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Highlights
• We study the altmetric indicator MHq and introduce a new indicator, MHRR.
• The published interpretation and confidence intervals of MHq are shown to be
wrong.
• We give a correct interpretation and correct confidence interval for MHq.
• MHRR is a weighted sum of risk ratios and is more natural and intuitive than
MHq.
• A computer simulation study validates and compares confidence interval formulas.

Abstract

In 2018 Bornmann and Haunschild (2018a) introduced a new indicator called the
Mantel-Haenszel quotient (MHq) to measure alternative metrics (or altmetrics) of
scientometric data. In this article we review the Mantel-Haenszel statistics, point
out two errors in the literature, and introduce a new indicator. First, we correct the
interpretation of MHq and mention that it is still a meaningful indicator. Second,
we correct the variance formula for MHq, which leads to narrower confidence inter-
vals. A simulation study shows the superior performance of our variance estimator
and confidence intervals. Since MHq does not match its original description in the
literature, we propose a new indicator, the Mantel-Haenszel row risk ratio (MHRR),
to meet that need. Interpretation and statistical inference for MHRR are discussed.
For both MHRR and MHq, a value greater (less) than one means performance is
better (worse) than in the reference set called the world.

Keywords : Bibliometrics, Altmetrics, Mantel-Haenszel quotient (MHq), Mantel-
Haenszel row risk ratio (MHRR), relative risk, risk ratio
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1. Introduction

The study of scientific and academic publication output assesses the impact that
publications have on science and technology or in the general public, and guides fund-
ing decisions by governments and institutions. Distilling the vast amount of available
information and assigning meaning to such imprecise notions as “publication impact”
is often accomplished by defining indicators. An indicator is “a statistical proxy of
one or more metrics that allow for an assessment of a condition” (National Research
Council, 2012, p.11).1 Traditional bibliometric and scientometric indicators summa-
rize the number of citations, publications, grants, or patents. More recently, the
availability of social media data (e.g., Twitter, Wikipedia, Facebook, ResearchGate,
Mendeley, etc.) has spurred the study of alternative metrics of publication impact,
the so-called altmetrics (Haustein et al., 2015).

Common bibliometric and altmetric indicators are often based on notions of aver-
aging and adding improvisational adjustments, but the field as a whole has not yet
reached the statistical maturity of biostatistics. Bornmann and Haunschild (2018a)
drew on methodology used in biostatistics in motivating the altmetrics indicator
MHq, which is based on Mantel-Haenszel estimators. The goal of these estimators is
to describe the overall association between two binary variables based on stratified
data. For example, Mantel-Haenszel estimators are used to study the association
between two treatments (e.g., drug vs. placebo) and their outcomes (e.g., success
or failure) when subjects are stratified by possible confounding factors (e.g., age
groups or smoking status), or when combining the results of multiple studies in a
meta-analysis. As a model for an indicator, the Mantel-Haenszel estimators have
the advantage that the resulting statistics have well understood interpretations and
inferential properties. The indicator MHq is relatively new, but it and its interpre-
tation of data have already been extensively cited (Bornmann & Haunschild, 2018b,
2018c, 2019; Bornmann, Haunschild, & Adams, 2018, 2019; Copiello, 2020a, 2020b;
Haunschild et al. 2019; Jiangbo et al., 2020; Kassab, 2019; Kassab et al., 2020;
Ortega, 2020; Tahamtan & Bornmann, 2020; Wang, Lv, & Hamerly, 2019).

This article corrects the interpretation and statistical inference for the MHq indi-
cator and proposes a new indicator, MHRR. Due to various reasons we explore in
this article, Bornmann and Haunschild’s interpretation of MHq is incorrect as they
confuse the groups being compared and did not realize that MHq measures a risk ra-
tio. Furthermore, the variance estimator as used in the confidence interval proposed
by Bornmann and Haunschild (2018a) is incorrect, and we provide a correct version.

There was already a brief exchange on the topic of the MHq indicator (Smolinsky
& Marx, 2018; Bornmann, Haunschild, & Mutz, 2018; Smolinsky, 2019; Bornmann,
Haunschild, & Mutz, 2019). In that exchange, we point out that the indicator is a

1Definition from the National Center for Science and Engineering Statistics.
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type of risk ratio and raise the issue of the correctness of the variance formula. Those
who have followed this discussion can now immediately see that the Bornmann and
Haunschild variance formula is incorrect in Section (4.2). We also provide simulation
results to evaluate the actual performance of the two variance estimators and the
resulting confidence intervals under sparse data settings. Furthermore in Section
(4.1), we correct the interpretation that MHq compares mentioned articles of “a
unit” to the mentioned articles in the entire “corresponding fields and publication
years,” as stated in the abstract of Bornmann and Haunschild (2018a).

We present the Mantel-Haenszel estimator of the row risk ratio (MHRR) as an
alternative indicator to MHq, one that captures the phenomena MHq was expected
to measure but does not. Interpretation and statistical inference for MHRR and
other Mantel-Haenszel type estimators are well-established. Throughout, we use
the small-world example given in Table 4 of Bornmann and Haunschild (2018a) to
illustrate our points.

2. Mantel-Haenszel estimators for measuring association in stratified
tables

2.1. Stratified 2× 2 contingency tables
Consider data separated into K strata numbered i = 1, . . . , K, where the data

observed in stratum i can be summarized in a 2× 2 table; see Table 1. For example,
the data can consist of publication information of scientific articles (or other source
items), stratified by subject area and/or publication year. Let group G refer to a
specific set of articles, e.g., the ones published by a specific institution. The two
rows in Table 1 refer to whether an article belongs to group G (e.g., was published
by a specific institution) or not, and the two columns refer to whether an article was
mentioned (e.g., on Twitter) or not. The total number of articles included in stratum
i is ni = ai + bi + ci + di. The purpose of the stratification is to control for confound-
ing factors (e.g., publication year or subject area, as mentioned by Bornmann and
Haunschild) that might have an influence on the frequency of being mentioned.

Table 1.
Contingency table

Mentioned Not Mentioned
In G ai bi

Not in G ci di
Note. Data from i-th stratum organized in a 2× 2 contingency table.

The organization of data for statistical analysis with Mantel-Haenszel estimators
uses tables of the form of Table 1, which are 2× 2 contingency tables. They consist
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of the cross-classification of two binary categorical variables, e.g., whether an article
belongs to group G or not (the row variable) and whether an article was mentioned
or not (the column variable). The column sum ai+ci then refers to the total number
of mentioned articles in the ith stratum, while the column sum bi + di refers to the
total number of articles not mentioned.

2.2. Risk ratios, odds ratios, and Mantel-Haenszel statistics
Two fundamental measures for describing the association between two binary cat-

egorical variables are the risk ratio (or relative risk) and the odds ratio (Agresti,
2019; Lachin, 2009). The risk ratio is the measure that is more familiar and easier
to interpret and communicate. For articles in the ith stratum, the row risk ratio

RRr
i =

ai/(ai + bi)

ci/(ci + di)
(1)

compares the row proportions and describes how much more likely it is that an article
is mentioned when it belongs to group G compared to when it does not belong to
group G. Alternatively, comparing the column proportions in the ith stratum, the
column risk ratio

RRc
i =

ai/(ai + ci)

bi/(bi + di)
(2)

describes how much more likely it is that an article belongs to group G when it is
mentioned compared to when it is not mentioned. One usually only discusses the row
risk ratio (and calls it the risk ratio), since the column risk ratio may be obtained
as the row risk ratio from the transpose of Table 1. However, for our purposes, we
simultaneously need both.

The odds of an article being mentioned in stratum i are given by ai/bi for articles
belonging to group G, and by ci/di for articles not belonging to group G. The ratio
of these two odds, the odds-ratio, is

ORi =
ai/bi
ci/di

=
ai/ci
bi/di

. (3)

The last expression in (3) shows that we get the same result when comparing the odds
of belonging to group G for articles mentioned (i.e., ai/ci) and not mentioned (i.e.,
bi/di), so that a distinction between row and column odds ratios is not necessary.

The Mantel-Haenszel estimators combine the stratum specific risk ratios RRi (or
the stratum specific odds ratios ORi) into a single summary statistic. When the risk
ratios (or odds ratios) across the strata are about the same, the Mantel-Haenszel
estimator provides an estimate of the common association over the entire population.
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In particular, the Mantel-Haenszel estimators are weighted averages of the stratum-
specific statistics, namely

1

w

K∑
i=1

wiRRi and
1

w

K∑
i=1

wiORi, (4)

for the (row or column) risk ratio and odds ratio, respectively, where w =
∑K

i=1wi,

and wi is a stratum specific weight. Each wi

w
is a normalized weight and

∑K
i=1

wi

w
= 1.

Specifically, the Mantel-Haenszel row risk ratio (5), column risk ratio (6) and odds
ratio (7) are computed as follows:

MHRR =
1∑K

i=1
ci(ai+bi)

ni

K∑
i=1

(
ci (ai + bi)

ni

)
ai/(ai + bi)

ci/(ci + di)
=

∑K
i=1

ai(ci+di)
ni∑K

i=1
ci(ai+bi)

ni

, (5)

MHCR =
1∑K

i=1
bi(ai+ci)

ni

K∑
i=1

(
bi (ai + ci)

ni

)
ai/(ai + ci)

bi/(bi + di)
=

∑K
i=1

ai(bi+di)
ni∑K

i=1
bi(ai+ci)

ni

, (6)

MHOR =
1∑K

i=1
bici
ni

K∑
i=1

(
bici
ni

)
ai/bi
ci/di

=

∑K
i=1

aidi
ni∑K

i=1
bici
ni

. (7)

The middle term in each equation explicitly shows the weight wi that is used when
forming the weighted average. The far right formula is the definition of each indicator.
Because these far right formulas involve ratio of sums (rather than a sum of individual
ratios), they are applicable even for cases when the number of mentioned articles in
some strata are zero, which is typical for sparse data. We note that Bornmann and
Haunschild (2018a) denote the Mantel-Haenszel odds ratio MHOR by MHq’.

3. Interpretation and inference for Mantel-Haenszel type indicators

3.1. The indicator MHq
The indicator MHq (“Mantel-Haenszel quotient”) as defined by Bornmann and

Haunschild (2018a) can be written as

MHq =
1∑K

i=1
bi(ai+ci)
ai+bi+ni

K∑
i=1

(
bi(ai + ci)

ai + bi + ni

)
ai/(ai + ci)

bi/(bi + di)
=

∑K
i=1

ai(bi+di)
ai+bi+ni∑K

i=1
bi(ai+ci)
ai+bi+ni

. (8)

For the definition of MHq, Bornmann and Haunschild use the far right expression in
Eq. (8), which equals the fraction R

S
in their Eq. (16).

We see from the middle expression of (8) that MHq is a weighted average of
stratum-specific column risk ratios RRc

i just as MHRR and MHCR are weighted
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averages in (5) and (6). The Mantel-Haenszel estimator MHRR estimates the overall
row risk ratio and the Mantel-Haenszel estimator MHCR estimates the overall column
risk ratio when the values for individual strata are similar (Lachin, 2009). Similarly,
we have that MHq estimates the overall column risk ratio. In particular, as the
sample size of each of the K tables goes to infinity, MHq converges in probability to
the population column risk ratio again when the individual strata have similar risk
ratios (homogeneity assumption). We provide details in Theorem A.1 in Appendix
A.

Note that the homogeneity assumption is not needed to define the indicators
MHRR, MHCR, and MHq. They are a weighted sum of strata risk ratios, and
the populations are always bounded. Nevertheless, the indices only converge as the-
oretical populations increase to infinity under certain types of limits. (Davis, 1985).

Note that for the simplest case of just a single stratum (i.e., K = 1), MHq reduces
to the column risk ratio RRc

1:

MHq =

a1(b1+d1)
a1+b1+n1

b1(a1+c1)
a1+b1+n1

=
a1/(a1 + c1)

b1/(b1 + d1)
= RRc

1, (9)

which is the ratio of the proportion of mentioned articles that belong to group G to
the proportion of not mentioned articles that belong to group G.

3.2. Interpretation of the indicators
We illustrate interpretation of the indicators using the same small-world example

that Bornmann and Haunschild (2018a) present in their Table 4 (p. 1003), which we
reproduce here as Table 2.

Table 2.
Small-world example.

Publication set A Articles mentioned Articles not mentioned
Category 1 18 13
Category 2 15 9
Category 3 13 9
Category 4 0 10

Publication set B
Category 1 26 7
Category 2 15 7
Category 3 3 3
Category 4 0 10

Note. Data from Bornmann and Haunschild (2018a)
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We identify Publication Set B as group G (and hence Publication set A as not
G), and the four Categories within a publication set as the K = 4 strata. Using the
notation of Table 1, Table 3 shows the counts ai, bi, ci and di in each stratum and
the values of the indicators defined in Eqs. (5)–(8).

In Table 3, notice that the 4-th stratum had no articles that were mentioned, i.e.,
a4 = c4 = 0 for this stratum. Such strata are typically ignored when computing the
statistic MHq or any of the Mantel-Haenszel estimators (5)-(8), and it is omitted
both here and in Bornmann and Haunschild (2018a).

Table 3.
Point estimates and confidence intervals for indicators.

Stratum ai bi ci di ni RRr
i RRc

i ORi

i = 1 26 7 18 13 64 1.36 1.69 2.68
i = 2 15 7 15 9 46 1.09 1.14 1.29
i = 3 3 3 13 9 28 0.85 0.75 0.69
i = 4 0 10 0 10 20 undefined undefined undefined

Indicator: MHRR=1.18 MHCR=1.32 MHOR=1.63
MHq=1.30

95% C.I.: [0.91, 1.53] [0.85, 2.04] [0.78, 3.39]
[0.84, 2.00]∗

Note. Each indicator is a weighted sum of the column above it.
∗Computed using Eq. 11.

We now explicitly interpret the meaning of each of the indicators. The intermediate
probability step between the mathematical formula to the verbal description is given
in Appendix B. The indicator MHRR estimates the ratio of the chances of being
mentioned for articles belonging to publication set B versus articles not belonging
to publication set B.2 Hence MHRR=1.18 indicates that, over all 4 categories, the
chances of being mentioned are 18% higher for articles that belong to publication
set B compared to articles that do not belong to publication set B. In other words,
articles from publication set B are 18% more likely to be mentioned than articles not
from publication set B.

The indicator MHCR estimates the ratio of the chances of belonging to publication
set B for articles that are mentioned versus articles that are not mentioned. The
value MHCR=1.32 indicates that, over all 4 categories, the chances of belonging to
publication set B are 32% higher for articles that are mentioned compared to articles

2Not belonging to publication set B is the same as belonging to publication set A in this small-world
example. We use the phrase not belonging to publication set B since it is more generally correct
with more than two publication sets.
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that are not mentioned. In other words, mentioned articles are 32% more likely to
belong to publication set B.

As pointed out in Section 3.1, the indicator MHq is also an estimator of the overall
column risk ratio. The value of MHq=1.30 indicates that the chances of belonging
to publication set B are 30% higher for articles that are mentioned compared to
articles that are not mentioned. The MHq and the MHCR indicators differ only in
the weights wi that are assigned to each stratum. While MHq uses standardized
weights of w1/w = 0.414, w2/w = 0.402 and w3/w = 0.184 for the three strata,
MHCR uses weights w1/w = 0.434, w2/w = 0.411 and w3/w = 0.154 and assigns a
relatively larger weight to the stratum with the largest sample size (stratum 1) and
a relatively smaller weight to the stratum with the smallest sample size (stratum 3).

The indicator MHOR estimates the ratio of the odds of being mentioned between
articles belonging to publication set B and those that do not. The value MHOR=1.63
indicates that the odds of being mentioned are 63% higher for articles in publication
set B.

3.3. Statistical inference for MHq
We now provide a formula for the estimate of the variance of ln(MHq), which

is used in the construction of its confidence interval. The derivations use similar
assumptions and techniques as the computation of the estimate of the variance of
the logarithm of the Mantel-Haenszel type estimators (Greenland & Robins, 1985),
but is complicated by the fact that the stratum weights are not a linear function of
the table entries. Details of the derivation are provided in Appendix C. We denote
our estimator as VarSKM[ln(MHq)] and the estimator provided by Bornmann and
Haunschild (2018a, Eq. (17)) as VarBH[ln(MHq)].

Let

Ri =
ai(bi + di)

ai + bi + ni
,

Si =
bi(ai + ci)

ai + bi + ni
,

Pi =
ai(bi + di)

bi(ai + ci)
,

Vi = (bi + di)
2

(
(n+ bi)

2

(ai + bi + ni)4
aici
ai + ci

+
a2i

(ai + bi + ni)4
bidi
bi + di

)
,

Wi = (ai + ci)
2

(
b2i

(ai + bi + ni)4
aici
ai + ci

+
(ni + ai)

2

(ai + bi + ni)4
bidi
bi + di

)
,

Qi = −(ai + ci)(bi + di)

(ai + bi + ni)4

(
aibici(bi + ni)

ai + ci
+
aibidi(ai + ni)

bi + di

)
,
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and let R =
∑K

i=1Ri and S =
∑K

i=1 Si.
Our estimator for the variance of ln(MHq) is

VarSKM[ln(MHq)] =
1

RS

K∑
i=1

(
1

Pi
(Vi +R2

i )− 2(Qi +RiSi) + Pi(Wi + S2
i )). (10)

Our variance formula allows for the computation of confidence intervals for MHq.
The 95% confidence interval has endpoints

exp
(

ln(MHq)± 1.96
√

VarSKM[ln(MHq)]
)
. (11)

Applied to the data from Table 3, we find a 95% confidence interval for the MHq
indicator of [0.84, 2.00]. With 95% confidence, the chances of belonging to publication
set B are between 16% lower to 100% higher for articles that are mentioned compared
to articles that are not mentioned.

3.4. Statistical inference for MHRR, MHCR and MHOR
Variance estimators for the Mantel-Haenszel indicators are well-established (Agresti

& Hartzel, 2000). The variance estimator for the logarithm of MHRR is given by

Var[ln(MHRR)] =

∑K
i=1 ((ai + bi)(ci + di)(ai + ci)− aicini)/n2

i

(
∑

iRi)(
∑

i Si)
,

where now Ri = ai(ci + di)/ni and Si = ci(ai + bi)/ni. This leads to the 95%
confidence interval of the form

exp
(

ln(MHRR)± 1.96
√

Var[ln(MHRR)]
)
.

The variance estimator for the logarithm of the Mantel-Haenszel column risk ratio
uses the same formulas, but applied to the transposed 2× 2 tables, i.e., replacing bi
with ci and ci with bi in all expressions above.

For the small-world data in Table 3, MHRR=1.18 and the 95% confidence interval
equals [0.91, 1.53]. With 95% confidence, we estimate that, overall, articles from
publication set B are between 9% less and 53% more likely to be mentioned, compared
to articles not belonging to publication set B. The value of MHCR=1.32, with 95%
confidence interval equal to [0.85, 2.04]. With 95% confidence, we estimate that,
overall, mentioned articles are between 15% less and 104% more likely to belong to
publication set B, compared to articles not mentioned.

For completeness, the variance estimator for the logarithm of MHOR is

Var[ln(MHOR)] =

∑K
i=1(ai + di)(aidi)/n

2
i

2
(∑K

i=1 aidi/ni

)2 +

∑K
i=1(bi + ci)(bici)/n

2
i

2
(∑K

i=1 bici/ni

)2
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+

∑K
i=1[(ai + di)(bici) + (bi + ci)(aidi)]/n

2
i

2
(∑K

i=1 aidi/ni

)(∑K
i=1 bici/ni

) ,

resulting in a 95% confidence interval for MHOR=1.63 of [0.78, 3.39]. With 95%
confidence, we estimate that, over all 4 categories, the odds of being mentioned
are between 22% lower and 239% higher for articles belonging to publication set B
compared to articles that do not.

4. Corrections to Bornmann and Haunschild

Bornmann and Haunschild (2018a) do not organize the stratified publication data
in the form of K 2× 2 contingency tables in the form of Table 1, but use what they
call cross-tables of the form of Table 4; see Table 3 in Bornmann and Haunschild (p.
1002). While the first row of Table 4 also refers to the frequencies of mentioned and
not mentioned articles belonging to publication set B, the second row refers to the
total number of mentioned and not mentioned articles in the world. The world refers
to all articles, i.e., those belonging to group G and those not belonging to group
G. These are the column sums: ai + ci for the mentioned and bi + di for the not
mentioned articles in Table 1. Bornmann and Haunschild write that the motivation
to use frequencies for articles in the world in the second row is that in bibliometrics
it is conventional to use the world (i.e., all articles published) as a reference set when
making comparisons.

Table 4.
Cross-table

Mentioned Not Mentioned
In G ai bi

In World ai + ci bi + di
Note. Data from i-th stratum organized in a cross-table.

4.1. Bornmann and Haunschild’s interpretation
We showed in Section 3.1 that MHq is an estimator of the overall column risk ratio

and needs to be interpreted as such. This is why an MHq of 1.30 indicates that men-
tioned articles are 30% more likely to belong to publication set B than not mentioned
articles. In their verbal interpretations of MHq, Bornmann and Haunschild (2018,
Section 2.3) misinterpret MHq in terms of a row risk ratio that compares publication
set B to the world. For instance, Bornmann and Haunschild write that MHq=1.30
indicates “. . . the publications in set B have 30% higher chances for being mentioned
than the world’s publications.” (2018, p. 1003). This interpretation would imply
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that MHq is a ratio of two row percentages, which we have shown is not the case.
Rather, MHq compares column percentages, and hence compares mentioned articles
with not mentioned articles in terms of the proportion belonging to publication set
B.

4.2. Bornmann and Haunschild’s confidence interval
Bornmann and Haunschild’s variance estimator VarBH[ln(MHq)] used in the con-

struction of their confidence interval for MHq is given in their Eq. (17). The easiest
way to see that their formula is problematic is to consider the special case of just a
single stratum, i.e., K = 1, where MHq equals the simple column risk ratio RRc. It
is well-known (Katz et al., 1978) that the estimated variance of the logarithm of the
risk ratio is given by

Var[ln(MHq)] =
1

a1
− 1

a1 + c1
+

1

b1
− 1

b1 + d1
. (12)

It is straightforward to check that our variance formula VarSKM[ln(MHq)] reduces to
this expression for the special case of K = 1. However, Bornmann and Haunschild’s
variance formula yields, for K = 1,

VarBH[ln(MHq)] =
1

a1
+

1

a1 + c1
+

1

b1
+

1

b1 + d1
, (13)

clearly overestimating the variance of the log-risk ratio.
To compare Bornmann and Haunschild’s variance formula to our variance formula

for larger values of K, we ran a simulation study, which shows that Bornmann
and Haunschild’s formula considerably overestimates the true variance and leads to
confidence intervals that are too wide. On the other hand, our variance formula
results in confidence intervals for MHq that have coverage probability very close to
the nominal level, and which are considerably narrower, allowing for more precise
inference.

5. Simulation study

To assess Bornmann and Haunschild’s (BH) variance formula and our (SKM)
variance formula for MHq in practice, we conducted a simulation study. We simulated
data sets (under a column binomial model) of K = 30 strata, each with a fixed sample
size of 100 articles in the mentioned group and 1000 articles in the not mentioned
group. We kept these sample sizes the same across all 30 strata. Of the 100 articles
in the mentioned group, we assumed a proportion of p1i are from group G, where
we let p1i vary according to a uniform distribution between 1% and 20% across the
i = 1, . . . , 30 strata. Of the 1000 articles in the not mentioned group, we assumed
a proportion of p2i were from group G, where p2i = p1i/ψ. This ensured that the
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strength of the association ψ = p1i/p2i was the same in each stratum, as assumed
by the Mantel-Haenszel method. We looked at three possible values for ψ: ψ = 0.2
(overall, mentioned articles were 80% less likely to be from group G compared to not
mentioned articles), ψ = 1 (no association; overall, mentioned and not mentioned
articles were equally likely to be from group G), and ψ = 10 (overall, mentioned
articles were 10 times more likely to be from group G compared to not mentioned
articles). With these underlying population parameters fixed (which gave rise to
sparse data), we generated 10,000 datasets, computing ln(MHq) from each. This
provided 10,000 realizations of ln(MHq) under the given parameter settings, and
the variance of those 10,000 values provided the ground truth for the variability in
measuring ln(MHq). This ground truth was compared to the BH and SKM variance
formulas, using the true parameters instead of the estimated ones when evaluating
those formulas. The difference between the values obtained via the formulas and the
ground truth was an estimate of the bias in the variance formula. We summarize the
results of our simulations in Figure 1, where a single dot in the plot represents one
such difference. For better interpretability, we plot the difference in the standard
deviations instead of the variances.

We repeated the entire procedure above (drew a new set of p1i’s from the Uniform(0.01, 0.2)
distribution and generated a new set of 10,000 datasets of 30 strata each) 99 more
times and obtained a total of 100 such differences between the actual standard de-
viation and the one predicted by the formulas. If Bornmann and Haunschild’s vari-
ance formula were unbiased, we would have expected those 100 differences to cluster
around 0. However, as is evident from Figure 1, there was considerable (positive)
bias in the BH variance formula, as was expected based on the case for K = 1. On
the other hand, the simulations indicated the SKM formula was nearly unbiased,
with the 100 differences closely clustering around 0.

We conducted several other simulation studies, where we varied the underlying
simulation parameters, such as investigating smaller and larger values of K or the
sample sizes of mentioned and not mentioned articles, and found similar results
regarding the bias.

We also conducted a simulation study investigating the coverage rate of the 95%
confidence interval for MHq. Figure 2 shows the coverage rate when K = 30. The
sample size in the mentioned group was 100, and the sample size in the not mentioned
group was 1000 in each stratum. Each dot in the plot corresponds to a particular set-
ting of the underlying probabilities p1i of belonging to group G for articles mentioned
and not mentioned, and a particular value of ψ. We again generated 10,000 datasets,
computed the confidence interval for MHq from each simulated dataset (using the
BH or SKM formula), and then checked if the interval contained the MHq value used
to generate the data. In theory, for 9500 of the 10,000 data sets generated (95%),
the resulting confidence interval should have contained the true MHq. Each dot in
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Figure 1.
Bias in the estimation of the standard deviation

Note. Bias in the estimation of the standard deviation of ln(MHq) using
VarSKM[ln(MHq)] and VarSKM[ln(MHq)] with K= 30.

Figure 2.
Coverage rate of nominal 95% confidence intervals

Note. Coverage rate of nominal 95% confidence intervals for MHq using
VarBH[ln(MHq)] and VarSKM[ln(MHq)] with K= 30.

Figure 2 represents the actual coverage rate (the percent of the 10,000 intervals that
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actually covered the true MHq) under one particular setting of population param-
eters. We see that with the BH variance formula the actual coverage rate tends to
be above the nominal 95% level, indicating that the confidence intervals were too
wide. For intervals using the SKM variance formula, the coverage rate tends to hover
around the nominal 95% level, as it should. We also created a plot (not shown) sim-
ilar to Figure 2, plotting the average length of the 10,000 generated intervals over
100 different population parameter settings. The plot and simulation results indicate
that the BH intervals are wider, on average, by 13% when ψ = 0.2, 12% when ψ = 1
and 7% when ψ = 10 compared to intervals using the SKM variance formula.

6. Discussion

In defining and discussing MHq, Bornmann and Haunschild (2018a) use the Mantel-
Haenszel odds ratio formula and Robins, Breslow, and Greenland’s variance formula
for the log-odds ratio (Robins et al., 1986) taken from the book by Fleiss et al.
(2003). However, those formulas, like all formulas concerning Mantel-Haenszel esti-
mators appearing in the statistical literature, have variables specifically referring to
contingency table entries and not to table entries in other cross-tables. As a conse-
quence of using cross-tables, all Mantel-Haenszel type indicators (such as MHq) lose
their original meaning and interpretation. It is perhaps surprising that the incorrect
application of the odds ratio formula results in a meaningful estimator for the column
risk ratio.

The indicator MHq is a meaningful statistic to measure mentions to a group G,
although the original interpretation was incorrect. MHq compares the percent of
mentioned articles that belong to group G to the percent of not mentioned articles
that belong to group G. It does not, however, give a direct comparison to the world.
Furthermore, researchers who use Bornmann and Haunschild’s confidence interval
for MHq have untrustworthy inference. As our simulations showed, those confidence
intervals for MHq are too wide meaning that MHq is more precise than previously
believed.

Thelwall’s (2017a, 2017b) indicators MNPC and EMNPC are compared to MHq
in a study of peer recommendations from F1000Prime on three groups (G= Q0, Q1,
and Q2) by Bornmann and Haunschild (2018a). Bornmann & Haunschild give a
comparison of the three indicators on the three groups in their Figure 1 (p. 1007).
Since they used the wrong confidence interval formula, the correct confidence inter-
vals are likely narrower and would improve their result. Bornmann and Haunschild
observe that values for MNPC and EMNPC cluster very near 1 for all groups, but
that is not true for MHq. The fact that MHq does not include a direct comparison
to the world gives it greater separation in value (see Appendix B, Eq 19).
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The indicator MHRR captures the notion that MHq was originally intended to
measure. It is a transparent measure since it directly describes how much more
(less) likely articles in group G are mentioned compared to articles not in group G.
Furthermore, if one also knows the fraction of the world’s articles that belong to
group G, then one may easily obtain how much more (less) likely articles in group
G are mentioned compared to articles in the world (Appendix B, Eq. 18), i.e., the
ratio of percentage of mentioned articles in G to mentioned articles in the world.

The range of possible values for each of MHRR, MHq, and MHCR is [0,∞). A
value of 1 indicates consistent performance between groups G and GC , and hence
between group G and the world. Values greater (less) than 1 indicate better (worse)
performance in group G than in the world. Different subgroups in the world may
be compared directly by the values of the indicator for any of MHRR, MHq, and
MHCR.

Bornmann and Haunschild (2018a) also discuss an alternative indicator called
MHq’ that is identical to the Mantel-Haenszel odds ratio MHOR. The odds ratio
is primarily of interest because it approximates the risk ratio when probabilities
are small (Greenland & Robins, 1985). This approximation is valid when G is a
small part of the world and the probabilities for articles being mentioned are small
regardless of belonging to G across strata. In this situation, MHRR, MHCR, MHq,
and MHq’ will be similar in value. The usefulness of this approximation is limited,
and as Greenland and Robins assert, “in typical cohort studies this approximation
may no longer hold” (Greenland & Robins, 1985, p. 55). The indicators MHRR and
MHq (or MHCR) compute the row and column risk ratio directly without the need
for an approximation and are not prone to misinterpretation by confusing odds and
probabilities.

The indicators MHRR and MHq are easy to interpret if the risk ratio does not
vary dramatically from stratum to stratum, but are still valid and meaningful indi-
cators under heterogeneity. This analysis was done by Noma and Nagashima (2016),
who showed that Mantel-Haenszel estimators still provide reasonable and intuitive
summary statistics.

6.1. Comparisons to the world
Although bibliometrics researchers often compare results to the world or normalize

by world results, we believe that using risk ratios result in a better indicator. Risk
ratios and odds ratios are used by statisticians as the comparison groups are distinct,
i.e., categorical. Comparisons of a group G to the world may confound the size of
the group with the probability of being mentioned. If the size of group G is small
compared to the world, then the comparison to the world approximates the risk ratio.
However, as the size of group G gets larger, the comparison with the world simply
approaches 1 and becomes insensitive as a measure of performance. We discuss this
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in Appendix B (Eq 19), which shows explicitly that the size of G is a confounding
factor. We believe this is a good reason to use the risk ratio (e.g., our indicator
MHRR, but also MHq) over a comparison to the world.

The situation for comparisons with the world becomes worse when the purpose
of stratification is to avoid phenomena like Simpson’s paradox. It is worse because
comparisons to the world now depend on the relative size of group G in each stratum.
This is not the case for methods using Mantel-Haenszel statistics (e.g., all indicators
mentioned in this article), because they are all relative measures, where the size of
group G does not play a role.

6.2. Limitations of the indicators
If there is substantial heterogeneity in the risk ratios across the strata, the ac-

tual coverage probabilities of confidence intervals that are computed based on the
assumption of homogeneity suffer and may fall well below the nominal 95% level,
as indicated in several simulation studies (e.g., Klingenberg, 2014; Böhning, Sang-
nawakij and Holling, 2021). The latter reference discusses the bootstrap for finding
a confidence interval for the Mantel Haenszel risk ratio.

A substantial limitation for MHq, MHRC, and any comparison to the world is
the required sample size. However, this is not an issue for MHRR. One may use the
entire world reference set as the sample (i.e., the entire population) and all indicators
are meaningful, but one must be cautious using samples.

We illustrate the issue with the sample size. Suppose one wishes to evaluate
mentions of articles from University X compared to all university articles in the
European Union, and University X is typical among the 2,725 universities in the EU
listed in uniRank (Universities and Higher Education in Europe, 2020). For MHRR,
one may take a random sample of 100 articles from University X and a random sample
of 100 articles from other EU universities. This method uses binomial sampling in
each row and is valid for studying the row risk ratio (Agresti, 2019). It has the
advantage that one may directly select articles from University X and use a small
overall sample (here 200 articles). For MHq or MHRC, this is not sufficient and there
are two options both requiring large samples. One option is to take a large random
sample from EU university articles without bias toward selection from University X
or mentioned articles. This is an example of multinomial sampling (Agresti, 2019).
However, to ensure that the sample contains at least 100 articles from University
X, one would need to sample on the order of 2, 725 × 100 = 272, 500 articles. A
second option for MHq or MHRC is a binomial model using binomial sampling in
each column. The columns refer to mentioned and not mentioned articles, so the
selection must still be unbiased toward selection from University X. A large random
sample of mentioned and not mentioned articles is still required to accumulate 100
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articles from University X by chance. Similarly, for a direct comparison to the world,
multinomial sampling is required.

6.3. Further research The indicator MHq is similar to MHCR. We cannot say
which of MHCR and MHq is superior. Variance and convergence validity need to be
studied. In the one example we computed in Table 3, MHq and MHCR had similar
values and confidence intervals.

MHRR and MHq are distinct statistics. We hope they can be further investi-
gated, based on their properties discussed in this article, with regards to important
properties for indicators in bibliometrics, such as convergence validity.

7. Acknowledgements

The authors are grateful to the reviewers for their careful reading and helpful
suggestions to improve the article.



Interpretation and inference for altmetric indicators 18

Appendix A.

Convergence of MHq

In these appendices, we use more conventional mathematical notation. Let Ai and
Bi denote the random variables that are the entries of the i-th contingency table
and let ai and bi denote their observed values. The random variables Ai and Bi are
binomial with corresponding parameters p1i and p2i and sample sizes n1i and n2i for
i = 1, ..., K. Therefore, E[Ai] = p1in1i, E[Bi] = p2in2i, Var[Ai] = p1i(1 − p1i)n1i,

Var[Bi] = p2i(1− p2i)n2i with corresponding estimators p̂1i = ai
n1i

, p̂2i = bi
n2i

, Ê[Ai] =

ai and Ê[Bi] = bi. Let ψ be the column risk ratio and ψi the column risk ratio of
the i-th table. The homogeneity assumption common to all Mantel-Haenszel type
estimators is that ψi = ψ (Lachin, 2009). An estimate of ψ is ψ̂i for each i. Items
with different subscripts are from different tables and are independent. Write P (E)
for the probability of an event E, and EC for the complement.

We consider multi-indexed sequences of random variables, Y~n, where ~n = (n11, n21, · · · , n2K).

The ψ̂i are such sequences of random variable, but we usually suppress the n indices,
ψ̂i = ψ̂i,n1i,n2i

= ψ̂i,~n. Similarly, the normalized weights wi∑K
j=1 wj

= Xi are too:

Xi = Xi,~n. They satisfy
∑K

i=1Xi,~n = 1. A sequence of random variables must be
defined on a single sample space. That is the case for the ψi’s and the Xi’s.

3

Recall that a sequence of random variables Y~n converge in probability to Y or

Y~n
p→ Y means for every ε > 0, limn11,n21,··· ,n2K→∞ P (|Y~n − Y | < ε) = 1. Explicitly

expressing the limit to infinity, Y~n
p→ Y means:

∀ε, η > 0,∃N such that n11, n21, · · · , n2K > N =⇒ |P (|Y~n − Y | < ε) − 1| < η
(Kudryavtsev, 1989). The last expression |P (|Y~n − Y | < ε)− 1| < η is the same as

P (|Y~n − Y | < ε) > 1− η or P (|Y~n − Y | ≥ ε) < η (14)

We recall that ψ̂i
p→ ψ as ni,j →∞ and we have suppressed the subscripts indicating

the dependence on the n’s, e.g., ~n. The following theorem establishes that MHq
converges in probability to the common risk ratio.

Theorem A.1. Suppose Xi,~n are a sequence of random variables for i = 1, · · · , K
and ~n = (n11, n21, · · · , n2K) with nji ∈ N and suppose for each ~n,

∑K
i=1Xi,~n = 1. Let

ψ̂i,~n = Ain2i

Bin1i
be the column risk estimator for the i-th table. Then,

∑K
i=1Xi,~nψ̂i,~n

p→ ψ.

3The sample space is the 2K fold Cartesian product S = Sp11
× · · · × Sp2K

where Spij
is the sample

space for the infinite coin flip of a coin with probability of a head pij , which is used for binomials
with arbitrarily large samples (Williams, 1991, p.24, Ex 2.3b).
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Proof. . Suppose we are given ε, η > 0, which are now fixed. We must produce an
N so that

n11, n21, · · · , n2K > N =⇒ P (|
K∑
i=1

Xi,~nψ̂i,~n − ψ| < ε) > 1− η. (15)

Note that P (|
∑K

i=1Xi,~nψ̂i,~n−ψ| < ε)| is shorthand for P (B) whereB = {x|P (|
∑K

i=1Xi,~n(x)ψ̂i,~n(x)−
ψ| < ε)}.

Since ψ̂i,~n
p→ ψ, we know that there are Ni’s such that n11, n21, · · · , n2K > Ni =⇒

P (|ψ̂i,~n−ψ| < ε)|) > 1− η
2K

or equivalently P (|ψ̂i,~n−ψ| ≥ ε)|) < η
2K

. We now choose
N = max{Ni}.

Let Ai~n = {x|P (|ψ̂i,~n(x)− ψ| < ε)}, so ACi~n = {x|P (|ψ̂i,~n(x)− ψ| ≥ ε)}, P (Ai~n) =

P (|ψ̂i,~n − ψ| < ε), and P (ACi~n) = P (|ψ̂i,~n − ψ| ≥ ε).
For n11, n21, · · · , n2K > N , we have

P (∀i |ψ̂i,~n − ψ| < ε)) = P (∩Ai~n)

= P ((∪ACi~n)C), by De Morgan’s law

= 1− P (∪ACi~n), the complement

≥ 1−
K∑
i=1

P (ACi~n), by the principle of inclusion/exclusion

≥ 1−
K∑
i=1

η

2K
> 1− η

(16)
We next show that

∀i |ψ̂i,~n − ψ| < ε =⇒ P (|
K∑
i=1

Xi,~nψ̂i,~n − ψ| < ε)

or equivalently, P (∩Ai~n) ⊂ P (B).

(17)

This statement follows because

|
K∑
i=1

Xi,~nψ̂i,~n − ψ| = |
K∑
i=1

Xi,~nψ̂i,~n −
K∑
i=1

Xi,~nψ|

≤

(
K∑
i=1

Xi,~n

)
|ψ̂i,~n(x)− ψ|

≤

(
K∑
i=1

Xi,~n

)
ε = ε.
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We complete the proof using (17) and (16): For n11, n21, · · · , n2K > N,

P (|
K∑
i=1

Xi,~nψ̂i,~n − ψ| < ε) = P (B) > P (∩Ai~n) > 1− η,

which establishes (15). �
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Appendix B.

Interpretation

Verbal interpretations for the various Mantel-Haenszel type indicators rely on spec-
ifying the appropriate conditional probabilities in the definition of the risk ratio (or
odds ratio). For a randomly selected article, let G indicate the event of belonging
to group G and let M indicate the event of being mentioned. Let i denote that an
article belongs to the i-th stratum. We use the superscript C to denote the comple-
ment event. The probabilities below can be interpreted as the actual probabilities for
population data, or their estimates based on a random sample from the population.
Using notation from Table 1, let P (G|i) = ai+bi

ni
, P (GC |i) = ci+di

ni
, P (M |i) = ai+ci

ni
,

P (MC |i) = bi+di
ni

, P (G|M, i) = ai
ai+ci

, P (G|MC , i) = bi
bi+di

, P (M |G, i) = ai
ai+bi

, and

P (M |GC , i) = ci
ci+di

.
The row risk ratio in stratum i is

RRr
i =

P (M |G, i)
P (M |GC , i)

=
ai/(ai + bi)

ci/(ci + di)

so that P (M |G, i) = RRr
iP (M |GC , i), implying that the chances an article in G is

mentioned are RRr
i times the chances an article not in G is mentioned.

The column risk ratio is

RRc
i =

P (G|M, i)

P (G|MC , i)
=
ai/(ai + ci)

bi/(bi + di)

so that P (G|M, i) = RRc
iP (G|MC , i), implying that the chances a mentioned article

is in G are RRc
i times the chances a not mentioned article is in G.

For a comparison to the world, let W = G∪GC . Recall that MHRR approximates
the row risk ratio. Since P (G|i) is the fraction of the world’s articles that belong to
group G, we write fi = P (G|i) = ai+bi

ni
. The comparison is

P (M |G, i)
P (M |W, i)

=
P (M |G, i)
P (M |i)

(18)

=
ai/(ai + bi)

(ai + ci)/ni

=

ai/(ai+bi)
ci/(ci+di)

1 + ai+bi
ni

(ai/(ai+bi)
ci/(ci+di)

− 1)

=
RRr

i

1 + fi(RRr
i − 1)

.
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The calculation can also be done purely in probability using the law of total proba-

bility. Note that RRr
i > 1 implies 1 < P (M |G,i)

P (M |W,i) < RRr
i .

Recall that MHq approximates the column risk ratio. On each strata it is RRc
i =

P (G|M,i)
P (G|MC ,i)

. A direct comparison to the world is P (G|M,i)
P (W |M,i)

, but

P (G|M, i)

P (W |M, i)
< RRc

i (19)

because P (W |M, i) = 1.
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Appendix C.

Variance of ln(MHq)

In this appendix, we derive formula (10). We use notation given in the first
paragraph of Appendix A. In addition, let θ = ln(ψ), Ri = Ain2i

Ai+Bi+ni
, and Si =

Bin1i

Ai+Bi+ni
. Noting that ai + ci = n1i and bi + di = n2i, these expressions of random

variables correspond to the table entry definitions of Ri and Si given above Eq. (10).

Let R =
∑K

i=1Ri, S =
∑K

i=1 Si, and θ = ln(ψ) = ln(R
S

).

C.1. An estimator in terms of expected values and variances of Ri and Si
An estimator for the variance of θ̂ = ln(MHq) is:

Var[θ̂] ≈ 1

E[R]E[S]

K∑
i=1

(
1

ψi
(Var[Ri] + E[Ri]

2) (20)

− 2(Cov[Ri, Si] + E[Ri]E[Si]) + ψi(Var[Si] + E[Si]
2)).

Derivation. To obtain the estimator (20), proceed as follows. Begin with the estimate

Var[θ̂] ≈ Var[R− ψS]

E[R]2
.

The derivation is analogous to the calculations for the Mantel-Haenszel odds ratio
and risk ratio (Greenland & Robins, 1985; Phillips & Holland, 1985; Robins, Breslow,
& Greenland, 1986). Following the reasoning in Greenland (1989),

Var[θ̂] ≈
∑K

i=1 Var[Ri − ψSi]
E[R]2

≈
∑K

i=1E[(Ri − ψSi)(Ri − ψSi])]
E[R]2

≈
ψ
∑K

i=1E[( 1
ψ
Ri − Si)(Ri − ψSi])]
E[R]2

≈
E[R]
E[S]

∑K
i=1E[( 1

ψi
Ri − Si)(Ri − ψiSi])]
E[R]2

≈
∑K

i=1E[( 1
ψi
Ri − Si)(Ri − ψiSi])]
E[R]E[S]

≈
∑K

i=1(
1
ψi
E[R2

i ]− 2E[SiRi] + ψiE[S2
i ])]

E[R]E[S]
.
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To obtain (20) use E[R2
i ] = Var[Ri]+E[Ri]

2, E[S2
i ] = Var[Si]+E[Si]

2, and E[RiSi] =
Cov[Ri, Si] + E[Ri]E[Si]. QED

C.2. Expected values and variances of Ri and Si
We next need estimators for E[Ri], E[Si],Var[Ri],Var[Si], and Cov[Ri, Si]. These

are derived below with the formulas for V̂ar[Ri], V̂ar[Si], and Ĉov[Ri, Si] given in
Eqs. (24), (26), and (28). The method is described in Chapter 6 of Wolter (2007).

Let f(x, y) = x
x+y+n

, so ∂f
∂x

= n+y
(x+y+n)2

and ∂f
∂y

= −x
(x+y+n)2

. The Taylor series for

f(x, y) centered at (x0, y0) is

f(x, y) =
x0

x0 + y0 + ni
+ (21)

n+ y0
(x0 + y0 + ni)2

(x− x0)−
x0

(x0 + y0 + ni)2
(y − y0) + higher order terms.

Since Ri = (n2i)f(Ai, Bi), let (x0, y0) = (E[Ai], E[Bi]) and take the variance,

Var[Ri] ≈ n2
2i

(
(ni + E[Bi])

2

(E[Ai] + E[Bi] + ni)4
Var[Ai] +

E[Ai]
2

(E[Ai] + E[Bi] + ni)4
Var[Bi]

)
.

(22)
Expressed in terms of the binomial parameters,

Var[Ri] ≈ n2
2i

(
(ni + n2ip2i)

2

(n1ip1i + n2ip2i + ni)4
n1ip1i(1− p1i) +

(n1ip1i)
2

(n1ip1i + n2ip2i + ni)4
n2ip2i(1− p2i)

)
(23)

and the estimator in terms of the table entries is

V̂ar[Ri] = (bi + di)
2

(
(ni + bi)

2

(ai + bi + ni)4
aici
ai + ci

+
a2i

(ai + bi + ni)4
bidi
bi + di

)
. (24)

To compute the variance of Si, write Si = (n1i)f(Bi, Ai) and take the Taylor
series at (x0, y0) = (E[Bi], E[Ai]). The variance expressed in terms of the binomial
parameters is

Var[Si] ≈ n2
1i

(
(n2ip2i)

2n1ip1i(1− p1i)
(n1ip1i + n2ip2i + ni)4

+
(ni + n1ip1i)

2n2ip2i(1− p2i)
(n1ip1i + n2ip2i + ni)4

)
(25)

and the estimator in terms of the table entries is

V̂ar[Si] = (ai + ci)
2

(
b2i

(ai + bi + ni)4
aici
ai + ci

+
(ni + ai)

2

(ai + bi + ni)4
bidi
bi + di

)
. (26)
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To compute the covariance, we use 6.2.5 (Wolter, 2007),

Cov[Ri, Si] =Cov[n2if(Ai, Bi), n1if(Bi, Ai)]

≈Var[Ai]
∂

∂Ai
(n2if(Ai, Bi))

∣∣∣∣
(E[Ai],E[Bi])

∂

∂Bi

(n1if(Bi, Ai))

∣∣∣∣
(E[Bi],E[Ai])

+ Var[Bi]
∂

∂Bi

f(Ai, Bi))

∣∣∣∣
(E[Ai],E[Bi])

∂

∂Ai
(n1if(Bi, Ai))

∣∣∣∣
(E[Bi],E[Ai])

.

Expressed in terms of the binomial parameters, we have

Cov[Ri, Si] ≈ −
n2
1in

2
2ip1ip2i

(n1ip1i + n2ip2i + ni)4
((1− p1i)(n2ip2i + ni) + (1− p2i)(n1ip1i + ni)) ,

(27)
and the covariance estimator in terms of the data is

Ĉov[Ri, Si] = −(ai + ci)(bi + di)

(ai + bi + ni)4

(
aibici(bi + ni)

ai + ci
+
aibidi(ai + ni)

bi + di

)
. (28)

C.3. Derivation of Formula (10)
To arrive at Formula (10), start with Formula (20) and replace ψi, the expected

values, and variances with the appropriate estimates. The strata column risk ratio

is ψ̂i = ai(bi+di)
bi(ai+ci)

. The expected values are Ê[Ri] = ai(bi+di)
ai+bi+ni

, Ê[Si] = bi(ai+ci)
ai+bi+ni

, Ê[R] =∑ ai(bi+di)
ai+bi+ni

, and Ê[S] =
∑ bi(ai+ci)

ai+bi+ni
. Finally, the formulas for V̂ar[Ri], V̂ar[Si], and

Ĉov[Ri, Si] are given in Eqs. (24), (26), and (28). This completes the derivation.
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