Available online at www.sciencedirect.com

Journal of
sanNCE@DlRECT@ Parallel and
) Distributed
B 2N C ti
ELSEVIER J. Parallel Distrib. Comput. 64 (2004) 1380—1398 omputing

www.elsevier.com/locate/jpdc

Semi-passive replication and Lazy Consensus

Xavier Défag@®*, André Schipét

aschool of Information Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawaa@2®-1292, J
PPRESTO, Japan Science and Technology Agency (JST), Japan
CFaculté Informatique et Communications, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Received 2 May 2001; received in revised form 25 May 2004

Abstract

This paper presents two main contributions: semi-passive replication and Lazy Consensus. The former is a replication technique with
parsimonious processing. It is based on the latter; a variant of Consensus allowing the lazy evaluation of proposed values.

Semi-passive replication is a replication technique with parsimonious processing. This means that, in the normal case, each request is
processed by only one single process. The most significant aspect of semi-passive replication is that it requires a weaker system model
than existing techniques of the same family. For semi-passive replication, we give an algorithm based on the Lazy Consensus.

Lazy Consensus is a variant of the Consensus problem that allows the lazy evaluation of proposed values, hence the name. The main
difference with Consensus is the introduction of an additional property of laziness. This property requires that proposed values are computed
only when they are actually needed. We present an algorithm based on Chandra and Toueg’s Consensus algorithm for asynchronous
distributed systems with &S failure detector.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Replication techniques; Fault tolerance; High availability; Failure detectors; Asynchronous systems; Consensus; Group membership;
Distributed systems

1. Introduction Redundancy is usually introduced by the replication of
components, or services. Although replication is an intuitive
A major problem inherent to distributed systems is their and readily understood concept, its implementation is diffi-
potential Vulnerab”ity to failures. |ndeed, whenever a Single cult. Rep”cating a service in a distributed System requires
node crashes, the availability of the whole system may be that each replica of the service keeps a consistent state, which
compromised. Interestingly, the distributed nature of those js ensured by a specific replication protof@1]. There ex-
systems also provides the meangtreasetheir reliability. ist two major classes of replication techniques to ensure this
Distribution makes it possible to introduce redundancy and, consistencyactiveandpassivereplication. Both replication

thus, make the overall SyStem more reliable than its individ- techniques are useful since they have Comp|ementary qua'_
ual parts. ities.

_ With active replicatiorf31], each request is processed by
* A preliminary version of this paper appeareddroc. 17th IEEE Intl.

. e Il repli in th me relative order nsure that repli-
Symp. on Reliable Distributed Syste(fSEE CS Press, pp. 43-5()2]. all rep ca; t e same re].at ehO .de to ensure t fat €p
* Corresponding author. JAIST, School of Knowledge Science, 1-1 cas remain consistent. This technique ensures a fast reac-

Asahidai, Tatsunokuchi, Ishikawa, 923-1292 Japan. Fax: +81-76-151- tion to failures, and sometimes makes it easier to replicate
1149. legacy systems. However, active replication uses processing

E-mail addressesdefago@jaist.ac.jigX. Défago), resources heavily and requires the processing of requests to
andre.schiper@epfl.cfA. Schiper).

0743-7315/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2004.08.006

http://www.elsevier.com/locate/jpdc
mailto:defago@jaist.ac.jp
mailto:andre.schiper@epfl.ch

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398 1381

be deterministic! This last point is a very strong limita- dlient

tion since, in a program, there exist many potential sources =

for non-determinisnfi28]. For instance, multi-threading typ- P — processing

ically introduces non-determinism. P2 -
With passive replication (also callegrimary-backup Ps state update

[7,21], only one replica (primary) processes the request, update protocol

and sends update messages to the other replicas (backups). . _ o _

This technique is important because it uses less resources’9d: 1. Semi-passive replication (no crash) (conceptual representation: the
. L. . . update protocolactually hides several messages).

than active replication does, without the requirement of

operation determinism. On the other hand, the replicated

service usually has a slow reaction to failures. For instance,

when the primary crashes, the failure must be detected by

client

the other replicas, and the request may have to be repro- =
cessed by a new primary. This may result in a significantly p, A processing
higher response time for the request being processed. Forp, iw}cr“h -

this reason, active replication is often considered a better
choice for most real-time systems, and passive replication
for most other cas€82].

In most computer systems, the implementation of passive Fig. 2. Semi-passive replication (crash of the coordinator) (conceptual
replication is based on a synchronous model, or relies on representation: thepdate protocolactually hides several messages).
some dedicated hardware devige7,15,29,37] However,
we consider here the context of asynchronous systems in
which the detection of failures is not certain. In such systems,
all implementations of passive replication that we know of Membership service as usually done in passive replication.
are based on a group membership service and must excludd he rotating coordinator mechanism is a simpler mechanism
the primary whenever it is suspected to have crashed (e.g.2nd lower-level mechanism.

[6,24,34). This is a strong practical limitation of passive Informally, semi-passive replication works as follows.
replication since this means that a mere suspicion can belhe client sends its request to all replicag pz. p3 (see
turned into a failure, thus reducing the actual fault-tolerance Fig- 1). The servers know thap, is the first primary,

of the system. Conversely, there exist implementations of ac-SO p1 handles the requests and updates the other servers
tive replication that neither require a group membership ser- (the .update messages from to {pz, p3} are not shown
vice nor need to kill suspected processes (e.g., active repli-on Fig.1).

cation based on the Atomic Broadcast algorithm proposed |f p1 crashes and is not able to complete its job as the
by Chandra and Tou€@]). primary, or if p1 does not crash but is incorrectly suspected

In this paper, we present the semi-passive replication tech-0f having crashed, thep; takes over as the new primary.
nique; a new technique that retains the essential characterT he details of how this works are explained later in Section
istics of passive replication while avoiding the necessity to 4 Fig. 2 illustrates a scenario in whichy crashes after
force the crash of suspected processes. The most importanfiandling the request, but before sending its update message.
consequence is that it makes it possible to decouple (1) theAfter the crash ofps, p2 becomes the new primary.
replication algorithm from (2) housekeeping issues such as These examples do not show which process is the pri-
the management of the membership. For instance, this al-mary for the next client requests, nor what happens if client

lows the algorithm to use an aggressive failure detection réduests are received concurrently. These issues are ex-
policy in order to react quickly to a crash. plained in detail in Sectiod. However, the important point

in this solution is that no process is ever excluded from the
group of servers (as in a solution based on a membership
service). In other words, in case of false suspicion, there is
no join (and state transfer) that needs later to be executed
that retains most of its major characteristics (e.g., allows for by the falsely suspecteq Process. Th|s S|gn|f|pqntly_reduces
non-deterministic processing, and requires less processingthe cost related to an mcorr.ect fa|lure suspicion, 1.€., the
than active replication). The main difference with passive Cost related to the aggressive timeout option mentioned
replication is that the selection of the primary is based on before.

the rotating coordinator paradigf8] and not on a group

state update

update protocol

1.1. Overview of semi-passive replication

Semi-passive replication is a variant of passive replication

1.2. Structure of the paper

1 Determinism means that the result of an operation depends only on L
the initial state of a replica and the sequence of operations it has already 1 h€ contribution of this paper is twofold: semi-passive
performed. replication and Lazy Consensus. For semi-passive repli-

1382 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

cation, we give a definition of the problem and propose channel ensures that messages are (1) not duplicated, (2) not

an algorithm based on the Lazy Consensus abstraction.corrupted, and (3) not spuriously created.

Similarly, we define the Lazy Consensus problem, and

propose a corresponding algorithm that adapts from the Remark. We make these assumptions in order to simplify

Chandra—Toueg Consensus algorithm for th& failure the description of the algorithms. Indeed, based on the liter-

detector. ature, the algorithms can easily be extended to lossy chan-
The rest of the paper is structured as follows. Secfion nels and network partition§3,1], and to handle process

presents the system model considered in this paper, and derecovery[2,23,25] However, this would obscure the key

fines various notations used throughout the paper. Se8tion idea of semi-passive replication by introducing unnecessary

defines the two problems considered in this paper, namely,complexity.

semi-passive replication and Lazy Consensus. In Sedtion

we present our algorithm for semi-passive replication. In 5 5 Egilure detectors

Section5, we present an algorithm for Lazy Consensus in

asynchronous systems augmented with&failure detec- Formally, it is impossible for processes to reach agreement
tor. Section6 illustrates the execution of our semi-passive (i.e., solve Consensus) deterministically in an asynchronous

replication algorithm with selected scenarios. Sectieon- distributed system where some processes can dd&jh
cludes the paper. The two appendices present the correctnesps impossibility stems from the fact that, in such a system,

proofs of the semi-passive and Lazy Consensus algorithms,; ¢rashed process cannot be distinguished from a very slow
respectively. one. It follows that, the ability to detect the crash of processes
is a fundamental issue.
In this section, we present three related approaches to
2. System model and definitions detect the crash of processes in a distributed system. We
begin with unreliable failure detectors as this is the basis for

In this section, we describe the system model assumedthe algorithms presented in this paper.
in this paper, and describe important related notations and

definitions. 2.2.1. Unreliable failure detectors
The impossibility result mentioned above also applies to
2.1. System model Lazy Consensus. Hence, in order to solve Lazy Consen-

sus among the server processes, we consider that the sys-

We consider a distributed system composed of pro- tem is augmented with some unreliable fai_lure detef8pr
cesses that communicate by exchanging messages om};_hat runs petween the processegdiig. In.p_artlcular, we as-
The system is asynchronous in the sense that there exisBUMe a failure detector of clagsS, sufficient to solve the
bounds neither on communication delays nor on processCOnsensus problem, and defined oigy by the following
speed. propertieq8]: _ _ _

We distinguish between two kinds of processes, namely, Strong completenes3here is a time after which every
client processes and server replicas. The set of all clients inProcess inlls that crashes is permanently suspected by all
the system is denoted ¥, and the set of server replicas CO"eCt processes iffs. o _
is denoted byTs.2 The composition of the séT s, initially Eventual weak_accu_racy'here is a time after which some
known by all processes, do not change over time although COTTeCt process il is never suspected by any correct
it might include some processes that have crashed. We alsd0cess IN'ls.
denote the number of server processesnby= |IIg|. In
contrast, there can exist infinitely many client processes in 2.2.2. Perfect failure detectors
the system. Many replication algorithms rely on the ability to detect

Processes fail by crashing (i.e., we do not consider Byzan- process failures accurately. More specifically, they rely on
tine processes) and crashes are permafehtorrect pro- the availability of a perfect failure detector. In contrast with
cess is one that does not crash. Processes communicatenreliable failure detectors, a perfect failure detector is one
through quasi-reliable communication chanr@&k Quasi- whereby no process suspects a process that has not crashed.
reliable communication channels guarantee that if a correctA failure detector of clas® (i.e., a perfect failure detector)
processp sends a message to a correct procesg, then must enforce the property of strong completeness described
g will eventually receivem. In addition, a quasi-reliable above, and the following property of strong accur{&ly

Strong accuracyNo process is suspected before it has
crashed.
mhatnc N I need not be empty. In practice, a perfect failure detector can be emulated in an

31n practice, this means that whenever a crashed process recovers fromaSynChron_OUS SYStem by relying on timeouts and the ability
crash, it takes a new identity. to control, in particular provoke, the crash of proceg4@s

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

However, although technically possible, this is also mostly
undesirable, as this potentially degrades the overall stability
of the system (sef 4] for details).

2.2.3. Group membership
A group membership is a service that usually combines
two different purposes (sgé&0] for a detailed survey). On

the one hand, a group membership is used to allow processes

to join and leave the computation dynamically. On the other

hand, group membership is used as a way to detect the crash

of processes. The main difference with failure detectors is
that, unlike the latter, a group membership providessis-
tent information about failures. This often requires to ex-

clude suspected processes from the group and consider as

crashed and ask them to take a new identity. A group mem-
bership is often used as a way to emulate a perfect failure
detector.

Essentially, providing consistent information about fail-

ures places group membership at a higher level of abstrac-

tion than failure detectors. This difference in structure leads
to difference in behavior. A recent study by Urban e{23]
compares the two models (i.e., group membership and fail-
ure detectors) using Total Order Broaddasis a reference.
Among other things, the study shows that, unlike a common
belief, the overall performance in failure-free runs of Total

1383

e updatéreq), the modification of the state of the replica as
the result of processingqg. This must be deterministic.

We also introduce important notations to describe the
replicated server. This notation is used to express the semi-
passive replication algorithm in Sectidn
e req. request message sent by a client (denoted by

sendefrreq)).

e Upde,: update message generated by a server after han-
dling requesteq.

respeq: response message to the clisehdecreq), gen-
erated by a server after handling request

e statey: the state of the server process

e handle: (req, statg) +— (updreq, respeq): Proces_sing

of requestreq by the servess in statg. The result is an
update messagepd,, and the corresponding response
messageespeq:

update: (upqeq, statg/) — state,: Returns a new state
statg,, obtained by the application of the update message
updeq to the statestate.. This corresponds to the event
updateéreg) mentioned above, wherg is the server that
executesipdate

2.4. Sequences

The algorithms presented in this paper rely on sequences.

Order Broadcast do not change whether it is based on groupA sequence is a finite ordered list of elements. With a few

membership (optimized fixed sequencer algorithm) or unre-

minor exceptions, the notation defined here is borrowed from

liable failure detectors (optimized Consensus-based destinathat of Gries and Schneid20].

tions agreement algorithm). However, the study shows that

A sequence of three elemerdasb, c is denoted by the

the solution based on unreliable failure detectors is severaltuple {(a, b, ¢). The symbole denotes the empty sequence.

orders of magnitude more robust to wrong suspicions. In

The length of a sequens®qis the number of elements in

particular, this means that more aggressive failure detectorsseqand is denoted seq For instance, #a, b, ¢) = 3, and

can be used, thus resulting in far better failover time in the
occurrence of failures.

2.3. Replication model

Without loss of generality, we define replication in the
client-server model. We consider a model in which each

process is modeled as a state machine. There are two type
of processes: clients and server replicas. Clients execute théd

following two external events:

e sendreq), the emission of the reque®lg by a client; and

e receivérespe), the reception by a client of the response
to requesteq (messageespe)-
Server replicas execute the following two events:

e handlgreq), the processing of requerq that generates
anupdate message URg;

4 Total Order Broadcast, also known as Atomic Broadcast, is an agree-
ment problem at the core of active replication. Roughly speaking, mes-

sages are broadcasted concurrently, and all destination processes mus?

#e = 0.

Elements can be added either at the beginning or at the
end of a sequence. Adding an elemeat the beginning of a
sequencaeqis called prepending (s420]) and is denoted
by e<iseq Similarly, adding an elemer# at the end of a
sequencaeqis called appending and is denoteddsg>e.

We define the operatdi for accessing a single element
gf the sequence. Given a sequerseg] sedi] returns the

th element ofseq The elementsedl] is then the first
element of the sequence, and is also denotekeaslseq
The tail of a non-empty sequenceq is the sequence
that results from removing the first element sgq Thus,
we have

seq= headsextail .seq

For convenience, we also define the following additional
operations on sequences. First, given an elereegmd a
sequenceseq the element is a member ofeq(denoted
e € seg if eis a member of the set composed of all elements
f seq Second, given a sequensegand a set of elements

deliver the same set of message in the same relative order. A broad surveyS the exclusionseg—S is the sequence that results from

[13] has been written on the topic.

removing fromseqall elements that appear

1384 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

3. Problem specifications Enforcing strong parsimony requires a way to detect, with
absolute certainty, the crash of other processes. In other

This section presents the specification of the two problems words, strong parsimony requires a perfect failure detector
addressed in this paper. First, we present the specification(see Sectior2.2.2).
of semi-passive replication. Second, we present the problem In contrast, semi-passive replication is defined with a
of Lazy Consensus. weaker property that relates parsimony to thetectionof
failures rather than theioccurrence The definition is ex-
pressed as follows.

Weak parsimonyif the same requeseq is processed by
two replicagy andq, then at least one gfandq is suspected
by some replica.

It follows that the parsimony of a semi-passive replication
algorithm is related to the failure detection provided by the
system model. In particular, it is easy to see that, under a

3.1.1. Generic Replication Problem _ perfect failure detector, weak and strong parsimony are in
First of all, replications techniques are defined by the fact identical.

Generic Replication Problem. This part of the specifica-

tion is common to replication techniques, regardless of their o

strategies (e.g., active replication, passive replication). The 3-2- Specification of Lazy Consensus
specificity of a given strategy is captured by extending the

3.1. Specification of semi-passive replication

The definition below is based on a specification frame-
work for replication techniques described by Déf4i], °
of which we only present the relevant parts here.

definition with additional properties. The Lazy Consensus problem is a generalization over the
Termination If a correct clientc € ITc sends a request, Consensus problem that allows processes to delay the com-
it eventually receives a reply. putation of their initial value. In the traditional definition

Total order. For any two requesteeq andreq, if some of Consensus (e.g[18,8]), a process begins the problem

replica executesupdatareq) after updatdreq), then a with an initial value. In contrast, with the definition of Lazy
replica executesupdatdreq) only after it has executed Consensus, a process begins without initial value. The ini-

updatereq). tial value of the process is computed only when it becomes
Update integrity For any requesieg, every replica exe- ~ necessary, if at alf o

cutesupdatereq) at most once, and only endreq) was The Lazy Consensus problem is defined here as a problem

previously executed by a client. among server processes, that is, we consider only the set
Response integrityFor any eventreceiverespey) exe- of processedIls. Processes propose no value initially, but

cuted by a client, the evenpdatereq) is executed by some instead provide the algorithm with an argument-less function

correct replica. that computes and returns a proposed value when called.
A given replication technique will operate correctly as More concretely, processes begin the problem by calling the

long as it satisfies the four properties above. procedureLazyConsens(giv), wheregiv is an argument-

less functiorl that, when called, computes an initial value
])) o v (with v # 1 8) and returns it. When the algorithm calls
3.1.2. Passive and semi-passive replication giv on behalf of procesp, we say thap proposeshe value
As already mentioned, the specification above is com- y yeturned bygiv. When a process executeslecidev), we
mon to replication techniques, regardless of their approach.say thaty decideshe valuev. The Lazy Consensus problem
Hence, the specificity of a given strategy is captured by ex- js specified inlT by the following properties:

fine both passive and semi-passive replication with an addi- ggme value.

tional property ofparsimony _ ~_ Uniform integrity. Every process decides at most once.
Passive replication, as for instance described by Budhiraja AgreementNo two correct processes decide differently.
etal.[7], is expressed in a model with perfect failure detec- yniform validity: If a process decides thenv was pro-
tion. In particular, they require that no more than one server yosed by some process.
the following property of parsimony. most once.
Strong parsimonyIf a requestreq is processed by a
replica p, then no other replica processesq unlessp
crashes.

6The problem is called “Lazy Consensus” in reference to its similarities
with the programming technique known as “lazy evaluation.”
5The definition of the total order property was in fact adapted from 7 giv stands forget initial value
a property called “gap-free uniform total order” proposed by Aguilera et 8The symbol L (bottom) is a common way to denote the absence of
al. [4] for the problem of Total Order Broadcast. value. This is called eithemil or null in most programming languages.

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398 1385

Weak lazinesdf two processe® andq propose a value, req resp

then at least one qf andq is suspected by sonfeprocess Py red

in Ig. I < .
Lazinesss the only new property with respect to the stan- P2 | updatepmm-}—— »

dard definition of the Consensus probld&j. In Section Ps

4, we present an algorithm for semi-passive replication that — >

uses Lazy Consensus. Solving Lazy Consensus is discussed

in Section5. Fig. 3. Semi-passive replication: update message sent by the primary.

Remark. Alternatively, stronger definitions of Lazy Consen-
sus problems can be given, by requiring stronger definitions
of laziness. Thus, we define thaasi-strong Lazy Consensus
and thestrong Lazy Consensas Lazy Consensus problems
that, respectively, satisfy the following laziness properties:
Quasi-strong lazinesdf two processe® andq propose
a value, themp andq are not both correct.
Strong lazinesslf a process proposes a value, then no
process) proposes a value befopehas crashed unlesghas ~ 4.2. Semi-passive replication algorithm
crashed before proposes a value.

Expressing semi-passive replication as a sequence of Lazy
Consensus problems hides inside the Consensus algorithm
the issue of selecting a primary. A procgstakes the role
of the primary (i.e., handles client requests) exactly when it
proposes its initial value for Consensus.

The algorithm for semi-passive replication relies on the
laziness property of the Lazy Consensus. The laziness prop-
erty of Lazy Consensus is the key to satisfy parsimonious
processing (see Secti@n3, p. 11). However, laziness does
not affect the correctness of the algorithm &smeric Repli-

. . . - . cationproblem (see Sectiof.1, p. 22; Remark 4.3, p. 12).
We begin this section by giving a general overview of . .]
the semi-passive replication algorithm. We then present our Variables Every servers manages an integdr (line 5),

' which identifies the current instance of the Lazy Consensus

algorithm for semi-passive replication, expressed as a se- .
quence of Lazy Consensus problems. Finally, we prove andproblem. Every server process also handles the variables
i ' recvQandhand (lines 2,3):

discuss the parsimony property of the semi-passive replica- recvQ is a sequence (receive queue) containing the re-
tion algorithm (the correctness of the algorithm is proved in ¢ S€d R . 9
quests received by a servgrfrom the clients.

the appendix). e hand, is a set which consists of the requests that have
been processed.
4.1. Basic idea: Consensus on “update” values Algorithm descriptionWe now give a textual description
of the algorithm. The pseudo-code is expressed in Algorithm

As mentioned in Sectioth.1, in the semi-passive replica- 1 Briefly speaking, the algorithm relies on a sequence of
tion technique, the requests are handled by a single process; 37y Consensus executions and works as follows:
the primary. After the processing of each request, the pri- 4 \When a serves receives a new requesiq from a client,
mary sends anpdatemessage to the backups, as illustrated that request is simply appended to the receive queue

on Fig.3. o recvQ, of that server, unless it was previously received
Our solution is based on a sequence of Lazy Consensus gnd/or handled.

problems, in which every instance decides ondbetent of e Whenever the receive queuecvQ is not empty and
the update messag&his means that the initial value of ev- the |ast execution of the Lazy Consensus has finished,
ery Consensus problem is apdate valuggenerated when a new instance of the Lazy Consensus is started. The
handling the request. The cost related to getting the initial proposition functionhandleRequest(invoked lazily by

value is high as it requires the processing of the request. the Lazy Consensus algorithm, takes the first reqrezst
SO, we want to avoid a situation in which each server prO- from the receive queue, handles |t, and returns a tup'e

cesses the request, i.e., has an initial value for Consensus (or (req, UPGreq. r€SReq) CONtaining the requesed, an up-
else the semi-passive replication technique could no more gate messagepdkeq, and a replyespeg for the client. The
be qualified as “parsimonious”). This explains the need for gecisjon value of the Lazy Consensus is one such tuple.
a “laziness” property regarding the Consensus problem. o \when a serves receives the decision valu€eq, updeg,
respeq) of an execution of the Lazy Consensus, it forwards
the reply messageespeq to the client, updates its state

4. Semi-passive replication algorithm

As a mgtter of fact, the Lazy Consensus algorithm presented in this accordmg to the update messaweq, and moves the
paper satisfies a stronger property: two processes propose a value only

if one of them is suspected by raajority of processes inflg (Lemma requestreq from the receive queur-:ech. to the set of
A.17, p. 27). handled requestsand,.

1386

Algorithm 1 (Semi-passive replication (code of sergpx

1. [Initialization:

2 recv@ < ¢

3 hand; < ¢

4. state < state®

5. k<0

6. function handleRequest()
7 req < headrecvQ

8

(updeq, respeq) < handlgreq, state)

©

return (red, Updeq, reSPeq)
10. endhandleRequest()
11. whenreceivefeq.) from clientc
12. if req. € hand; A req: € recv@; then
13. recvl; < recvQ>reqe
14. end if
15. end when
16. when#recv@Q > 0
17. k<—k+1
18. LazyConsensilis handleReque¥t
19. wait until decidek, (req, updeg, respeq))
20. send espeq) to sendecreq)
21. statg < update(upd,.q, statey)
22. recvy < recv@ — {req}
23. hand, < hand; U {req}
24. end when

4.3. Parsimony of the semi-passive replication algorithm

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

{sequence of received requests, initially erhpty
{set of handled reque$ts

[Task 1/

[Task 2/
{Solve thek’" Lazy Consensijis

{Send response to clignt
{Update the state

follows directly from theweak lazinesproperty of the Lazy
Consensus. [J

As mentioned earlier, the semi-passive replication algo-
rithm only relies on the laziness of the Lazy Consensus in Theorem 4.1. Algorithm 1 with weak Lazy Consensus
order to satisfy the Parsimony property of semi-passive repli- solves thesemi-passive replicatioproblem
cation. This means that laziness is the key to parsimonious
processing, but it does not influence the safety properties of Proof. Follows directly from Theoreni..1 (generic replica-
the algorithm. In other words, even if the algorithm relies on tion) and Lemmat.1 (weak parsimony). [
a Consensus algorithm which does not satisfy any laziness
property, the replication algorithm still satisfies the proper- We now show that implementing passive replication based
ties of the generic replication problem discussed in Section on Algorithm 1 merely consists in relying on a strong Lazy
3.1 (but it might not satisfy theparsimonious processing Consensus algorithm (see Sect®g).
property, Sectior8.1.2.
Lemma 4.2. Algorithm 1 with strongLazy Consensus sat-
Theorem 1.1. Algorithm 1 solves the generic replication isfiesstrongparsimony
problem(defined in SectioB.1).
Proof. The proof is a trivial adaptation from that of Lemma
The details of the proof are given in the appendix (pp. 22— 4.1 O
24). It is nevertheless important to note that Theoflefins
proved independently of the laziness property of the Lazy Corollary 4.1. Algorithm 1 with strong Lazy Consensus
Consensus. solves thepassive replicatioproblem.

Lemma 4.1. Algorithm 1 with weakLazy Consensus satis-
fiesweakparsimony

Proof. Follows directly from Theoreni.1 (generic replica-
tion) and Lemmat.2 (strong parsimony). [

Proof. Processes process a request at line 8, i.e., when they\Remark. An interesting (and potentially controversial) point

propose a value. Therefore, theeak parsimonyproperty

to raise here is that the property of parsimony in itself is

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398 1387

merely a question of quality of service rather than actual sition of ITg never changes and is assumed to be initially
correctness. Indeed, as long as the server solves the Generiknown to all processes. Hence, the coordinator of round
Replication problem, it will continue to operate devoid of r is designated deterministically by the formdfac” =

any inconsistencies even if laziness is not satisfied. ((r — 1) modn) + 1, thus cycling among the set of pro-

If not for our algorithm, this remark would be quite cesses. Thisis commonly known as the rotating coordinator
pointless since other passive replication algorithms cannotparadigm.
separate both issues (generic replication and parsimony). In Processes begin the execution of the Consensus with the
contrast, our algorithm presents these issues as beingproposeevent and some proposition valug Each process
orthogonal. maintains several variables, the most important of which
are: (1) the number of the current round, (2) an estimate of
the decision value, and (3) a logical timestamp associated
with the estimate. The processes begin the first round of the
algorithm with the variables set to i3, and 0, respectively.

In this section, we give an algorithm that solves the prob- ¢ In Phase 1, all processes iy send their estimate to the
lem of Lazy Consensus defined in Sect®2 1° The al- coordinator of the current round, timestamped with the
gorithm presented here is adapted from the Chandra—Toueg round number in which they last modified it.

Consensus algorithm fopS [8]. Both algorithms rely on e In Phase 2, the coordinator waits for a proposition from

5. Solving Lazy Consensus

the assumption that at least a majority of the participating
processes are correct.

To better describe the difference between the Chandra—
Toueg algorithm and ours, we begin the section with an
informal description of the former algorithm, followed by

an equally informal description of the algorithm for Lazy e

Consensus.
Then, we describe two simple yet important optimizations
that can be applied to both algorithms. The first optimization

reduces the first round by one phase, whereas the second

optimization improves the selection of coordinators when

several instances of the Consensus algorithm are executed

in sequence.
Finally, we describe the complete pseudo-code for our
Lazy Consensus algorithm, which incorporates the two opti-

mizations mentioned above. The adapted proofs of correct-e

ness are presented in Appendi2.

5.1. Chandra—-Toueg Consensus algorithm usig

The Chandra—Toueff8] Consensus algorithm described
here assumes a failure detector of clkassand that no less
than a majority of the processes Ihs are correct. Fig4
presents the communication generated by the algorithm in a
failure/suspicion-free run. The figure depicts the four phases
that constitute the first round of the protocol. The algorithm
is now described informally.

The algorithm proceeds through a sequence of asyn-
chronous rounds. Each round is uniquely identified by a

a majority of the processes ifis. It selects the estimate
with the highest timestamp and modifies its own estimate
accordingly (breaking ties can be done arbitrarily). The
coordinator then broadcasts its estimate as its proposition
for the decision value.

In Phase 3, the processes wait for a proposition from the
coordinator. They adopt the value proposed by the coor-
dinator by changing their estimate and using the round
number as the new timestamp. Then, they acknowledge
the proposition and proceed to the first phase of the next
round.

In case a process suspects the coordinator before it re-
ceives a proposition, that process sendsegativeac-
knowledgment before proceeding to the first phase of the
next round.

In Phase 4, the coordinator waits until it has received
an acknowledgment message (positive or negative) from
a majority of the processes. If all received acknowledg-
ments are positive, the proposed value becomes the de-
cision value. The coordinator then informs the other pro-
cesses by broadcasting the decision value using Reliable
Broadcast.

In contrast, if one of the received acknowledgments is
negative, the coordinator gives up and proceeds directly
to the first phase of the next round.

5.2. Lazy Consensus algorithm (informal description)

The Lazy Consensus algorithm described in this paper is

sequence number, and all protocol messages are identifiechn adaptation of the Chandra—Toueg algorithm that shares
by the number of the round to which they belong. Being the same assumptions. Rather than describing the whole
asynchronous, several rounds can actually take place si-algorithm, we simply present the most significant differ-
multaneously, although they are logically ordered by their ences. Fig.5 presents the first round of the protocol in
sequence number. In each round one of the processes im failure/suspicion-free run. Notice that, for the sake of

II is defined as a coordinator for that round. The compo-

10An earlier version of this algorithm was calldaZ)’ Consensu$l2].

Consensus now designatepm@blem

1170 be exact, Chandra and Toufg] use the slightly simpler formula
Note thatDZ)V Consensus used to designateadgorithm, whereas Lazy c’
dinator of round 1,p3 for round 2, and so forth.

" = (r modn) + 1, which counter-intuitively designatgs as the coor-

1388 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

Phase 4

LE/AY - AR

i

Phase 4 ' I'Phase 4 i

Fig. 4. Chandra—Toueg Consensus; illustration of a single round execution.

pSIEl estimate — proposé E ; decidé

WOl s o \X I// 'y],

o)/ AL i N[
Phase 1 : 1 Phase 3 1 :

Fig. 5. Lazy Consensus; illustration of a single round execution. Initially, the processed hotdead of a proposition value. In the first round, estimate
messages of the first phase are not essential to the algorithm (discussed in S&cfijon

simplicity, this section presents a simplified version of the one estimate different from. in the second phase of their
algorithm. round.

In the Lazy Consensus algorithm, processes begin the exe-
cution of the algorithm by proposing a function (or alambda 5.3. Optimizations
closure) calledyiv which, if called, computes a proposition
value and returns it. Other than that, processes maintain the The full algorithm (presented in Sectidm) includes two
same variables as in the Chandra—Toueg algorithm, namelyimportant optimizations that we present now. The first opti-
(1) the number of the current round, (2) an estimate of the mization reduces the overhead of the protocol in failure-free
decision value, and (3) a logical timestamp associated with runs. The second optimization is concerned with situations
the estimate. Unlike Chandra—Toueg, processes do not bewhere several executions of the algorithm are performed in
gin with a proposition value, and hence set their estimate to sequence, and the performance penalty that is associated
L, thus representing the absence of a value. with the crash of the first processes.

The rest of the algorithm is the same as with Chandra—
Toueg's, with the following exception. In Phase 2, the 5.3.1. Optimization of Phase 1
coordinator of the round gathers estimate messages from a As observed by SchipgB0], the first phase in the first
majority of processes. Among the estimates received andround of the Chandra—Toueg Consensus algorithm (see Sec-
including its own, the coordinator takes the one, different tion 5.1) is not essential for the algorithm. The reason is
from L, that has the highest timestamp. If no such estimate that, in the first phase, it is known by all processes that the
exists, because they are all equalltpthen the coordinator estimate of every processes is their proposition value, times-

computes its proposition value by calling the functgn It tamped with zero. Hence, when the coordinator collects the
then sets its own estimate to the return value of the function estimates in phase two, it can pick any of the estimates as
and uses that value as its proposition for the round. the proposition value. In particular, the coordinator can se-

Doing so ensures that the functigiv is called only when lectits ownestimate as the proposition value, regardless of
necessary. In fact, it is not difficult to see that any single the estimates sent by other processes.
process will call the function at most once. Beside, in the Similarly, with Lazy Consensus, all processes start with
worst case, the function can only be called by about half the valuel as their estimate. Consequently, the coordinator
of the processes plus one. Intuitively, this is because, if a of the first phase cannot expect anything hiftom the other
majority of the processes have called that function, then the processes. Hence, in the first round, the algorithm skips the
coordinator of any subsequent round will receive at least first phase and proceeds directly to the second phase.

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398 1389

Notice that this optimization applies only to the first r asc” = pvf[((r — 1) modn) + 1]. During Consensuk,
round. It is nevertheless useful as, during a failure-free and the agreement on the next permutation vegidf occurs
suspicion-free execution, the latency degree of the protocol as follows. The processes manage two estimate variables in-

is determined by the first round only. stead of a single onestV, for the decision value, anestP,
for the permutation vector. When a coordinator proposes a
5.3.2. Adaptive rotating coordinator value, it also proposes a permutation vector with itself as the

Several important algorithms involve a sequence of Con- first coordinator (this is done in Algorithm 2 at lines 6 and
sensus executions. In addition to the semi-passive replica-32). When the Consensus decides, the agreed permutation
tion algorithm described in this paper, this is also the case vector becomepv¥t! and is used later, for the execution of

with several Total Order Broadcast algorithms (¢8,19]), Consensug + 1.
Generic Broadca$®6], some Consensus-based group mem- Because a crashed procg@ssannot propose a value after
bership servicefl0], fault-tolerant mobile agen{27]. it has crashed, it is easy to see thaoes not remain the first

Unfortunately, in this situation, there is a practical prob- coordinator for more than one entire Consensus execution
lem inherent to the use of the rotating coordinator. In the after it has crashed.
rotating coordinator paradigm, every instance of the Con-
sensus algorithm selects a coordinator by cycling through Remark. One could possibly mistake the adaptive rotating
processes always in the same sequence/pay..., p.). coordinator for a form of group membership. To prevent this
This means thap is coordinator for round 1> for round misconception, we would like to emphasize here that adap-
2, etc. Assume now that; crashes before Consensus num- tive rotating coordinator is merely an extension to the rotat-
berk, then Consensusandevery furtherexecution of the ing coordinator paradigm and by no means a replacement for
Consensus will always fail in the first roungs(the coor- a group membership. The latter is indeed a higher-level ab-
dinator of round 1 has crashed), hence always requiring atstraction, and hence differs by several fundamental aspects.
least two rounds to decide. This extra cost (two rounds in- First and most importantly, with the adaptive rotating co-
stead of one) cannot be easily avoided for Consensus num-ordinator, the composition of the set of processes is static

berk. However, the cost can be avoided for Consertsgd and hence never changes. This is clearly unlike group mem-
and after, by a simple modification to the rotating coordina- bership whose primary role is to allow the dynamic join and
tor that incurs no additional message. leave of processes during the computation.

Let us illustrate this with an example. Consider that, for ~ Second, specifications of group memberdii@) include
Consensus numbdy;, the processes dlil s are ordered as the notion of view synchrony that imposes some restrictions
follows: (p1, p2, p3, pa, ps), which definesp; as the first on the delivery of application messages. In contrast, this
coordinator (see Fig6). Assume thatp; crashes just be- notion is irrelevant to the adaptive rotating coordinator.
fore the execution of Consensksand thus the first round Third, a secondary role of a group membership service is
fails. Assume again that, after Consensysll processes to ensure that system resources (i.e., retransmission buffer
can agree on the following permutation of the processes in emptied, etc) are eventually reclaimed. Again, the adaptive
Ig: {p2, p3, pa, p5, p1). Then, if Consensus+ 1 uses the rotating coordinator has nothing to do with resource man-
new permutation, themp, becomes the coordinator of the agement as this occurs at a different abstraction level.
first round and Consensist 1 can be solved in one single Finally, with group membership, the agreement on the
round in spite of the crash qf. composition of the group can occur independently from the

Obviously, reaching an agreement on a new permutation execution of group communication protocols. In contrast,
for the rotating sequence requires exactly this,... reachingthe mechanism of the adaptive rotating coordinator is em-
an agreement. The idea of our optimization is that, during bedded within the Consensus protocol and cannot occur in-
Consensug, processes reach an agreement not only on thedependently.
decision value for Consensiks but also on a permutation
vector to be used during tmext executionf the Consensus, Remark. Note that we have presented the idea of the adap-
that is, Consensus numbkr- 1. In fact, the permutation tive rotating coordinator using a simple reordering policy.
vector can be seen as an implicit part of the decision value. This is enough to illustrate the idea but it is possible, in prac-
As a result, the agreement on the permutation genenates tice, to use better strategies for the permutation. Changing
additional message the reordering policy does not compromise the correctness

More concretely, this occurs as follows. The processes of the algorithms, as long as the permutation vector is mod-
start Consensuswith a permutation vectopv® agreed by ified only at line 6 and 32 in Algorithm 2.
all processes. For the first execution of the Consensus, the
permutation vectopv? is determined statically as being the
identity[1, 2, ..., n]. Then, each executidnof the Consen- 5.4. Lazy Consensus algorithm withS
sus agrees on the permutation vector for the next execution
pvitl. A permutation vectopvF is used during the execu- We now describe the complete algorithm in more details.
tion of Consensuk to determine the coordinator of round Algorithm 2 (p. 18) solves the Lazy Consensus problem

1390 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

() evalgiv()

consensuk < consensug+1->;
P ey b I
RS vy — -
Ms Ps * nac decideé- decidé—s
*| b i/ A\ \ W
VAVARRYAR \/ \

pv,=[1,2,3,4,5]

PVir1 = [5,1,2,3,4]

Fig. 6. Permutations oflg and selection of a coordinator.

with a S failure detector and the assumption that at least ¢ In Phase 2, the coordinator waits for a proposition from

a majority of the processes iiis are correct.

5.4.1. Variables
We first present variables that are retained between exe-

cution instances of the algorithm. These variables are global

within a single process, but not shared among processes.

e pv¥ represents the permutation vector for Consensus in-
stancek. Itis determined during Consensus execufief.

o pvlis setinitially by all processes to be the identity vector,
that is,[1, 2, ..., n]. It is used as the permutation vector
for the first Consensus execution, that is, instance 1.
The Consensus is initiated by calling the procediazy-

Consensuswvhich takes two arguments. The first argument is

the instance numbér The second argument is an argument-

less function, or closure, callegiv. When evaluatedgiv
computes and returns a proposition value: L (see Sec-
tion 3.2). When a procesp executes, < evalgiv, we say
that the process proposes the vaiye

The following variables are local to procedurazyCon-
sensusand play an important role in the algorithm:

estV, is the estimate that procegdas about the decision

value.

estP, is the estimate that procegshas about the next

permutation vector.

rp is the round number, initially set to 0, but incremented

before beginning the round.

ts, is the round number when the estimatestV,, estP,)

were last changed. It is initially set to O.

5.4.2. Algorithm description
We now give a brief description of each phase of the

algorithm. Notice that Phases 3 and 4 are nearly unchanged

from the Chandra—Toueg algorithm described in Sedidn
e InPhase 1, all processesiify send their estimatesstV,

andestP, to the coordinator of the current round, times- e

tamped with the round number in which they last modi-
fied them. According to the optimization of Secti6r8.2
the first phase is entirely skipped during the first round.

a majority of the processes ifig, except during the
first round when the coordinator has nothing to wait for
(optimization of Sectiorb.3.2). In the receive statement,

k andr, are pattern matching arguments, i.e., the pro-
cess waits for a message with the giveandr, value.

The other arguments are output arguments. The coordi-
nator filters the received estimatest\, and its own. If

at least one of them is defineg:(L), then the coordi-
nator selects the estimatesst,, estR,) with the highest
timestamp and modifies its own estimatestV,, estP,)
accordingly. Conversely, if all of the estimates received
in the phase are undefinee: (L), then the coordina-
tor proposes a value by evaluating the functgim, and
sets its estimat@stV, to the return value of the func-
tion. After that, the coordinator broadcasts its estimates
(estV,, esth,).

In Phase 3, the processes wait for a proposition from the
coordinator. They adopt the value proposed by the coordi-
nator by changing their estimatesstV.,, estR.)), using

the round number as the new timestamp. Then, they ac-
knowledge the proposition and proceed to the first phase
of the next round. In case a process suspects the coordi-
nator before it receives a proposition, that process sends
a negativeacknowledgment before it proceeds to the first
phase of the next round.

In Phase 4, the coordinator waits for an acknowledgment
from a majority of the processes. If all received acknowl-
edgments are positive, the proposed valestV,, estP,)
becomes the decision value and the coordinator informs
the other processes by broadcasting the decision value us-
ing Reliable Broadcast. On the other hand, if one of the re-
ceived acknowledgments is negative, no decision is taken
and the coordinator proceeds directly to the first phase of
the next round.

Upon receiving the decision message wiglstV,, estR)),

a process decidesstV, and sets the permutation vector
pvi*l to estR,. The permutation vectqov*! is used for

the next Consensus executibA- 1.

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

Algorithm 2 (Lazy Consensus (code of procens.

M —

kW

A

34.
35.

36.
37.
38.
39.
40.
41.
42.
43.

44,

53.
54.
55.
56.
57.
58.
59.

Initialization:
pv! —[1,2,...,n]

procedure LazyConsensus (k, function giv : 0 — v) {code for consensus instance k}
pv* = permutation vector obtained during instance k — 1
estVp — L {p’s estimate of the decision value}

estPp «— {rotate pv¥ until p is first}
statep «— undecided

rp—0 {rp is p’s current round number}
tsp — 0 {tsp is the last round in which p updated (estVp, estPp), initially 0}
while state, = undecided do {rotate through coordinators until decision reached}

¢p «— pvF [(rp mod n) + 1] {cp is the current coordinator}

rpe—Tp+1

Phase 1: {all processes p send (estVp, estPp) to the current coordinator}
if 7p > 1 then
send (k, p, Tp, estVp, estPp, tsp) t0 ¢p

end if
Phase 2: {coordinator gathers [(";1)—‘ estimates and proposes new estimate}
if p = cp then
if r, = 1 then
estVp — eval giv() {p proposes a value}
else

wait until [for [w

processes g : received (k, g, rp, estVy, estPq, tsq) from q]
msgs, [1p] — {(k, q.Tp, estVq, estPq, tsq) | p received (k, q, rp, estVq, estPq, Lsq) from g}
t « largest tsq such that (k, g, 7p, estVq, estPq, tsq) € msgs,[rp]
ifestVp = L and V(k, q,7p, estVg, estPg, Lsq) € msgs,[rp] : estVq = L then

estVp — eval giv() {p proposes a value}
else

estVyp « select one estVgq # L st. (k,q,1p,estVq, estPq, 1) € msgs,[rp]

estPy, «— estPq

end if
end if
send (k, p, 7p, estVp, estPp,) to all
end if
Phase 3: {all processes wait for new estimate proposed by current coordinator}

wait until [received (k, ¢p, rp, estVe,,, estPc,) from ¢ or ¢;, € Dp] {query failure detector Dy}

if [received (k, cp, 7p, estVe,,, estPc,,) from ¢,] then {p received (estV.,,, estPc,,) from cp }
estVy «— esthp
estPp — estPc,
tsp < rp
send (k,p,7p, ack) to cp
else {p suspects that c,, crashed}
send (k, p, 7p, nack) to ¢,
end if
Phase 4: {the current coordinator waits for replies from a majority of processes.}
{If those replies indicate that a majority of processes adopted its estimate, }
{the coordinator R-broadcasts a decide message}
if p = cp, then

wait until [for "(712#1)-‘

processes g : received (k, q, p, ack) or (k, q,7p, nack)]
if [for {(n—gl)-‘ processes q : received (k, ¢, 7p, ack)] then
R-broadcast (k, p,rp, estVy, estPy,, decide)
end if
end if
end while
end LazyConsensus

when R-deliver (k, q,rq, estVq, estPq, decide) {if p R-delivers a decide msg, p decides accordingly}
if statep, = undecided then
decide(k, estVy)
pvFt — estPy {updates the permutation vector for the next execution}
statey, «— decided
end if
end when

1391

1392

6. Selected scenarios for semi-passive replication

Algorithm 2 may seem complex, but most of the com-
plexity is due to the explicit handling of failures and suspi-
cions. So, in order to show that the complexity of the algo-
rithm does not make it inefficient, we illustrate typical ex-
ecutions of the semi-passive replication algorithm based on
Lazy Consensus usingS.

We first present the semi-passive replication in a good run
(no failure, no suspicion), as this is the most common case.
We then show the execution of the algorithm in the face of

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

=
processing

Mg L

state update

Fig. 7. Semi-passive replication (good run). The critical path re-
guest-response is highlighted in gray. The execution of the Lazy Consen-
sus is also depicted in Fig.

a single process crash. Other cases can easily be inferred

from these two simple scenarios.

6.1. Semi-passive replication in good runs

We call “good run” a run in which no server process
crashes and no failure suspicion is generated. Let/Higp-
resent the execution of Lazy Consensus nurkbEne server
processp is the initial coordinator for Consensilksand
also the primary. After receiving the request from the client,
the primaryp; handles the request. Once the processing is
done, p; has the initial value for ConsenskisAccording to
the Lazy Consensus protocgh multicasts the update mes-
sageupd to the backups, and waits fack messages. Once

ack messages have been received (actually from a major-

ity), processp1 can decide ompd, and multicast thélecide
message to the backups. As soon asdbeidemessage is
received, the servers update their state, and send the repl
to the client.

It is noteworthy that the state updates do not appear on
the critical path of the client's request (highlighted in gray
on the figure).

6.2. Semi-passive replication in the case of one crash

Fig. 8illustrates the worst case latency for the client in the
case of one crash, without incorrect failure suspicions. The
worst case scenario happens when the primaryi.e., the
initial coordinator of the Lazy Consensus algorithm) crashes
immediately after processing the client request, but before
being able to send the update messapéto the backups
(compare with Fig7). In this case, the communication pat-
tern is different from usual algorithms for passive replication

need to process the client request again. In our worst case
scenario, the initial primary1 has crashed before being able
to multicast the update valugpd. So none of thesstimate
messages received ky contain an initial value. In order

to obtain one, the new primany, processes the request re-
ceived from the client (Fig8), and from that point on, the
scenario is similar to the “good run” case of the previous
section (compare with Figd).

7. Conclusion

Semi-passive replication is a replication technique that
does not rely on a group membership for the selection of the
primary. While retaining the essential characteristics of pas-
sive replication (i.e., non-deterministic processing and par-
simonious use of processing resources), semi-passive repli-

¥ation can be solved in an asynchronous system usih§ a

failure detector. This is a significant strength over almost
all current systems that implement replication techniques
with parsimonious processing. Indeed, in those systems, the
replication algorithm requires to force the crash of excluded
processes in order to make progress, and thus combines
the selection of the primary with the composition of the
group.

A second contribution of this paper, Lazy Consensus,
is an extension of the Consensus problem to allow the
lazy evaluation of process propositions. This means that
processes compute their initial value in a “least effort”
way, captured with a Laziness property. We have discussed
these issues in details in the paper, and presented an algo-
rithm to solve Lazy Consensus. The algorithm was adapted
from the Chandra—Toueg Consensus algorithm ughdty

in asynchronous systems, as there is here no membershif8], and relies on the same assumptions. Even though we

change.

In more detail, the execution of the Lazy Consensus al-
gorithm runs as follows. If the primary; crashes, then the
backups eventually suspept, send a negative acknowl-

have not discussed this issue, other Consensus algorithms
could also easily be adapted to solve Lazy Consensus (e.g.,
[22,30,35,36).

The semi-passive replication algorithm proposed in this

edgment messageckto p; (the message is needed by the paper is based on solving the problem of Lazy Consensus.
Consensus algorithm), and start a new round. The serverThe semi-passive replication algorithm however only relies

processp, becomes the coordinator for the new round, i.e., on the conventional properties of Consensus for ensuring
becomes the new primary, and waits &stimatemessages the consistency of the replicas. The Laziness property of
from a majority of servers: these messages might contain anLazy Consensus is however the key to the restrained use
initial value for the Consensus, in which cagg does not of resources in semi-passive replication. Depending directly

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398 1393

[processing EM state update

! 1 —— FE7 B N
Mg nack — estimate — upd A ack — decide
; Y7 N7\ Y/
Rs x ! / —

Fig. 8. Semi-passive replication with one failure (worst case). The critical path request-response is highlighted in gray. The execution of the Lazy
Consensus in the case of one crash is also depicted ir6Fig.

on the quality of failure detectors, the laziness (and hencewas in part conducted for the program “Fostering Talent in
the parsimony of semi-passive replication) is related to the Emergent Research Fields" with Special Coordination Funds
amount of synchrony exhibited by the system. In particular, for promoting Science and Technology by the Japan Min-
in a synchronous system, semi-passive replication ensuresstry of Eduction, Culture, Sports, Science and Technology.
that a client request is processed by only one correct replica.
Conversely, in the worst case, a single request is never pro-
cessed by more than about half of the replicas. This behaviorAppendix. Proofs of correctness
is desirable as it naturally allows for a graceful degradation
of the replicated service. A.1. Correctness proof of the semi-passive replication

We mentioned that semi-passive replication does not re- algorithm
quire a group membership service, and explained why this is
an advantage. This may however give the wrong impression \We prove that our algorithm for semi-passive replication
that semi-passive replication is incompatible with a group (Algorithm 1, p. 11) satisfies the properties of the Generic
membership service, or that we believe that such a serviceReplication Problem given in Secti@il The proof assumes
is not useful. This is of course not the case, but we re- that (1) proceduréazyConsensusolves the Lazy Consen-
gard semi-passive replication as being a lower-level protocol SUs problem according to the specification given in Section
than group membership. Decoupling the replication proto- 3.2 (ignoring the laziness property), and (2) at least one
col from housekeeping issues (e.g., releasing resources heldeplica is correct. Solving Lazy Consensus is discussed in
by a crashed process, addmg or removing processes dynamSGCtiOﬂS. In fact, Lazy Consensus solves Consensus, which
ically) is more elegant and has several advantages in termgS €nough to prove the correctness of the algorithm as a
of performance, as discussed[®11]. Generic Replication algorithm.

Finally, from the standpoint of clients, our semi-passive
replication algorithm is protocol-compatible with active LemmaA.1 (Terminatior). Ifacorrectclientc € I1¢ sends
replication. In particular, clients need no specific knowl- @ requestit eventually receives a reply.
edge about the server replicas, beyond what is necessary
to address them as a group. This, combined with the fact Proof. The proof is by contradiction. Letq, be a request
that both replication techniques can be implemented basedsent by a correct client that never receives a reply. As
on Consensus, makes it much easier for both techniques tds correct, all correct replicas iff y eventually receiveeq,
coexist. For instance, the use of semi-passive replication inat line 10, and insereq,. into their receive queucvQ at
a CORBA Object Group Service made it possible to chose line 11. By the assumption thamnever gets a reply, no cor-
the replication type (active or semi-passive) as a strictly rect replica decides at line 14 @req,, —,): if one correct

server-side issue and on a per request Hasis replica would decide, then by the Agreement and Termina-
tion property of Lazy Consensus, all correct replicas would
decide on(req,, —, —). As we assume that there is at least

Acknowledgements one correct replica then, by the property of the reliable chan-

nels, and becauseis correct,c would eventually receive a

We would like to thank Fernando Pedone for his com- reply. Consequentlyeq, is never inhandof any replica, and
ments on the specification of replication techniques, and thus no replica removeseq, from recvQ (Hypothesis A).
Péter Urban for his important suggestions that greatly sim- Let 1y be the earliest time such that the request. has

plified some of the proofs. We are also grateful to the anony- been received by every replica that has not crashed. Let
mous reviewers for their insightful comments that helped us

improve the content of this paper significantly. This research 12see Sectio.3 p. 11.

1394

beforeReqCdenote the prefix of sequencerv Q; that con-

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

before it executesipdatéred), it decides(req, updeq, —)

sists of all requests irecvQ that have been received before before it decidesreq, updeq, —). Thereforek; < k.

req,. After 7o, N0 new request can be insertedécvQ be-
forereq,, and hence none of the sequenbefreReqCan
grow.

Let g be any replica that executepdatéred). To prove
the lemma, we show thaf executesupdatdreq) before it
executesipdateredq).

Let | be the total number of requests that appear before Since q executesupdatéreq), it also decides(req,

req, in therecvQof any replica:

I Z 0 if shas crashed
o #beforeReqg otherwise

SEI_[S

After time rg, the value ofl cannot increase since all new
request can only be insertedter req.. Besides, after ev-

Updeq. —). Let &, be the value of variabl& when it does
s0. By Lemma&A.2 (at most once) there is only one possible
value k5. By the Agreement property of Lazy Consensus
and the fact thap decidesupdatdreq) for k = ko, it
follows thatky = k5.

If q has decided on the instangg of Lazy Consensus,
it must have also decided something for= k1 because

ery decision of the Lazy Consensus at line 19, at least onek; < k2. Again, by the Agreement property of Lazy Con-

replicas’ removes the requestq, , at the head ofecvQ,
(1.7,1.22). The requeseq, , is necessarily beforeeq, in
recvQ,, and hence belongs teforeReqC. As a result, ev-

sensus and the fact thahas decidedreq, updeq, —) when
k = k1, g has decidedreq, updeq, —) whenk = k1. By the
algorithm, a process executes tiygdateevent correspond-

ery decision of the Lazy Consensus leads to decreasing thdng to a decision before it starts the next instance of the

value ofl by at least 1.

Sincereq, is never removed frorecvQ, (by Hyp. 1.1.1),
Task 2 is always enabledrgevQ > 1). So, because of the
Termination property of Lazy Consensus, the valué aé-

Lazy Consensus. So, becauge< kp, procesy] executes
updateéreq) before it executespdatdéreq). O

LemmaA.4. If a replica executes updateq), then

creases and eventually reaches 0 (this is easily proved bysendreq) was previously executed by a client

induction onl).

Let 11 be the earliest time at which there is no request Proof. If a rep"cap executewpdatheq), then some rep”ca

beforereq, in the receive queurecvQ of any replica { =
0). This means that, at timg, req, is at the head of the

g has selected and processed the reqeesit line 7 and line
8, respectively. It follows thateq was previously received

receive queue of all running replicas, and the next executionpy q, asreq belongs to the sequencecvQ . Thereforereq

of Lazy Consensus can only decide on requesf (1.7).
Therefore, every correct replicaeventually removeseq,
from recvQ,, a contradiction with Hypothesis A.[]

Lemma A.2. For any request regevery replica executes
updatéreqg) at most once

Proof. Whenever a replica executepdatéreq) (line 21),
it has decided orireq, —, —) at line 15, and inserteq into
the set of handled requestand(line 18). By the Agreement

property of Lazy Consensus, every replica that decides at

line 15 decides also ofteq, —, —) and inserts alsgeqinto
handat line 18. As a result, no replica can selesy again
at line 7, and(req, —, —) cannot be the decision of any
subsequent Lazy Consensus.]

Lemma A.3 (Total order). For any two requests req and
red, if some replica executes updéaey) after updatéreq),
then a replica executes updateq) only after it has exe-
cuted updatéeq).

Proof. Let req and req be two requests, and lgi be
some replica that executegpdatereq) after it executes
updatdreq). Sincep has executedipdatdreq), it has de-
cided(req, updeq, —) atline 19. Letk; be the value of vari-
ablek whenp decides(req, updeq, —). Similarly, p has exe-
cutedupdatdred). Let k» be the value of variablke whenp
decides(req’, updeq. —). Becausep executesupdatéreq)

was sent by some client.[J

Lemma A.5 (Update integrity. For any request req, ev-
ery replica executes upddteq) at most onceand only if
sendreq) was previously executed by a client.

Proof. The result follows directly from LemmaA.4 and
A2 O

Lemma A.6 (Response integrily For any event receive
(respeq) executed by a clienupdatéreq) is executed by
some correct replica

Proof. If a client receivesrespeq, thensendrespeq) was
previously executed by some replica (line 16). Therefore,
this replica has decide@ed, updeq, reseq) atline 15. By the
Termination and Agreement properties of Lazy Consensus,
every correct replica also decid@eq, updeq, reseq) at line

15, and executespdatéreq) at line 17. The lemma follows
from the assumption that at least one replica is correlct.

Theorem A.1. Algorithm 1 solves the generic replication
problem(defined in Sectio.1).

Proof. Follows directly from LemmaA.3 (total order),
LemmaA.5 (update integrity), Lemma\.6 (response in-
tegrity), and Lemma.1 (termination). O

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398 1395

A.2. Correctness proof of the Lazy Consensus algorithm such that no correct process suspegtdter timet. Let
t' >t be a time such that all faulty processes crash. Note

Here, we prove the correctness of our Lazy Consensus that after timet’ no process suspects From this and
algorithm (Algorithm 2, p. 18). The algorithm solves the LemmaA.7, because no correct process decides there

weak Lazy Consensus problem usinggh&failure detector, must be a round such that: (i) all correct processes
with a majority of correct processes. Lemnfa8-A.11 are reach roundr after time:’ (when no process suspects
adapted from the proofs of Chandra and To{®gfor the g), and (ii) q is the coordinator of round (i.e., g =
Consensus algorithm witkhbS. Without loss of generality pVE[((r — 1) modn) + 1]). Sinceq is correct, then it

and unless specified otherwise, all proofs are expressed for eventually sends a message to all processes at the end of
some instancé of the Lazy Consensus. Phase 2 (1.32):

e If r = 1 (firstround), them does not wait for any message,
Lemma A.7. No correct process remains blocked foreverat and sendsk, g, r, est\,, —) to all processes at the end of

one of the wait statements in Phase 2.
e For roundr > 1, then all correct processes send their
Proof. There are threevait statements to consider in Al- estimates ta (I.15). In Phase 2q receives(("—gl)-‘ such

gorithm 2 (.22, 1.35, 1.46). The proof is by contradiction. estimates, and send, g, r, estV,, —) to all processes.
Let r be the smallest round number in which some correct |n Phase 3, since is not suspected by any correct pro-

process blocks forever at one of theit statements. cess after time, every correct process waits fqs estimate
In Phase 2, we must consider two cases: (1.35), eventually receives it, and replies with ack to ¢
1. If r is the first round, then the current coordinatos (1.40). Furthermore, no process sendsagk to g (that can

pvk[1] does not wait in Phase 2 (1.19), hence it does not only happen when a process suspeptsThus, in Phase 4,
block in Phase 2. q receives[@w messages of the typé, —, r, ack) (and

2. If r > 1 then, all correct processes reach the end of o messages of the tyjie, —, r, nack), andq R-broadcasts
Phase 1 of round, and they all send a message of (x4, r, estV,, —, decide (1.48). By the validity and agree-
the tYPkG(ka —, 1, estV, —, —) to the current coordinator - ment properties of Reliable Broadcast, eventually all correct
¢ = pv*[((r—1) modn)+1] (I.15). Since a majority of processes R-delivers message (1.53) andecide(l.55)—a
the processes are correct, at led&t2. | such messages contradiction.

are sent t@ andc does not block in Phase 2. So, by Case 2 at least one correct process decides, and by
For Phase 3, there are also two cases to consider: Case 1 all correct processes eventually decide.
1. ¢ eventually receives(L;rﬂ message of the type
(k, —, r,estV, —, —) in Phase 2. Lemma A.9 (Uniform integrity). Every process decides at
2. c crashes. most once

In the first case, every correct process eventually receives
(k,c, r, est\l, —) (1.35). In the second case, singesatis-

fies strong completeness, for every correct progessere

is a time after whickc is permanently suspected Ipy that

is, ¢ € Dp. Thus in either case, no correct process blocks
at the secondvait statement (Phase 3, 1.35). So every cor-
rect process sends a message of the type-, r, ack) or

(k, —, r,nack to cin Phase 3 (resp. |.40, 1.42). Since there
are at leas @1 correct processes,cannot block at the ~ Proof. If no process ever decides, the lemmais trivially true.
wait statement of Phase 4 (1.46). This shows that all correct If any process decides, it must have previously R-delivered

processes complete round-a contradiction that completes & message of the tygé, —, —, —, —, decids (1.53). By the
the proof of the lemma. OJ uniform integrity property of Reliable Broadcast and the al-

gorithm, a coordinator previously R-broadcast this message.
Lemma A.8 (Termination). Every correct process eventu- This coordinator must have received$2 | messages of

Proof. Follows directly from Algorithm 2, where no process
decides more than oncel[]

Lemma A.10 (Uniform agreement No two processes de-
cide differently

ally decides some value the type(k, —, —, ack) in Phase 4 (1.46). Lat be the small-
est round number in Whicfﬁ%—‘ messages of the type
Proof. There are two possible cases: (k, —, r,ack) are sent to a coordinator in Phase 3 (1.40). Let

1. Some correct process deciddsome correct process de- ¢ denote the coordinator of roungthat is,c = pv*[((r —
cides, then it must have R-delivered some message of typel) modr) + 1]. Let est\. denotec’s estimate at the end of

(k, —, —, —, —, decide (1.53)). By the agreement prop- Phase 2 of round. We claim that for all rounds’>r, if
erty of Reliable Broadcast, all correct processes eventu-a coordinator’ sendsestV. in Phase 2 of round’ (1.32),
ally R-deliver this message and decide. thenest\, = est\,.

2. No correct process decideSince D satisfies eventual The proof is by induction on the round number. The claim

weak accuracy, there is a correct procgsnd a timet trivially holds for »’ = r. Now assume that the claim holds

1396

for all ¥, r <r' < x. Let ¢, be the coordinator of rounx,
that is,c, = pv*[((x — 1) modn) + 1]. We will show that
the claim holds forr’ = x, that is, if ¢, sendsestV., in
Phase 2 of round (1.32), thenest\., = est\..

From Algorithm 2 it is clear that ifc, sendsestV,
in Phase 2 of rouna (1.32) then it must have received
estimates from at Ieas(t@} processes (1.223° Thus,
there is some procegssuch that (1)p sent a(k, p, r, ack)
message ta in Phase 3 of round (1.40), and (2) the
messageék, p, x, estV,, —, ts,) is in msgs [x] in Phase 2
of roundx (1.23). Sincep sent(k, p, r, ack) to c in Phase
3 of roundr (1.40), ts, = r at the end of Phase 3 of
roundr (1.39). Sincets, is nondecreasings, >r in Phase
1 of roundx. Thus, in Phase 2 of rounk, the message
(k, p, x,est\},, —,1s,) is in msgs [x] with ts,>r. It is
easy to see that there is no mességey, x, estV,, —, ts,)
in msgs [x] for whichts, > x. Lett be the largests, such
that messagek, g, x, estV,, —,ts;) in msgs [x]. Thus,
r<t <x.

In Phase 2 of round, ¢, execute®stV., < est\, where
(k,q,x,est\,, —, 1) is inmsgs [x] (1.28). From Algorithm
2, it is clear thatg adoptedestV, as its estimate in Phase
3 of roundt (1.37). Thus, the coordinator of roundsent
estV, to g in Phase 2 of round (1.32). Sincer <t < x,
by the induction hypothesigstVy, = est\.. Thus,c, sets
estV. < estV. in Phase 2 of round (1.28). This concludes
the proof of the claim.

We now show that, if a process decides a value, then

it decidesest\.. Suppose that some procgsR-delivers
(k,q,rq, eSt\,, —, decidg, and thus decidesstV,. By
the uniform integrity property of Reliable Broadcast
and the algorithm, processf must have R-broadcast
(k,q,rq, est\,, —, decidg in Phase 4 of round, (1.48).
From Algorithm 2, some procesg must have received
1) | messages of the typé, —, 4, ack) in Phase 4 of
round r, (1.47). By the definition ofr, r <r,. From the
above claimesty, = est\.. [

Lemma A.11 (Uniform validity). If a process decides,Vv
then v was proposed by some process.

Proof. From Algorithm 2, it is clear that akéstimateghat a

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

Proof. The proof is a trivial adaptation of Lemm#a10 (uni-
form agreement) testP and the fact thapv! is set at
line 56. [J

Lemma A.13. Given a sequence of Lazy Consensus prob-
lems processes begin every instance k of the problem with
the same permutation vectpr*.

Proof. The proof is by induction on the instance numker
Initially, all processes begin the first instance witk= 1 and

the same permutation vectov! = [1, 2, ..., n], defined to
be the identity.

The induction step requires to show that, if all processes
begin instancé—1 with the samgv*, then they also begin
instancek with the samepvX. This comes as a consequence
of LemmaA.12 and the fact that no process starts an instance
before it has completed the previous one. This completes
the proof. O

Lemma A.14. For each process p ifil g, after p changes its
estimate esty'to a value different fromL, then esty # L
is always true.

Proof. A processp changes the value of its estimatstV,
only at lines 20, 26, 28 and 37. Assuming tlestV,, is
different from_L, we have to prove that a procgsdoes not
setestV, to L if it reaches one of the aforementioned lines.

The result is trivial for lines 20,26 (by hypothesis the
functiongiv never returns.) and line 28 (the process selects
a value explicitly different fromL).

At line 37, a process sets its estimate to a value received
from the coordinator. This value is sent by the coordinator
cp at line 32. Before reaching this line, changed its own
estimateest\¢, at one of the following lines: 20,26, or 28. As
shown aboveest\, is never set tal at these lines. U

Lemma A.15. During a round r, a process p proposes a
value only if p is coordinator of round r and esf\= L.

Proof. We say that a process proposes a value when it exe-
cutesestV, < eval giv (line 20 or 26). By line 18p pro-
poses a value only i is the coordinator of the round (i.e.,

coordinator receives in Phase 2 are proposed values. Therep = ¢,). Let us consider line 20 and line 26 separately.
fore, the decision value that a coordinator selects from these Line20: The test at line 19 ensures that line 20 is executed
estimatesnust be the value proposed by some process. Thus,only during the first round. Before executing line 28tV,

uniform validity of Lazy Consensus is also satisfied.]

The two propertieproposition integrityandweak laziness

are specific to the Lazy Consensus problem. In order to prove

them, we first prove some lemmas.

Lemma A.12. Every process that terminates the algorithm

of the coordinatop is trivially equal to_L (initial value).
Line 26: The result directly follows from the test at
line 25. OJ

Lemma A.16 (Proposition integrity. Every process pro-
poses a value at most once

considers the same value for the next permutation vector Proof. We say that a process propose a value when it exe-

pvktL after termination of Consensus k

13Note thatr < x hence round is not the first round.

cutesestV, < eval giv (lines 20 and 26). We prove the re-
sult by contradiction. Assume that some progggsoposes
a value twice. By definitiogiv returns a value different from

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

L. By LemmaA.14, onceestV, # L, it remains different

from L forever. By LemmaA.15, p proposes a value only
if estV, = L. A contradiction with the fact thagi proposes

a value twice. [

Lemma A.17. If two processes p and g propose a value,
then at least one of p and q is suspected by a majority of
processes iflg.

Proof. We prove this by contradiction. We assume that nei-
therp nor g are suspected by a majority of processeln
From LemmaA.15 and the rotating coordinator paradigm
(there is only one coordinator in each rounp)and q do
not propose a value in the same round. ke(resp.r,) be
the round in whichp (resp.q) proposes a value. Let us as-
sume, without loss of generality, thatproposes before
(rp < rg).

During roundr,, any process ifls either suspectp or
adopty’s estimate (lines 35,36,37). Sinpés not suspected
by a majority of processes iflg (assumption), a majority
of processes adopts estimate. By LemmaA.14, it follows

that (1) a majority of the processes have an estimate different

from L for any roundr > r,,.
Consider now round, with coordinatorg. At line 22, q

waits for a majority of estimate messages. From (1), at least

one of the estimate messages contains an estastife 1.
So the test at line 25 returns false, amdoes not calliv
at line 26. A contradiction with the fact that proposes a
value in roundr,. [

Corollary A.1 (Weak lazinegs If two processes p and q
propose a valuethen at least one of p and q is suspected
by some processes ig.

Proof. Follows directly from LemmaA.17.

LemmaA.17is obviously not necessary to prove the weak
laziness property defined in Secti8r2 However, as stated
in Footnote9 on p. 9, it is interesting to show that our
algorithm ensures a property stronger than weak laziness
The property is established by Lemd7. [

Theorem A.2. Algorithm 2 solves the weak Lazy Consen-
sus problem using>S in asynchronous systems wigh =

-1

el

Proof. Follows directly from LemmaA.8 (termination),
LemmaA.9 (uniform integrity), LemmaA.10 (agreement),

LemmaA.11 (validity), LemmaA.16 (proposition integrity),
and LemmaA.1 (weak laziness). O

References

[1] M.K. Aguilera, W. Chen, S. Toueg, Using the heartbeat failure
detector for quiescent reliable communication and consensus in
partitionable networks, Theoret. Comput. Sci. 220 (1) (1999) 3-30.

[2] M.K. Aguilera, W. Chen, S. Toueg, Failure detection and consensus
in the crash-recovery model, Distrib. Comput. 13 (2) (2000) 99-125.

1397

[3] M.K. Aguilera, W. Chen, S. Toueg, On quiescent reliable
communication, SIAM J. Comput. 29 (6) (2000) 2040-2073.

[4] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, Thrifty
generic broadcast, in: M. Herlihy (Ed.), Proceedings of the 14th
International Symposium on Distributed Computing (DISC’00),
Lecture Notes in Computer Science, vol. 1914, Toledo, Spain,
October 2000, pp. 268-282.

[5] P.A. Alsberg, J.D. Day, A principle for resilient sharing of distributed
resources, in: Proceedings of the Second International Conference on
Software Engineering, San Francisco, CA, USA, 1976, pp. 562-570.

[6] K. Birman, R. van Renesse (Eds.), Reliable Distributed Computing
with the Isis Toolkit, IEEE Computer Society Press, Silver Spring,
MD, 1994.

[7] N. Budhiraja, K. Marzullo, F.B. Schneider, S. Toueg, The primary-
backup approach, in: S. Mullender (Ed.), Distributed Systems, 2nd
ed., ACM Press Books, Addison-Wesley, Reading, MA, 1993, pp.
199-216 (Chapter 8).

[8] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable
distributed systems, J. Assoc. Comput. Math. 43 (2) (1996) 225-267.

[9] B. Charron-Bost, X. Défago, A. Schiper, Time vs. space in fault-
tolerant distributed systems, in: Proceedings of the Sixth IEEE
International Workshop on Object-oriented Real-time Dependable
Systems (WORDS'01), Rome, lItaly, January 2001.

[10] G. Chockler, I. Keidar, R. Vitenberg, Group communication
specifications: a comprehensive study, ACM Comput. Surv. 33 (4)
(2001) 427-469.

[11] X. Défago, P. Felber, A. Schiper, Optimization techniques for
replicating CORBA objects, in: Proceedings of the Fourth IEEE
International Workshop on Object-oriented Real-time Dependable
Systems (WORDS’99), Santa Barbara, CA, USA, January 1999, pp.
2-8.

[12] X. Défago, A. Schiper, N. Sergent, Semi-passive replication, in:
Proceedings of the 17th IEEE International Symposium on Reliable
Distributed Systems (SRDS’'98), West Lafayette, IN, USA, October
1998, pp. 43-50.

[13] X. Défago, A. Schiper, P. Urban, Total order broadcast and
multicast algorithms: taxonomy and survey. RR 1S-RR-2003-009,
Japan Advanced Institute of Science and Technology, Ishikawa, Japan,
September 2003.

[14] X. Défago, Agreement-Related Problems: from Semi-Passive
Replication to Totally Ordered Broadcast. Ph.D. Thesis, Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, August
2000, No. 2229.

[15] D. Essamé, J. Arlat, D. Powell, PADRE: a protocol for asymmetric
duplex redundancy, in: IFIP Seventh Working Conference on
Dependable Computing in Critical Applications (DCCA-7), San Jose,
CA, USA, January 1999, pp. 213-232.

[16] P. Felber, X. Défago, P. Eugster, A. Schiper, Replicating CORBA
objects: a marriage between active and passive replication, in:
Proceedings of the Second IFIP International Working Conference
on Distributed Applications and Interoperable Systems (DAIS'99),
Helsinki, Finland, June 1999, pp. 375-387.

[17] C. Fetzer, Perfect failure detection in timed asynchronous systems,
IEEE Trans. Comput. 52 (2) (2003) 99-112.

[18] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed
consensus with one faulty process, J. Assoc. Comput. Math. 32 (2)
(1985) 374-382.

[19] U. Fritzke, P. Ingels, A. Mostéfaoui, M. Raynal, Consensus-based
fault-tolerant total order multicast, IEEE Trans. Parallel Distrib.
Systems 12 (2) (2001) 147-156.

[20] D. Gries, F.B. Schneider, A Logical Approach to Discrete Math.,
Texts and Monographs in Computer Science, Springer, Berlin, 1993.

[21] R. Guerraoui, A. Schiper, Software-based replication for fault
tolerance, IEEE Comput. 30 (4) (1997) 68-74.

[22] M. Hurfin, R. Macédo, M. Raynal, F. Tronel, A general framework
to solve agreement problems, in: Proceedings of the 18th

1398 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380—-1398

IEEE International Symposium on Reliable Distributed Systems Information Networking (ICOIN-9), Osaka, Japan, 1994, pp. 419—
(SRDS’99), Lausanne, Switzerland, October 1999, pp. 56—67. 424.

[23] M. Hurfin, A. Mostéfaoui, M. Raynal, Consensus in asynchronous [36] C. Yahata, M. Takizawa, General protocols for consensus in
systems where processes can crash and recover, in: Proceedings of the distributed systems, in: Proceedings of the Sixth International

17th IEEE International Symposium on Reliable Distributed Systems Conference on Database and Expert Systems Applications

(SRDS’98), West Lafayette, IN, USA, October 1998, pp. 280-286. (DEXA95), Lecture Notes in Computer Science, vol. 978, Springer,
[24] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, R.K. Budhia, C.A. London, UK, September 1995, pp. 227-236.

Lingley-Papadopoulis, T.P. Archambault, The Totem system, in: [37] H. Zou, F. Jahanian, Real-time primary-backup replications with

Proceedings of the 25th International Symposium on Fault-Tolerant temporal consistency, in: Proceedings of the 18th IEEE International

Computing (FTCS-25), Pasadena, CA, USA, 1995, pp. 61-66. Conference on Distributed Computing Systems (ICDCS-18),

[25] R. Oliveira, R. Guerraoui, A. Schiper, Consensus in the crash-recover Amsterdam, The Netherlands, May 1998, pp. 48-56.
model, TR 97/239, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, August 1997.

[26] F. Pedone, A. Schiper, Handling message semantics with generic
broadcast protocols, Distrib. Comput. 15 (2) (2002) 97-107.

[27] S. Pleisch, A. Schiper, Modeling fault-tolerant mobile agent execution
as a sequence of agreement problems, in: Proceedings of the 19th
IEEE International Symposium on Reliable Distributed Systems
(SRDS’00), Nurnberg, Germany, October 2000, pp. 11-20.

[28] S. Poledna, Replica determinism in distributed real-time systems: a
brief survey, Real-Time Systems 6 (3) (1994) 289-316.

[29] D. Powell, Delta4: A Generic Architecture for Dependable Distributed
Computing, volume 1 of ESPRIT Research Reports, Springer, Berlin, and 1996, he also worked at the NEC C&C

1991.) . . Research Labs in Kawasaki (Japan). His

[30] A. Schiper, Early consensus in an asynchronous system with & weak research interests include distributed algorithms, fault tolerance and group
failure detector, Distrib. Comput. 10 (3) (1997) 149-157. communication, and their application to cooperative autonomous mobile

[31] F.B. Schneider, Implementing fault-tolerant services using the state systems.
machine approach: a tutorial, ACM Comput. Survey 22 (4) (1990)
299-319.

[32] J.B. Sussman, K. Marzullo, Comparing primary-backup and state
machines for crash failures, in: Proceedings of the 15th ACM
Symposium on Principles of Distributed Computing (PODC-15),
Philadelphia, PA, USA, May 1996, p. 90.(Brief announcement).

[33] P. Urban, I. Shnayderman, A. Schiper, Comparison of failure detectors
and group membership: performance study of two atomic broadcast
algorithms, in: Proceedings of the IEEE International Conference on

Xavier Défagois a research associate pro-
fessor of the School of Information Science
at JAIST (Japan Advanced Institute of Sci-
ence and Technology) since 2003. He is
also a research fellow of PRESTO, JST
(Japan Science and Technology Agency)
since 2002. He obtained his Ph.D. in Com-
puter Science in 2000 from the EPFL (Fed-
eral Institute of Technology in Lausanne,
Switzerland), and joined JAIST as a re-
search associate shortly thereafter. In 1995

André Schiper has been professor of Com-

puter Science at EPFL (Federal Institute of
Technology in Lausanne, Switzerland) since
1985, leading the Distributed Systems Labo-
ratory. During the academic year 1992-1993,
he was on sabbatical leave at the Univer-
sity of Cornell, Ithaca, New York. His re-

search interests are in the area of distributed
systems, middleware, group communication,

Dependable Systems and Networks (DSN’'03), San Francisco, CA, : and, recently mobile ad hoc networks. From
USA, June 2003, pp. 645-654. ‘ 2000 to 2002, he was the chair of the steer-
[34] R. van Renesse, K.P. Birman, R. Cooper, The HORUS system, TR ing committee of the International Sympo-
Department of Computer Science, Cornell University, Ithaca, NY, . sium on Distributed Computing (DISC).
USA. 1993. He is currently member of the editorial board of the following two

journals: ACM Distributed Computing, IEEE Transactions on Dependable

[35] C. Yahata, J. Sakai, M. Takizawa, Generalization of consensus and Secure Computing.

protocols, in: Proceedings of the Ninth International Conference on

	Semi-passive replication and Lazy Consensus62626262
	Introduction
	Overview of semi-passive replication
	Structure of the paper

	System model and definitions
	System model
	Failure detectors
	Unreliable failure detectors
	Perfect failure detectors
	Group membership

	Replication model
	Sequences

	Problem specifications
	Specification of semi-passive replication
	Generic Replication Problem
	Passive and semi-passive replication

	Specification of Lazy Consensus

	Semi-passive replication algorithm
	Basic idea: Consensus on ``update'' values
	Semi-passive replication algorithm
	Parsimony of the semi-passive replication algorithm

	Solving Lazy Consensus
	Chandra--Toueg Consensus algorithm using SSSS
	Lazy Consensus algorithm (informal description)
	Optimizations
	Optimization of Phase 1
	Adaptive rotating coordinator

	Lazy Consensus algorithm with SSSS
	Variables
	Algorithm description

	Selected scenarios for semi-passive replication
	Semi-passive replication in good runs
	Semi-passive replication in the case of one crash

	Conclusion
	Acknowledgements
	Correctness proof of the semi-passive replication algorithm
	Correctness proof of the Lazy Consensus algorithm

	References

