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The paper provides important insights into understanding the factors that influence tie strength
in social networks. Using local network measures that take into account asymmetry of social interac-
tions we show that the observed tie strength is a kind of compromise, which depends on the relative
strength of the tie as seen from its both ends. This statement is supported by the Granovetter-like,
strongly positive weight-topology correlations, in the form of a power-law relationship between the
asymmetric tie strength and asymmetric neighbourhood overlap, observed in three different real
coauthorship networks and in a synthetic model of scientific collaboration. This observation is jux-
taposed against the current misconception that coauthorship networks, being the proxy of scientific
collaboration networks, contradict the Granovetter’s strength of weak ties hypothesis, and the rea-
sons for this misconception are explained. Finally, by testing various link similarity scores, it is
shown that taking into account the asymmetry of social ties can remarkably increase the efficiency
of link prediction methods. The perspective outlined also allows us to comment on the surprisingly
high performance of the resource allocation index – one of the most recognizable and effective local
similarity scores – which can be rationalized by the strong triadic closure property, assuming that
the property takes into account the asymmetry of social ties.

I. INTRODUCTION

Social networks representing patterns of human inter-
actions have been the subject of both empirical and the-
oretical research since at least the middle of the last cen-
tury [1, 2]. And although, over the past two decades, due
to the rise of the Internet followed by the increased avail-
ability of large datasets on human interactions, methods
of social network analysis have changed a lot, the basic
challenge behind these analyses remained the same: To
understand human behaviour [3–5]. In particular, ques-
tions that keep recurring in the literature of the field
are: How, depending on the context studied, people es-
tablish social ties? To what extent can the evolution of
a social network be modelled using features intrinsic to
the network itself? Is it possible to predict existing but
undisclosed or intentionally hidden connections based on
those recorded? Finally, what influences the strength of
social ties, and can these strengths be inferred from the
binary link structure?

In what follows, building upon results of our previous
paper [6], we refer to last two of the above questions. We
show that in order to better understand weight-topology
correlations in social networks, it is necessary to use mea-
sures that formally take into account asymmetry of social
interactions, which may arise, for example, from differ-
ences in ego-networks of connected nodes. A simple argu-
ment in favour of this statement can be drawn from the
theory of complex networks (more specifically, from the
degree-based mean field approach [7–9]). In particular, in
social networks with fat tailed node degree distributions
the sizes of ego-networks of two connected nodes may dif-
fer considerably. This means that their common neigh-
bours can be a significant part of the neighbourhood of
one node and an insignificant part of the neighbourhood
of the other, resulting in a completely different percep-

tion of the size of the common neighbourhood on both
ends of the connection. This indicates that the observed
absolute tie strength is a kind of compromise, which de-
pends on the relative strength of the tie as seen from its
both ends.

Recently, similar findings have been made in Ref. [10],
where the concept of the social bow tie has been intro-
duced. Bow tie consists of a focal tie and all nodes con-
nected to either or both of the two focal nodes. In the
mentioned study, a number of topological metrics quan-
tifying properties of such a bow tie (including sum and
absolute difference of clustering coefficients of connected
nodes) have been investigated through machine learn-
ing and regression models in two different types of social
networks (e.g. call network of mobile phone users). The
main conclusion from this study was that in the consid-
ered networks tie strength depends not only on the prop-
erties of shared friends but also on those tied to only
one person, hence introducing a fundamental asymme-
try to social interaction. Despite interesting conclusions,
the authors however failed to identify the most predic-
tive, quantitative indicators of tie strength, basing their
findings on a broad spectrum of different structural prop-
erties of bow ties. From this perspective, in the face of
the growing interest in measuring and predicting social
ties (see e.g. [11–14]), an important step towards finding
such an informative metric has been made in our recent
paper on Granovetter’s theory in coauthorship networks
[6].

Historically, the Granovetter’s theory [15, 16] is of im-
portance to weight-topology correlations in social net-
works, as Mark Granovetter was the first to distinguish
between strong and weak social ties. He treated ties as
if they were positive and symmetric, and suggested that,
from a network structure perspective, tie strength be-
tween any two people should increase with the number
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of their mutual friends. In line with this hypothesis, sev-
eral intuitive network measures, such as the neighbour-
hood overlap [17], have been proposed to characterize the
aforementioned correlations. Unfortunately, contrary to
expectations, performance of these indicators turned out
to be not very satisfactory: sometimes confirming [18–
20], and sometimes saying nothing [14, 21], or even con-
tradicting [22, 23] the Granovetter’s hypothesis.

And while no systematic attempts have been made to
explain the poor performance of these indicators to date,
recent studies [6, 24, 25] may point to some reasons of
their failure. For example, in Ref. [24], by analysing a
large mobile-phone dataset, it has been shown that tem-
poral features of social ties (such as the number of days
with calls, number of bursty cascades, typical time of con-
tacts, etc.) are related to both their strength and topo-
logical features of their nearest network neighbourhood.
In Ref. [25], analysis of population-scale mobile-telephone
and Twitter data has revealed that unembedded long-
range connections (i.e. with no nearest neighbours and
long second-nearest paths) can be as strong as embedded
ones (with non-zero neighbourhood overlap). Finally, in
Ref. [6], using a large scale real coauthorship network,
we have provided evidence that the key to understand
weight-topology correlations in social networks is to re-
ject the assumption of the symmetry of social ties that
is commonly used in scientific research.

It is no wonder then that such indicators as the number
of common neighbours or neighbourhood overlap, when
used in link prediction methods, gave results compara-
ble (and often even worse) to the typical measures of
nodes’ similarity [26, 27], such as: the Adamic-Adar in-
dex [28] or the resource allocation index [29]. In fact,
the above-mentioned problems are particularly evident
in coauthorship networks, in which many independent
studies [6, 14, 21–23] have confirmed non-monotonic (in-
stead of strictly growing), U-shaped relation between tie
strength and neighbourhood overlap of adjacent nodes
that is contrary to the Granovetter’s hypothesis. In our
last paper [6], using DBLP computer science bibliography
database, we identified the source of this problem, point-
ing to inappropriate (i.e. symmetric instead of asymmet-
ric) quantities used to study the weight-topology corre-
lations. We have introduced new measures: asymmet-
ric neighbourhood overlap and asymmetric tie strength
which allowed the successful verification of the Granovet-
ter’s theory, and which - we believe - may be helpful in de-
veloping new link prediction methods in social networks.

In this paper, to reinforce the message of our recent
contribution [6], we investigate the weight-topology cor-
relations in two more real coauthorship networks and in
a synthetic model of scientific collaboration, which re-
produces many of the properties of these networks. The
motivation behind this study is twofold. First, the anal-
yses with the use of different real data and synthetic net-
works are intended to validate our findings on the role
of asymmetry in social ties, that were originally derived
from analysis of just one dataset [6]; such validation is an

important element of the research, as it shows that the re-
sults described in our previous paper are not an artefact
resulting from the specificity of the only dataset used.
Second, with this contribution, we would like to point
out potential applications of the new network measures
we introduced in [6] to the problem of link prediction in
social networks; since most of the known link-prediction
methods use symmetric network measures [11, 26, 27],
contributions like this one are important because they in-
crease the awareness of society that redefining traditional
measures to account for link asymmetry can significantly
improve their performance.
At this point, we would like to highlight the difference

between our contribution and existing research on link
prediction in directed networks [30–34]. We are deal-
ing here with undirected networks. Howerer, despite the
lack of link directions, we exploit a natural asymmetry in
studied networks that can be used to predict links more
effectively. This approach is completely new.
The reminder of this paper is organized as follows. In

Section II, we study weight-topology correlations in three
different real coauthorship networks and in a synthetic
model of scientific collaboration. For this purpose, we
use a new metric of local edge clustering - the asym-
metric neighbourhood overlap, which extracts informa-
tion about the asymmetry of social ties. In Section III,
we provide an in-depth discussion of different similarity
scores used in classical methods of link and weight pre-
diction in complex networks. Understanding why some
of these measures are successful allows us to design new,
inherently asymmetric indices that outperform existing
ones. Section IV draws conclusions of the paper.

II. ASYMMETRY-BASED
WEIGHT-TOPOLOGY CORRELATIONS

A. Methods

1. Scientific collaboration networks

Coauthorship networks, with nodes representing all
scientists in a particular discipline and edges joining pairs
who have coauthored articles [35], are widely accepted as
proxies of scientific collaboration networks [36, 37]. Ac-
cordingly, their properties are often compared to other
proxies of social networks, such as mobile phone networks
[14, 17, 18]. In this respect, when considered as binary
networks - without any additional features assigned to
nodes and connections - all these networks show numer-
ous structural similarities (e.g. high clustering, small-
world effect, and skewed degree distribution [38]). How-
ever, when the edges are assigned weights representing,
depending on the network, the number of joint publica-
tions or the number of phone calls made then, although
macroscopic features of these networks (such as distri-
butions of node strengths and edge weights [39]) may
still be similar, their weight-topology correlations arising
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from the localization of strong and weak ties seem to be
completely different [22].

Indeed, it is widely believed that coauthorship net-
works show atypical weight-topology correlations com-
pared to other - let’s say typical - social networks. Here,
the term typical refers to networks that satisfy the Gra-
novetter’s hypothesis [15], according to which strong so-
cial ties are associated with densely connected groups
of individuals, while weaker ties act as bridges between
these groups. In what follows, we take a closer look at
these issues. We show that the phrase we just used,
namely: seem to be instead of are, is not acciden-
tal, because in fact coauthorship networks show weight-
topological correlations typical of other social networks,
provided that the measures used to analyse them are
properly adapted to their structure.

2. Datasets used

We analyse coauthorship networks built from three sci-
entific databases containing publication records in the
field of computer science and physics: the DBLP Com-
puter Science Bibliography, the American Physical So-
ciety (APS) journal articles, and the Condensed Matter
(CondMat) section of the preprint server ArXiv. In de-
tail:

• DBLP is a digital library of article records pub-
lished in computer science [40]. In this study,
we use the 12th version of the dataset (DBLP-
Citation-network V12; released in April 2020 [41]),
which contains information on approximately 4.9 M
articles published mostly during the last 20 years.
We ourselves processed the raw DBLP data into
the form of coauthorship network and, following
previous studies of similar data, we focused on the
largest component of this network, consisting of
2.9 M nodes (which is 65% of all nodes) and 12.5 M
weighted links.

• APS dataset comprises of over 450 k articles pub-
lished in all journals of the American Physical So-
ciety since 1893 [42]. In this study, we use the pre-
processed APS data [14] covering the period be-
tween January 1970 and December 2006 and con-
taining 315 k documents with up to 11 co-authors,
from which we built coauthorship network with the
largest component consisting of 184 k nodes (which
is 96% of all APS authors recorded in this period)
and 1 M weighted edges.

• CondMat is a weighted coauthorship network be-
tween scientists who published preprints on the
Condensed Matter e-print archive between January
1995 and December 1999 [36]. To built the network
we used a preprocessed bipartite dataset from [43].
The largest component of this network, which is
taken into account for in-depth analysis, covers 14 k

authors (which is 83% of all authors) interacting via
45 k weighted links.

In this contribution, as in the previous one [6], our
main dataset is DBLP, from which we derive the key find-
ings and to which we relate analysis made in the other
two databases and in the synthetic model of scientific col-
laboration. The leading role of DBLP in our research is
due not only to its largest size compared to the other two
datasets. Rather, it results from the care of the authors
of this database to disambiguate the names of the authors
of publications [44]. In DBLP, author names are disam-
biguated by the combination of algorithms and human
curation [45], and not, as in many other bibliographic
data - including APS and CondMat - represented by a
string of characters corresponding to the surname(s) and
initials of all forenames (or only the first one), which can
lead to ambiguity of authors through merging or splitting
their output [12]. However, the two additional datasets
(APS and CondMat), although smaller and less accurate
than DBLP, allow us to expand the scope of performed
analyses by testing noise-resilience (e.g. due to incom-
plete data and problems with disambiguation of authors’
names) of the recently observed weight-topology patterns
[6].

3. Coauthorship network model

From various different models of scientific collabora-
tion proposed so far (see e.g. [46–49]), for the analysis
presented in this paper, we have chosen the model intro-
duced in Ref. [23]. The choice of this particular model
was dictated by several reasons. First, the model repro-
duces the weight-topology correlations observed in real
networks, which we wanted to address and comment on
in this paper. Second, despite its simplicity, the model
takes into account many important features of the evo-
lution of real scientific collaboration networks that can
be easily verified by examining readily available coau-
thorship networks. These features include: i. growth
over time by adding new nodes - students, ii. emergence
of new research groups, in which junior scientists (for-
mer students) become group leaders (the evolution of ca-
reer stages [50]), iii. creation of new publications based
on intra- and inter-group relations, and finally iv. high
probability that the young scientist will give up a further
scientific career.
As indicated above, in the model studied, nodes are as-

signed to specific research groups in which they perform
various functions. More specifically, each group consists
of exactly one leader and a number of students, with the
latter being ”active” or ”inactive” depending on the time
elapsed since they were added to the network. It is as-
sumed that the group leader is established at the time of
group formation and remains in function until the end of
the network evolution. The situation of students is a bit
more complicated. After a node is added to the network,
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it is assigned to one of the existing research groups as its
active student, who can participate in scientific research
and coauthor publications. However, just like in the real
world, after some time such a student may cease to be
active, giving up further research activity, or may pursue
a scientific career as a leader of a new research group.

In the considered model, inter-node connections result
from common (i.e. coauthored) publications, the number
of which translates into the edge weight. The model has
two mechanisms of producing new publications, through
intra- or inter-group collaboration, with the number of
coauthors taken from a certain distribution P (l). This
distribution and any other parameters of the model are
determined on the basis of real data. We comment on
them later in the text, in the part devoted to simulation
results.

To be more specific, the evolution of the network model
under study proceeds as follows:

(0) Beginning of the evolution: The network starts to
grow with a single research group consisting of a leader
and one student.

Then, in successive time steps, the following actions
are performed (cf. description given in Ref. [23]):

(1) Intra-group publications: With probability c, each
group publishes one paper by itself. The paper is written
by the group’s leader and l − 1 active students prefer-
entially chosen from the same group based on student’s
scientific expertise, which corresponds to the length of
student’s activity period.

(2) Inter-group publications: Each group may publish
up to α papers with another group. External collabo-
ration always takes place with the same group, which is
randomly chosen right after a new group appears. Same
as for intra-group publications, each of these α papers is
realized with probability c and is coauthored by l indi-
viduals (two leaders and l − 2 students, which are pref-
erentially chosen from the pool of all active students of
the two groups).

(3) Groups’ resource update: Active students whose
activity period has exceeded the threshold value G, with
probability f become leaders of new research groups, and
with probability 1 − f become inactive and no longer
participate in network dynamics. A new active student
is added to each group.

Although the model under study has several free pa-
rameters, the values of most of them can be approxi-
mated from various real data. For example, since in
this paper we primarily use the coauthorship network
extracted from DBLP Computer Science Bibliography to
compare with the model results, we assume the distribu-
tion P (l) of the number of coauthors in publications con-
sistent with the corresponding distribution in the men-
tioned database 1 (alternatively, one could use real data
to train a model describing the distribution of coauthors

1 By drawing the number l of coauthors, we limit the range from
which we randomly select to the size of the group (i.e. G+1 for

in a similar way to [51]), see Fig. 1(a). Furthermore, al-
though we examined a wide range of model parameter
values in our studies, we ultimately decided to keep the
values provided in Ref. [23] (where the model was orig-
inally introduced), as they result in the best agreement
between simulations and real data. In Ref. [23] the fol-
lowing values have been taken as a reference: c = 0.4 for
the probability to publish a paper; α = 3 for the number
of inter-group publications; f = 0.2 for the probability
of a student becoming a group leader; and finally G = 7
for the length of the students’ activity period, which also
determines the maximum number of active students in
a research group. The rationale for these parameters is
described in more detail in Ref. [23], to which we refer
interested readers (for a broader perspective, see also the
recent studies: [49, 52, 53]).

B. Results

1. Real data vs. simulation results

In Fig. 1(b)-(f), we show basic structural character-
istics of real coauthorship networks (DBLP, APS, and
CondMat) and the model network with N ≃ 104 nodes
(averaged over 100 realizations). Two obvious conclu-
sions arise after analysing this figure. First: The exam-
ined features of real networks are very similar to each
other. It is reasonable to claim that the slight differences
in the range of the data shown are primarily related to
the size of the analysed networks, which varies from mil-
lions of nodes (in DBLP), through hundreds (in APS) to
tens of thousands (in CondMat). Second: The synthetic
model of scientific collaboration reflects very well the ba-
sic features of the reference coauthorship networks, in-
cluding their skewed distributions of node degrees, P (ki),
and strengths, P (si) (where the node strength is given
as the sum of the weights of its edges: si =

∑
j wij),

as well as the fat-tailed distributions of edge weights (tie
strengths) P (wij) and P (vij) (where wij represents the
number of joint papers, and vij = wij/pi ̸= vji (4) stands
for an asymmetric tie strength, which is discussed after-
wards). The good agreement between the model and real
data, as can be seen in this figure, is all the more con-
vincing as we checked that the differences between them
decreased as the size of the model networks increased.
The above results make the considered model a promis-
ing test-bed to study weight-topology correlations in sci-
entific collaboration networks, which enables the formu-
lation of well-established conclusions, based not only on

intragroup publications and 2(G+1) for intergroup publications).
For the value of G = 7 adopted in this study, this limitation
makes sense because, in the database under consideration, less
than one per mille of publications has more than 2(G+ 1) = 16
authors.
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FIG. 1. Structural properties of coauthorship networks. The following graphs show distributions of: (a) the number
of coauthors per paper, P (l); (b) the number of publications per author, P (pi); (c) the node degrees, P (ki); (d) the node
strengths, P (si); (e) the edge weights (or symmetric tie strengths), P (wij); (f) the asymmetric tie strengths, P (vij). The
symbols used are: black squares for DBLP, red circles for APS, blue triangles for CondMat, and green stars for results of
numerical simulations obtained from the model network.

real datasets but also on results of repeatable numerical
simulations.

2. Granovetter’s hypothesis in coauthorship networks

As mentioned in the introduction, according to the
Granovetter’s hypothesis, strong social ties are expected
to be associated with densely connected groups of indi-
viduals, while weaker ties act as bridges between these
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FIG. 2. Weight-topology correlations in coauthorship networks as observed on the basis of relationship between
variously defined tie strengths (wij , w∗

ij , and vij) and neighbourhood overlaps (Oij and Qij). Detailed description of the
notation used is given in the main test. Graphical symbols used are the same as in Fig. 1, i.e. black squares for BDLP, red
circles of APS, etc. Note that the panels (a), (b), and (c) show only real coauthorship networks. Panel (d) presents results of
numerical simulations of the synthetic network model and DBLP data for comparison.

groups. To quantitatively characterize such weight-
topology correlations, in Ref. [17], the relationship be-
tween tie strength, wij , connecting two nodes (i and j)
and their neighbourhoods’ overlap, Oij , has been used,
with the overlap defined as the ratio of the number of
common neighbours, nij , of this node pair to the number
of all their neighbours:

Oij =
nij

(ki − 1) + (kj − 1)− nij
. (1)

Correspondingly, clear empirical support for the
Grannovetter’s hypothesis, manifested a monotonically
increasing dependence between wij and Oij , has indeed
been observed in many social networks, but not in coau-
thorship networks (see Fig. 2(a) and (d - inset graph)),
making the latter a flagship example of systems in which
the hypothesis fails.

Interestingly, the characteristic U-shape non-

monotonic relation between tie strength and symmetric
overlap Oij , which is interpreted as the evidence of
atypical weight-topology correlations in scientific collab-
oration networks becomes even more apparent, when
the Newman’s definition [22, 23, 39] of tie strength,
w∗

ij , is taken into account (see Fig. 2(a),(b)). To grasp
the difference between wij and w∗

ij , recall that the tie
strength wij , which is the standard used throughout
this paper, stands for the number of joint publications,
that is also the number of times a collaboration between
two scientists has been repeated. Correspondingly, the
Newman’s tie strength is defined as:

w∗
ij =

∑
pij

1

lij − 1
̸=

∑
pij

1 = wij , (2)

where the sum runs over the set of papers pij co-authored
by lij scientists, including i and j. The motivation behind
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the Newman’s formula for w∗
ij is that an author divides

his/her time and other resources between lij − 1 collabo-
rators, and thus the tie strength of such a collaboration
should vary inversely with lij − 1.
The possible cause of the failure of the Granovetter’s

hypothesis in scientific collaboration networks has only
recently been clarified in Ref. [6], where it was suggested
that the non-monotonic Oij(wij) and/or Oij(w

∗
ij) rela-

tions characterizing these networks are due to the defi-
nition of the neighbourhood overlap, Eq. (1) (hereafter
called symmetric overlap) which is not properly suited
to be a local network measure in networks with scale-
free node degree-distributions.

The above mentioned problem with the symmetric
overlap is particularly acute in the case of links con-
necting nodes with significantly different degrees. In
such cases, for ki ≪ kj , Eq. (1) can be simplified to
Oij ≃ nij/kj , which shows that it is strongly biased to-
wards nodes with high degrees, distorting the image of
the common neighbourhood as seen from the perspective
of nodes with small degrees. This drawback of symmetric
overlap gains importance in networks with highly skewed,
fat-tailed node degree distributions P (ki). In such net-
works, as brilliantly exploited by the degree-based mean-
field theory of complex networks [7–9], node degree distri-
butions for nearest neighbours are even more fat-tailed
than the original distributions P (ki). As a result, the
number of edges in such networks connecting nodes with
high and low degrees can be very high, leading to an un-
intended overrepresentation of strongly connected nodes
by Eq. (1).

To overcome the aforementioned problems with the
symmetric overlap Oij , the concept of asymmetric over-
lap has been introduced in Ref. [6]:

Qij =
nij

ki − 1
̸= Qji, (3)

and it was used to describe the overlap between the neigh-
bourhoods of two connected nodes from the perspective
of each node separately 2. In the context of coauthorship
networks, this new definition is free from the shortcom-
ings of the previous one. In particular, it copes well with
collaborating scientists whose degrees (ego-networks) dif-
fer significantly in size - that is, when their common
neighbours (if any) are a significant part of the neigh-
bourhood of one node and an insignificant part of the
neighbourhood of the other. The relevant situation is
illustrated in Fig. 3(a).

The concept of asymmetric overlap naturally leads to
the idea of directed networks and justifies the introduc-

2 Note that the definition of the asymmetric neighbourhood over-
lap, Eq. (3), that we use in our manuscript is similar to the so-
called edge clustering coefficient : Cij = nij/min[ki − 1, kj − 1]
[54]. However, the difference between the two measures is essen-
tial, because Qij ̸= Qji while Cij = Cji.

tion of the asymmetric tie strength:

vij =
wij

pi
̸= vji, (4)

where pi stands for the number of all publications of
the i-th author (note that the number of publications
does not have to be equal to the strength of the node:
pi ̸= si =

∑
j wij). The intuitive rationale behind Eq. (4)

is illustrated in Fig. 3(b) and it proceeds as follows: For a
young scientist, with a small number of publications, each
publication makes a significant contribution to his or her
publication output, just as each coauthor is an impor-
tant part of his or her research environment (cf. Eqs. (3)
and (4)). However, the importance of each publication
and collaboration from the perspective of an established
scientist with a large number of publications and an ex-
tensive network of collaborators is completely different.
Depending on the circumstances, a given number of joint
publications (e.g., wij = 1) may have a completely dif-
ferent meaning.
In Fig. 2(c) and (d-main panel), relationship between

asymmetric neighbourhood overlap, Qij , is shown against
the corresponding asymmetric tie strength, vij . Remark-
ably, although the relationships with the use of symmet-
ric network measures (see Fig. 2(a),(b) and (d - inset
graph)) are cumbersome to interpret (e.g. due to U-shape
relation observed for Oij(w

∗
ij) and significant differences

between the real data observed for Oij(wij)), the rela-
tionship between asymmetric measures vij and Qij seems
to be universal for all studied networks. The reasonable
explanation for this observation is that, the relationship
between symmetric tie strengths, wij and w∗

ij , and the
symmetric overlap Oij is not an informative measure for
weight-topology correlations in coauthorship networks.
On the other hand, the result for asymmetric measures
is of particular importance as it aspires to be a universal
scaling law that would require verification in other social
networks, not only collaborative.
In fact, Fig. 2(c) confirms that the Granovetter’s hy-

pothesis holds in coauthorship networks. In other words,
from the point of view of an individual scientist, strong
ties do really correspond to dense local neighbourhoods,
contrary to what has been suggested in other studies on
these networks. The perspective of a single node, be-
ing one of the two ends of an edge, is important here.
The new measures introduced (Qij and vij) quantita-
tively capture the so far elusive concept of relativity in so-
cial relations. Following this line of reasoning, it may be
tempting to say that the measured absolute tie strength
(i.e. wij) is a kind of compromise and depends on rela-
tive strengths of the tie as seen from its both ends (i.e.
vij and vji). Moreover, it seems reasonable that similar
thinking should also apply to the connection probability,
not just to its weight. In this context, it is surprising
that none of the so far proposed network measures that
are used in link-prediction methods take into account, at
least not explicitly, the asymmetry of these links. In the
rest of the publication, we refer to these issues.
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FIG. 3. a) Difference between symmetric and asymmetric neighbourhood overlap. In the figure, a pair of scientists
(i and j) is shown, with different numbers of collaborators (respectively, ki = 2 and kj = 5) and one neighbour in common (i.e.
nij = 1). The figure shows that even in such a simple situation the neighbourhood overlap, as seen from the perspective of
each of the two nodes, is significantly different: Qij < Qji = Oij . b) Difference between symmetric and asymmetric tie
strength. The figure presented in part a) is supplemented with additional data, which allow to determine appropriate edge
weights. In particular, it can be seen from this figure that the node i stands for an individual who coauthored (with two other
individuals, including j) only one paper. The corresponding tie strengths are: vij = wij > vji.

III. ASYMMETRY-BASED LINK PREDICTION

A. Methods

Link prediction refers to the problem of finding miss-
ing or hidden links that are likely to exist in networks
or will appear there in the near future [26, 27]. Predict-
ing new friendships in social media or new collaborations
in coauthorship networks [55–57], discovering previously
unknown interactions in biological networks [58], predict-
ing scientific research trends [59], or providing bibliogra-
phy recommendations [60] are a few examples showing
the importance and the diversity of the applications that
can benefit from link prediction. It is also worth noting
that link prediction is not limited to single-layer networks
and prediction methods can utilise data from multiple
layers [61] representing various types of interactions.

The simplest predicting methods are based on nodes’
neighbourhood-related structural information that is
used to compute the so-called similarity score, sij , of
each pair of nodes in the network. Then, by ranking
the pairs based on this score, an inference is made as
to the existence or absence of edges. In the literature
on link prediction, one can find dozens of such scores
(or indicators) that perform better or worse depending
on the network under study. In particular, the follow-
ing examples of symmetric indicators have been widely
employed by the research community due to their sim-
plicity, computational efficiency and performance: the
common neighbours index [62], the Jaccard’s index [63],
the Adamic-Adar (AA) index [28], and the resource allo-
cation (RA) index [29]. Further in this subsection, using
the Jaccard’s index as an example, we will show that by
redefining this index to take into account the asymme-
try of network connections, one can significantly increase
its prediction efficiency. The perspective will also allow
us to comment on the surprisingly high performance of

the RA index, pointing to the asymmetry as a promis-
ing direction for further research on effective prediction
methods.
The Jaccard’s index is widely used in information re-

trieval systems to compare the similarity and diversity of
sample sets. In the context of link prediction methods,
the index measures the proportion of common neighbours
of two nodes (i and j) in the total number of their neigh-
bours. Correspondingly, it is given by the expression:

JC ij =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

, (5)

where Γ(i) is the set of nearest neighbours of i, and |Γ(i)|
is the cardinality of this set. Since |Γ(i)| = ki and |Γ(i)∩
Γ(j)| = nij , the above formula can be rewritten as

JC ij =
nij

ki + kj − nij
≃ O ij , (6)

which shows that the definition of the Jaccard’s index is
almost identical to the definition of the symmetric neigh-
bourhood overlap, cf. Eq. (1).
Having the similarity score sij defined (e.g. s ij =

JC ij), the link prediction proceeds as follows: One ranks
the non-connected pairs of nodes in descending order ac-
cording to the values of sij and then the pairs for which
the score exceed some established threshold T are consid-
ered to be connected. At this point, at least two problems
arise, that we comment on below.
First, to validate the ranking method used and to eval-

uate the similarity score chosen, one has to know a priori
which identified links are indeed present in the network.
Thus, for the testing purposes, one has to construct a set
of node pairs which include those pairs that are connected
in the original network (labelled as positive links – P)
and those that are not (labelled as negative links – N).
Construction of such a set is not a trivial task per se,
because the studied dataset is highly imbalanced - the
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predicted links predicted non-links
positive links True Positives (TP) False Negatives (FN)
negative links False Positives (FP) True Negatives (TN)

TABLE I. Confusion matrix for link prediction.

number of negative (i.e non-existing) links is much larger
than the number of positive ones. Moreover most of node
pairs have no common neighbours, which may result in
their similarity scores equal to zero (e.g. JC ij = 0 for
n ij = 0). To overcome this problem, in this study, we
construct our testing set by selecting d existing links and
d non-existing links, both from those node-pairs which
share at least one common neighbour.

Given such a correctly balanced testing set of exist-
ing and non-existing links, one can perform ranking on
this set and create the confusion matrix (see Tab. I),
whose elements - representing the numbers of connec-
tions labelled as: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) - allow to
derive several useful metrics to asses performance of a
link-prediction method. In what follows, we use three,
perhaps the most commonly used, metrics (see axis de-
scription in Fig. 4):

(1) sensitivity, also referred to as recall or the true
positive rate (TPR), which measures the proportion of
existing links that are correctly identified as true positive
matches to all existing links: TPR=TP/(TP+FN),

(2) specificity, also known as the true nega-
tive rate (TNR), measures the proportion of non-
links that are correctly identified as negative links:
TNR=TN/(TN+FP), and finally

(3) precision, also called the link accuracy, that is the
proportion of all correctly identified links to all node-
pairs in the set that are classified (correctly or not) as
existing links: PR=TP/(TP+FP).

Although the above measures seem similar, they re-
late to different aspects of link prediction and thus are
complementary to each other. In particular, precision
evaluates the correctness, while recall evaluates the com-
pleteness of both the similarity score and the method
used. Generally, there is a trade-off between precision
and recall, whereby a larger threshold T increases preci-
sion and decreases recall.

The second problem with the method described is that
the above measures use a fixed threshold to rank node
pairs, but the value of this threshold may not be nec-
essarily available or be the most optimal one. For ex-
ample, it may be domain dependent. To deal with such
cases threshold curve based metrics are used. This is
where one of the most important goals of link predic-
tion research emerges, which is optimizing these curves
to find the most effective similarity score, sij . It is also
where our research on the role of asymmetry in social
ties contributes to the already huge research area of link
prediction.

There are generally two such curves in use. The first
one, the ROC curve (from: receiver operating character-

istic) represents the performance trade-off between true
positives TPR and false positives FPR=1−TNR at differ-
ent decision boundary thresholds. It can be interpreted
as the probability that a randomly chosen true positive
link will be ranked higher than a randomly chosen true
negative link [64]. The area under the ROC curve, AUC,
is always between 0 and 1, and, generally, the perfor-
mance of any realistic classifier at AUC measure should
be higher than 0.5 (which corresponds to completely ran-
dom classifier) [65]. The second curve, the PR curve
(from: precision recall) considers only prediction of the
positive links, which, in some situations, can be more
useful and informative, e.g. when negative links are not
interesting [66]. Similarly to the AUC value character-
izing the ROC curve, to get one number that describes
performance of the method, one can also calculate the
PRAUC, being the area under the precision-recall curve.
Such a single value can be understood as the average of
precision scores calculated for each recall threshold. The
higher values of both threshold curve metrics, AUC and
PRAUC, correspond to those similarity scores, sij , that
rank better the pairs of nodes towards the discovery of
existing edges between them.

B. Results

1. Similarity scores accounting for link asymmetry

The Jaccard’s index, Eq. (5), which is equivalent to the
symmetric overlap, Eq. (1), was one of the first similarity
measures used in link prediction methods. Nevertheless,
it was quickly realized that the link prediction based on
this measure is not much better than a random classifier.
Correspondingly, in the case of coauthorship networks
analysed in this study, the values of AUC and PRAUC
are close to 0.7, which is a rather poor result compared
to other similarity scores reported in Tables II and III,
which have values up to 0.97. Reasons of such a poor
performance of the Jaccard’s index, however, have not
been thoroughly investigated. In this context, the re-
sults on weight-topology correlations in social networks
presented in this paper shed some light on the problem.
The relevant reasoning is as follows: If the tie strength of
the missing link is high, the probability of its existence,
based on the corresponding similarity score, should also
be high. Likewise, low-strength ties should be less likely
to be realized. Consequently, the prediction methods
based on the Jaccard’s index will have poor performance
in networks where the correlation between tie strengths,
wij , and the symmetric neighbourhood overlap, Oij , are
weakly positive or absent at all. This is the situation
we deal with in social networks with fat-tailed degree
distributions, of which coauthorship networks are a par-
ticularly vivid example.

To support the above reasoning, we have introduced
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FIG. 4. Performance of similarity-based link prediction methods in coauthorship networks. ROC curves (a) and
precision-recall curves (b) for different score measures in the DBLP dataset.

TABLE II. Performance results of analysed score measures tested on the DBLP, APS, CondMat datasets and the discussed
model of scientific collaboration network.

similarity score
DBLP APS Cond-Mat model

AUC PRAUC AUC PRAUC AUC PRAUC AUC PRAUC
JC 0.684 0.714 0.698 0.684 0.764 0.766 0.634 0.659
QQ 0.829 0.865 0.758 0.795 0.847 0.870 0.798 0.823
QA 0.939 0.949 0.925 0.941 0.901 0.920 0.860 0.885
RA 0.934 0.945 0.922 0.927 0.910 0.924 0.869 0.902
AA 0.948 0.952 0.937 0.944 0.918 0.929 0.888 0.920

and analysed a simple similarity score:

QQ ij =
|Γ(i) ∩ Γ(j)|

|Γ(i)|
+

|Γ(i) ∩ Γ(j)|
|Γ(j)|

, (7)

the form of which refers to the sum of the asymmet-
ric neighbourhood overlaps (3) of the considered pair of
nodes:

QQ ij =
nij

ki
+

nij

kj
≃ Q ij +Q ji. (8)

As one can see in Figs. 4 and 5 and Tab. II, for all
studied coauthorship networks (real and synthetic), the
link prediction results obtained with this similarity score
are much better than with the Jaccard’s index, Eq. (6).
Moreover, the results can be further improved by making
adjustments learned from the Adamic-Adar index (see
Eq. (11)), in which the importance of nodes is expressed
not by their degree, but by the logarithm of the degree:

QA ij =
nij

log ki
+

nij

log kj
. (9)

As compared to other similarity scores listed in Tab. II,
the results obtained using the QA index are significant for
at least two reasons. Firstly, the accuracy of predictions

according to QA is similar to the accuracy obtained using
measures such as the resource allocation index [26]:

RA ij =
∑

z∈Γ(i)∩Γ(j)

1

kz
, (10)

and the Adamic-Adar index:

AA ij =
∑

z∈Γ(i)∩Γ(j)

1

log kz
, (11)

both of which require much more detailed information
about the neighborhood of the possible edge between
i and j than just the number of their common neigh-
bors, nij = |Γ(i) ∩ Γ(j)|, as QA does. Secondly, it shows
that taking the asymmetry of social ties into account
can significantly improve the effectiveness of link predic-
tion methods. In the rest of the paper, we refer to the
last remark, showing that the high efficiency of RA and
AA indicators in social networks is obviously related to
the asymmetry of social ties. In showing this, in order
to avoid distraction, we limit ourselves to the RA index
only.
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FIG. 5. AUC measures for different scores calculated
for DBLP dataset. Blue and orange colors correspond to the
data presented in the Table II and III respectively.

2. Asymmetry-based perspective on RA-like scores

All the local similarity indices we have discussed so far
have one thing in common: They are designed based on
the assumption that two nodes are more likely to have a
link if they have many common neighbors. In particular,
the RA index (10) is the greater the more common neigh-
bors the nodes i and j have, but it also reduces the con-
tribution of high degree common neighbors by assigning
more importance to those less-connected 3. In what fol-
lows, we show that the punishment of high degree nodes
in Eq. (10) can be justified by the strong triadic closure
property, assuming that the property takes into account
the asymmetry of social ties.

Triadic closure property states that: If two people i
and j in a social network have a friend z in common,
then there is an increased likelihood that they will become
friends themselves at some point in the future (see [2],
p. 44). Accordingly, the strong triadic closure property
completes the previous statement saying that: If a node
z has edges to i and j, then the connection between i
and j is especially likely to form if z’s edges to i and j
are both strong ties (see [2], p. 49).
Clearly, both triadic closure properties are intuitively

very natural. Furthermore, although their original word-
ings apply to single triads, i.e. those in which nodes i
and j have only one common neighbor z, it is reasonable
to assume that the more common neighbors, the higher
the likelihoods in question should be. In the context of
link predictability - the primary concern of which is to

3 Note that the AA index also punishes the high-degree common
neighbors but to a lesser extent than RA. It depends on the
network under study which of the approaches to punish nodes
with high degrees is better (RA or AA). In scientific collaboration
networks we study in this paper, AA performs better, but this is
not a rule, because in other networks (not only the social ones)
it may be the other way around [26, 67].

FIG. 6. Three types of directed triads that are analysed
in the text.

correctly estimate the mentioned likelihoods - the above
reasoning leads to the simplest similarity measures de-
fined as a bare number of common neighbors [26, 67]:

CN ij = n ij , (12)

and its weighted version:

wCN ij =
∑

z∈Γ(i)∩Γ(j)

(wzi + wzj), (13)

where wij stand for the symmetric tie strength between i
and j. However, as numerous studies show, these indices
are not as efficient as the previously introduced RA (10)
and AA (11) scores. Below we show, where this ineffi-
ciency comes from and how to improve it without going
beyond the concept of triadic closure.
The idea - which is consistent with our findings about

asymmetry of social ties - is to replace the symmetric
weights wij in Eq. (13) with the asymmetric tie strengths
vij (4) or with the asymmetric neighbourhood overlaps
Qij (3) that show a high correlation with asymmetric
tie strengths. In the case of binary networks, the cor-
responding similarity score - referring to the newly ad-
dressed concept of the directed triad closure [68, 69] - can
be defined as:

AT1
ij =

∑
z∈Γ(i)∩Γ(j)

(Qzi +Qzj) (14)

=
∑

z∈Γ(i)∩Γ(j)

nzi + nzj

kz − 1
, (15)

and for the weighted networks, as:

wAT1
ij =

∑
z∈Γ(i)∩Γ(j)

(vzi + vzj), (16)

where the acronyms AT and wAT account for ’asym-
metric triad’ and ’weighted asymmetric triad’, and the
superscript - here ’1’ - refers to the triad ordering T1 as
shown in Fig. 6.
Now, when we compare Eq. (15) with the definition of

the RA index (10), we see that they are very similar. In
particular, in both indices, RA and AT1, each neighbor
of the pair (i, j) is weighted inversely proportional to its
degree. The difference between the two measures is that
our AT1 index additionally takes into account the en-
tire triad’s neighborhood, which is represented by nodes
adjacent to the edges (z, i) and (z, j). Comparing the
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TABLE III. Performance results of analysed RA-like similarity measures tested on the DBLP, APS, CondMat datasets and the
discussed model of scientific collaboration network.

similarity score
DBLP APS Cond-Mat model

AUC PRAUC AUC PRAUC AUC PRAUC AUC PRAUC
RA 0.934 0.945 0.922 0.927 0.910 0.924 0.869 0.902
AT1 0.934 0.949 0.924 0.941 0.883 0.915 0.874 0.911

AT2 0.842 0.885 0.813 0.862 0.805 0.853 0.747 0.803

AT3 0.838 0.888 0.814 0.865 0.802 0.857 0.803 0.862
wRA 0.951 0.959 0.940 0.944 0.929 0.943 0.906 0.923
wAT1 0.952 0.961 0.945 0.954 0.922 0.941 0.909 0.931

wAT2 0.830 0.881 0.802 0.849 0.814 0.859 0.814 0.868

wAT3 0.814 0.862 0.779 0.828 0.797 0.836 0.708 0.765
mix1 0.945 0.956 0.928 0.943 0.903 0.925 0.916 0.937

mix2 0.954 0.964 0.940 0.952 0.933 0.948 0.912 0.934

effectiveness of both measures (see Fig. 5 and Tab. III),
there is a slight argument in favour of the AT1 index,
which proves the legitimacy of the presented reasoning.
In the same vein, and for the sake of completeness, it
is worth noting that our weighed wAT1 index is almost
identical to the RA weighted index [67, 70]:

wRA ij =
∑

z∈Γ(i)∩Γ(j)

wzi + wzj

sz
, (17)

although our wAT1 score performs slightly better than
wRA (see Tab. III).

To complete the discussion on the role of the asym-
metry of social interactions in link predictability, we also
examined other similarity scores accounting for the con-
cept of ’asymmetric triad’ (see Fig. 6). More precisely,
we tested the following ’structural’ measures:

AT2
ij =

∑
z∈Γ(i)∩Γ(j)

(Qiz +Qjz), (18)

AT3
ij =

∑
z∈Γ(i)∩Γ(j)

(Qiz +Qzj), (19)

and their ’weighted’ counterparts:

wAT2
ij =

∑
z∈Γ(i)∩Γ(j)

(viz + vjz), (20)

wAT3
ij =

∑
z∈Γ(i)∩Γ(j)

(viz + vzj), (21)

and found that they give significantly worse results (see
Fig. 5 and Tab. III). This observation clearly confirms
the general message of our paper that the asymmetry of
social interactions is important, even in networks where
the edges are not formally assigned a direction.

At this point, we would like to refer to the RA score
once again. The original rationale for this index is re-
lated to the efficiency of resource transmission between
the nodes i and j, through their nearest neighbours [29].
There is, however, a subtle inaccuracy between the above
reasoning and the RA definition (10). Namely, the rea-
soning seems to apply to the directed triad T3 shown in

Fig. 6 and quantified by our AT3 index rather than by
the RA-like, our AT1 index that describes the T1 triad.
Correspondingly, the success of the measure AT1 (and
also wAT1) can be justified as follows: The asymmetric
overlap Qzi acts as a proxy for the amount of resources
the node z invests in collaborating with the node i. If
two such investments, e.g. Qzi and Qzj , are resource-
intensive, they probably cannot be independent, simply
because personal resources of z are limited (e.g. there
are only 24 hours in a day). This observation stands
in line with the study by Dunbar [71], who concluded
that humans, even very active, have a limited capacity
to maintain significant interpersonal relationships. In the
case of the collaboration network such a dependency be-
tween both z’s investments simply means a joint project
or publication co-authored by z, i and j, so the link be-
tween i and j has to be expected. Please note that such a
dependency cannot be simply derived from investments
Qiz and Qjz, or Qiz and Qzj standing behind the indices
AT2 or AT3, respectively. Please also note that such a
perspective of resource allocation is completely different
from the original one, which we have already questioned.

3. Towards intrinsically asymmetric similarity scores

Finally, while it was not our intention in this paper to
search for better than already existing similarity scores
for link prediction, nor to argue that the local network
measures we introduced, such as asymmetric neighbor-
hood overlap, are generally better to design such indices,
we cannot pass over the fact that through trial and er-
ror, we have managed to find indices whose effectiveness
exceeds (at least in the analysed networks of scientific
collaboration) the effectiveness of all others that were
examined in this paper. These measures are defined as
linear combinations of the previous ones (see Fig. 5 and
Tab. III):

mix1ij = wAT1
ij +QQ ij , (22)

and

mix2ij = wAT1
ij +QA ij , (23)
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where QQ, QA and wAT1 are given by Eqs. (8), (9) and
(16), respectively.

IV. CONCLUDING REMARKS

The leitmotif of this paper is the problem of ”relativ-
ity” (or the lack of symmetry) in social relations. To
draw attention to this problem, we focused on coauthor-
ship networks, and used the known controversy regard-
ing their atypical weight-topology correlations to show
that taking the asymmetry into account can change the
understanding of even well-established findings, such as
that scientific collaboration networks do not satisfy the
Granovetter’s strength of weak ties hypothesis.

More precisely, in this paper, by analysing three differ-
ent real coauthorship networks (DBLP, APS, and Cond-
Mat) and their reliable synthetic model, we show that the
networks show strong positive correlations between tie
strength, v, and neighbourhood overlap, Q, of the con-
nected nodes only when both measures take into account
the lack of symmetry of the relationship. The observed
correlations satisfy the power law scaling: Q ∝ vβ , with
the same characteristic exponent β ≃ 0.65 for all studied
networks.

In light of the noticed strong correlations, research on
link prediction methods that would take advantage of link
asymmetry seems particularly interesting. By testing
various link scores used in similarity-based unsupervised

link and weight prediction methods [67, 72–74], we argue
that taking into account the asymmetry of social ties can
remarkably increase efficiency of these methods. We are
also convinced that taking into account the asymmetry
of social ties can also improve more advanced prediction
methods, especially those supervised [75]. Finally, since
in many ways, scientific collaboration networks are very
specific, a natural continuation of the research presented
here would be to check whether similar results can be ob-
tained by analysing other (more typical) social networks,
or even other complex networks, not necessarily social
ones.
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