeed, the probability density functions
in Fig. 2B and Fig. 2D are of Fréchet type, whereas Fig. 2C shows a power-law
distribution function. It seems only natural that the citation distribution can
be fitted by a Pareto distribution (Zeng et al., 2017; Fortunato et al., 2018).
The Fréchet distribution observed for dimension is untypical of scientometric
quantities of this kind (cf. (Börner and Milojević, 2019)). A quantity ho-
mologous to dimension, the “node degree” is normally distributed according
to a power law (Zeng et al., 2017; Palchykov et al., 2021). We have, in turn,
predicted the Fréchet distribution for TMI.

Despite the obvious differences between the dimension and the TMI prob-
ability distributions, on the one hand, and that of citation, on the other, they

gramming language. Citation data was downloaded from the INSPIRE database in August
2021.
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Figure 2: Features of new physics discourse.
(A) Dynamics of new physics concepts in 1989—2018. The equation of the regression
curve: # concepts = 312.612 · exp(0.087t)

(
R2 = 0.954, p = 0.000

)
. Dashed vertical lines

indicate the generations of physics senses (see 5.3 “Generations of physics senses”).
(B) The approximation of the probability density function of the dimension: a Fréchet dis-
tribution with parameters α = 1.1978, β = 34.672 (Kolmogorov–Smirnov statistic 0.0137.)
(C) The approximation of the probability density function of the citation: a Pareto Type
II distribution with parameters α = 0.7986, β = 3.0318 (Kolmogorov–Smirnov statistic
0.0145.)
(D) The approximation of the probability density function of the TMI: a Fréchet distri-
bution with parameters α = 0.8947, β = 382.26 (Kolmogorov–Smirnov statistic 0.0128.)

share an internal similarity. The fact is, the Pareto distribution belongs to
the maximum domain of attraction of the Fréchet distribution (Foss et al.,
2013). The asymptotic behavior of citation distribution is similar to that
which defines the distribution of dimension and TMI. In particular, larger
values of citation, dimension, and TMI are achieved not through a larger
number of physics senses but due to individual physics senses with higher
activity.

The Fréchet extreme distribution is a distribution of maximums; it ex-
presses relatively enduring structures of the dimension and the TMI. These
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structures are characterized via the probability of extreme events (exceedances
of a high level). Both the dimension Eq. (A.1) and the TMI Eq. (3) are high
outliers by nature, so it is only logical that they are described by the Fréchet
extreme distribution. This distribution is a pattern or arrangement of physics
senses; we can surmise, therefore, that it is the trends defined by record values
that form the basis of a nascent new physics discourse.

The citation structure of physics senses is, in turn, described by the Pareto
distribution. This distribution signifies the fact that very few physics senses
possess an extremely high citation rate, while very many demonstrate an
extremely low one.
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Figure 3: Scatterplot of PageRank against the TMI.

5.2. PageRank and TMI

In order to study the dynamics of the “importance” and “authority” of
physics senses in the years 1989–2018, the PageRank value of physics senses
was calculated with the use of the igraph software package. The Top–30
physics senses of the PageRank value are listed for illustration and compari-
son, as shown in Table 1.
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Table 1: The Top–30 physics senses of the PageRank value
PageRank Physics sense dim
1 numerical calculations 5762
2 supersymmetry 3962
3 cp: violation 3523
4 new physics: search for 3040
5 p p: scattering 3007
6 higgs particle: mass 2506
7 electroweak interaction 2398
8 numerical calculations: monte carlo 2351
9 neutral current: flavor changing 2324
10 minimal supersymmetric standard model 2287
11 atlas 2238
12 electron positron: annihilation 2119
13 cms 2138
14 quantum chromodynamics 2052
15 dark matter 2099
16 effective lagrangian 2013
17 effective field theory 2099
18 neutrino: mass 2055
19 p p: colliding beams 1902
20 neutrino: oscillation 1823
21 higgs particle: coupling 1781
22 lepton: flavor: violation 1725
23 lhc-b 1644
24 coupling: yukawa 1784
25 numerical calculations: interpretation of experiments 1512
26 angular distribution: asymmetry 1600
27 electroweak interaction: symmetry breaking 1643
28 interpretation of experiments 1504
29 batavia tevatron coll 1608
30 top: pair production 1592

Fig. 3 shows PageRank as a linear function of the TMI. The relation-
ship between the two quantities is described by the regression equation
PageRank = b·µ

(
AT

)
+a, where b = 2.187·10−8, a = 5.157·10−5 (R2 = 0.958,

p = 0.000). The importance of physics senses is directly proportional to their
measure of the mutual dependence: the stronger the sense is connected with
others, the higher its authority. This means that the authority of a sense
is determined by its interconnections with a totality of physics senses. This
interrelationship between PageRank and the TMI illustrates the structure of
the informational process of new physics.
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Table 2: The characteristics of generations
Generation Years Total number Number of Percent of

of senses new senses new senses
I 1989—1994 1363 1363 15.4
II 1995—2007 4071 3030 34.3
III 2008—2012 4952 2274 25.8
IV 2013—2018 7183 2156 24.4

5.3. Generations of physics senses

“Generations” offer a convenient method of classifying physics senses. We
chose the doubling of the number of senses in 1995, 2008, and 2013 as the
criterion for identifying generations. Following this way, we got four gen-
erations (see Table 2 and Fig. 2A). A physics sense belongs to a particular
generation if its first occurrence happens in the period corresponding to that
generation. Thus, all senses that occur in the years 1989–1994 are generation
I senses. Generation II senses are those that occurred for the first time in doc-
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Figure 4: Scatterplot of # citations against the TMI. The equation of the regres-
sion curve of # citations is the following: # citations = 1.547 · 10−8 · µ2 + 0.11 · µ −
3.278

(
R2 = 0.903, p = 0.000

)
.
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uments published in 1995–2007, etc. Table 2 shows that the total number of
senses increases from generation to generation, although new senses become
less common over time. Of the total dataset, 15.4% are generation I, 34.3%
generation II, 25.8% generation III, and 24.4% generation IV senses. Analy-
sis of the generations helped to identify the “core” of physics senses—senses
that occur in the discourse of new physics throughout all four generations.
Such senses amount to 7.3% of the total dataset. They comprise the most
frequently occurring physics senses with connections to many other senses.
Their average dim is 471. For reference, an average dim for senses that oc-
cur for the duration of three generations is 204, whereas senses occurring
for the period of one or two generations have an average dim of 34 and 74,
respectively.
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Figure 5: Scatterplot of the dimension against the transitivity. The equation of the regres-
sion curve of dim is the following: dim = 150.418 · tr−1− 215.254

(
R2 = 0.895, p = 0.000

)
.

5.4. TMI, dimension, number of citations, and number of documents

Fig. 4 through Fig. 7 show interconnections between quantities essential
for understanding the structure of physics senses.
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• In Fig. 4, we see TMI as a quadratic function of the number of citations.
This is the way in which the Fréchet extreme distribution manifests it-
self: maximums of different values belong to the same physics senses.
Fig. 4 indicates that, for the orbit of the sense, its measure of inter-
section with other orbits directly depends on the citation rate of the
sense. This is how the difference between the Fréchet distribution of
the TMI and the Pareto distribution of the citation expresses itself:
the quadratic dependence stems from the fact that the citation is dis-
tributed more unevenly than the TMI.

• Fig. 5 shows a dimension as an inverse function of transitivity. This
is in line with results already published in the literature (Newman,
2018). This can be easily interpreted: the higher the value of the
dimension, the bigger the number of pairs of physics senses whose orbits
intersect with the orbit of the given sense and, therefore, the lower
the transitivity value (see Eq. (7)). Since physics senses with a high
dimension value are few, and those with a low one are many (the fact
that determines the Fréchet extreme distribution of the dimension), the
chart in Fig. 5 resembles a hyperbola.

• A TMI—dim linear graph in double logarithmic coordinates is shown
in Fig. 6; and Fig. 7 has a TMI—# documents linear graph in dou-
ble logarithmic coordinates. It is worth emphasizing that the straight
line in double logarithmic coordinates indicates a power function. The
level of TMI changes in proportion to the dimension to the power of
1.327 and the number of documents to the power of 1.059. This fact
indicates heavy tails of TMI distributions. Moreover, the power func-
tions TMI(dim) and TMI(# documents) are stable under changes in
the scales of TMI, dim, and number of documents.

• Fig. 6 shows the influence of the topology of physics senses on their
informational value in the new physics subfield. It appears that knowl-
edge structure is a function of the dimension. To put it simply, the
principal topological characteristic of a physics sense determines its
position in the information structure of new physics. Notably, the TMI
grows faster than the linear function of the dimension. It follows that
physics senses with high TMI values play a disproportionately more sig-
nificant role, lending a hierarchical character to the knowledge structure
of the new physics subfield.
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• Importantly, extreme values in all four charts belong to the same physics
senses as listed in Table 1. These Top–30 physics senses determine, to a
certain extent, the properties of the scholarly discourse of new physics.
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Figure 6: Scatterplot of the TMI (ln) against the dimension (ln). The equation of the re-
gression curve of lnµ is the following: lnµ = 1.327 · ln dim+1.245

(
R2 = 0.981, p = 0.000

)
.

5.5. Clusters of physics senses

We calculated the values of sAB for all pairs of physics senses and car-
ried out the procedure of sense clustering with the help of the function
cluster.walktrap4. This function uses a random walk algorithm to find dense
subgraphs in complex networks (see details in (Masuda et al., 2017)). The al-
gorithm assumes that short random walks are in the same community. Based
on this, the algorithm tries to find objects that form subgraphs within one
network.

4See igraph software package.
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(
R2 = 0.936, p = 0.000
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Obtained were 12 clusters Fig. 8. We interpret the clusters on the basis
of average values calculated for physics senses that form the clusters. Anal-
ysis of the behavior of the senses with regard to TMI and dim allows us to
characterize their information interaction with other senses (see Fig. 8A).
The closer senses get in terms of their information interaction, the bigger
their chance of ending up in the same cluster and sharing other similarities.
Fig. 8B shows the interdependence between the citation rate of the senses in
a cluster and the number of documents where they occur. The figure shows
that the first three clusters are comprised of senses with the highest citation
rate and the most frequently occurring in the studied documents. The same
three clusters contain senses with the most authority. It is these clusters
that boast a concentration of the PageRank’s Top–30 senses Table 1. Of the
latter, the majority can be found in the second cluster: it includes ten of the
Top–30 senses. For reference, clusters from 8 to 12 do not feature a single
sense with a high PageRank value. Clusters 1 through 3 comprise senses
with the highest TMI and dim values.
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As becomes clear from Fig. 8A and Fig. 8B, the set of clusters splits
into three groups. The first group contains basic physics senses. Due to their
high dim and TMI values, they consolidate the scholarly discourse about new
physics. The first group of clusters forms a key part of the HEP subfield that
relates to new physics. The second can be interpreted as the mainstream of
the discourse; it consists of the main physics senses. Main discourse events
can occur within the group’s perimeter. Finally, the third group of clusters
appears largely unstructured and chaotic. The most likely reason is that it is
formed by physics senses that are either peripheral or emerging or declining
(cf. (Hosseini et al., 2021)).

5.6. Complexity and entropy

The statistical complexity c(A) and the normalized entropy hn(A) allow
us to study the structural properties of a physics sense. The quantity c(A)
indicates the “state of disorder” such that senses with extremely ordered
or disordered structures will receive lower scores, while senses with non-
trivial structures—higher ones. At the same time, hn(A) measures the degree
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Figure 9: Scatterplot of the statistical complexity c(A) against the normalized entropy
hn(A).

of diversity of the support X(A) of a sense and stochasticity. Thus, the
statistical complexity c(A)—the normalized entropy hn(A) plane (see Fig. 9)
partially reflects the relationship of the notions of disorder/complexity versus
order/simplicity with regard to physics senses. Although these quantities are
loosely connected statistically (the Pearson correlation coefficient is equal to
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Figure 10: The generations of physics senses in the statistical complexity c(A)—the nor-
malized entropy hn(A) plane.
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0.557 between c(A) and hn(A)), their relationship partially encodes structural
features of each physics sense. For example, smaller values of hn(A) and
larger values of c(A) correspond to senses that consist of regular sets of
recurring ordinal concepts. By contrast, senses that feature a significant
diversity of concepts grouped into stochastic sets will generate larger values
of hn(A) and smaller values of c(A).

75% of physics senses have the value c(A) ≤ 0.045 and hn(A) ≤ 6.67 ·
10−5, i.e., they occur in that domain of the statistical complexity c(A)—the
normalized entropy hn(A) plane that can be identified through the paired
notion of order/simplicity. As illustrated in Fig. 9, the Top–30 physics senses
possess the highest values of normalized entropy: from 0.0159 for “numerical
calculations” to 0, 0019 for “interpretation of experiments”. However, the
values of statistical complexity observed for the leaders of the rating are
far from unprecedented: they range from 0.2348 (“neutrino oscillation”) to
0.0988 (“quantum chromodynamics”). We may argue that physics senses in
the Top–30 rated positions are characterized by the highest level of disorder
and a fairly high complexity level. It is these structural properties that, on
the qualitative level, explain the position of the central senses in the scholarly
discourse of new physics.

We studied the evolution of physics senses in the statistical complexity
c(A)—normalized entropy hn(A) plane. For each physics sense, we calcu-
lated the values of c(A) and hn(A) by years and then averaged the results by
generation. The results are presented for each generation in Fig. 10. We can
see that each successive generation demonstrates lower values of statistical
complexity and normalized entropy than their predecessors. This observa-
tion conforms to the overall picture as shown in Fig. 9. As we know, the
vast majority of physics senses occur in the domain of low values of c(A)
and hn(A). At the same time, it follows from Fig. 2A that the number of
physics senses was growing exponentially in time. Therefore, physics senses
with lower values of c(A) and hn(A) belong mainly to younger generations.
In other words, generation I constitutes the semantic core of the scholarly
discourse of new physics.

6. Conclusion

Our paper contributes to the literature by addressing the question of
quantitative research on the new physics knowledge structure.

24



1. We develop a new method of keyword co-occurrence analysis that unites
physics concepts of different documents and binds different documents
with the same physics concepts. It is a more general approach than
the network one since it offers a natural framework for quantifying
knowledge structure of the new physics subfield. We consider topolog-
ical structures that reveal relationships among concepts and call them
physics senses. These senses represent complex systems of direct and
indirect interactions between physics concepts.

2. The proposed phenomenological model has the advantage of providing
a relevant quantitative evaluation of the distribution of physics senses
without recourse to a relatively limited scientometric framework. In
case of the new physics’ subfield, the Fréchet extreme distribution in-
dicates a high level of competition between physics concepts.

3. Physics senses form certain network clusters. The position of physics
sense in the new physics’ subfield is completely conditioned by the value
of dimension and the belonging to a generation. Our findings indicate
that the research interests of physicists are focused on a limited number
of physics senses which, due to their higher dimension, act as a kind of
glue that holds together a heterogeneous discourse of new physics.

However, some limitations need to be considered. First of all, our results
are limited to the content of the INSPIRE database. However, given its state
as one of the most comprehensive databases in high energy physics, we believe
it provides the most possibly complete picture of new physics discourse. A
second potential drawback of our study is that it depends on the BibClassify
algorithm that extracts keywords from documents. Nevertheless, BibClassify
draws upon the HEP Index maintained by the physics community. This index
manifests the state of physics discourse as the physicists see it. Therefore,
despite the above shortcomings, we believe our study gives a relevant view
of the historical dynamics of new physics discourse.

That various potential studies can be conducted in the future using the
proposed methodology. It would be interesting to carry out a comparison of
several HEP fields: for example, new physics vs. the standard model. Also,
assessment and improvement of the suggested methodology would benefit
from the involvement of new data sources and other text analysis tools.
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Appendix A. Framework

Recall that a partition (or a cluster expansion) of X is a closed disjoint cover
of X, and each partition of a set X determines the equivalence relation on physics
concepts: Two elements of X are said to be equivalent if they belong to the same
cluster of the partition. In what follows, we shall denote by Ω a fixed cluster
expansion of the finite T1 topological space (X, τ). There is defined a canonical
projection π : X → Ω of the discrete topological space (X, τ) onto the set Ω, i.e.
the mapping π assign to the physics concept x ∈ X the equivalence class [x] ∈ Ω.
We can now assign to Ω a quotient topology on Ω by calling a set ω ⊂ Ω to open
if and only if its preimage π−1(ω) under the canonical projection is open in X
(Singh, 2019). The collection of these sets {ω} is a topological structure ̟ in the
quotient set Ω, and Ω = ∪α∈Xωα, ωα ∩ ωβ = ∅ when α /∈ β. We stress that by
construction, each cluster ωα of the cluster expansion Ω corresponds uniquely to
one physics concept xα according to the configuration σ (see Eq (1)), and each
cluster ωα is indiscrete subspace of (X, τ).

Here | · | : X → N denotes the counting measure, so |X| = M is the number
of physics concepts in the support X, |ωα| = mα is the number of elements in
the cluster ωα, and

∑
α mα = M . We can introduce the corresponding non-strict

partial order on (Ω,̟): ω1 � ω2 � . . . � ωk. Here, the non-strict partial order �
on the set {mα} gives the non-strict partial order � on (Ω,̟) — on the maximal
T0-quotient of (X, τ). Hence, a finite topological space (X, τ) is fully described by
a non-strict partially ordered set (Ω,�) whose clusters ω1, ω2, . . . , ωk are equipped
with multiplicities m1,m2, . . . ,mk.

The nonempty set CΩ(ωα) = {ωα ∈ Ω: ωα � ωβ} is said to be a cone of ωα over
(Ω,�). We can look at this in another way: If ωβ ∈ CΩ(ωα), then ωα precedes or
equal to ωβ, i.e. ωα � ωβ. For elements ωα, ωβ of (Ω,�), CΩ(ωα) = CΩ(ωβ) implies
ωα = ωβ, and CΩ(ω1) ⊂ CΩ(ω2) ⊂ · · · ⊂ CΩ(ωk) implies ω1 � ω2 � . . . � ωk.

The order topologies on the quotient space (Ω,̟) are in bijective correspon-
dence with the relation �. The collection of all cones CΩ(ωα) forms a minimal base
for the topology ̟ (Singh, 2019). Further, the dimension dim(A) is the maximum
of all non-negative integers k such that exists a chain ω1 � ω2 � . . . � ωk in Ω:

(ωα ∈ Ω)(k ∈ N) : dim(A) = max {k : ∃ ω1 � ω2 � . . . � ωk} . (A.1)

Since our key intuition is to treat the order topology ̟ as an internal property of
Ω, our next task is to find an easy way of computing some topological quantity
that characterizes (Ω,̟). We can describe the difference between the physics sense
A and physics sense B by mapping quotient space (ΩA,̟A) into quotient space
(ΩB,̟B). The topological structures on ΩA and ΩB are completely identical if
there exists a homeomorphism of (ΩA,̟A) onto (ΩB,̟B) (in topological terms,
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these spaces are homeomorphic: (ΩA,̟A) ∼= (ΩB,̟B)). Let us remember that a
homeomorphism is an invertible continuous map ϕ : (ΩA,̟A) → (ΩB,̟B) such
that its inverse is continuous (Singh, 2019). Physics senses A and B are homeo-
morphic if and only if there exists a continuous bijective map between (ΩA,̟A)
and (ΩB,̟B) that preserves the multiplicities m1,m2, . . . ,mk.

To give a precise meaning to the statements about distinctions or similarities of
physics senses, we need to investigate the mappings of ϕ : (ΩA,̟A) → (ΩB ,̟B).
It is clear that, if ϕ is the homeomorphism, physics senses A and B are equivalent
from topological point of view. Let ν = |{ϕ}| be the cardinality of the set of home-
omorphisms. Suppose the equality νA = νB holds, then (ΩA,̟A) ∼= (ΩB,̟B). In
this case, ϕ is the a one-to-one correspondence between each class ωα ∈ Ω and
itself, and we get




dim(A)∑

α=1

mα = M


 : ν {(ΩA,̟A)} =

dim(A)∏

α=1

mmα
α . (A.2)

Let P {A} be the ratio of the number of homeomorphisms νA to the number of all
possible mappings from Ω to Ω

P {A} =
νA
MM

. (A.3)

Thus, the number P {A} is the probability of a partition ΩA of a support XA with
a fixed topological structure ̟A. It is obvious that P {A} is proportional to M .
We now introduce a normalized logarithmic representation of P {A}

h(A) = −
1

M
ln

νA
MM

= −




dim(A)∑

α=1

mα

M
ln

mα

M


 . (A.4)

It is readily seen that the right-hand side (A.4) is nothing other than the entropy,

as defined by Shannon.
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