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Abstract 
The number of clinical citations received from clinical guidelines or clinical trials has been 
considered as one of the most appropriate indicators for quantifying the clinical impact of 
biomedical papers. Therefore, the early prediction of the clinical citation count of biomedical papers 
is critical to scientific activities in biomedicine, such as research evaluation, resource allocation, 
and clinical translation. In this study, we designed a four-layer multilayer perceptron neural network 
(MPNN) model to predict the clinical citation count of biomedical papers in the future by using 
9,822,620 biomedical papers published from 1985 to 2005. We extracted ninety-one paper features 
from three dimensions as the input of the model, including twenty-one features in the paper 
dimension, thirty-five in the reference dimension, and thirty-five in the citing paper dimension. In 
each dimension, the features can be classified into three categories, i.e., the citation-related features, 
the clinical translation-related features, and the topic-related features. Besides, in the paper 
dimension, we also considered the features that have previously been demonstrated to be related to 
the citation counts of research papers.  The results showed that the proposed MPNN model 
outperformed the other five baseline models, and the features in the reference dimension were the 
most important. In all the three dimensions, the citation-related and topic-related features were more 
important than the clinical translation-related features for the prediction. It also turned out that the 
features helpful in predicting the citation count of papers are not important for predicting the clinical 
citation count of biomedical papers. Furthermore, we explored the MPNN model based on different 
categories of biomedical papers. The results showed that the clinical translation-related features 
were more important for the prediction of clinical citation count of basic papers rather than those 
papers closer to clinical science. This study provided a novel dimension (i.e., the reference 
dimension) for the research community and could be applied to other related research tasks, such as 
the research assessment for translational programs. In addition, the findings in this study could be 
useful for biomedical authors (especially for those in basic science) to get more attention from 
clinical research. 
Keywords 
Clinical citation count prediction; Multilayer perceptron neural network; Reference dimension; 
Biomedical paper  



1 Introduction 
It is increasingly aware that the clinical impact of biomedical papers is of great significance to 
scientific activities in biomedicine, such as research evaluation, resource allocation, and clinical 
translation (Eriksson et al., 2020; Kryl et al., 2012; Thelwall & Maflahi, 2016; Zhang et al., 2018). 
The government, the funders, and the public are usually more concerned with biomedical papers’ 
impact on the health practice than their academic impact (Annapureddy et al., 2020; Hutchins et al., 
2019b). Papers with higher clinical citation counts can often provide useful evidence for clinical 
decision-making and have a higher potential to be clinically translated for health promotion 
(Hutchins et al., 2019b; Li & Tang, 2021). The clinical citation count that denotes the citations 
received from clinical guidelines or clinical trials has been considered as one of the most appropriate 
indicators for quantifying the clinical impact of biomedical papers in previous studies (Eriksson et 
al., 2020; Hutchins et al., 2019b; Kryl et al., 2012; Lewison & Sullivan, 2008; Thelwall & Kousha, 
2016; Thelwall & Maflahi, 2016). However, the clinical citation count of biomedical papers 
consumes time to accumulate. Therefore, it is important to predict the clinical citation count of 
biomedical papers shortly after their publication. 
 
Previously, citation count prediction of academic papers (CCPAP) has been widely studied with 
classification or regression models in the field of bibliometrics, and various factors have been 
demonstrated to be highly related to the citation counts of research papers, such as the writing style, 
the length of the abstract, and the research topic (Abrishami & Aliakbary, 2019; Huang et al., 2022; 
Li et al., 2015; Ma et al., 2021; Ruan et al., 2020). However, few studies have explored the clinical 
citation count prediction of biomedical papers (CCCPBP) since there was no comprehensive and 
reliable database that tracks citations among biomedical papers (Liang et al., 2021; Xu et al., 2020; 
Yu et al., 2021). We also don’t know whether those features helpful in the CCPAP could be effective 
predictors for the CCCPBP. In fact, most approaches in previous studies on clinical citation analysis 
relied on domain experts and manual annotation, which are time-consuming and labor-intensive 
(Grant et al., 2000; Kryl et al., 2012; Lewison & Sullivan, 2008), making them unsuitable for 
analyzing large amounts of biomedical papers.  
 
With recent advances in open science, a series of data sources with well-extracted metadata, 
including citation relationships among biomedical papers, have successively been released, for 
example, the Microsoft Academic Graph (Tang et al., 2020; Wang et al., 2020), the PubMed 
Knowledge Graph (Xu et al., 2020), and the iCite database (Hutchins et al., 2019a). Hutchins et al. 
(2019b) first trained a random forest classifier based on the iCite database to predict whether a 
biomedical paper will be cited by clinical guidelines or clinical trials in the future. They used the 
information on citation (2 years after publication) and different categories of Medical Subject 
Headings (MeSH), including Animal-related, Cell/Molecular-related, and Human-related MeSH of 
a biomedical paper, as the input features of the classifier and finally achieved an accuracy of 84% 
and an F1-score of 0.56. Furthermore, they argued that more research is needed to investigate how 
to early predict the future use of biomedical papers by clinical studies.  
 
Hence, the purpose of the current study is to early predict the clinical citation count of biomedical 
papers in the future. We first selected 9,822,620 biomedical papers published between 1985 to 2005 
from the PubMed Knowledge Graph (Xu et al., 2020). Then, we extracted ninety-one features for 



each paper from three dimensions, including the paper dimension, the reference dimension, and the 
citing paper dimension. For each dimension, the features can be divided into three categories, i.e., 
the citation-related features, the clinical translation-related features, the topic-related features. 
Meanwhile, in the paper dimension, we also included the “other features” that have previously been 
demonstrated to be highly related to the future citation count of academic papers, such as the length 
of the abstract, the readability of the abstract, the international collaboration, and the financial 
support. We used six machine learning algorithms and the ten-fold cross-validation method to train 
the regression models for predicting the clinical citation count of biomedical papers, and finally, a 
four-layer multilayer perception neural network model achieved the best performance.  
  
2 Related work 
2.1 Clinical citation of biomedical papers 
Clinical citation has gained increasing recognition from the research funders as a potential indicator 
of the clinical impact of biomedical research (Kryl et al., 2012; Thelwall & Kousha, 2016; Thelwall 
& Maflahi, 2016). Theoretically, when a biomedical paper with financial support is clinically cited, 
we could assume that the money provided by the funders has been useful in clinical research and 
practice, suggesting the payback of the research investment (Boyack & Jordan, 2011). It is of 
continuing significance to evaluate the payback in biomedicine because of the large financial 
investment (Li et al., 2020). 
 
One of the most authoritative sources for quantifying the clinical citation of biomedical research at 
the paper level is the clinical guideline (Eriksson et al., 2020; Grant et al., 2000; Kryl et al., 2012; 
Lewison & Sullivan, 2008; Thelwall & Maflahi, 2016), which are official documents generated by 
domain experts for guiding the prevention, diagnosis, and treatment of specific diseases. Being cited 
by clinical guidelines demonstrates that a biomedical paper may have a direct influence on health 
care (Yue et al., 2014). In addition, Thelwall & Maflahi (2016) investigated 327 clinical guidelines 
and their 6,128 references and found that citations from clinical guidelines could be a more accurate 
indicator of biomedical research’s clinical value than academic citations or Mendeley statistics. 
However, it was difficult to systematically analyze clinical guides on a large scale because clinical 
guidelines in many countries did not list the papers they cite (Eriksson et al., 2020; Thelwall & 
Maflahi, 2016; Yue et al., 2014).  
  
Another important source of counting the clinical citation of biomedical papers is the clinical trial. 
Influencing or entering into clinical trials is a significant way through which biomedical research 
can be finally translated into clinical practice. Therefore, being cited by clinical trials could also be 
an indication of the clinical impact of biomedical papers (Thelwall & Kousha, 2016; Zarin et al., 
2011). Meanwhile, several classification models of biomedical papers were also proposed at 
different levels, such as the “research level” (Boyack et al., 2014; Lewison & Paraje, 2004; Narin 
et al., 1976; Narin & Rozek, 1988) at the journal level, the “triangle of biomedicine” (Weber, 2013) 
at the MeSH level, the Translational Science (TS) score (Kim et al., 2020) and the translational 
potential (Hutchins et al., 2019b) at the paper level. With these classification schemes, clinical 
papers can be identified from paper sets, and then the citations from clinical papers could be used 
for counting the clinical citations of biomedical papers.  
 



In this paper, we count the clinical citation count of biomedical papers by using the citations from 
clinical guidelines and clinical trials. Different from Hutchins et al. (2019b), which detected whether 
a biomedical paper will be cited by a future clinical guidline or trial, we focus on how many clinical 
citations a biomedical paper will receive from clinical guidelines or trials in the future. It is believed 
that the more clinical citations a biomedical paper receives, the greater its clinical impact or value.    
  
2.2 Citation count prediction of academic papers (CCPAP) 
A brief review of the citation count prediction of academic papers (CCPAP) could offer insights into 
the clinical citation count prediction of biomedical papers (CCCPBP) because of the similarity of 
the two tasks. Nowadays, the most commonly used methods of citation count prediction are machine 
learning-based regressors, with which a series of important results have been yielded. For instance, 
Amjad et al. (2022) analyzed the author-related features and used a multiple linear regression model 
to select features for predicting citations of both journal and conference papers. They concluded that 
the first-year citations of the author and the total citations of the author were the two most useful 
features. Li et al. (2015) combined the support vector regressor (SVR) and the citation count trend 
of a paper to predict its citation count and achieved an R2 of about 0.68. Jimenez et al. (2020) 
designed a set of features on the writing style of papers’ abstracts and used a linear regression model 
to explore how these features predict the citation count of academic papers. Onodera & Yoshikane 
(2015) adopted a binomial multiple regressor to predict the citation count of academic papers and 
found that the features related to the references of papers, such as the number of references and the 
publication time of references, are more important than other features. Although the high similarity 
between the CCPAP and the CCCPBP, none of the previous studies have examined whether these 
useful factors for the CCPAP were also significant predictors for the CCCPBP. 
  
With the re-emergence of the artificial intelligence, neural network-based methods such as the 
multilayer perceptron neural network with the Back Propagation (BP) algorithm (Ruan et al., 2020), 
the transformer (Huang et al., 2022), the Doc2vec and LSTM (Ma et al., 2021), the recurrent neural 
network (Abrishami & Aliakbary, 2019), and the convolutional neural network (Xu et al., 2019), 
have been increasingly used to predict citation count of academic papers and achieved acceptable 
performance. These neural network-based methods have strong generality and robustness, and they 
don’t require features to be independent or the data to be normally distributed. However, as pointed 
out by Ruan et al. (2020), sequence learning models (such as the RNN and the LSTM) and 
convolutional neural network (CNN) models may not be suitable for the CCCPBP, whose features 
are not time series, word sequences or high-dimensionally visual data. Therefore, in this study, we 
finally selected the multilayer perceptron neural network (MPNN) model to predict the clinical 
citation count of biomedical papers. The MPNN algorithm has been demonstrated to have great 
advantages on feature learning for regression prediction with the backward propagation mechanism 
(LeCun et al., 1988; Tolstikhin et al., 2021). In addition, to confirm the effectiveness of our method, 
we also compared the MPNN model with the classical machine learning models and other neural 
networks, including the linear Regression (LR), the support vector regression (SVR), the k-nearest 
neighbor regression (KNNR), the random forest regression (RFR), and the eXtreme gradient 
boosting (XGBoost).  
    



3 Methodology 
3.1 Data and pre-processing 

3.1.1 Data collecting 
We collected the dataset for this study from the PubMed Knowledge Graph (PKG), which is a 
comprehensive, open access, and enhanced PubMed with rich and fine-grained information (Xu et 
al., 2020). The version of the used PKG is based on the PubMed 2021 baseline, which contains over 
30 million papers, and it can be freely downloaded from its official website1 and loaded into a local 
MySQL database for further analysis. For each paper, its bibliographic information (such as PMID, 
article type, title, keywords, MeSH terms, abstract, disambiguated authors, funding information, 
and author affiliations), well-extracted and normalized bio-entities (including disease, 
chemical/drugs, proteins/genes, species, and mutations), as well as its citation relationships with 
other PubMed papers are provided in the PKG. In addition, papers without titles or abstracts were 
excluded. 
 

3.1.2 Overall distribution of the clinical citation count of biomedical papers 
As shown in Fig.1, we first plotted the distribution of total and clinical citation count of biomedical 
papers. Fig.1a illustrates that the total citation counts of biomedical papers show a long-tailed 
distribution: most biomedical papers have no citations, and very few papers have more than 100, 
000 citations. Comparing the distribution of clinical citations (Fig. 1b) with that of the total citation 
(Fig. 1a), we have several interesting findings. First, the two distributions are quite similar to the 
long-tailed patterns. This indicates that the prediction of clinical citation count of biomedical papers 
is possible because the prediction of citation count of papers has been widely explored in previous 
studies. Meanwhile, several differences between them can also be found. For example, the right 
figure is not dense as the left one, indicating that a considerable part of papers with citations were 
not clinically cited. Another example, none of the biomedical papers have more than 10,000 clinical 
citation counts. Besides, the paper frequency was reduced to 1 when the clinical citation count 
increased to 400. 
 

 
Fig 1. The distribution of citation counts of biomedical papers in PubMed, including (a) the total 
citation counts; and (b) the clinical citation counts. 
 
3.1.3 Changes of the clinical citation count of biomedical papers over time 

 
1 http://er.tacc.utexas.edu/datasets/ped 



We also analyzed the clinical citations of different categories of biomedical papers from the 
perspective of their ages. Specifically, we first defined the “age” of a paper is the years from its 
publication. For example, for a given paper (PMID: 10590187) published at the year 2000, then in 
the year 2000 and the year 2005, its ages are zero and five, respectively. We selected 532,395 
biomedical papers published in the year 2000, and then classified these papers into three categories, 
including C, CA cand H according to the triangle of biomedicine proposed by Weber (2013). The C 
papers and CA papers represent papers within basic science, and the H papers represent papers 
closer to clinical science (Li and Tang, 2021). The statistical information about biomedical papers 
published in 2000 is shown in Table 1. 
 
Table 1. The statistical information about biomedical papers published in 2000. 

 ALL papers C papers CA papers H papers 
Number 532,395 27,547 68,057 197,239 
Proportion 100% 5.17% 12.78% 46.30% 

 
The cumulative distribution of the percentage of biomedical papers cited by clinical papers (i.e., the 
number of clinical citations is greater than zero) by the age of paper is shown in Fig.2a, which 
reveals three interesting findings. First, all the four curves first show a trend of rapid growth and 
then keep stable as the age increased. Second, the percentages of C or CA papers that were clinically 
cited is much lower than those of the overall papers (blue curve), while the percentage of H papers 
that were clinically cited is much higher than that of the overall papers. This finding indicates that 
a biomedical paper whose research content is closer to clinical science, is more likely to be clinically 
cited. Until 2020, 27% of biomedical papers published in 2020 have been clinically cited, including 
38% of H papers, 13% of CA papers and 4% of C papers. Third, there is an obvious turning point 
when the age of paper reaches five. Then, the slope of each curve continues to decline. When the 
paper is fifteen-year-old, the curves tend to be stable. This illustrates that whether a biomedical 
paper is clinically cited or not, will tend to stabilize during five to fifteen years after its publication. 
Therefore, it is appropriate for us to set the citation window as fifteen years. 
 

 
Fig 2. The clinical citations of biomedical papers published in the year 2000. 
 
Fig. 2b displays the cumulative distribution of clinical citation count of biomedical papers published 
in 2000, from which we find that the cumulative clinical citation count shows an increase in the 



beginning and then keep stable as the age increases. Particularly, when the age of paper is larger 
than five, all the curves tend to be stable. This also indicates the clinical citation count of biomedical 
papers tend to be stable five year after their publication. Fig. 3 shows the distribution of the average 
clinical citation count of biomedical papers published in 2000 by the age of paper. From Fig. 3, we 
find that, for all ages, the average clinical citation count of H papers ranks the first place, followed 
by that of overall papers, and that of C or CA papers has been lower than overall papers. This also 
means that the paper whose research content is closer to clinical science is more likely to be 
clinically cited.  
 

 

Fig 3. The distribution of the average clinical citation count of biomedical papers published in 2000 
by the age of paper. 
 
3.1.4 Training and testing data 
Based on the above analysis, we finally selected PubMed papers published from 1985 to 2005 as 
our data source for prediction, because the clinical citation count of biomedical papers will remain 
stable fifteen years after their publication. There is a total of 9,822,620 biomedical papers published 
during these 21 years, and the number of clinical papers whose article types are clinical trials and 
clinical guidelines is 378,876. The average number of references for these 378,876 clinical papers 
is 26.7, i.e., the total number of these clinical papers is 10,115,989, which is larger than 9,822,620. 
In theory, every paper published during 1985-2005 may be clinically cited. In fact, only about 30% 
of these papers were clinically cited. This indicates that the dataset is of good quality for the task of 
CCCPBP. Finally, we randomly split the dataset into training data and testing data at a ratio of 4:1 
(Huang et al., 2022; Ruan et al., 2020). The statistical information on the dataset is shown in Table 
2. 
 
Table 2 Statistical information on the dataset. 

Item Value 
Publication time (Year) 1985-2005 
Total number of PubMed papers 9,822,620 
Total number of clinical papers 378,876 
Average number of references for the clinical papers 26.7 



Number of PubMed papers in training data 7,858,096 
Number of PubMed papers in testing data 1,964,524 
The ratio between the number of training data and test data 4:1 

 
3.2 Feature extraction, calculation, and normalization 
We treated the prediction of clinical citation count of biomedical papers as a regression task, such 
that our method could predict biomedical research with high potential for clinical translation in time. 
The prediction target that is a real number (i.e., 𝑌 ∈ ℝ) was defined as the number of the clinical 
citation count of a biomedical paper. Each biomedical paper was associated with ninety-one features, 
which can be classified into three dimensions, including the paper dimension, the reference 
dimension, and the citing paper dimension. As shown in Fig. 4, for a given paper A in purple that 
we are interested, the papers in red represent the set of all the references that were cited by the paper 
A, and the papers in green means the set of citing papers that cited the paper A. Each dimension 
consists of multiple categories of features, including the citation-related features, the clinical 
translation-related features, and the topic-related features.  
 

 
Fig 4. The citation network of a biomedical paper A after its publication. Note that the arrows point from 
the citing papers to the cited papers (i.e., the references). 
 
Specifically, for the paper dimension, we associated each biomedical paper with twenty-one features, 
including three citation-related features, four clinical translation-related features, six topic-related 
features. Meanwhile, we also considered eight features that have previously been confirmed to be 
highly related to the citation count of academic papers, and we call them “other features”. We call 
them “other features”. The details of the twenty-one features are discussed below. 
 
Citation-related features of a specific biomedical paper include the total number of citations (C_N), 
the number of references (n_ref), and the proportion of clinical papers in its references (p_clin). 
Specifically, the total number of citations (C_N) is the number of citations received by the paper N 
years after publication. The smaller the value of N (𝑁 ≥ 1), the less citation-related information 
will be added to the model. This study aims at predicting the clinical citation count of biomedical 
papers with the minimal citation-related information to early discover biomedical research with high 
potential to be clinically translated. Particularly, we set N to 2 for training the prediction models, 



i.e., the citation information two-year after the publication of the paper was used.  
 
The number of references (n_ref) is defined as the number of PubMed papers cited by the paper of 
interest. We used the PMID pairs to count the number of references, and papers that were not 
indexed in PubMed were excluded. Meanwhile, we classified papers whose article types are clinical 
trials or clinical guidelines into clinical papers. The proportion of clinical papers in the references 
(p_clin) can reflect the research content of the paper: if the proportion is higher, the research could 
be closer to clinical science and may get more clinical citations (Ke, 2020; Urlings et al., 2021). 
 
Clinical translation-related features of a specific biomedical paper are translational location (tl), 
the proportion of animal-related MeSH (a_score), the proportion of cell/molecular-related MeSH 
(c_score), and the proportion of human-related MeSH (h_score). Specifically, for a specific 
biomedical paper, its translational location means the relative position of the paper on the 
translational axis, which is a vector pointing from basic science to clinical science (Ke, 2019; Weber, 
2013). The value interval of translational location is [-1,1], and the higher the translational location 
is, the paper is closer to clinical science and more likely to be clinically cited. 
  
In the Triangle of Biomedicine proposed by Weber (2013), MeSH terms are classified into three 
categories, i.e., the animal-related (A) MeSH, the cell/molecular-related (C) MeSH, and the human-
related (H) MeSH. Weber (2013) argued that the A and C MeSH terms are more about basic science, 
and the H MeSH terms are closer to clinical science. We can use this classification system to 
represent the clinical translation-related information of a biomedical paper, as MeSH terms indexed 
by biomedical experts can well reflect the research content of the paper. As shown in Table 3, we 
can identify the categories of MeSH terms by their tree numbers, which can be obtained from its 
official website (https://www.ncbi.nlm.nih.gov/mesh/). We also classify biomedical papers into 
seven categories (i.e., A, C, H, AC, CH, AH, and ACH) by using the combinations of their MeSH 
terms.  
 
Table 3. Identifying the categories of MeSH with their tree numbers. 

Category Beginning of Tree Number Number of MeSH 

Animal-related (A) B01, excluding 

B01.050.150.900.649.801.400.112.400.400 

2,479 

Cell/Molecular-related (C) A11, B02, B03, B04, G02.111.570, and G02.49 3,625 

Human-related (H) B01.050.150.900.649.801.400.112.400.400 or M01 332 

 
Topic-related features of a specific biomedical paper include the number of unique disease entities 
mentioned in its title and abstract (n_disease), the number of unique chemical/drug entities 
mentioned in its title and abstract (n_drug), the number of unique protein/gene entities mentioned 
in its title and abstract (n_gp), the number of all bio-entities mentioned in its title and abstract (n_ent), 
whether a diagnosis or treatment was mentioned in its abstract or abstract (is_DT), and the number 
of MeSH (n_mesh). The number of entities and MeSH terms can be easily counted because they 
have been well-extracted in the PKG. The value of is_DT is binary; we obtained it by counting the 
MeSH terms indexed. Specifically, if a paper has MeSH terms whose tree numbers start with E 
(excluding E07 equipment and supplies), then the value of is_DT of this paper is “1” (i.e., one or 



more diagnoses or treatments have been mentioned in the paper); or else, the value of is_DT will be 
“0”. 
  
Other features of a specific biomedical paper. Inspired by the previous studies on citation 
prediction (Fortunato et al., 2018; Larivière et al., 2015; Leydesdorff et al., 2018; Zhang et al., 2018), 
we added eight other features, including whether the research has grants (is_grant) , the number of 
authors (n_authors), the number of countries of authors (n_countries) , the readability of abstracts 
(readability), the length of title (title_length), the length of abstract (abs_len), whether the paper 
was published in top journals (is_top_journal), and article type (pt). Note that the readability of the 
abstract was calculated by the Flesch Reading Ease formula (Farr et al., 1951). 
 
For the reference dimension, we associated a biomedical paper with thirty-five features representing 
the properties of papers cited by the paper of interest. These features include six citation-related 
features, twelve clinical translation-related features, and seventeen topic-related features. Finally, 
for the citing paper dimension, there are also thirty-five features that represent the properties of the 
papers cited the paper of interest. These features also consist of six citation-related features, twelve 
clinical translation-related features, and seventeen topic-related features. The structure of the 
features is shown in Fig. 5. The readers can also find the details of all the ninety-one features in 
Appendix A. 
  

 

Fig 5. The structure of the ninety-one features of biomedical papers. 
 
To reduce the analysis error and accelerate the convergence speed of the model, for continuous 
features (e.g., n_ref and n_ent), we normalized them with the z-score, which is given by: 

𝑥′	 = 	
𝑥 − 𝜇
𝜎  

where 𝜇 means the mean of the values of feature x, 𝜎 represents the standard deviation of the 
values of feature x, and x′ is the normalized value of feature x. The mean and standard deviation 
of the normalized features are 0 and 1, respectively. For the binary features, such as is_DT and 



is_top_journals, we used the OneHotEncoder1, which is the process by which categorical data are 
converted into numerical data, to normalize them.  
 
3.3 The MPNN model for predicting clinical citation counts 
3.3.1 The architecture of our MPNN model 
We designed a neural network model (see Fig. 6) for predicting the clinical citation count of 
biomedical papers based on a classic deep neural network architecture, i.e., multilayer perceptron 
neural network (MPNN). The MPNN has been successfully used for multiple tasks, such as link 
prediction and entity prediction; it consists of an input layer, an output layer, and one or more hidden 
layers (Gardner & Dorling, 1998; Tolstikhin et al., 2021). To avoid overfitting in model training, we 
added dropout layers between every dense layer. The nonlinear transformation in each step makes 
it possible for the model to learn more information from the paper representations. The MPNN 
model aimed at predicting the clinical citation count of biomedical papers based on the paper 
representations. The number of nodes in the input layer is equal to the number of paper features, i.e., 
ninety-one. The output of our model is the predicted clinical citation count of a biomedical paper; 
thus, the number of nodes in the output layer is one. Meanwhile, we designed the MPNN model 
with two hidden layers, and the numbers of the first and second hidden layers are 130 and 80, 
respectively. The details on how to determine the hidden layers of the MPNN model are discussed 
in section 3.3.2. 
 

 
Fig 6. The architecture of the multilayer perceptron neural network (MPNN) model for predicting the 
clinical citation count of biomedical papers.  
 
3.3.2 Parameters of the MPNN model 
The parameters of our model include the size of hidden layers, the activation function in each hidden 
layer, the learning rate, the optimization method for the loss function, etc. In this study, we used the 
tenfold cross-validation and grid search to determine appropriate parameters according to the 

 
1 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html 



average value of MSE (Ruan et al., 2020). The information on the parameters of the MPNN model 
is displayed in Table 4. 
 
Table 4. Parameters of the MPNN model for predicting clinical citation counts of biomedical papers. 

Parameter Description  Search range Value 

The size of 

hidden layers 

The number of hidden layers 

and the number of nodes in 

each hidden layer. 

/ (130, 80,) 

Activation The activation function in 

each hidden layer. 

{“logistic”, “tanh”, “relu”} “relu” 

Solver The optimization method for 

loss function. 

{“lbfgs”, “sgd”, “adam”} “adam” 

Learning rate 

(lr) 

The update rate of weights. / Initial value: 0.01; loss<2.6, 

lr=0.005; loss<2.4, lr=0.001; 

loss<2.2, lr = 0.0005; and 

loss<2.0, lr=0.0001. 

Dropout rate The probability that nodes 

will be dropped with. 

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7

,0.8,0.9] 

0.3 

 
For determining the size of the hidden layer, we used the following steps. First, for a single hidden 
layer, we set the initial number of nodes in the hidden layer to 10 and trained and tested the model 
with 10-fold cross-validation and the average MSE. Then, the number of nodes of the hidden layer 
was gradually increased (10 for each time and up to 200), and the 10-fold cross-validation was used 
for model training and testing to obtain the optimal number of nodes, with which the MSE of the 
model reached its minimum. Second, on the premise of fixing the parameters of the previously 
hidden layers, we added a new hidden layer with the initial number of nodes (10); and we then 
determined its optimal number of nodes according to the first step. Third, repeat the second step. As 
shown in Fig. 7, we find that the performance of the MPNN model with only one hidden layer is 
worse than that of the model with multiple hidden layers. Meanwhile, there is no significant 
difference between the performance of the MPNN model with two hidden layers and that of the 
model with three or more hidden layers. Finally, we select the MPNN model with two hidden layers, 
whose number of nodes are 130 and 80, respectively. 
 



  
Fig 7. The average MSE of the MPNN model with different numbers of hidden layers and nodes 
 
The learning rate has shown significant effects on the performance of MPNN models in previous 
studies. The model may converge to a local optimum with a high learning rate and will be time-
consuming with a low learning rate. In this study, we used the dynamic learning rate to balance the 
two ends of the learning rate. Specifically, a higher learning rate (0.01) was used at the initial stage 
of model training, and it gradually declines as the value of the loss function (i.e., MSE) declines. 
Eq. (1) displays the loss function of our model:  

 
(1) 

where 𝑦!"#$%&'#$ is the predicted clinical citation count of paper i, and 𝑦% means the observed 
clinical citation count of paper i in PubMed. Besides, we set the dropout rate as 0.3 to avoid 
overfitting. 
 
3.3.3 Baseline models and evaluation indicators 
(1) Baseline models 
In this study, we compared our MPNN model with five other baseline models, including Linear 
Regression (Persson, 2017), Support Vector Regression (Smola & Schölkopf, 2004), Random Forest 
Regression (Hutchins et al., 2019b; Smith et al., 2013), K-nearest Neighbors Regression (Song et 
al., 2017), and eXtreme Gradient Boosting (Chang et al., 2018). These five regression models have 
been demonstrated to have outstanding performance in previous research (Huang et al., 2022; 
Hutchins et al., 2019b; Ruan et al., 2020). We implemented these models using the scikit-learn 
library. Meanwhile, to determine satisfactory parameters of these models, the methods of tenfold 
cross-validation and grid search were used. The details of the parameters of these five baseline 
models are shown in Table 5.  
 
(2) Evaluation indicators 



In this study, we used the Mean Square Error (MSE), the Mean Absolute Error (MAE), and the R-
squared (R() to evaluate the performance of all the regression models. The definitions of these three 
indicators are as follows. 
 
a. Mean Square Error (MSE) measures the average squared difference between the predicted 
clinical citation count returned by regression models and the observed values in PubMed. It can be 
calculated by Eq. (1). The MSE is one of the most used evaluation indicators for a regression model. 
A smaller value of MSE indicates a better performance of the regression model. 
 
b. Mean Absolute Error (MAE) measures the average absolute difference between the predicted 
clinical citation count returned by a regression model and the observed values in PubMed. It can be 
calculated by: 

 
(2) 

compared with MSE, the magnitude of MAE is consistent with the original data, which can represent 
the actual error of prediction. Similar to MSE, the smaller the MAE is, the better the performance 
of the regression model is. 
 
c. R-squared (𝐑𝟐) is defined as the proportion of the variance for a predicted variable that is 
explained by features in a regression model. It can be calculated by: 
 

 
(3) 

where 𝑦*#+, is the mean value of the observed clinical citation count of all samples in PubMed. 
The interval of the value of R( is [0,1], and in contrast to MSE and MAE, the higher the value of 
R(, the better the performance of the regression model. Note that, in rare cases, the value of R( 
may be less than zero, indicating that the performance of the prediction model is worse than that of 
the random benchmark. 
 



Table 5. Parameters of the five baseline models1. 

Model Parameter Description  Search range Value  
Linear Regression fit_intercept Whether to compute intercept. {True, False} True 

n_jobs Parallel number of jobs. / -1 

copy_X Whether to copy the training data. {True, False} True 

Support Vector 

Machine 

C Parameter for regularization. (1.0, 30) 25 

kernel Category of kernel. {“linear”, “poly”, “rbf”, “sigmoid”, “precomputed”} “linear” 

Random Forest n_estimator Maximum number of spanning trees. (10, 2000) 77 

max_depth Maximum depth of trees. (10, 100) 23 

max_features Number of subsets of features. {“auto”, “sqrt”, “log2”} “sqrt” 

min_sample_leaf Minimum number of samples required to split nodes. (1, 30) 14 

min_sample_leaf Minimum number of samples required to determine leaf 

nodes.  

(1, 30) 6 

n_jobs Parallel number of jobs. / -1 

K-nearest 

neighbors 

n_neighbours Number of neighbor nodes. (1, 50) 7 

weights Weight function for prediction. {“uniform”, “distance”} “distance” 

leaf_size Size of leaf passing to BallTree or KDTree. (5, 50) 18 

n_jobs Parallel number of jobs. / -1 

XGBoost n_estimators Maximum number of spanning trees. (50, 2000) 750 

max_depth Maximum depth of trees. (1, 100) 10 

n_jobs Parallel number of jobs. / -1 

 
1 For parameters that are not listed in the table, we used their default values. 



4 Prediction result 
4.1 The performance of the six regression models 
The performance of the six regression models is shown in Table 6, from which we can find that the 
MPNN model has achieved the best performance in all three indicators (MSE=7.4135, 
MAE=0.5132, and R-squared=0.7883). The performance of the XGBoost ranks at the second place 
(MSE = 7.6813, MAE=0.5227 and R-squared=0.7822), which followed by the Random Forest 
model (MSE = 7.9173, MAE=0.5844 and R-squared=0.7798) and the SVM model (MSE = 8.0652, 
MAE=0.7611 and R-squared=0.7360). The performance of the KNN model is the worst 
(MSE=10.377, MAE=0.8961, and R-squared=0.6423). 
 
Table 6. The performance of the six regression models 

Model # Of Features MSE MAE 𝑹𝟐 

Linear Regression (LR) 91 9.8197 0.8510 0.7031 

Support Vector Machine (SVM) 91 8.0652 0.7611 0.7360 

Random Forest (RF) 91 7.9173 0.5844 0.7798 

K-nearest Neighbors (KNN) 91 10.377 0.8961 0.6423 

eXtreme Gradient Boosting (XGBoost) 91 7.6813 0.5227 0.7822 

Multilayer Perceptron Neural Network (MPNN)  91 7.4135 0.5132 0.7883 

 
Particularly, in the above experiment, we only used the citation information within two years after 
publication, including the citation-related features in the paper dimension (e.g., C_N) and all the 
features in the citing paper dimension (e.g., max_n_ref_1, max_tl_1, and sd_is_DT_1). We further 
tested the performance of the MPNN model when the entire citation information was included (i.e., 
the citation information from publication to the year 2020). The result shows that the performance 
of the MPNN model was slightly improved (MSE=7.1962, MAE=0.4971, and R-squared=0.7903). 
Meanwhile, when the citation information was reduced to one-year post-publication, the 
performance of the MPNN model had a significant drop (the MSE increased from 7.4135 to 8.6713, 
the MAE increased from 0.5132 to 0.6843, and the R-square reduced from 0.7883 to 0.7274).  
 
4.2 The importance of features 
We are also interested in the relative importance of different features for the MPNN model. In this 
study, we employed the method called “Leave One Feature Out” to calculate the relative importance 
of different features (Bo et al., 2006; Ruan et al., 2020). Specifically, for a given feature, we first 
trained and tested the MPNN model without it and then used the absolute difference in the average 
MSE between the new model and the original model to represent the relative importance of this 
feature. Table 7 lists the top twenty important features of the MPNN models. 
 
Table 7. The rank of the relative importance of different features (top 20) 

Rank ALL papers C papers CA papers H papers 
1 sd_n_ref sd_n_ref sd_n_ref sd_n_ref 
2 max_n_ref sd_n_ent sd_n_ent max_n_ref 
3 sd_n_ent max_h_score max_n_ref max_n_ent 
4 max_n_ent mean_h_score max_h_score sd_n_ent 
5 max_tl max_n_ref sd_c_score max_c_score 



6 C_2 mean_n_gp mean_h_score mean_n_drug 
7 mean_h_score sd_tl mean_n_gp max_tl 
8 sd_c_score sd_c_score sd_h_score C_2 
9 mean_n_drug sd_h_score sd_tl mean_h_score 
10 max_c_score max_n_disease max_n_disease max_n_mesh 
11 mean_n_ref mean_tl max_a_score_1 mean_is_DT 
12 sd_n_drug sd_n_disease mean_tl mean_n_ref 
13 sd_h_score max_a_score_1 mean_n_ref_1 max_a_score 
14 sd_tl mean_n_ref max_n_drug sd_n_mesh 
15 mean_n_gp max_n_drug sd_n_disease sd_n_gp 
16 mean_is_DT mean_n_ref_1 max_n_drug_1 mean_n_ent 
17 max_h_score max_n_drug_1 mean_n_disease_1 mean_n_mesh 
18 mean_n_mesh max_tl_1 max_n_gp_1 sd_h_score 
19 max_n_disease mean_n_drug_1 sd_is_DT_1 sd_c_score 
20 max_a_score max_n_disease_1 mean_n_drug_1 sd_n_drug 

 
In terms of all biomedical papers in the training dataset, we can observe four interesting findings on 
the importance of features. First, the importance of the standard deviation and the maximum of the 
references of all references (i.e., sd_n_ref and max_n_ref) rank the first and second place; the value 
of the importance of these two features are 1.2762 and 1.0274, respectively. The third and fourth 
important features are the standard deviation and the maximum of the number of bio-entities 
mentioned in all references, i.e., sd_n_ent (0.8364) and max_n_ent (0.6842). The importance of the 
total citation counts two years post-publication (0.3883) ranks the fifth place. Second, 83 out of the 
91 features have an importance that is not zero.  
 
Third, in terms of the feature dimension, the most important feature dimension is the reference 
dimension: 32 (91.4%) features in the reference dimension have non-zero importance, and 19 
(54.3%) features in the reference dimension rank in the top 20. The second most important feature 
dimension is the paper dimension: 19 (90.5%) features in the paper dimension have non-zero 
importance, one feature (C_2) in the paper dimension ranks in the top 20 (i.e., the 6th place), and 
three features in the paper dimension rank in the top 30. The least important feature dimension is 
the citing paper dimension; although 32 (91.4%) features in the citing paper dimension have non-
zero importance, only one feature ranks in the top 30, i.e., the feature ranking in the 30th place 
“sd_n_ent_1”.  
 
Fourth, in terms of the feature categories, the citation-related information (such as sd_n_ref 
max_n_ref, and C_2) and the clinical topic-related features (e.g., max_n_ent and sd_n_ent), who 
rank the first four places, are more important than the clinical translation-related features (e.g., 
max_tl and mean_h_score). The importance of other features such as abs_len and is_grant is the 
lowest. Besides, the biomedical entity-related features (e.g., sd_n_ent and max_n_ent) are overall 
more important than the MeSH term-related features (e.g., max_n_mesh and mean_n_mesh). 
 
We also analyzed the importance of features for the MPNN models based on different categories of 
biomedical paper sets, including C papers, CA papers, and H papers. As shown in Table 7, the 



standard deviation of the number of references of all references (i.e., sd_n_ref) is the most important 
feature for prediction models based on all categories of biomedical paper sets. Meanwhile, in terms 
of feature dimensions, features in the reference dimension and paper dimension are more important 
than those in the citing paper dimension. We also find that features in the citing paper dimension are 
more important for C and CA papers rather than all and H papers. In addition, in terms of feature 
categories, clinical translation-related features are more important for C and CA papers, and citation-
related and topic-related features are more important for H papers.  
 
5 Discussion and conclusion 
This study proposed a multilayer perceptron neural network (MPNN) model with two hidden layers 
to predict the clinical citation count of biomedical papers published from 1985 to 2005 in PubMed. 
Accordingly, we extracted citation-related, clinical translation-related, topic-related features of 
biomedical papers from three dimensions, including the paper dimension, the reference dimension, 
and the citing paper dimension. We also considered the features that have previously been 
demonstrated to have influence on the citation count of academic papers. The PubMed Knowledge 
Graph (PKG) was employed as the data source in this study because it contains more than 30 million 
biomedical papers with well-processed information, such as bio-entities, disambiguated author 
names, and citation relationships between PubMed papers (Xu et al., 2020).  
 
One of the contributions of this study is the improvement of the performance of the clinical citation 
count prediction model by using the multilayer perceptron neural network. The results of the 
experiment demonstrated that the proposed MPNN model performed significantly better than the 
other five baseline models, including eXtreme Gradient Boosting, random forest, support vector 
machine, linear regression, and K-nearest neighbors.  
 
The other contribution of this study is that we found the most important features for clinical citation 
count prediction is the features in the reference dimension, which should not have been ignored in 
the previous studies. Moreover, the results of this study showed that the citation-related and topic-
related features are more important for clinical citation count prediction than the clinical-translation-
related ones. However, by further analyzing MPNN models based on different categories of 
biomedical papers, we found that the clinical translation-related features are more important for the 
prediction of clinical citation count of basic papers (i.e., C and CA papers) rather than papers closer 
to clinical science (i.e., H papers). This could be interpreted as those basic papers need obvious 
clinical translation-related features to be found and cited by the authors of clinical papers, but papers 
closer to clinical science (H papers) don’t need them. In addition, we also demonstrated “other 
features” that were helpful in the prediction of the citation count of academic papers, are not 
important for the prediction of the clinical citation count of biomedical papers. This indicates that 
there is essential difference between the academic citations and the clinical citations of biomedical 
papers.  
 
We analyzed the distribution of the clinical citation count of biomedical papers by using exploratory 
data analysis. The results showed that the clinical citation count of biomedical papers tend to be 
stable fifteen years post-publication, which demonstrated that it is feasible for us to select 
biomedical papers published during 1985-2005. Meanwhile, highly similar distribution patterns 



were found from both the total citations and clinical citations, which indicated that the clinical 
citation count prediction of biomedical could be possible, just as that of the previous citation counts. 
We believe that these findings will be useful for the follow-up research on the clinical citation count 
of biomedical papers.  
 
There are several implications of this study. Methodologically, this paper predicted the clinical 
citation count of biomedical papers using the multilayer perceptron neural network and achieved 
good performance, with citation information only two years post-publication. This could be useful 
for the policymakers, and the pharmaceutical companies to early assess the translational progress of 
biomedical research and to monitor the biomedical research with a high potential to be clinically 
translated in real-time. Meanwhile, this study demonstrated that the features in the reference 
dimension are the most important for the clinical citation count prediction of biomedical papers, but 
they were rarely studied in previous research (Hutchins et al., 2019b). Therefore, our study provides 
a novel dimension for the research community and could be applied to other related research tasks, 
such as the research assessment for translational programs. Besides, the findings in this study could 
be useful for biomedical authors, especially those in basic science, to get more attention from 
clinical research. 
 
The study also has several limitations. First, we only included ninety-one features in this study for 
predicting the clinical citation count of biomedical papers. Several other factors may also be 
considered, such as the image-related factors, the length of the whole paper, and full-text 
embeddings. Second, the landscape of collaborations between clinical science and basic science 
may also affect the clinical citations of biomedical papers. Future work should include all these 
factors for the model training. Several knowledge representation methods such as word2vec, BERT 
or graph neural network could also be used for paper representation in the step of feature extraction. 
Third, the causal relationships between the features and the clinical citation count of biomedical 
papers were not determined because of the “black box” nature of neural networks. Eventually, in 
our future work, we also intend to explore the underlying relationships between factors in different 
dimensions and the clinical citation count of biomedical papers. 
 
Acknowledgment 
This work was supported by the National Natural Science Foundation of China (grant no. 72204090). 
This work was also supported by “the Fundamental Research Funds for the Central Universities” 
(grant no. CCNU22XJ025). The computation is completed in the HPC Platform of Huazhong 
University of Science and Technology. The computation is completed in the HPC Platform of 
Huazhong University of Science and Technology. 
 
References 
Abrishami, A., & Aliakbary, S. (2019). Predicting citation counts based on deep neural network 

learning techniques. Journal of Informetrics, 13(2), 485–499.  
Amjad, T., Shahid, N., Daud, A., & Khatoon, A. (2022). Citation burst prediction in a bibliometric 

network. Scientometrics, 25:1-18.  
Annapureddy, A. R., Angraal, S., Caraballo, C., Grimshaw, A., Huang, C., Mortazavi, B. J., & 

Krumholz, H. M. (2020). The National Institutes of Health funding for clinical research 



applying machine learning techniques in 2017. npj Digital Medicine, 3(1), 13.  
Bo, L., Wang, L., & Jiao, L. (2006). Feature scaling for kernel fisher discriminant analysis using 

leave-one-out cross validation. Neural Computation, 18(4), 961-978.  
Boyack, K. W., & Jordan, P. (2011). Metrics associated with NIH funding: A high-level view. 

Journal of the American Medical Informatics Association, 18(4), 423–431.  
Boyack, K. W., Patek, M., Ungar, L. H., Yoon, P., & Klavans, R. (2014). Classification of 

individual articles from all of science by research level. Journal of Informetrics, 8(1), 1–12.  
Chang, Y.-C., Chang, K.-H., & Wu, G.-J. (2018). Application of eXtreme gradient boosting trees 

in the construction of credit risk assessment models for financial institutions. Applied Soft 
Computing, 73, 914–920.  

Contopoulos-Ioannidis, D. G., Alexiou, G. A., Gouvias, T. C., & Ioannidis, J. P. A. (2008). Life 
Cycle of Translational Research for Medical Interventions. Science, 321(5894), 1298–1299.  

Eriksson, M., Billhult, A., Billhult, T., Pallari, E., & Lewison, G. (2020). A new database of the 
references on international clinical practice guidelines: A facility for the evaluation of clinical 
research. Scientometrics, 122(2), 1221–1235.  

Farr, J. N., Jenkins, J. J., & Paterson, D. G. (1951). Simplification of Flesch Reading Ease 
Formula. Journal of Applied Psychology, 35(5), 333.  

Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojević, S., Petersen, A. 
M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D., & Barabási, 
A.-L. (2018). Science of science. Science, 359(6379), eaao0185.  

Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—
A review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 
2627–2636.  

Grant, J., Cottrell, R., Cluzeau, F., & Fawcett, G. (2000). Evaluating “payback” on biomedical 
research from papers cited in clinical guidelines: Applied bibliometric study. 320, 5. 

Huang, S., Huang, Y., Bu, Y., Lu, W., Qian, J., & Wang, D. (2022). Fine-grained citation count 
prediction via a transformer-based model with among-attention mechanism. Information 
Processing & Management, 59(2), 102799.  

Hutchins, B. I., Baker, K. L., Davis, M. T., Diwersy, M. A., Haque, E., Harriman, R. M., Hoppe, 
T. A., Leicht, S. A., Meyer, P., & Santangelo, G. M. (2019a). The NIH Open Citation 
Collection: A public access, broad coverage resource. PLOS Biology, 17(10), e3000385.  

Hutchins, B. I., Davis, M. T., Meseroll, R. A., & Santangelo, G. M. (2019b). Predicting 
translational progress in biomedical research. PLOS Biology, 17(10), e3000416.  

Jimenez, S., Avila, Y., Dueñas, G., & Gelbukh, A. (2020). Automatic prediction of citability of 
scientific articles by stylometry of their titles and abstracts. Scientometrics, 125(3), 3187–
3232.  

Ke, Q. (2019). Identifying translational science through embeddings of controlled vocabularies. 
Journal of the American Medical Informatics Association, 26(6), 516–523.  

Ke, Q. (2020). The citation disadvantage of clinical research. Journal of Informetrics, 14(1), 
100998. 

Kim, Y. H., Levine, A. D., Nehl, E. J., & Walsh, J. P. (2020). A bibliometric measure of 
translational science. Scientometrics, 125(3), 2349–2382.  

Kryl, D., Allen, L., Dolby, K., Sherbon, B., & Viney, I. (2012). Tracking the impact of research on 
policy and practice: Investigating the feasibility of using citations in clinical guidelines for 



research evaluation. BMJ Open, 2(2), e000897.  
Larivière, V., Gingras, Y., Sugimoto, C. R., & Tsou, A. (2015). Team size matters: Collaboration 

and scientific impact since 1900: On the Relationship Between Collaboration and Scientific 
Impact Since 1900. Journal of the Association for Information Science and Technology, 
66(7), 1323–1332. 

LeCun, Y., Touresky, D., Hinton, G., & Sejnowski, T. (1988). A theoretical framework for back-
propagation. In Proceedings of the 1988 connectionist models summer school,1:21-28.  

Lewison, G., & Paraje, G. (2004). The classification of biomedical journals by research level. 
Scientometrics, 60(2), 145–157.  

Lewison, G., & Sullivan, R. (2008). The impact of cancer research: How publications influence 
UK cancer clinical guidelines. British Journal of Cancer, 7. 

Leydesdorff, L., Wagner, C. S., & Bornmann, L. (2018). Betweenness and diversity in journal 
citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield. 
Scientometrics, 114(2), 567–592.  

Li, C. T., Lin, Y. J., Yan, R., & Yeh, M. Y. (2015). Trend-based citation count prediction for 
research articles. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 
659-671). Springer, Cham.  

Li, X., Rousseau, J. F., Ding, Y., Song, M., & Lu, W. (2020). Understanding Drug Repurposing 
from the Perspective of Biomedical Entities and Their Evolution: Bibliographic Research 
Using Aspirin. JMIR Medical Informatics, 8(6), e16739.  

Li, X., & Tang, X. (2021). Characterizing interdisciplinarity in drug research: A translational 
science perspective. Journal of Informetrics, 15(4), 101216.  

Liang, Z., Mao, J., Lu, K., & Li, G. (2021). Finding citations for PubMed: A large-scale 
comparison between five freely available bibliographic data sources. Scientometrics, 
126(12), 9519–9542.  

Ma, A., Liu, Y., Xu, X., & Dong, T. (2021). A deep-learning based citation count prediction 
model with paper metadata semantic features. Scientometrics, 126(8), 6803–6823.  

Narin, F., Pinski, G., & Gee, H. H. (1976). Structure of the Biomedical Literature. Journal of the 
American Society for Information Science, 27(1), 25–45.  

Narin, F., & Rozek, R. P. (1988). Bibliometric analysis of U.S. pharmaceutical industry research 
performance. Research Policy, 17(3), 139–154.  

Onodera, N., & Yoshikane, F. (2015). Factors affecting citation rates of research articles: Factors 
Affecting Citation Rates of Research Articles. Journal of the Association for Information 
Science and Technology, 66(4), 739–764.  

Persson, R. A. X. (2017). Bibliometric author evaluation through linear regression on the coauthor 
network. Journal of Informetrics, 11(1), 299–306.  

Ruan, X., Zhu, Y., Li, J., & Cheng, Y. (2020). Predicting the citation counts of individual papers 
via a BP neural network. Journal of Informetrics, 14(3), 101039. 

Smith, P. F., Ganesh, S., & Liu, P. (2013). A comparison of random forest regression and multiple 
linear regression for prediction in neuroscience. Journal of Neuroscience Methods, 220(1), 
85–91.  

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and 
Computing, 14(3), 199–222.  

Song, Y., Liang, J., Lu, J., & Zhao, X. (2017). An efficient instance selection algorithm for k 



nearest neighbor regression. Neurocomputing, 251, 26–34.  
Tang, X., Li, X., Ding, Y., Song, M., & Bu, Y. (2020). The pace of artificial intelligence 

innovations: Speed, talent, and trial-and-error. Journal of Informetrics, 14(4), 101094.  
Thelwall, M., & Kousha, K. (2016). Are citations from clinical trials evidence of higher impact 

research? An analysis of ClinicalTrials.gov. Scientometrics, 109(2), 1341–1351.  
Thelwall, M., & Maflahi, N. (2016). Guideline references and academic citations as evidence of 

the clinical value of health research: Guideline References and Academic Citations as 
Evidence of the Clinical Value of Health Research. Journal of the Association for 
Information Science and Technology, 67(4), 960–966.  

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., ... & 
Dosovitskiy, A. (2021). Mlp-mixer: An all-mlp architecture for vision. Advances in Neural 
Information Processing Systems, 34, 24261-24272.  

Urlings, M. J. E., Duyx, B., Swaen, G. M. H., Bouter, L. M., & Zeegers, M. P. (2021). Citation 
bias and other determinants of citation in biomedical research: Findings from six citation 
networks. Journal of Clinical Epidemiology, 132, 71–78.  

Wang, K., Shen, Z., Huang, C., Wu, C.-H., Dong, Y., & Kanakia, A. (2020). Microsoft Academic 
Graph: When experts are not enough. Quantitative Science Studies, 1(1), 396–413.  

Weber, G. M. (2013). Identifying translational science within the triangle of biomedicine. Journal 
of Translational Medicine, 11(1), 126.  

Xu, J., Kim, S., Song, M., Jeong, M., Kim, D., Kang, J., Rousseau, J. F., Li, X., Xu, W., Torvik, 
V. I., Bu, Y., Chen, C., Ebeid, I. A., Li, D., & Ding, Y. (2020). Building a PubMed 
knowledge graph. Scientific Data, 7(1), 205.  

Xu, J., Li, M., Jiang, J., Ge, B., & Cai, M. (2019). Early Prediction of Scientific Impact Based on 
Multi-Bibliographic Features and Convolutional Neural Network. IEEE Access, 7, 92248–
92258.  

Yu, Q., Wang, Q., Zhang, Y., Chen, C., Ryu, H., Park, N., Baek, J.-E., Li, K., Wu, Y., Li, D., Xu, 
J., Liu, M., Yang, J. J., Zhang, C., Lu, C., Zhang, P., Li, X., Chen, B., Ebeid, I. A., … Bu, Y. 
(2021). Analyzing knowledge entities about COVID-19 using entitymetrics. Scientometrics, 
126(5), 4491–4509.  

Yue, J., Tabloski, P., Dowal, S. L., Puelle, M. R., Nandan, R., & Inouye, S. K. (2014). NICE to 
HELP: Operationalizing National Institute for Health and Clinical Excellence Guidelines to 
Improve Clinical Practice. Journal of the American Geriatrics Society, 62(4), 754–761.  

Zarin, D. A., Tse, T., Williams, R. J., Califf, R. M., & Ide, N. C. (2011). The ClinicalTrials.gov 
Results Database—Update and Key Issues. New England Journal of Medicine, 364(9), 852–
860.  

Zhang, F., Yan, E., Niu, X., & Zhu, Y. (2018). Joint modeling of the association between NIH 
funding and its three primary outcomes: Patents, publications, and citation impact. 
Scientometrics, 117(1), 591–602.  
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