UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

ALLOCATING SERVERSIN INFOSTATIONS FOR BOUNDED
SIMULTANEOUS REQUESTS

Alan Bertossi, CristinaM. Pinotti, Romeo Rizzi
and Phalguni Gupta

September 2002

Technical Report # DIT-02-0074

Allocating Servers in Infostations
for Bounded Simultaneous Requests *

A.A. Bertossif M.C. Pinotti* R. Rizzit P. Gupta$

Abstract

The Server Allocation with Bounded Simultaneous Requests problem arises in infostations,
where mobile users going through the coverage area require immediate high-bit rate commu-
nications such as web surfing, file transferring, voice messaging, email and fax. Given a set of
service requests, each characterized by a temporal interval and a category, an integer k, and
an integer h. for each category ¢, the problem consists in assigning a server to each request in
such a way that at most £ mutually simultaneous requests are assigned to the same server at
the same time, out of which at most h. are of category ¢, and the minimum number of servers
is used. Since this problem is computationally intractable, a 2-approximation on-line algo-
rithm is exhibited which asymptotically gives a (2 — %)-approximation, where h = min{h.}.
Generalizations of the problem are considered, where each request r is also characterized by a
bandwidth rate w,, and the sum of the bandwidth rates of the simultaneous requests assigned
to the same server at the same time is bounded, and where each request is characterized also
by a gender bandwidth. Such generalizations contain Bin-Packing and Multiprocessor Task
Scheduling as special cases, and they admit on-line algorithms providing constant approxima-
tions.

Keywords: Infostations, Server allocation, Bin-Packing, Greedy algorithms, Approximation al-
gorithms, On-line algorithms, Interval coloring.

1 Introduction

Infostation is a new concept for fourth generation of mobile communication which should support
high-speed and high-quality services at many-time many-where. Such a concept has been intro-
duced to overcome the difficulties due to typical high bit-rate connections such as web surfing,
file transferring, voice messaging, email and fax. Indeed, it is not possible to provide such high
bit-rate connections at anytime anywhere as it is today for cellular systems which support only
low bit-rate communications. An infostation is an isolated pocket area with small coverage (about
a hundred of meters) of high bandwidth connectivity (at least a megabit per second) that collects
information requests of mobile users and delivers data while users are going through the coverage
area. The available bandwidth depends on the distance between the mobile user and the center

*This work is partially supported by MIUR-RealWine Research Program.

fDepartment of Computer Science, University of Bologna, Mura Anteo Zamboni, 7, 40127 Bologna, ITALY,
bertossi@cs.unibo.it

tDepartment of Computer Science and Telecommunications, University of Trento, Via Sommarive, 14, 38050
Povo, Trento, ITALY, pinotti@science.unitn.it, rrizzi@science.unitn.it

$Department of Computer Science and Engineering, Indian Institute of Technology Kampur, Kampur-208016,
INDIA, pg@cse.iitk.ac.in

Mid-rate

Figure 1: Ranges and bit-rates for Infostation coverage area.

of the coverage area, increasing with decreasing distance, as depicted in Figure 1 [4, 8, 9]. Info-
stations could be located along roadways, at airports, in campuses, and they can provide access
ports to Internet and/or access to services managed locally.

Two infostation models have been proposed so far. In the isolated model, the infostations
are irregularly scattered on the land and a user approaching one infostation does not know when
another infostation will be met. In the multiple model, there are several infostations regularly
distributed on the land and the mobile user encounters an infostation very frequently thus ex-
periencing a much larger coverage area than in the isolated model. As shown in Figure 2, the
infostation system may retrieve the requested data from remote gateways, may provide Internet
access, and may home local services (such as building access, credit card transactions, and map
downloads). The mobile user connection starts when it first senses the infostation’s presence and
finishes when it leaves the coverage area. Depending on the mobility options, three kinds of users
are characterized: drive-through, walk-through, and sit-through. According to the mobility options,
the bit-rate connection is high variable for drive-through, low variable for walk-through, and fixed
for sit-through. In addition to radio broadcast communication, infostations create opportunities
to deliver new wireless information services dedicated to single-users, which could be supported
for example by infrared technologies. In summary, several communication paradigms are possible.
Communications can be broadcast or dedicated to a single user, data can be locally provided or
retrieved from a remote gateway, and the bit-rate transmission can be fixed or variable, depending
on the infostation model and on the mobility kind of the user.

Each mobile user going through the infostation may require a data service out of a finite set
of possible service categories available. The admission control, i.e., the task of deciding whether
or not a certain request will be admitted, is essential. In fact, a user going through an (isolated)
infostation to obtain a (toll) service is not disposed to have its request delayed or refused. Hence,
the service dropping probability must be kept as low as possible. For this purpose, many admission
control and bandwidth allocation schemes for infostations maintain a pool of servers so that when
a request arrives it is immediately and irrevocably assigned to a server thus clearing the service
dropping probability. Precisely, once a request is admitted, the infostation assigns a temporal
interval and a proper bandwidth for serving the request, depending on the service category, on
the size of the data required and on the mobility kind of the user, as shown in Table 1 for a
sample of requests with their actual parameters. Moreover, the infostation decides whether the
request may be served locally or through a remote gateway. In both cases, a server (either in the

Sit- through users

fixed rate

\ campus infostation
/ o ﬁ

highway infostation sidewa k infostation
/ high-variable rate low-variable rate
drive-through users Walk -through users

Figure 2: An Infostation system.

Category Size (Kbps) Time (seconds)
Low rate | High rate
FTP download 10000 100 10
Video streams 5000 50 5
Audio streams, E-malil attachments 512 5 .5
E-mails, Web Browsing 64 .6 .06

Table 1: Example of actual time intervals required to serve different kinds of requests.

infostation or in the gateway) is allocated on demand to the request during the assigned temporal
interval. The request is immediately assigned to its server without knowing the future, namely
with no knowledge of the next request.

The server, selected out of the predefined server pool, serves the requests on-line, that is in
an ongoing manner as they become available. Moreover, each server may serve more than one
request simultaneously but it is subject to some architecture constraints. For example, no more
than & requests could be served simultaneously by a local server supporting k infrared channels
or by a gateway server connected to k infostations. Similarly, no more than h services of the same
category can be delivered simultaneously due to access constraints on the original data, such as
software licenses, limited on line subscriptions and private access.

In this paper, a particular problem arising in the design of infostation systems is faced which
consists in finding scheduling algorithms for allocating the minimum number of servers to the
user requests in such a way that the temporal, architectural and data constraints are satisfied.
In details, a service request r will be modeled by a service category ¢, and a temporal interval

I, = [s;,e,) with starting time s, and ending time e,. Two requests are simultaneous if their
temporal intervals overlap. The input of the problem consists of a set R of service requests, a
bound k& on the number of mutually simultaneous requests to be served by the same server at the
same time, and a set C of service categories with each category c¢ characterized by a bound h,.
The output is a mapping from the requests in R to the servers that uses the minimum possible
number of servers to assign all the requests in R subject to the constraints that the same server
receives at most k mutually simultaneous requests at the same time, out of which at most k. are
of category c. Such a problem is called in this paper Server Allocation with Bounded Simultaneous
Requests.

It is worthy to note that, equating servers with bins, and requests with items, the above
problem is similar to a generalization of Bin-Packing, known as Dynamic Bin-Packing [1], where
in addition to size constraints on the bins, the items are characterized by an arrival and a departure
time, and repacking of already packed items is allowed each time a new item arrives. The problem
considered in this paper, in contrast, does not allow repacking and has capacity constraints also
on the bin size for each category. Furthermore, equating servers with processors and requests with
tasks, the above problem becomes a generalization of deterministic multiprocessor scheduling with
task release times and deadlines [6], where in addition each processor can execute more than one
task at the same time.

The rest of this paper is structured as follows. In Section 2, it is shown that Server Allocation
with Bounded Simultaneous Requests is computationally intractable and therefore a solution
using the minimum number of servers cannot be found in polynomial time. Section 3 deals with
a-approximation algorithms, that is polynomial time algorithms that provide solutions which are
guaranteed to never be greater than « times optimal solutions. It is shown that Server Allocation
with Bounded Simultaneous Requests cannot be a-approximated with a < %. Moreover, a 2-
approximation on-line algorithm is exhibited which asymptotically gives a (2 — %)—approximation,
where h = min.cco he. In Section 4, a generalization of the problem is considered where each
request 7 is also characterized by an integer bandwidth rate w,, and the bounds on the number
of simultaneous requests to be served by the same server are replaced by bounds on the sum of
the bandwidth rates of the simultaneous requests assigned to the same server. For this problem,
on-line and off-line algorithms are proposed which give a constant approximation. Other two
generalizations are proposed in Section 5 in which each request is characterized either by a multi-
dimensional bandwidth rate or by both a bandwidth rate and a gender bandwidth associated to
the category of the request. Again, these problems admit on-line algorithms providing a constant
approximation.

2 Computational Intractability

The Server Allocation with Bounded Simultaneous Requests problem on a set R = {ry,... ,m}
of requests can be formulated as a coloring problem on the corresponding set I = {I3,...,I,} of
temporal intervals. Indeed, equating servers with colors, the original server allocation problem is
equivalent to the following coloring problem:

Problem 1 (Interval Coloring with Bounded Overlapping). Given a set I of intervals each
belonging to a category, an integer k, and an integer h. for each category c, assign a color to each
interval in such a way that at most k mutually overlapping intervals receive the same color, at most

he mutually overlapping intervals all having category c receive the same color, and the minimum
number of colors is used.

In order to prove that Problem 1 is computationally intractable, the following simplified deci-
sional formulation is considered, where there is a bound h. = 1 for each category c.

Problem 2 (Interval Coloring with Unit Bounded Categories). Given a set I of inter-
vals each belonging to a category, and two integers k and b, decide whether b colors are enough to
assign a color to each interval in such a way that at most k mutually overlapping intervals receive
the same color and no two overlapping intervals with the same category receive the same color.

In the following it is proved that Problem 2 is N P-complete by exhibiting a reduction from a
variant of a graph coloring problem. For this purpose some preliminary results are needed. The
graph coloring problem below is well-known to be N P-complete [2], even if b > 3.

Problem 3 (Chromatic Number). Given an integer b and an undirected graph G = (V, E),
decide whether the nodes in V' can be colored with b colors in such a way that adjacent nodes
receive different colors.

Recall that a stable set of a graph G = (V, E) is a subset S of nodes in V such that no two
nodes in S are adjacent. Consider the variant below of Problem 3, where one wants to employ
every color exactly the same number of times.

Problem 4 (Balanced Coloring). Given two integers b and k, and an undirected graph G =
(V,E) of kb nodes, decide whether V' can be partitioned into b stable sets each of size k.

Lemma 2.1. Balanced Coloring is N P-complete, even if b > 3.

Proof: Chromatic Number is reduced in polynomial time to Balanced Coloring as follows.
Given an instance of Chromatic Number, namely b and G = (V, E), let k = |V| and G' = (V', E')
be the graph obtained by considering b disjoint copies of G. Clearly, G can be colored with b
colors if and only if V' can be partitioned into b stable sets each of size k. Hence, solving the
instance of Balanced Coloring corresponds to solving the instance of Chromatic Number. O

In order to show that Interval Coloring with Unit Bounded Categories is N P-complete, a
polynomial time reduction from Balanced Coloring is given.

Theorem 2.2. Interval Coloring with Unit Bounded Categories is N P-complete, even if b > 3.

Proof: Problem 4 is reduced in polynomial time to Problem 2 as follows. Given an instance of
Balanced Coloring, that is b,k, and G = (V, E), an instance of Problem 2 is constructed in such
a way that there are as many categories as there are nodes in V', a subset of intervals correponds
to each node in V' so that all such intervals are forced to receive the same color, and some pairs
of intersecting intervals belong to the same category if and only if their corresponding nodes in V'
are adjacent.

Specifically, let kb = |V| and m = |E|. Take the set of categories as C = {1,2,...,kb}.
Construct 2kb 4+ 2m intervals as follows. For each generic node v € V, let vy,...,vp be the
neighbours of v (indexed, for the sake of simplicity, so that v; < wv;y1). The following £ + 2
intervals correspond to node v:

\'
V4
0 2v-1 2v 2kb+1
\' u w z \
v | I S I |
[T |
0 u w z \Y
I \" ! \" IV I ' I \'

Figure 3: The 5 intervals corresponding to a node v with 3 neighbours u,w,z (categories are
represented by literals above the intervals).

e I =10,2v — 1) with category) = v,
o IV =[2v,2kb + 1) with category ¢ = v,
o IVi = [21} -1+ %,21} -1+ %) with category c)i =v;, fori=1,... L.

If a node v is isolated, that is it has no neighbour, then a single interval I, = [0,2kb + 1) with
category ¢, = v corresponds to it.
Note that [v,u] € E, with v < u, if and only if both the following conditions hold:

L I*NI0# (0 and c* = % = u, and
2. NI #0 and ¢, = cj) = v.

Thus, adjacency between two nodes u and v in G is coded by two pairs of overlapping intervals
in I with categories u and v, which cannot be colored the same.

As an example, Figure 3 shows the 5 intervals corresponding to a node v with 3 neighbours
u, w, z. Instead Figure 4 depicts all the 2kb+2m intervals of I corresponding to a graph G = (V, E)
with kb = 6 nodes and m = 10 edges (in such a figure, £k = 2 and b = 3).

The graph G can be colored with b colors if and only if the intervals in I can be colored with
b colors, as proved below.

Assume that G can be colored with b colors. Assign to all the intervals IO, IV, I¥t, ... , I% the
same color that node v has in G. Clearly, if nodes v and u in G are colored the same, then they are
not adjacent. Two cases arise: either v and u have no common neighbour, or they have at least
one common neighbour w. In the former case, all the intervals corresponding to v and u belong
to different categories, whereas in the latter case the intervals I}’ and I}7, although belonging to
the same category w, do not intersect. In both cases all the intervals corresponding to v and u
can receive the same color. Moreover, since the same color appears in G exactly k times, exactly
k mutually overlapping intervals of I receive the same color.

k=2 b=3

1 4
6
2 5
G=(V,E)
0 2kb+1
1 1 2\314 1 |
| T |
2 135 2
2 | RN x
3 124 3
3 | ik x
4 1356 4
a | AR x
| 5 2346 5 |
I |

Figure 4: Example of reduction from Balanced Coloring to Interval Coloring with Unit Bounded
Categories (categories are represented by numbers above the intervals).

Conversely, assume that all the intervals in I can be colored with b colors. Observe that for

each v, all the intervals IO, IV, I%,... , I¥ must be colored the same (otherwise, by construction,
at least b+ 1 colors would be required). Therefore, assign such a color also to the node v of G.
If 10,1V, 1%, ..., 1% and IO, I% I%,... ,I,” have the same color, then either all such intervals

belong to different categories or there are at least two intervals of the same category but they do
not intersect. In both cases, nodes v and u are not adjacent in G, and thus they can receive the
same color. Moreover, since k£ mutually overlapping intervals are colored the same, the same color
is used in G exactly k times.

Summarizing, solving the instance of Interval Coloring with Unit Bounded Categories corre-
sponds to solving the instance of Balanced Coloring. O

By the above result, Problem 2, and hence Server Allocation with Bounded Simultaneous
Requests, is computationally intractable. Therefore, one is forced to abandon the search for
fast algorithms that find optimal solutions. Thus, one can devise fast algorithms that provide
solutions which are fairly close to optimal. This strategy is followed in the next section, where
a polynomial-time approximation algorithm is exhibited for providing solutions that will never
differ from optimal by more than a specified percentage.

3 Approximation Algorithm for Interval Coloring with Bounded
Overlapping

An a-approximation algorithm for a minimization problem is a polynomial-time algorithm
producing a solution of value appr(x) on input z such that, for all the inputs z,

appr(z) < a - opt(z),

where opt(z) is the value of the optimal solution on z. In other words, the approximate solution
is guaranteed to never be greater than « times the optimal solution [2]. For the sake of simplicity,
from now on, appr(z) and opt(x) will be simply denoted by appr and opt, respectively.

The following result shows that the optimization version of Problem 2 cannot be a-approximated
for any a < %.

Corollary 3.1. The optimization version of Interval Coloring with Unit Bounded Categories ad-
mits no a-approzimation algorithm for a < %.

Proof: By the reduction in the proof of Lemma 2.2, if there is an a-approximation algorithm
with o < %, then there is a decision algorithm for Balanced Coloring with b = 3. Indeed, if
Balanced Coloring admits a 3-coloring, then opt = 3, and the a-approximation algorithm gives
a 3-coloring since appr < %3 = 4. Otherwise, if Balanced Coloring does not admit any 3-coloring,
then the a-approximation algorithm gives a solution with appr > 4. O

Assume that the intervals in I arrive one by one, and are indexed by non-decreasing starting
times. When an interval I; arrives, it is immediately and irrevocably colored, and the next interval
I; 11 becomes known only after I; has been colored. An algorithm that works in such an ongoing
manner is said on-line [5]. On-line algorithms are opposed to off-line algorithms, where the
intervals are not colored as they become available, but they are all colored only after the entire
sequence I of intervals is known.

A simple polynomial-time on-line algorithm for the more general Interval Coloring with Bounded
Overlapping can be designed based on the following greedy strategy:

Algorithm 1 GREEDY ([;)

e To color interval I; use, if possible, a color already used for previous intervals,
otherwise use a brand new color.

Theorem 3.2. Algorithm Greedy provides a 2-approximation and, asymptotically, a (2 — E)'
approzimation, where h = mingcc he, for Interval Coloring with Bounded Overlapping.

Proof: Let appr = ¢ be the solution given by the algorithm and assume the colors 1,...,¢
have been introduced in this order. Let I, = [s,,e,) be the first interval colored ¢. Let Q1 be the
set of intervals in I containing s, and let 23 be the set of intervals in I containing s, and with
category c,. Hence, Qy C Q1. Let w; = Q| and wy = [Qy|. Clearly, opt > [%%] and opt > [,‘;’72]
Color ¢ was introduced to color I, because, for every v € {1,... ,¢ — 1}, at least one of the
following two conditions held:

1. at least k intervals in ©; have color +;
2. at least h., intervals in (), have color 7.

For i = 1,2, let n; be the number of colors in {1,... ,¢ — 1} for which condition 7 holds (if for
a color both conditions hold, then choose one of them arbitrarily). Hence, n; + no = ¢ — 1 or,
equivalently, appr = ¢ = n; +no+1. Clearly, wy > kni+he,no+1 and wy > he,na+1. Therefore:

1 1
opthax{[%-| : "2)_2-‘} Zmax{"km—l—h:m—k -‘ ; [hc,ZQ+ "}
cr e

h 1 h
> max{nl + [ﬂ-‘ ino + 1} > max {m + —n9;no + 1},

k k

where h = ming.cc he.
Ifno+1>n1+ %TLQ, then:

appr<n1+n2+1<n2(1—%)+1+n2+1_2_ﬁ n2 o
opt = ng9+1 T ng + 1 kno+1—
Ifng—l—lgnl—i-%m, then:
h
apprgn1+ni+1Sm-l—m};l-EnQ:l_l_ nlh <2
opt ny + zng ny + gn2 ny + gn2

Therefore, Algorithm 1 gives a 2-approximation.

To achieve the asymptotic approximation, first observe that opt > max {n1 + %nz; ng}. More-
over, when opt — 0o, also ¢ — oo, and hence ¢’ = ¢ — 1 — oo, too. The ratio afg is maximum
when opt is minimum, that is, since opt > ny and opt > ni + %ng, for opt' = ng = n1 + %ng. Thus,

appr ¢ _n1+n2_(1—%)n2+n2_2_§
opt opt! ng no N k
Hence, asymptotically, Algorithm 1 gives a (2 — %)-approximation. O

The following Corollary 3.3 shows that the (2 — %)-approxima,tion is the best possible for
Algorithm 1, even in the case that h = 1, £ = 2, and no interval properly contains another
interval.

Corollary 3.3. Algorithm Greedy admits no a-approzimation with o < 2—% for Interval Coloring
with Unit Bounded Categories.

Proof: 1t is shown that there is an instance for which the (2 — %)-approxima,tion is achiev-
able. Consider the particular input instance consisting of the k2 mutually overlapping intervals
I,I5 ... 1> defined as follows:

if 1<i<k?®—k

oIi:[z,z+k2)w1thcategoryci:{kQ_k_l_l R hal<i<k?

The Greedy algorithm colors the interval I; as soon as it becomes available, that is at time
i, thus assigning color 1 to Iy,... I, color 2 to Ixy1,...,Is, and so on. In particular, color
J is assigned to I 1ygi1,-.- ik, and color k — 1 is given to Iy 9)k41,--- , L(x—1)k. Moreover,
for the remaining intervals Iy> .1,...,I2, k additional colors are employed, one for each in-
terval. Overall, 2k — 1 colors are used. However, an optimal off-line algorithm, that knows in
advance the entire sequence of intervals, uses k colors assigning color 1 to intervals I,...,Ix_1
and interval Ip» 4, color 2 to intervals Iy,..., I} 1) and [p2_p o, and so on. In particular,
color j is assigned to intervals I; 1y 1)41,---,Ljk—1) and Ip2_p,;, while color k is given to

appr _ 2k—1 _ 9 _ %

I(k*l)(k}*l)—l—la e 7Ik(k71) and Ikz. Therefore, O—;Dt 5

a

4 Approximation Algorithm for Weighted Interval Coloring with
Bounded Overlapping

Consider now a generalization of Server Allocation with Bounded Simultaneous Requests, where
each request r is also characterized by an integer bandwidth rate w,, and the bounds on the number
of simultaneous requests to be served by the same server are replaced by bounds on the sum of
the bandwidth rates of the simultaneous requests assigned to the same server. Such a problem
can be formulated as a weighted generalization of Problem 1 as follows.

Problem 5 (Weighted Interval Coloring with Bounded Overlapping). Given a set I of
intervals, with each interval I, characterized by a category ¢, and an integer weight w,, an integer
k, and an integer h. for each category c, assign a color to each interval in such a way that the
sum of the weights for mutually overlapping intervals receiving the same color is at most k, the
sum of the weights for mutually overlapping intervals of category c receiving the same color is at
most h., and the minimum number of colors is used.

More formally, denote by

e I[t] the intervals active at instant ¢, that is, I[t] ={[, € I : s, <t < e };

e I[c| the intervals belonging to the same category c, that is I[c] = {I, € I : ¢, = ¢}; and
e I(7) the set of intervals colored +.

Moreover, let I(y)[t] = I(ry) N I[t] be the intervals colored -y and active at instant ¢. Finally,
let I(y)[t][c] = I(y)[t] N I[c] be the intervals of category c, colored vy, and active at instant .

The constraints on the sum of the weights for mutually overlapping intervals receiving the
same color can be stated as follows:

Z wy <k Vv, Vi (1)
LeI(7)[t]

10

> wp<he Yy, W Ve (2)
Lel(y)[t]d]

Note that Problem 1 is a particular case of Problem 5, where w, = 1 for each interval I,.
An approximation on-line algorithm for Problem 5 (which contains Bin-Packing [1] as a special
case) is presented below.

Algorithm 2 FIRST-COLOR (I;)

e To color interval I; use the lowest possible indexed color among those already used for
previous intervals. If no such color exists, use a brand new color.

Theorem 4.1. Algorithm First-Color asymptotically provides a constant approzimation for Weighted
Interval Coloring with Bounded Overlapping.

Proof: Assume the on-line First-Color algorithm employs ¢ colors. Consider the first interval
I, = [sy,e,;) which is colored ¢. At time s,, I, cannot be colored with any color in {1,... ,¢ —1}
since otherwise at least one of the constraints (1) and (2) would be violated. Two cases may
occur, depending on whether w, is smaller or larger than %, where h = min.cc he.

Case 1: Suppose w, < % Let €1 be the set of intervals in I containing s, and let €29 be the set
of intervals in I containing s, and having category ¢,. Let w(€1) (resp., w(€22)) be the sum of the
weights of the intervals in ©; (resp., Q9). Clearly, opt > [%] and opt > [%1

Color ¢ was used for I, because, for every v € {1,... ,¢— 1}, at least one of ‘the following two
conditions held:

1. w(Qi(y)) > %, where Q1(y) are the intervals in ©; already colored -,
he

2. w(Q2(y)) > ==, where Q(y) are the intervals in Qo with category ¢, already colored .

For 1 = 1,2, let n; be the number of colors in {1,... ,¢ — 1} for which ¢ holds (if for a color
both conditions hold, then choose one of them arbitrarily). Hence, n; + ny = ¢ — 1. Clearly,

w(Qy) > nlg + ng hgT and w(Qy) > ngy hgr. Therefore,

{22 2] o252)

If %2 > %, then:

2-0)y 41
GPPTS27L1+TL2+1S2”2(5+ _)2<2_ﬁ)
opt 19 n2

If 22 < %, then:

11

appr _ ni+ng+1 2(ni+mnp+1)

<4
Opt — nlk;]_CHZh

ni + %ng
by the bound proved in Theorem 3.2.

Case 2: Suppose w, > % Two further subcases may come up.

Case 2.1: For each color v € {[%1, ... ,¢—1} at least one of the two following conditions holds:

> wxt 3)

I €I(y)[sr]

Z wy > % for some c (4)
Iel(y)[sr]e

Therefore, the sum of the weights of the intervals active at time s, is at least %L%J Thus,

opt hig h

hi¢
opt > {%-‘ and appr < ¢ — %

Case 2.2: There is a color 7 € {[%] ,--. ¢ — 1} for which both conditions (3) and (4) do not
hold. Thus, there is an interval Iz = [sF,er), colored 7, of weight wr < % When Ir was
colored, 7 was the lowest possible indexed color. Therefore, this subcase reduces to Case 1
above loosing a factor of 2.

In conclusion, algorithm First-Color asymptotically gives a constant approximation. O

It is worthy to note that in the case there are no constraints on the total weight of mutually
overlapping intervals of the same category, the above algorithm yields a 4-approximation. This
can be easily checked assuming h = k in the proof of Theorem 4.1 and observing that, in the
Case 2.1, only condition (3) holds for all the colors ~.

Moreover, note that the worst approximation constant of Algorithm 2 is given by % when
% > %, and by 8 otherwise. In the next subsection, an off-line algorithm for Problem 5 is proposed
which guarantees an 8-approximation even in the case that % > g.

4.1 Off-Line Approximation Algorithm

An off-line approximation algorithm for Problem 5 runs three passes over the entire input sequence
1. Each pass scans the intervals in I by non decreasing starting times and delivers a new set of
colors. Hence, denoted by ¢; the number of colors delivered in pass 7, the total number of colors

employed is ¢ = ¢1 + ¢2 + ¢3.

12

Algorithm 3 THREE-PASS-GREEDY ([)

Pass 1: Color all those intervals I, such that w, > %;

Pass 2: Color all those remaining intervals I,. such that w, > %hcr;

PaAss 3: Color all the remaining intervals.

Note that, in the first pass, the same color cannot be assigned to two overlapping intervals,
and hence the problem reduces to coloring an interval graph, which can be done optimally in
polynomial time [3]. Therefore, ¢1 < opt. In the second and third passes, instead, Algorithm 1 is
employed. For the second pass alone, an approximation of 3 can be shown as follows, obtaining
¢2 < 3 - opt.

Lemma 4.2. The second pass of Algorithm Three-Pass-Greedy uses ¢o < 3 - opt colors.

Proof: Assume the colors 1,...,¢2 have been introduced in this order and let I, = [s,,e;)
be the first interval colored ¢2. Observe that since the intervals with weight greater than % have
been colored in the first pass, it follows that in the second pass only intervals with weight smaller
than or equal to % are considered.

Let w(€1) and wy be defined as in the proofs of Theorem 4.1 and 3.2, respectively, but
restricted to the intervals colored during the second pass. Clearly, opt > [@] and opt > [ws]
since two intervals with the same category cannot be colored the same during the second pass.
Color ¢ was introduced because for every v € {1,... ,¢2 — 1} at least one of the following two

conditions held:
Lo w(i(y) > §;
2. there is an interval with category c, already colored +.

For i = 1,2, let n; be the number of colors in {1,... ,¢2 — 1} for which condition ¢ holds. Clearly,
ny+ne =d¢o— 1, w() > nlg + hno, and wy > no + 1. Therefore,

Q h
opt > max{[w(1)-‘ ;ng-i-l} Zmax{%-i- —ng;ng-i-l}

k k

which, combined with appr = ¢2 = n1 +mno + 1, is enough to prove a 3-approximation by a simple
modification of the proof of Theorem 3.2. O

For the third pass alone, the analysis on the approximation guarantee of Theorem 3.2 can
again be easily adapted by loosing a factor of 2, thus having ¢3 < 4 - opt. As a consequence,
appr = ¢1 + ¢9 + P53 < 8- opt, and the following result holds.

Corollary 4.3. Algorithm Three-Pass-Greedy provides an 8-approzimation for Weighted Interval
Coloring with Bounded Overlapping. O

13

5 Approximation Algorithms for Further Generalizations

This section considers two generalizations of the Server Allocation with Bounded Simultaneous
Requests problem, where each request r is characterized by real bandwidths, normalized in [0, 1]
for analogy with the Bin-Packing problem [1].

In the first generalization, which contains Multi-Dimensional Bin-Packing as a special case,
each request r is characterized by a k-dimensional bandwidth rate w, = (w7(~1), e ,w,(«k)), where
the c-th component specifies the bandwidth needed for the c-th category and k is the number of
categories, i.e. k = |C|. The overall sum of the bandwidth rates of the simultaneous requests of
the same category assigned to the same server at the same time is bounded by 1, which implies
that the total sum of the bandwidth rates over all the categories is bounded by k.

In the second generalization, each request r is characterized by a gender bandwidth rate g, .,
associated to the category ¢, and by a bandwidth rate w,. The overall sum of the bandwidth
rates of the simultaneous requests assigned to the same server at the same time is bounded by 1,
as well as the overall sum of the gender bandwidth rates of the simultaneous requests of the same
category assigned to the same server at the same time, which is also bounded by 1.

5.1 Multi-Dimensional Weighted Interval Coloring with Unit Overlapping

The first generalization of the server allocation problem can be formulated as the following variant
of the interval coloring problem.

Problem 6 (Multi-Dimensional Weighted Interval Coloring with Unit Overlapping).
Given a set I of intervals, with each interval I, characterized by a k-dimensional weight w, =
(wﬁl),... ,w,(«k)), where wﬁc) € [0,1], for 1 < ¢ < k, assign a color to each interval in such a
way that the overall sum of the weights of the same category for mutually overlapping intervals

receiving the same color is bounded by 1.

More formally, according to the notations introduced in Section 4, the constraints on the sum
of the weights of the same category for mutually overlapping intervals receiving the same color
can be stated as follows:

Z w® <1 Wy, Vi, Ve (5)
L el()[tc]

Note that the above constraints, added up over all the categories in C, imply the following
redundant constraints:

k

o> wl<k vyt (6)

=1 L, eI(v)[t][c]

which are analogous to constraints (1) of Problem 5. Problem 6 can also be solved on-line by
Algorithm 2, introduced in the previous section.

Theorem 5.1. The First-Color algorithm provides a 4k-approzimation for Multi-Dimensional
Weighted Interval Coloring with Unit Overlapping.

14

Proof: Assume the on-line algorithm employs ¢ colors. Consider the first interval Ir = [sF, er)

which is colored ¢. At time sy, I cannot be colored with any color in {1,...,¢ — 1}.
Consider two cases.
Case 1: There is a color 7 among {[g], ... ,¢—1} such that for each component ¢, with 1 < ¢ < k:

N =

> i

IreI(7)[s7][c]

(0

Let I,» be any interval in I(7y)[s7][c]. Clearly, w,. for all ¢. Consider now instant s,s, when

— 2’
interval I, was colored 7 > [%] Since I, cannot be colored with any color in {1,..., [%] — 1},
then for every v € {1,..., [%] — 1} and for every ¢, with 1 < ¢ < k:

N =

Z wl® >

I.eI(y)[s,]lcp]

Hence,

L el k i 161 ¢
> > = () > = e
LENDY Zw % 2 w2 22 %222 4K
I €lfs, ,] e=1 7=1 Lel(y)[sy] =1 =1
Case 2: For every color v in {[g], ... ,¢— 1}, there is a category ¢, with 1 < ¢ < k, such that
1
Ir€l(7)[sr][c]
By a reasoning analogous to Case 1, it follows that:
¢p—1 k ¢—1
1 1 1_1¢1_ ¢
> > —) > Z _>_I_ >
otz Zw >3 Z Z > 5 2 325322 0
ném " e y=[g1 1 elMlsy] =t 7=141
Since appr = ¢, an approximation of 4k holds. O

The above problem, when considered as an off-line problem, is APX-hard since it contains
Multi-Dimensional Bin-Packing as a special case, which has been shown to be APX-hard [7]
already for k = 2.

5.2 Double Weighted Interval Coloring with Unit Overlapping

The second generalization of the server allocation problem that is considered can be stated as an
interval coloring problem as follows.

15

Problem 7 (Double Weighted Interval Coloring with Unit Overlapping). Given a set
of intervals, with each interval I, characterized by a gender weight g, .. € (0,1] associated to the
category ¢, and by a bandwidth weight w, € (0,1], assign a color to each interval in such a way
that the overall sum of the gender weights for mutually overlapping intervals of the same category
receiving the same color is bounded by 1, the overall sum of the bandwidth weights for mutually
overlapping intervals receiving the same color is bounded by 1, and the minimum number of colors
15 used.

Formally, the constraints of Problem 7 are given below:

Yo ow <1 Yy, Wt (7)
IeI()[t]

> gre<1 Yy, V4 Ve (®)
Irel(y)[t]c]

Problem 7 can again be solved on-line by Algorithm 2, introduced in the previous section.

Theorem 5.2. The First-Color algorithm provides a 10-approzimation for Double Weighted In-
terval Coloring with Unit Qverlapping.

Proof: Assume the on-line algorithm employs ¢ colors. Consider the first interval I = [sy, er)
which is colored ¢. At time sy, Ir cannot be colored with any color in {1,... ,¢ — 1}.

Consider three cases.
Case 1: Let wy < % and gr .. < %

For every color v in {1,... ,¢ — 1}, at least one of the following two conditions holds:

¥ wr>%)

Ir€I(7)[s7]
1
Z Irer >) (10)
Irel(v)[s7ller]

If there are at least [%1 colors for which Condition (9) holds, then

p—1
optZZ Z wTZ%%:%'

Y=L I el(v)[s7]
If there are at least [%1 colors for which Condition (10) holds, then
¢—1
¢l ¢
> o> —— = —.
25 SHD SR T L
=11, €I(7)[s7][cr]

16

Case 2: Let wr < % and gr . > %

For every color v in {[§-| ,---,¢ — 1}, at least one of the following two conditions holds:

Yoo we> % (11)

Irel(7)[s7]

Z (Grer + Grer) > 1. (12)
I €1(7)[s7][cr]

Note that, if for a color both Conditions (11) and (12) hold, then Condition (11) is preferred.
Two further subcases may arise:

Case 2.1: For at least half of the colors in {[%1 y---,¢ — 1}, Condition (11) holds. In such a
case:

¢—1
optzz Z wrzgézg.

=]'923] I.€I()[s7]

Case 2.2: For at least half of the colors in {"%S] ,---,¢—1}, Condition (12) holds. Then, either

for all such colors Condition (10) holds, and therefore a bound of % easily follows, or there is one
color % such that

Z Ir.er < %

IreI(¥)[s7ller]

In this subcase, there is an interval I,» = [s,, e,v), colored 7, with w, < % and gy ., < % When
I+ was colored, 7 was the lowest possible indexed color. Therefore, this subcase reduces to Case
1 above loosing a factor of 2.

Case 3: Let wF > %

Let 7 be the largest integer such that, for every color v in {¢ — 4,... ,¢ — 1}, it holds
> we
T 2 .
I €I(y)[s7]
Then, 7+ 1 < 2 - opt readily follows. Moreover, color ¢ — j — 1 verifies
1
Z Wy < 5
Iy €I(¢p—j—1)[s7]

Thus, by Cases 1 and 2, it follows that ¢—j—1 < 8-opt. Therefore, since p = (p—j—1)+(j+1) <
8 - opt + 2 - opt, a 10-approximation is obtained. O

17

6

Conclusions

This paper has considered several on-line approximation algorithms for problems arising in info-
stations, where a set of requests characterized by categories and temporal intervals have to be
assigned to servers in such a way that a bounded number of simultaneously requests are assigned
to the same server and the number of servers is minimized. However, several questions still remain
open. For instance, one could lower the approximation bounds derived for Problems 5, 6 and 7.
Moreover, one could consider the scenario in which the number of servers is given in input, each
request has a deadline, and the goal is to minimize the overall completion time for all the requests.

References

(1]

[2]
3]
[4]

[5]

[6]
[7]
(8]

E.G. Coffman, G. Galambos, S. Martello & D. Vigo, “Bin Packing Approximation Algorithms: Combinatorial
Analysis”, in Handbook of Combinatorial Optimization, D.Z. Du & P.M. Pardalos (Editors), 1999, Kluwer,
Dordrecht, pp. 151-207.

M.R. Garey & D.S. Johnson, Computers and Intractability, 1979, Freeman, San Francisco.
M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 1980, Academic Press, New York.

D.J. Goodman, J. Borras, N.B. Mandayam & R.D. Yates, “INFOSTATIONS: A New System Model for Data
and Messaging Services”, IEEE Vehicular Technology Conference, 1997, pp. 969-973.

R.M. Karp, “On-Line Algorithms Versus Off-Line Algorithms: How Much is it Worth to Know the Future?”,
in Proceedings of the IFIP 12th World Computer Congress. Volume 1: Algorithms, Software, Architecture,
Jan van Leeuwen (Editor), 1992, Elsevier Science Publishers, Amsterdam, pp. 416-429.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, & H. Shmoys, Sequencing and Scheduling: Algorithms and
Complezity, 1993, North-Holland, Amsterdam.

G.J. Woeginger, “There is No Asymptotic PTAS for Two-Dimensional Vector Packing”, Information Pro-
cessing Letters, 1997, pp. 293-297.

G. Wu, C.W. Chu, K. Wine, J. Evans & R. Frenkiel, “WINMAC: A Novel Transmission Protocol for Infos-
tations”, IEEE Vehicular Technology Conference, 1999, pp. 1-15.

J. Zander, “Trends and Challenges in Resource Management Future Wireless Networks”, IEEE Wireless Com-
munications & Networks Conference, 2000.

18

