
J. Parallel Distrib. Comput. 64 (2004) 1380–1398
www.elsevier.com/locate/jpdc

Semi-passive replication and Lazy Consensus�

Xavier Défagoa,b,∗, André Schiperc

aSchool of Information Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawa 923-1292, Japan
bPRESTO, Japan Science and Technology Agency (JST), Japan

cFaculté Informatique et Communications, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Received 2 May 2001; received in revised form 25 May 2004

Abstract

This paper presents two main contributions: semi-passive replication and Lazy Consensus. The former is a replication technique with
parsimonious processing. It is based on the latter; a variant of Consensus allowing the lazy evaluation of proposed values.

Semi-passive replication is a replication technique with parsimonious processing. This means that, in the normal case, each request is
processed by only one single process. The most significant aspect of semi-passive replication is that it requires a weaker system model
than existing techniques of the same family. For semi-passive replication, we give an algorithm based on the Lazy Consensus.

Lazy Consensus is a variant of the Consensus problem that allows the lazy evaluation of proposed values, hence the name. The main
difference with Consensus is the introduction of an additional property of laziness. This property requires that proposed values are computed
only when they are actually needed. We present an algorithm based on Chandra and Toueg’s Consensus algorithm for asynchronous
distributed systems with a♦S failure detector.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Replication techniques; Fault tolerance; High availability; Failure detectors; Asynchronous systems; Consensus; Group membership;
Distributed systems

1. Introduction

A major problem inherent to distributed systems is their
potential vulnerability to failures. Indeed, whenever a single
node crashes, the availability of the whole system may be
compromised. Interestingly, the distributed nature of those
systems also provides the means toincreasetheir reliability.
Distribution makes it possible to introduce redundancy and,
thus, make the overall system more reliable than its individ-
ual parts.

� A preliminary version of this paper appeared inProc. 17th IEEE Intl.
Symp. on Reliable Distributed Systems(IEEE CS Press, pp. 43–50)[12].
∗ Corresponding author. JAIST, School of Knowledge Science, 1-1

Asahidai, Tatsunokuchi, Ishikawa, 923-1292 Japan. Fax: +81-76-151-
1149.

E-mail addresses:defago@jaist.ac.jp(X. Défago),
andre.schiper@epfl.ch(A. Schiper).

0743-7315/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2004.08.006

Redundancy is usually introduced by the replication of
components, or services. Although replication is an intuitive
and readily understood concept, its implementation is diffi-
cult. Replicating a service in a distributed system requires
that each replica of the service keeps a consistent state, which
is ensured by a specific replication protocol[21]. There ex-
ist two major classes of replication techniques to ensure this
consistency:activeandpassivereplication. Both replication
techniques are useful since they have complementary qual-
ities.

With active replication[31], each request is processed by
all replicas in the same relative order to ensure that repli-
cas remain consistent. This technique ensures a fast reac-
tion to failures, and sometimes makes it easier to replicate
legacy systems. However, active replication uses processing
resources heavily and requires the processing of requests to

http://www.elsevier.com/locate/jpdc
mailto:defago@jaist.ac.jp
mailto:andre.schiper@epfl.ch

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398 1381

be deterministic. 1 This last point is a very strong limita-
tion since, in a program, there exist many potential sources
for non-determinism[28]. For instance, multi-threading typ-
ically introduces non-determinism.

With passive replication (also calledprimary-backup)
[7,21], only one replica (primary) processes the request,
and sends update messages to the other replicas (backups).
This technique is important because it uses less resources
than active replication does, without the requirement of
operation determinism. On the other hand, the replicated
service usually has a slow reaction to failures. For instance,
when the primary crashes, the failure must be detected by
the other replicas, and the request may have to be repro-
cessed by a new primary. This may result in a significantly
higher response time for the request being processed. For
this reason, active replication is often considered a better
choice for most real-time systems, and passive replication
for most other cases[32].

In most computer systems, the implementation of passive
replication is based on a synchronous model, or relies on
some dedicated hardware device[5,7,15,29,37]. However,
we consider here the context of asynchronous systems in
which the detection of failures is not certain. In such systems,
all implementations of passive replication that we know of
are based on a group membership service and must exclude
the primary whenever it is suspected to have crashed (e.g.,
[6,24,34]). This is a strong practical limitation of passive
replication since this means that a mere suspicion can be
turned into a failure, thus reducing the actual fault-tolerance
of the system. Conversely, there exist implementations of ac-
tive replication that neither require a group membership ser-
vice nor need to kill suspected processes (e.g., active repli-
cation based on the Atomic Broadcast algorithm proposed
by Chandra and Toueg[8]).

In this paper, we present the semi-passive replication tech-
nique; a new technique that retains the essential character-
istics of passive replication while avoiding the necessity to
force the crash of suspected processes. The most important
consequence is that it makes it possible to decouple (1) the
replication algorithm from (2) housekeeping issues such as
the management of the membership. For instance, this al-
lows the algorithm to use an aggressive failure detection
policy in order to react quickly to a crash.

1.1. Overview of semi-passive replication

Semi-passive replication is a variant of passive replication
that retains most of its major characteristics (e.g., allows for
non-deterministic processing, and requires less processing
than active replication). The main difference with passive
replication is that the selection of the primary is based on
the rotating coordinator paradigm[8] and not on a group

1 Determinism means that the result of an operation depends only on
the initial state of a replica and the sequence of operations it has already
performed.

client

p1

p2

p3

update protocol

processing

state update

Fig. 1. Semi-passive replication (no crash) (conceptual representation: the
update protocolactually hides several messages).

client

p1

p2

p3

update protocol

crash
processing

state update

Fig. 2. Semi-passive replication (crash of the coordinator) (conceptual
representation: theupdate protocolactually hides several messages).

membership service as usually done in passive replication.
The rotating coordinator mechanism is a simpler mechanism
and lower-level mechanism.

Informally, semi-passive replication works as follows.
The client sends its request to all replicasp1, p2, p3 (see
Fig. 1). The servers know thatp1 is the first primary,
so p1 handles the requests and updates the other servers
(the update messages fromp1 to {p2, p3} are not shown
on Fig.1).

If p1 crashes and is not able to complete its job as the
primary, or ifp1 does not crash but is incorrectly suspected
of having crashed, thenp2 takes over as the new primary.
The details of how this works are explained later in Section
4. Fig. 2 illustrates a scenario in whichp1 crashes after
handling the request, but before sending its update message.
After the crash ofp1, p2 becomes the new primary.

These examples do not show which process is the pri-
mary for the next client requests, nor what happens if client
requests are received concurrently. These issues are ex-
plained in detail in Section4. However, the important point
in this solution is that no process is ever excluded from the
group of servers (as in a solution based on a membership
service). In other words, in case of false suspicion, there is
no join (and state transfer) that needs later to be executed
by the falsely suspected process. This significantly reduces
the cost related to an incorrect failure suspicion, i.e., the
cost related to the aggressive timeout option mentioned
before.

1.2. Structure of the paper

The contribution of this paper is twofold: semi-passive
replication and Lazy Consensus. For semi-passive repli-

1382 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398

cation, we give a definition of the problem and propose
an algorithm based on the Lazy Consensus abstraction.
Similarly, we define the Lazy Consensus problem, and
propose a corresponding algorithm that adapts from the
Chandra–Toueg Consensus algorithm for the♦S failure
detector.

The rest of the paper is structured as follows. Section2
presents the system model considered in this paper, and de-
fines various notations used throughout the paper. Section3
defines the two problems considered in this paper, namely,
semi-passive replication and Lazy Consensus. In Section4,
we present our algorithm for semi-passive replication. In
Section5, we present an algorithm for Lazy Consensus in
asynchronous systems augmented with a♦S failure detec-
tor. Section6 illustrates the execution of our semi-passive
replication algorithm with selected scenarios. Section7 con-
cludes the paper. The two appendices present the correctness
proofs of the semi-passive and Lazy Consensus algorithms,
respectively.

2. System model and definitions

In this section, we describe the system model assumed
in this paper, and describe important related notations and
definitions.

2.1. System model

We consider a distributed system composed of pro-
cesses that communicate by exchanging messages only.
The system is asynchronous in the sense that there exist
bounds neither on communication delays nor on process
speed.

We distinguish between two kinds of processes, namely,
client processes and server replicas. The set of all clients in
the system is denoted by�C , and the set of server replicas
is denoted by�S . 2 The composition of the set�S , initially
known by all processes, do not change over time although
it might include some processes that have crashed. We also
denote the number of server processes byn = |�S |. In
contrast, there can exist infinitely many client processes in
the system.

Processes fail by crashing (i.e., we do not consider Byzan-
tine processes) and crashes are permanent.3 A correct pro-
cess is one that does not crash. Processes communicate
through quasi-reliable communication channels[3]. Quasi-
reliable communication channels guarantee that if a correct
processp sends a messagem to a correct processq, then
q will eventually receivem. In addition, a quasi-reliable

2 Note that�C ∩�S need not be empty.
3 In practice, this means that whenever a crashed process recovers from

crash, it takes a new identity.

channel ensures that messages are (1) not duplicated, (2) not
corrupted, and (3) not spuriously created.

Remark. We make these assumptions in order to simplify
the description of the algorithms. Indeed, based on the liter-
ature, the algorithms can easily be extended to lossy chan-
nels and network partitions[3,1], and to handle process
recovery[2,23,25]. However, this would obscure the key
idea of semi-passive replication by introducing unnecessary
complexity.

2.2. Failure detectors

Formally, it is impossible for processes to reach agreement
(i.e., solve Consensus) deterministically in an asynchronous
distributed system where some processes can crash[18].
This impossibility stems from the fact that, in such a system,
a crashed process cannot be distinguished from a very slow
one. It follows that, the ability to detect the crash of processes
is a fundamental issue.

In this section, we present three related approaches to
detect the crash of processes in a distributed system. We
begin with unreliable failure detectors as this is the basis for
the algorithms presented in this paper.

2.2.1. Unreliable failure detectors
The impossibility result mentioned above also applies to

Lazy Consensus. Hence, in order to solve Lazy Consen-
sus among the server processes, we consider that the sys-
tem is augmented with some unreliable failure detector[8]
that runs between the processes in�S . In particular, we as-
sume a failure detector of class♦S, sufficient to solve the
Consensus problem, and defined over�S by the following
properties[8]:

Strong completeness: There is a time after which every
process in�S that crashes is permanently suspected by all
correct processes in�S .

Eventual weak accuracy: There is a time after which some
correct process in�S is never suspected by any correct
process in�S .

2.2.2. Perfect failure detectors
Many replication algorithms rely on the ability to detect

process failures accurately. More specifically, they rely on
the availability of a perfect failure detector. In contrast with
unreliable failure detectors, a perfect failure detector is one
whereby no process suspects a process that has not crashed.
A failure detector of classP (i.e., a perfect failure detector)
must enforce the property of strong completeness described
above, and the following property of strong accuracy[8]:

Strong accuracy: No process is suspected before it has
crashed.

In practice, a perfect failure detector can be emulated in an
asynchronous system by relying on timeouts and the ability
to control, in particular provoke, the crash of processes[17].

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398 1383

However, although technically possible, this is also mostly
undesirable, as this potentially degrades the overall stability
of the system (see[14] for details).

2.2.3. Group membership
A group membership is a service that usually combines

two different purposes (see[10] for a detailed survey). On
the one hand, a group membership is used to allow processes
to join and leave the computation dynamically. On the other
hand, group membership is used as a way to detect the crash
of processes. The main difference with failure detectors is
that, unlike the latter, a group membership providesconsis-
tent information about failures. This often requires to ex-
clude suspected processes from the group and consider as
crashed and ask them to take a new identity. A group mem-
bership is often used as a way to emulate a perfect failure
detector.

Essentially, providing consistent information about fail-
ures places group membership at a higher level of abstrac-
tion than failure detectors. This difference in structure leads
to difference in behavior. A recent study by Urbán et al.[33]
compares the two models (i.e., group membership and fail-
ure detectors) using Total Order Broadcast4 as a reference.
Among other things, the study shows that, unlike a common
belief, the overall performance in failure-free runs of Total
Order Broadcast do not change whether it is based on group
membership (optimized fixed sequencer algorithm) or unre-
liable failure detectors (optimized Consensus-based destina-
tions agreement algorithm). However, the study shows that
the solution based on unreliable failure detectors is several
orders of magnitude more robust to wrong suspicions. In
particular, this means that more aggressive failure detectors
can be used, thus resulting in far better failover time in the
occurrence of failures.

2.3. Replication model

Without loss of generality, we define replication in the
client-server model. We consider a model in which each
process is modeled as a state machine. There are two types
of processes: clients and server replicas. Clients execute the
following two external events:
• send(req), the emission of the requestreq by a client; and
• receive(respreq), the reception by a client of the response

to requestreq (messagerespreq).
Server replicas execute the following two events:

• handle(req), the processing of requestreq that generates
anupdate message updreq;

4 Total Order Broadcast, also known as Atomic Broadcast, is an agree-
ment problem at the core of active replication. Roughly speaking, mes-
sages are broadcasted concurrently, and all destination processes must
deliver the same set of message in the same relative order. A broad survey
[13] has been written on the topic.

• update(req), the modification of the state of the replica as
the result of processingreq. This must be deterministic.
We also introduce important notations to describe the

replicated server. This notation is used to express the semi-
passive replication algorithm in Section4.
• req: request message sent by a client (denoted by

sender(req)).
• updreq: update message generated by a server after han-

dling requestreq.
• respreq: response message to the clientsender(req), gen-

erated by a server after handling requestreq.
• states : the state of the server processs.
• handle : (req, states)
−→ (updreq, respreq): Processing

of requestreq by the servers in states . The result is an
update messageupdreq and the corresponding response
messagerespreq.
• update: (updreq, states′)
−→ state′

s′ : Returns a new state
state′

s′ , obtained by the application of the update message
updreq to the statestates′ . This corresponds to the event
update(req) mentioned above, wheres′ is the server that
executesupdate.

2.4. Sequences

The algorithms presented in this paper rely on sequences.
A sequence is a finite ordered list of elements. With a few
minor exceptions, the notation defined here is borrowed from
that of Gries and Schneider[20].

A sequence of three elementsa, b, c is denoted by the
tuple 〈a, b, c〉. The symbol� denotes the empty sequence.
The length of a sequenceseqis the number of elements in
seqand is denoted #seq. For instance, #〈a, b, c〉 = 3, and
#� = 0.

Elements can be added either at the beginning or at the
end of a sequence. Adding an elementeat the beginning of a
sequenceseqis called prepending (see[20]) and is denoted
by e�seq. Similarly, adding an elemente at the end of a
sequenceseqis called appending and is denoted byseq�e.

We define the operator[] for accessing a single element
of the sequence. Given a sequenceseq, seq[i] returns the
ith element ofseq. The elementseq[1] is then the first
element of the sequence, and is also denoted ashead.seq.
The tail of a non-empty sequenceseq is the sequence
that results from removing the first element ofseq. Thus,
we have

seq= head.seq�tail .seq

For convenience, we also define the following additional
operations on sequences. First, given an elemente and a
sequenceseq, the elemente is a member ofseq (denoted
e ∈ seq) if e is a member of the set composed of all elements
of seq. Second, given a sequenceseqand a set of elements
S, the exclusionseq—S is the sequence that results from
removing fromseqall elements that appear inS.

1384 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398

3. Problem specifications

This section presents the specification of the two problems
addressed in this paper. First, we present the specification
of semi-passive replication. Second, we present the problem
of Lazy Consensus.

3.1. Specification of semi-passive replication

The definition below is based on a specification frame-
work for replication techniques described by Défago[14], 5

of which we only present the relevant parts here.

3.1.1. Generic Replication Problem
First of all, replications techniques are defined by the

Generic Replication Problem. This part of the specifica-
tion is common to replication techniques, regardless of their
strategies (e.g., active replication, passive replication). The
specificity of a given strategy is captured by extending the
definition with additional properties.

Termination: If a correct clientc ∈ �C sends a request,
it eventually receives a reply.

Total order: For any two requestsreq and req′, if some
replica executesupdate(req′) after update(req), then a
replica executesupdate(req′) only after it has executed
update(req).

Update integrity: For any requestreq, every replica exe-
cutesupdate(req) at most once, and only ifsend(req) was
previously executed by a client.

Response integrity: For any eventreceive(respreq) exe-
cuted by a client, the eventupdate(req) is executed by some
correct replica.

A given replication technique will operate correctly as
long as it satisfies the four properties above.

3.1.2. Passive and semi-passive replication
As already mentioned, the specification above is com-

mon to replication techniques, regardless of their approach.
Hence, the specificity of a given strategy is captured by ex-
tending the specification with additional properties. We de-
fine both passive and semi-passive replication with an addi-
tional property ofparsimony.

Passive replication, as for instance described by Budhiraja
et al.[7], is expressed in a model with perfect failure detec-
tion. In particular, they require that no more than one server
replica can be the primary at any time. This is expressed by
the following property of parsimony.

Strong parsimony: If a requestreq is processed by a
replica p, then no other replica processesreq unless p
crashes.

5 The definition of the total order property was in fact adapted from
a property called “gap-free uniform total order” proposed by Aguilera et
al. [4] for the problem of Total Order Broadcast.

Enforcing strong parsimony requires a way to detect, with
absolute certainty, the crash of other processes. In other
words, strong parsimony requires a perfect failure detector
(see Section2.2.2).

In contrast, semi-passive replication is defined with a
weaker property that relates parsimony to thedetectionof
failures rather than theiroccurrence. The definition is ex-
pressed as follows.

Weak parsimony: If the same requestreq is processed by
two replicasp andq, then at least one ofp andq is suspected
by some replica.

It follows that the parsimony of a semi-passive replication
algorithm is related to the failure detection provided by the
system model. In particular, it is easy to see that, under a
perfect failure detector, weak and strong parsimony are in
fact identical.

3.2. Specification of Lazy Consensus

The Lazy Consensus problem is a generalization over the
Consensus problem that allows processes to delay the com-
putation of their initial value. In the traditional definition
of Consensus (e.g.,[18,8]), a process begins the problem
with an initial value. In contrast, with the definition of Lazy
Consensus, a process begins without initial value. The ini-
tial value of the process is computed only when it becomes
necessary, if at all.6

The Lazy Consensus problem is defined here as a problem
among server processes, that is, we consider only the set
of processes�S . Processes propose no value initially, but
instead provide the algorithm with an argument-less function
that computes and returns a proposed value when called.
More concretely, processes begin the problem by calling the
procedureLazyConsensus(giv), wheregiv is an argument-
less function7 that, when called, computes an initial value
v (with v �= ⊥ 8) and returns it. When the algorithm calls
giv on behalf of processp, we say thatp proposesthe value
v returned bygiv. When a processq executesdecide(v), we
say thatq decidesthe valuev. The Lazy Consensus problem
is specified in�S by the following properties:

Termination: Every correct process eventually decides
some value.

Uniform integrity: Every process decides at most once.
Agreement: No two correct processes decide differently.
Uniform validity: If a process decidesv, thenv was pro-

posed by some process.
Proposition integrity: Every process proposes a value at

most once.

6 The problem is called “Lazy Consensus” in reference to its similarities
with the programming technique known as “lazy evaluation.”

7 giv stands forget initial value.
8 The symbol⊥ (bottom) is a common way to denote the absence of

value. This is called eithernil or null in most programming languages.

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398 1385

Weak laziness: If two processesp andq propose a value,
then at least one ofp andq is suspected by some9 process
in �S .

Lazinessis the only new property with respect to the stan-
dard definition of the Consensus problem[8]. In Section
4, we present an algorithm for semi-passive replication that
uses Lazy Consensus. Solving Lazy Consensus is discussed
in Section5.

Remark.Alternatively, stronger definitions of Lazy Consen-
sus problems can be given, by requiring stronger definitions
of laziness. Thus, we define thequasi-strong Lazy Consensus
and thestrong Lazy Consensusas Lazy Consensus problems
that, respectively, satisfy the following laziness properties:

Quasi-strong laziness: If two processesp andq propose
a value, thenp andq are not both correct.

Strong laziness: If a processp proposes a value, then no
processq proposes a value beforep has crashed unlessq has
crashed beforep proposes a value.

4. Semi-passive replication algorithm

We begin this section by giving a general overview of
the semi-passive replication algorithm. We then present our
algorithm for semi-passive replication, expressed as a se-
quence of Lazy Consensus problems. Finally, we prove and
discuss the parsimony property of the semi-passive replica-
tion algorithm (the correctness of the algorithm is proved in
the appendix).

4.1. Basic idea: Consensus on “update” values

As mentioned in Section1.1, in the semi-passive replica-
tion technique, the requests are handled by a single process;
the primary. After the processing of each request, the pri-
mary sends anupdatemessage to the backups, as illustrated
on Fig.3.

Our solution is based on a sequence of Lazy Consensus
problems, in which every instance decides on thecontent of
the update message. This means that the initial value of ev-
ery Consensus problem is anupdate value, generated when
handling the request. The cost related to getting the initial
value is high as it requires the processing of the request.
So, we want to avoid a situation in which each server pro-
cesses the request, i.e., has an initial value for Consensus (or
else the semi-passive replication technique could no more
be qualified as “parsimonious”). This explains the need for
a “laziness” property regarding the Consensus problem.

9As a matter of fact, the Lazy Consensus algorithm presented in this
paper satisfies a stronger property: two processes propose a value only
if one of them is suspected by amajority of processes in�S (Lemma
A.17, p. 27).

p1

p2

p3

req resp
req

 update

Fig. 3. Semi-passive replication: update message sent by the primary.

Expressing semi-passive replication as a sequence of Lazy
Consensus problems hides inside the Consensus algorithm
the issue of selecting a primary. A processp takes the role
of the primary (i.e., handles client requests) exactly when it
proposes its initial value for Consensus.

4.2. Semi-passive replication algorithm

The algorithm for semi-passive replication relies on the
laziness property of the Lazy Consensus. The laziness prop-
erty of Lazy Consensus is the key to satisfy parsimonious
processing (see Section4.3, p. 11). However, laziness does
not affect the correctness of the algorithm as aGeneric Repli-
cationproblem (see SectionA.1, p. 22; Remark 4.3, p. 12).

Variables: Every servers manages an integerk (line 5),
which identifies the current instance of the Lazy Consensus
problem. Every server process also handles the variables
recvQandhand (lines 2,3):
• recvQs is a sequence (receive queue) containing the re-

quests received by a servers, from the clients.
• hands is a set which consists of the requests that have

been processed.
Algorithm description: We now give a textual description

of the algorithm. The pseudo-code is expressed in Algorithm
1. Briefly speaking, the algorithm relies on a sequence of
Lazy Consensus executions and works as follows:
• When a servers receives a new requestreq from a client,

that request is simply appended to the receive queue
recvQs of that server, unless it was previously received
and/or handled.
• Whenever the receive queuerecvQs is not empty and

the last execution of the Lazy Consensus has finished,
a new instance of the Lazy Consensus is started. The
proposition functionhandleRequest(), invoked lazily by
the Lazy Consensus algorithm, takes the first requestreq
from the receive queue, handles it, and returns a tuple
(req, updreq, respreq) containing the requestreq, an up-
date messageupdreq, and a replyrespreq for the client. The
decision value of the Lazy Consensus is one such tuple.
• When a servers receives the decision value(req, updreq,

respreq) of an execution of the Lazy Consensus, it forwards
the reply messagerespreq to the client, updates its state
according to the update messageupdreq, and moves the
requestreq from the receive queuerecvQs to the set of
handled requestshands .

1386 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398

Algorithm 1 (Semi-passive replication (code of servers)).

1. Initialization:
2. recvQs← � { sequence of received requests, initially empty}
3. hands← ∅ { set of handled requests}
4. states ← state0

5. k← 0

6. function handleRequest()
7. req← head.recvQs

8. (updreq, respreq)← handle(req, states)
9. return (req, updreq, respreq)

10. end handleRequest()

11. when receive(reqc) from clientc /Task 1/
12. if reqc �∈ hands∧ reqc �∈ recvQs then
13. recvQs← recvQs�reqc

14. end if
15. end when

16. when #recvQs > 0 /Task 2/
17. k← k + 1
18. LazyConsensus(k,handleRequest) { Solve thekth Lazy Consensus}
19. wait until decide(k, (req, updreq, respreq))

20. send (respreq) to sender(req) { Send response to client}
21. states ← update(updreq, states) { Update the state}
22. recvQs← recvQs− {req}
23. hands← hands∪ {req}
24. end when

4.3. Parsimony of the semi-passive replication algorithm

As mentioned earlier, the semi-passive replication algo-
rithm only relies on the laziness of the Lazy Consensus in
order to satisfy the Parsimony property of semi-passive repli-
cation. This means that laziness is the key to parsimonious
processing, but it does not influence the safety properties of
the algorithm. In other words, even if the algorithm relies on
a Consensus algorithm which does not satisfy any laziness
property, the replication algorithm still satisfies the proper-
ties of the generic replication problem discussed in Section
3.1 (but it might not satisfy theparsimonious processing
property, Section3.1.2).

Theorem 1.1. Algorithm 1 solves the generic replication
problem(defined in Section3.1).

The details of the proof are given in the appendix (pp. 22–
24). It is nevertheless important to note that Theorem1.1 is
proved independently of the laziness property of the Lazy
Consensus.

Lemma 4.1. Algorithm1 with weakLazy Consensus satis-
fiesweakparsimony.

Proof. Processes process a request at line 8, i.e., when they
propose a value. Therefore, theweak parsimonyproperty

follows directly from theweak lazinessproperty of the Lazy
Consensus. �

Theorem 4.1. Algorithm 1 with weak Lazy Consensus
solves thesemi-passive replicationproblem.

Proof. Follows directly from Theorem1.1 (generic replica-
tion) and Lemma4.1 (weak parsimony). �

We now show that implementing passive replication based
on Algorithm 1 merely consists in relying on a strong Lazy
Consensus algorithm (see Section3.2).

Lemma 4.2. Algorithm 1 with strongLazy Consensus sat-
isfiesstrongparsimony.

Proof. The proof is a trivial adaptation from that of Lemma
4.1. �

Corollary 4.1. Algorithm 1 with strong Lazy Consensus
solves thepassive replicationproblem.

Proof. Follows directly from Theorem1.1 (generic replica-
tion) and Lemma4.2 (strong parsimony). �

Remark.An interesting (and potentially controversial) point
to raise here is that the property of parsimony in itself is

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398 1387

merely a question of quality of service rather than actual
correctness. Indeed, as long as the server solves the Generic
Replication problem, it will continue to operate devoid of
any inconsistencies even if laziness is not satisfied.

If not for our algorithm, this remark would be quite
pointless since other passive replication algorithms cannot
separate both issues (generic replication and parsimony). In
contrast, our algorithm presents these issues as being
orthogonal.

5. Solving Lazy Consensus

In this section, we give an algorithm that solves the prob-
lem of Lazy Consensus defined in Section3.2. 10 The al-
gorithm presented here is adapted from the Chandra–Toueg
Consensus algorithm for♦S [8]. Both algorithms rely on
the assumption that at least a majority of the participating
processes are correct.

To better describe the difference between the Chandra–
Toueg algorithm and ours, we begin the section with an
informal description of the former algorithm, followed by
an equally informal description of the algorithm for Lazy
Consensus.

Then, we describe two simple yet important optimizations
that can be applied to both algorithms. The first optimization
reduces the first round by one phase, whereas the second
optimization improves the selection of coordinators when
several instances of the Consensus algorithm are executed
in sequence.

Finally, we describe the complete pseudo-code for our
Lazy Consensus algorithm, which incorporates the two opti-
mizations mentioned above. The adapted proofs of correct-
ness are presented in AppendixA.2.

5.1. Chandra–Toueg Consensus algorithm using♦S

The Chandra–Toueg[8] Consensus algorithm described
here assumes a failure detector of class♦S and that no less
than a majority of the processes in�S are correct. Fig.4
presents the communication generated by the algorithm in a
failure/suspicion-free run. The figure depicts the four phases
that constitute the first round of the protocol. The algorithm
is now described informally.

The algorithm proceeds through a sequence of asyn-
chronous rounds. Each round is uniquely identified by a
sequence number, and all protocol messages are identified
by the number of the round to which they belong. Being
asynchronous, several rounds can actually take place si-
multaneously, although they are logically ordered by their
sequence number. In each round one of the processes in
�S is defined as a coordinator for that round. The compo-

10An earlier version of this algorithm was calledDIV Consensus[12].
Note thatDIV Consensus used to designate analgorithm, whereas Lazy
Consensus now designates aproblem.

sition of �S never changes and is assumed to be initially
known to all processes. Hence, the coordinator of round
r is designated deterministically by the formula11 cr =
((r − 1) modn) + 1, thus cycling among the set of pro-
cesses. This is commonly known as the rotating coordinator
paradigm.

Processes begin the execution of the Consensus with the
proposeevent and some proposition valuev0. Each process
maintains several variables, the most important of which
are: (1) the number of the current round, (2) an estimate of
the decision value, and (3) a logical timestamp associated
with the estimate. The processes begin the first round of the
algorithm with the variables set to 1,v0, and 0, respectively.
• In Phase 1, all processes in�S send their estimate to the

coordinator of the current round, timestamped with the
round number in which they last modified it.
• In Phase 2, the coordinator waits for a proposition from

a majority of the processes in�S . It selects the estimate
with the highest timestamp and modifies its own estimate
accordingly (breaking ties can be done arbitrarily). The
coordinator then broadcasts its estimate as its proposition
for the decision value.
• In Phase 3, the processes wait for a proposition from the

coordinator. They adopt the value proposed by the coor-
dinator by changing their estimate and using the round
number as the new timestamp. Then, they acknowledge
the proposition and proceed to the first phase of the next
round.

In case a process suspects the coordinator before it re-
ceives a proposition, that process sends anegativeac-
knowledgment before proceeding to the first phase of the
next round.
• In Phase 4, the coordinator waits until it has received

an acknowledgment message (positive or negative) from
a majority of the processes. If all received acknowledg-
ments are positive, the proposed value becomes the de-
cision value. The coordinator then informs the other pro-
cesses by broadcasting the decision value using Reliable
Broadcast.

In contrast, if one of the received acknowledgments is
negative, the coordinator gives up and proceeds directly
to the first phase of the next round.

5.2. Lazy Consensus algorithm (informal description)

The Lazy Consensus algorithm described in this paper is
an adaptation of the Chandra–Toueg algorithm that shares
the same assumptions. Rather than describing the whole
algorithm, we simply present the most significant differ-
ences. Fig.5 presents the first round of the protocol in
a failure/suspicion-free run. Notice that, for the sake of

11To be exact, Chandra and Toueg[8] use the slightly simpler formula
cr = (r modn)+ 1, which counter-intuitively designatesp2 as the coor-
dinator of round 1,p3 for round 2, and so forth.

1388 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398

�1
� := �1 �1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�2

�3

�4

�5

decideackproposeestimate

Phase 2 Phase 4

Phase 4Phase 4

p1

p2

p3

p4

p5

Fig. 4. Chandra–Toueg Consensus; illustration of a single round execution.

p1

p2

p3

p4

p5

⊥

⊥

⊥

⊥

⊥ �1

�1 := eval getInit Value()

�1

�1

�1

�1

�1

�1

�1

�1

�1

Phase 1 Phase 3

Phase 4

estimate propose ack decide

Fig. 5. Lazy Consensus; illustration of a single round execution. Initially, the processes hold⊥ instead of a proposition value. In the first round, estimate
messages of the first phase are not essential to the algorithm (discussed in Section5.3.1).

simplicity, this section presents a simplified version of the
algorithm.

In the Lazy Consensus algorithm, processes begin the exe-
cution of the algorithm by proposing a function (or a lambda
closure) calledgiv which, if called, computes a proposition
value and returns it. Other than that, processes maintain the
same variables as in the Chandra–Toueg algorithm, namely,
(1) the number of the current round, (2) an estimate of the
decision value, and (3) a logical timestamp associated with
the estimate. Unlike Chandra–Toueg, processes do not be-
gin with a proposition value, and hence set their estimate to
⊥, thus representing the absence of a value.

The rest of the algorithm is the same as with Chandra–
Toueg’s, with the following exception. In Phase 2, the
coordinator of the round gathers estimate messages from a
majority of processes. Among the estimates received and
including its own, the coordinator takes the one, different
from⊥, that has the highest timestamp. If no such estimate
exists, because they are all equal to⊥, then the coordinator
computes its proposition value by calling the functiongiv. It
then sets its own estimate to the return value of the function
and uses that value as its proposition for the round.

Doing so ensures that the functiongiv is called only when
necessary. In fact, it is not difficult to see that any single
process will call the function at most once. Beside, in the
worst case, the function can only be called by about half
of the processes plus one. Intuitively, this is because, if a
majority of the processes have called that function, then the
coordinator of any subsequent round will receive at least

one estimate different from⊥ in the second phase of their
round.

5.3. Optimizations

The full algorithm (presented in Section5.4) includes two
important optimizations that we present now. The first opti-
mization reduces the overhead of the protocol in failure-free
runs. The second optimization is concerned with situations
where several executions of the algorithm are performed in
sequence, and the performance penalty that is associated
with the crash of the first processes.

5.3.1. Optimization of Phase 1
As observed by Schiper[30], the first phase in the first

round of the Chandra–Toueg Consensus algorithm (see Sec-
tion 5.1) is not essential for the algorithm. The reason is
that, in the first phase, it is known by all processes that the
estimate of every processes is their proposition value, times-
tamped with zero. Hence, when the coordinator collects the
estimates in phase two, it can pick any of the estimates as
the proposition value. In particular, the coordinator can se-
lect its ownestimate as the proposition value, regardless of
the estimates sent by other processes.

Similarly, with Lazy Consensus, all processes start with
the value⊥ as their estimate. Consequently, the coordinator
of the first phase cannot expect anything but⊥ from the other
processes. Hence, in the first round, the algorithm skips the
first phase and proceeds directly to the second phase.

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398 1389

Notice that this optimization applies only to the first
round. It is nevertheless useful as, during a failure-free and
suspicion-free execution, the latency degree of the protocol
is determined by the first round only.

5.3.2. Adaptive rotating coordinator
Several important algorithms involve a sequence of Con-

sensus executions. In addition to the semi-passive replica-
tion algorithm described in this paper, this is also the case
with several Total Order Broadcast algorithms (e.g.,[8,19]),
Generic Broadcast[26], some Consensus-based group mem-
bership services[10], fault-tolerant mobile agents[27].

Unfortunately, in this situation, there is a practical prob-
lem inherent to the use of the rotating coordinator. In the
rotating coordinator paradigm, every instance of the Con-
sensus algorithm selects a coordinator by cycling through
processes always in the same sequence, say〈p1, . . . , pn〉.
This means thatp1 is coordinator for round 1,p2 for round
2, etc. Assume now thatp1 crashes before Consensus num-
ber k, then Consensusk andevery furtherexecution of the
Consensus will always fail in the first round (p1, the coor-
dinator of round 1 has crashed), hence always requiring at
least two rounds to decide. This extra cost (two rounds in-
stead of one) cannot be easily avoided for Consensus num-
berk. However, the cost can be avoided for Consensusk+1
and after, by a simple modification to the rotating coordina-
tor that incurs no additional message.

Let us illustrate this with an example. Consider that, for
Consensus numberk, the processes of�S are ordered as
follows: 〈p1, p2, p3, p4, p5〉, which definesp1 as the first
coordinator (see Fig.6). Assume thatp1 crashes just be-
fore the execution of Consensusk, and thus the first round
fails. Assume again that, after Consensusk, all processes
can agree on the following permutation of the processes in
�S : 〈p2, p3, p4, p5, p1〉. Then, if Consensusk+ 1 uses the
new permutation, thenp2 becomes the coordinator of the
first round and Consensusk+ 1 can be solved in one single
round in spite of the crash ofp1.

Obviously, reaching an agreement on a new permutation
for the rotating sequence requires exactly this,... reaching
an agreement. The idea of our optimization is that, during
Consensusk, processes reach an agreement not only on the
decision value for Consensusk, but also on a permutation
vector to be used during thenext executionof the Consensus,
that is, Consensus numberk + 1. In fact, the permutation
vector can be seen as an implicit part of the decision value.
As a result, the agreement on the permutation generatesno
additional message.

More concretely, this occurs as follows. The processes
start Consensusk with a permutation vectorpvk agreed by
all processes. For the first execution of the Consensus, the
permutation vectorpv1 is determined statically as being the
identity [1, 2, . . . , n]. Then, each executionk of the Consen-
sus agrees on the permutation vector for the next execution
pvk+1. A permutation vectorpvk is used during the execu-
tion of Consensusk to determine the coordinator of round

r ascr = pvk [((r − 1) modn)+ 1]. During Consensusk,
the agreement on the next permutation vectorpvk+1 occurs
as follows. The processes manage two estimate variables in-
stead of a single one:estVp for the decision value, andestPp

for the permutation vector. When a coordinator proposes a
value, it also proposes a permutation vector with itself as the
first coordinator (this is done in Algorithm 2 at lines 6 and
32). When the Consensus decides, the agreed permutation
vector becomespvk+1 and is used later, for the execution of
Consensusk + 1.

Because a crashed processp cannot propose a value after
it has crashed, it is easy to see thatp does not remain the first
coordinator for more than one entire Consensus execution
after it has crashed.

Remark. One could possibly mistake the adaptive rotating
coordinator for a form of group membership. To prevent this
misconception, we would like to emphasize here that adap-
tive rotating coordinator is merely an extension to the rotat-
ing coordinator paradigm and by no means a replacement for
a group membership. The latter is indeed a higher-level ab-
straction, and hence differs by several fundamental aspects.

First and most importantly, with the adaptive rotating co-
ordinator, the composition of the set of processes is static
and hence never changes. This is clearly unlike group mem-
bership whose primary role is to allow the dynamic join and
leave of processes during the computation.

Second, specifications of group membership[10] include
the notion of view synchrony that imposes some restrictions
on the delivery of application messages. In contrast, this
notion is irrelevant to the adaptive rotating coordinator.

Third, a secondary role of a group membership service is
to ensure that system resources (i.e., retransmission buffer
emptied, etc) are eventually reclaimed. Again, the adaptive
rotating coordinator has nothing to do with resource man-
agement as this occurs at a different abstraction level.

Finally, with group membership, the agreement on the
composition of the group can occur independently from the
execution of group communication protocols. In contrast,
the mechanism of the adaptive rotating coordinator is em-
bedded within the Consensus protocol and cannot occur in-
dependently.

Remark. Note that we have presented the idea of the adap-
tive rotating coordinator using a simple reordering policy.
This is enough to illustrate the idea but it is possible, in prac-
tice, to use better strategies for the permutation. Changing
the reordering policy does not compromise the correctness
of the algorithms, as long as the permutation vector is mod-
ified only at line 6 and 32 in Algorithm 2.

5.4. Lazy Consensus algorithm with♦S

We now describe the complete algorithm in more details.
Algorithm 2 (p. 18) solves the Lazy Consensus problem

1390 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398

∏s

p1

p2

p3

p4

p5

crash

suspicion

consensus k consensus k+1

nack
ack

decide
ack

decide

eval giv()

pvk+1 = [5,1,2,3,4]pvk = [1,2,3,4,5]

Fig. 6. Permutations of�S and selection of a coordinator.

with a♦S failure detector and the assumption that at least
a majority of the processes in�S are correct.

5.4.1. Variables
We first present variables that are retained between exe-

cution instances of the algorithm. These variables are global
within a single process, but not shared among processes.
• pvk represents the permutation vector for Consensus in-

stancek. It is determined during Consensus executionk−1.
• pv1 is set initially by all processes to be the identity vector,

that is,[1, 2, . . . , n]. It is used as the permutation vector
for the first Consensus execution, that is, instance 1.
The Consensus is initiated by calling the procedureLazy-

Consensus, which takes two arguments. The first argument is
the instance numberk. The second argument is an argument-
less function, or closure, calledgiv. When evaluated,giv
computes and returns a proposition valuev �= ⊥ (see Sec-
tion 3.2). When a processp executesvp ← evalgiv, we say
that the process proposes the valuevp.

The following variables are local to procedureLazyCon-
sensusand play an important role in the algorithm:
• estVp is the estimate that processp has about the decision

value.
• estPp is the estimate that processp has about the next

permutation vector.
• rp is the round number, initially set to 0, but incremented

before beginning the round.
• tsp is the round number when the estimates(estVp, estPp)

were last changed. It is initially set to 0.

5.4.2. Algorithm description
We now give a brief description of each phase of the

algorithm. Notice that Phases 3 and 4 are nearly unchanged
from the Chandra–Toueg algorithm described in Section5.1.
• In Phase 1, all processes in�S send their estimatesestVp

andestPp to the coordinator of the current round, times-
tamped with the round number in which they last modi-
fied them. According to the optimization of Section5.3.2,
the first phase is entirely skipped during the first round.

• In Phase 2, the coordinator waits for a proposition from
a majority of the processes in�S , except during the
first round when the coordinator has nothing to wait for
(optimization of Section5.3.2). In the receive statement,
k and rp are pattern matching arguments, i.e., the pro-
cess waits for a message with the givenk and rp value.
The other arguments are output arguments. The coordi-
nator filters the received estimatesestVq and its own. If
at least one of them is defined (�= ⊥), then the coordi-
nator selects the estimates(estVq, estPq) with the highest
timestamp and modifies its own estimates(estVp, estPp)

accordingly. Conversely, if all of the estimates received
in the phase are undefined (= ⊥), then the coordina-
tor proposes a value by evaluating the functiongiv, and
sets its estimateestVp to the return value of the func-
tion. After that, the coordinator broadcasts its estimates
(estVp, estPp).
• In Phase 3, the processes wait for a proposition from the

coordinator. They adopt the value proposed by the coordi-
nator by changing their estimates(estVcp , estPcp), using
the round number as the new timestamp. Then, they ac-
knowledge the proposition and proceed to the first phase
of the next round. In case a process suspects the coordi-
nator before it receives a proposition, that process sends
a negativeacknowledgment before it proceeds to the first
phase of the next round.
• In Phase 4, the coordinator waits for an acknowledgment

from a majority of the processes. If all received acknowl-
edgments are positive, the proposed value(estVp, estPp)

becomes the decision value and the coordinator informs
the other processes by broadcasting the decision value us-
ing Reliable Broadcast. On the other hand, if one of the re-
ceived acknowledgments is negative, no decision is taken
and the coordinator proceeds directly to the first phase of
the next round.
• Upon receiving the decision message with(estVq, estPq),

a process decidesestVq and sets the permutation vector
pvk+1 to estPq . The permutation vectorpvk+1 is used for
the next Consensus executionk + 1.

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398 1391

Algorithm 2 (Lazy Consensus (code of processp).).

1392 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398

6. Selected scenarios for semi-passive replication

Algorithm 2 may seem complex, but most of the com-
plexity is due to the explicit handling of failures and suspi-
cions. So, in order to show that the complexity of the algo-
rithm does not make it inefficient, we illustrate typical ex-
ecutions of the semi-passive replication algorithm based on
Lazy Consensus using♦S.

We first present the semi-passive replication in a good run
(no failure, no suspicion), as this is the most common case.
We then show the execution of the algorithm in the face of
a single process crash. Other cases can easily be inferred
from these two simple scenarios.

6.1. Semi-passive replication in good runs

We call “good run” a run in which no server process
crashes and no failure suspicion is generated. Let Fig.7 rep-
resent the execution of Lazy Consensus numberk. The server
processp1 is the initial coordinator for Consensusk and
also the primary. After receiving the request from the client,
the primaryp1 handles the request. Once the processing is
done,p1 has the initial value for Consensusk. According to
the Lazy Consensus protocol,p1 multicasts the update mes-
sageupd to the backups, and waits forack messages. Once
ack messages have been received (actually from a major-
ity), processp1 can decide onupd, and multicast thedecide
message to the backups. As soon as thedecidemessage is
received, the servers update their state, and send the reply
to the client.

It is noteworthy that the state updates do not appear on
the critical path of the client’s request (highlighted in gray
on the figure).

6.2. Semi-passive replication in the case of one crash

Fig.8 illustrates the worst case latency for the client in the
case of one crash, without incorrect failure suspicions. The
worst case scenario happens when the primaryp1 (i.e., the
initial coordinator of the Lazy Consensus algorithm) crashes
immediately after processing the client request, but before
being able to send the update messageupd to the backups
(compare with Fig.7). In this case, the communication pat-
tern is different from usual algorithms for passive replication
in asynchronous systems, as there is here no membership
change.

In more detail, the execution of the Lazy Consensus al-
gorithm runs as follows. If the primaryp1 crashes, then the
backups eventually suspectp1, send a negative acknowl-
edgment messagenackto p1 (the message is needed by the
Consensus algorithm), and start a new round. The server
processp2 becomes the coordinator for the new round, i.e.,
becomes the new primary, and waits forestimatemessages
from a majority of servers: these messages might contain an
initial value for the Consensus, in which casep2 does not

 Lazy Consensus

 ack decide ΠS

client

 upd

p1

processing

state update

p2

p3

p4

p5

Fig. 7. Semi-passive replication (good run). The critical path re-
quest-response is highlighted in gray. The execution of the Lazy Consen-
sus is also depicted in Fig.5.

need to process the client request again. In our worst case
scenario, the initial primaryp1 has crashed before being able
to multicast the update valueupd. So none of theestimate
messages received byp2 contain an initial value. In order
to obtain one, the new primaryp2 processes the request re-
ceived from the client (Fig.8), and from that point on, the
scenario is similar to the “good run” case of the previous
section (compare with Fig.7).

7. Conclusion

Semi-passive replication is a replication technique that
does not rely on a group membership for the selection of the
primary. While retaining the essential characteristics of pas-
sive replication (i.e., non-deterministic processing and par-
simonious use of processing resources), semi-passive repli-
cation can be solved in an asynchronous system using a♦S
failure detector. This is a significant strength over almost
all current systems that implement replication techniques
with parsimonious processing. Indeed, in those systems, the
replication algorithm requires to force the crash of excluded
processes in order to make progress, and thus combines
the selection of the primary with the composition of the
group.

A second contribution of this paper, Lazy Consensus,
is an extension of the Consensus problem to allow the
lazy evaluation of process propositions. This means that
processes compute their initial value in a “least effort”
way, captured with a Laziness property. We have discussed
these issues in details in the paper, and presented an algo-
rithm to solve Lazy Consensus. The algorithm was adapted
from the Chandra–Toueg Consensus algorithm using♦S
[8], and relies on the same assumptions. Even though we
have not discussed this issue, other Consensus algorithms
could also easily be adapted to solve Lazy Consensus (e.g.,
[22,30,35,36]).

The semi-passive replication algorithm proposed in this
paper is based on solving the problem of Lazy Consensus.
The semi-passive replication algorithm however only relies
on the conventional properties of Consensus for ensuring
the consistency of the replicas. The Laziness property of
Lazy Consensus is however the key to the restrained use
of resources in semi-passive replication. Depending directly

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398 1393

 Lazy Consensus

 ack decide ΠS

client

 suspicion

 upd

crash

 nack estimate

p1

p2

processing state update

p3

p4

p5

Fig. 8. Semi-passive replication with one failure (worst case). The critical path request-response is highlighted in gray. The execution of the Lazy
Consensus in the case of one crash is also depicted in Fig.6.

on the quality of failure detectors, the laziness (and hence
the parsimony of semi-passive replication) is related to the
amount of synchrony exhibited by the system. In particular,
in a synchronous system, semi-passive replication ensures
that a client request is processed by only one correct replica.
Conversely, in the worst case, a single request is never pro-
cessed by more than about half of the replicas. This behavior
is desirable as it naturally allows for a graceful degradation
of the replicated service.

We mentioned that semi-passive replication does not re-
quire a group membership service, and explained why this is
an advantage. This may however give the wrong impression
that semi-passive replication is incompatible with a group
membership service, or that we believe that such a service
is not useful. This is of course not the case, but we re-
gard semi-passive replication as being a lower-level protocol
than group membership. Decoupling the replication proto-
col from housekeeping issues (e.g., releasing resources held
by a crashed process, adding or removing processes dynam-
ically) is more elegant and has several advantages in terms
of performance, as discussed in[9,11].

Finally, from the standpoint of clients, our semi-passive
replication algorithm is protocol-compatible with active
replication. In particular, clients need no specific knowl-
edge about the server replicas, beyond what is necessary
to address them as a group. This, combined with the fact
that both replication techniques can be implemented based
on Consensus, makes it much easier for both techniques to
coexist. For instance, the use of semi-passive replication in
a CORBA Object Group Service made it possible to chose
the replication type (active or semi-passive) as a strictly
server-side issue and on a per request basis[16].

Acknowledgements

We would like to thank Fernando Pedone for his com-
ments on the specification of replication techniques, and
Péter Urbán for his important suggestions that greatly sim-
plified some of the proofs. We are also grateful to the anony-
mous reviewers for their insightful comments that helped us
improve the content of this paper significantly. This research

was in part conducted for the program “Fostering Talent in
Emergent Research Fields" with Special Coordination Funds
for promoting Science and Technology by the Japan Min-
istry of Eduction, Culture, Sports, Science and Technology.

Appendix. Proofs of correctness

A.1. Correctness proof of the semi-passive replication
algorithm

We prove that our algorithm for semi-passive replication
(Algorithm 1, p. 11) satisfies the properties of the Generic
Replication Problem given in Section3.1. The proof assumes
that (1) procedureLazyConsensussolves the Lazy Consen-
sus problem according to the specification given in Section
3.2 (ignoring the laziness property12), and (2) at least one
replica is correct. Solving Lazy Consensus is discussed in
Section5. In fact, Lazy Consensus solves Consensus, which
is enough to prove the correctness of the algorithm as a
Generic Replication algorithm.

Lemma A.1 (Termination). If a correct clientc ∈ �C sends
a request, it eventually receives a reply.

Proof. The proof is by contradiction. Letreqc be a request
sent by a correct clientc that never receives a reply. Asc
is correct, all correct replicas in�S eventually receivereqc

at line 10, and insertreqc into their receive queuerecvQs at
line 11. By the assumption thatc never gets a reply, no cor-
rect replica decides at line 14 on(reqc,−,): if one correct
replica would decide, then by the Agreement and Termina-
tion property of Lazy Consensus, all correct replicas would
decide on(reqc,−,−). As we assume that there is at least
one correct replica then, by the property of the reliable chan-
nels, and becausec is correct,c would eventually receive a
reply. Consequently,reqc is never inhandof any replica, and
thus no replicas removesreqc from recvQs (Hypothesis A).

Let t0 be the earliest time such that the requestreqc has
been received by every replica that has not crashed. Let

12 See Section4.3, p. 11.

1394 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398

beforeReqCs denote the prefix of sequencerecvQs that con-
sists of all requests inrecvQs that have been received before
reqc. After t0, no new request can be inserted inrecvQs be-
fore reqc, and hence none of the sequencesbeforeReqCcan
grow.

Let l be the total number of requests that appear before
reqc in the recvQof any replica:

l =
∑
s∈�S

{
0 if s has crashed,
#beforeReqCs otherwise.

After time t0, the value ofl cannot increase since all new
request can only be insertedafter reqc. Besides, after ev-
ery decision of the Lazy Consensus at line 19, at least one
replicas′ removes the requestreqhs′ at the head ofrecvQs′
(1.7,1.22). The requestreqhs′ is necessarily beforereqc in
recvQs′ , and hence belongs tobeforeReqCs′ . As a result, ev-
ery decision of the Lazy Consensus leads to decreasing the
value of l by at least 1.

Sincereqc is never removed fromrecvQs (by Hyp. 1.1.1),
Task 2 is always enabled (#recvQs �1). So, because of the
Termination property of Lazy Consensus, the value ofl de-
creases and eventually reaches 0 (this is easily proved by
induction onl).

Let t1 be the earliest time at which there is no request
beforereqc in the receive queuerecvQof any replica (l =
0). This means that, at timet1, reqc is at the head of the
receive queue of all running replicas, and the next execution
of Lazy Consensus can only decide on requestreqc (l.7).
Therefore, every correct replicas eventually removesreqc

from recvQs , a contradiction with Hypothesis A.�

Lemma A.2. For any request req, every replica executes
update(req) at most once.

Proof. Whenever a replica executesupdate(req) (line 21),
it has decided on(req,−,−) at line 15, and insertsreq into
the set of handled requestshand(line 18). By the Agreement
property of Lazy Consensus, every replica that decides at
line 15 decides also on(req,−,−) and inserts alsoreq into
handat line 18. As a result, no replica can selectreq again
at line 7, and(req,−,−) cannot be the decision of any
subsequent Lazy Consensus.�

Lemma A.3 (Total order). For any two requests req and
req′, if some replica executes update(req′) after update(req),
then a replica executes update(req′) only after it has exe-
cuted update(req).

Proof. Let req and req′ be two requests, and letp be
some replica that executesupdate(req′) after it executes
update(req). Sincep has executedupdate(req), it has de-
cided(req, updreq,−) at line 19. Letk1 be the value of vari-
ablek whenp decides(req, updreq,−). Similarly,p has exe-
cutedupdate(req′). Let k2 be the value of variablek whenp
decides(req′, updreq′ ,−). Becausep executesupdate(req)

before it executesupdate(req′), it decides(req, updreq,−)

before it decides(req′, updreq′ ,−). Therefore,k1 < k2.
Let q be any replica that executesupdate(req′). To prove

the lemma, we show thatq executesupdate(req) before it
executesupdate(req′).

Since q executesupdate(req′), it also decides(req′,
updreq′ ,−). Let k′2 be the value of variablek when it does
so. By LemmaA.2 (at most once) there is only one possible
value k′2. By the Agreement property of Lazy Consensus
and the fact thatp decidesupdate(req′) for k = k2, it
follows thatk2 = k′2.

If q has decided on the instancek2 of Lazy Consensus,
it must have also decided something fork = k1 because
k1 < k2. Again, by the Agreement property of Lazy Con-
sensus and the fact thatp has decided(req, updreq,−) when
k = k1, q has decided(req, updreq,−) whenk = k1. By the
algorithm, a process executes theupdateevent correspond-
ing to a decision before it starts the next instance of the
Lazy Consensus. So, becausek1 < k2, processq executes
update(req) before it executesupdate(req′). �

Lemma A.4. If a replica executes update(req), then
send(req) was previously executed by a client.

Proof. If a replicap executesupdate(req), then some replica
q has selected and processed the requestreqat line 7 and line
8, respectively. It follows thatreq was previously received
by q, asreq belongs to the sequencerecvQs . Therefore,req
was sent by some client.�

Lemma A.5 (Update integrity). For any request req, ev-
ery replica executes update(req) at most once, and only if
send(req) was previously executed by a client.

Proof. The result follows directly from LemmasA.4 and
A.2. �

Lemma A.6 (Response integrity). For any event receive
(respreq) executed by a client, update(req) is executed by
some correct replica.

Proof. If a client receivesrespreq, then send(respreq) was
previously executed by some replica (line 16). Therefore,
this replica has decided(req, updreq, resreq) at line 15. By the
Termination and Agreement properties of Lazy Consensus,
every correct replica also decides(req, updreq, resreq) at line
15, and executesupdate(req) at line 17. The lemma follows
from the assumption that at least one replica is correct.�

Theorem A.1. Algorithm 1 solves the generic replication
problem(defined in Section3.1).

Proof. Follows directly from LemmaA.3 (total order),
LemmaA.5 (update integrity), LemmaA.6 (response in-
tegrity), and LemmaA.1 (termination). �

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398 1395

A.2. Correctness proof of the Lazy Consensus algorithm

Here, we prove the correctness of our Lazy Consensus
algorithm (Algorithm 2, p. 18). The algorithm solves the
weak Lazy Consensus problem using the♦S failure detector,
with a majority of correct processes. LemmasA.8–A.11 are
adapted from the proofs of Chandra and Toueg[8] for the
Consensus algorithm with♦S. Without loss of generality
and unless specified otherwise, all proofs are expressed for
some instancek of the Lazy Consensus.

Lemma A.7. No correct process remains blocked forever at
one of the wait statements.

Proof. There are threewait statements to consider in Al-
gorithm 2 (l.22, 1.35, 1.46). The proof is by contradiction.
Let r be the smallest round number in which some correct
process blocks forever at one of thewait statements.

In Phase 2, we must consider two cases:
1. If r is the first round, then the current coordinatorc =

pvk[1] does not wait in Phase 2 (l.19), hence it does not
block in Phase 2.

2. If r > 1 then, all correct processes reach the end of
Phase 1 of roundr, and they all send a message of
the type(k,−, r, estV,−,−) to the current coordinator
c = pvk[((r−1) modn)+1] (l.15). Since a majority of
the processes are correct, at least

⌈
(n+1)

2

⌉
such messages

are sent toc andc does not block in Phase 2.
For Phase 3, there are also two cases to consider:

1. c eventually receives
⌈

(n+1)
2

⌉
message of the type

(k,−, r, estV,−,−) in Phase 2.
2. c crashes.

In the first case, every correct process eventually receives
(k, c, r, estVc,−) (l.35). In the second case, sinceD satis-
fies strong completeness, for every correct processp there
is a time after whichc is permanently suspected byp, that
is, c ∈ Dp. Thus in either case, no correct process blocks
at the secondwait statement (Phase 3, l.35). So every cor-
rect process sends a message of the type(k,−, r, ack) or
(k,−, r, nack) to c in Phase 3 (resp. l.40, l.42). Since there
are at least

⌈
(n+1)

2

⌉
correct processes,c cannot block at the

wait statement of Phase 4 (l.46). This shows that all correct
processes complete roundr—a contradiction that completes
the proof of the lemma. �

Lemma A.8 (Termination). Every correct process eventu-
ally decides some value.

Proof. There are two possible cases:
1. Some correct process decides: If some correct process de-

cides, then it must have R-delivered some message of type
(k,−,−,−,−, decide) (l.53)). By the agreement prop-
erty of Reliable Broadcast, all correct processes eventu-
ally R-deliver this message and decide.

2. No correct process decides: SinceD satisfies eventual
weak accuracy, there is a correct processq and a timet

such that no correct process suspectsq after timet. Let
t ′� t be a time such that all faulty processes crash. Note
that after timet ′ no process suspectsq. From this and
LemmaA.7, because no correct process decides there
must be a roundr such that: (i) all correct processes
reach roundr after time t ′ (when no process suspects
q), and (ii) q is the coordinator of roundr (i.e., q =
pvk[((r − 1) modn) + 1]). Sinceq is correct, then it
eventually sends a message to all processes at the end of
Phase 2 (l.32):

• If r = 1 (first round), thenqdoes not wait for any message,
and sends(k, q, r, estVq,−) to all processes at the end of
in Phase 2.
• For roundr > 1, then all correct processes send their

estimates toq (l.15). In Phase 2,q receives
⌈

(n+1)
2

⌉
such

estimates, and sends(k, q, r, estVq,−) to all processes.
In Phase 3, sinceq is not suspected by any correct pro-
cess after timet, every correct process waits forq’s estimate
(l.35), eventually receives it, and replies with anack to q
(l.40). Furthermore, no process sends anack to q (that can
only happen when a process suspectsq). Thus, in Phase 4,
q receives

⌈
(n+1)

2

⌉
messages of the type(k,−, r, ack) (and

no messages of the type(k,−, r, nack)), andq R-broadcasts
(k, q, r, estVq,−, decide) (l.48). By the validity and agree-
ment properties of Reliable Broadcast, eventually all correct
processes R-deliverq’s message (l.53) anddecide(l.55)—a
contradiction.

So, by Case 2 at least one correct process decides, and by
Case 1 all correct processes eventually decide.�

Lemma A.9 (Uniform integrity). Every process decides at
most once.

Proof. Follows directly from Algorithm 2, where no process
decides more than once.�

Lemma A.10 (Uniform agreement). No two processes de-
cide differently.

Proof. If no process ever decides, the lemma is trivially true.
If any process decides, it must have previously R-delivered
a message of the type(k,−,−,−,−, decide) (l.53). By the
uniform integrity property of Reliable Broadcast and the al-
gorithm, a coordinator previously R-broadcast this message.
This coordinator must have received

⌈
(n+1)

2

⌉
messages of

the type(k,−,−, ack) in Phase 4 (l.46). Letr be the small-
est round number in which

⌈
(n+1)

2

⌉
messages of the type

(k,−, r, ack) are sent to a coordinator in Phase 3 (l.40). Let
c denote the coordinator of roundr, that is,c = pvk[((r −
1) modn)+ 1]. Let estVc denotec’s estimate at the end of
Phase 2 of roundr. We claim that for all roundsr ′�r, if
a coordinatorc′ sendsestVc′ in Phase 2 of roundr ′ (l.32),
thenestVc′ = estVc.

The proof is by induction on the round number. The claim
trivially holds for r ′ = r. Now assume that the claim holds

1396 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398

for all r ′, r �r ′ < x. Let cx be the coordinator of roundx,
that is,cx = pvk[((x − 1) modn) + 1]. We will show that
the claim holds forr ′ = x, that is, if cx sendsestVcx in
Phase 2 of roundx (l.32), thenestVcx = estVc.

From Algorithm 2 it is clear that ifcx sendsestVcx

in Phase 2 of roundx (l.32) then it must have received
estimates from at least

⌈
(n+1)

2

⌉
processes (l.22).13 Thus,

there is some processp such that (1)p sent a(k, p, r, ack)
message toc in Phase 3 of roundr (l.40), and (2) the
message(k, p, x, estVp,−, tsp) is in msgscx

[x] in Phase 2
of round x (l.23). Sincep sent(k, p, r, ack) to c in Phase
3 of round r (l.40), tsp = r at the end of Phase 3 of
roundr (l.39). Sincetsp is nondecreasing,tsp �r in Phase
1 of round x. Thus, in Phase 2 of roundx, the message
(k, p, x, estVp,−, tsp) is in msgscx

[x] with tsp �r. It is
easy to see that there is no message(k, q, x, estVq,−, tsq)

in msgscx
[x] for which tsq �x. Let t be the largesttsq such

that message(k, q, x, estVq,−, tsq) in msgscx
[x]. Thus,

r � t < x.
In Phase 2 of roundx, cx executesestVcx ← estVq where

(k, q, x, estVq,−, t) is in msgscx
[x] (l.28). From Algorithm

2, it is clear thatq adoptedestVq as its estimate in Phase
3 of round t (l.37). Thus, the coordinator of roundt sent
estVq to q in Phase 2 of roundt (l.32). Sincer � t < x,
by the induction hypothesis,estVq = estVc. Thus,cx sets
estVcx ← estVc in Phase 2 of roundx (l.28). This concludes
the proof of the claim.

We now show that, if a process decides a value, then
it decidesestVc. Suppose that some processp R-delivers
(k, q, rq, estVq,−, decide), and thus decidesestVq . By
the uniform integrity property of Reliable Broadcast
and the algorithm, processq must have R-broadcast
(k, q, rq, estVq,−, decide) in Phase 4 of roundrq (l.48).
From Algorithm 2, some processq must have received⌈

(n+1)
2

⌉
messages of the type(k,−, rq, ack) in Phase 4 of

round rq (l.47). By the definition ofr, r �rq . From the
above claim,estVq = estVc. �

Lemma A.11 (Uniform validity). If a process decides v,
then v was proposed by some process.

Proof. From Algorithm 2, it is clear that allestimatesthat a
coordinator receives in Phase 2 are proposed values. There-
fore, the decision value that a coordinator selects from these
estimatesmust be the value proposed by some process. Thus,
uniform validity of Lazy Consensus is also satisfied.�

The two propertiesproposition integrityandweak laziness
are specific to the Lazy Consensus problem. In order to prove
them, we first prove some lemmas.

Lemma A.12. Every process that terminates the algorithm
considers the same value for the next permutation vector
pvk+1 after termination of Consensus k.

13 Note thatr < x hence roundx is not the first round.

Proof. The proof is a trivial adaptation of LemmaA.10 (uni-
form agreement) toestP and the fact thatpvk+1 is set at
line 56. �

Lemma A.13. Given a sequence of Lazy Consensus prob-
lems, processes begin every instance k of the problem with
the same permutation vectorpvk.

Proof. The proof is by induction on the instance numberk.
Initially, all processes begin the first instance withk = 1 and
the same permutation vectorpv1 = [1, 2, . . . , n], defined to
be the identity.

The induction step requires to show that, if all processes
begin instancek−1 with the samepvk−1, then they also begin
instancek with the samepvk. This comes as a consequence
of LemmaA.12and the fact that no process starts an instance
before it has completed the previous one. This completes
the proof. �

Lemma A.14. For each process p in�S , after p changes its
estimate estVp to a value different from⊥, then estVp �= ⊥
is always true.

Proof. A processp changes the value of its estimateestVp

only at lines 20, 26, 28 and 37. Assuming thatestVp is
different from⊥, we have to prove that a processp does not
setestVp to⊥ if it reaches one of the aforementioned lines.

The result is trivial for lines 20,26 (by hypothesis the
functiongiv never returns⊥) and line 28 (the process selects
a value explicitly different from⊥).

At line 37, a process sets its estimate to a value received
from the coordinator. This value is sent by the coordinator
cp at line 32. Before reaching this line,cp changed its own
estimateestVcp at one of the following lines: 20,26, or 28. As
shown above,estVcp is never set to⊥ at these lines. �

Lemma A.15. During a round r, a process p proposes a
value only if p is coordinator of round r and estVp = ⊥.

Proof. We say that a process proposes a value when it exe-
cutesestVp ← eval giv (line 20 or 26). By line 18,p pro-
poses a value only ifp is the coordinator of the round (i.e.,
p = cp). Let us consider line 20 and line 26 separately.

Line20: The test at line 19 ensures that line 20 is executed
only during the first round. Before executing line 20,estVp

of the coordinatorp is trivially equal to⊥ (initial value).
Line 26: The result directly follows from the test at

line 25. �

Lemma A.16 (Proposition integrity). Every process pro-
poses a value at most once.

Proof. We say that a process propose a value when it exe-
cutesestVp ← eval giv (lines 20 and 26). We prove the re-
sult by contradiction. Assume that some processp proposes
a value twice. By definitiongiv returns a value different from

X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398 1397

⊥. By LemmaA.14, onceestVp �= ⊥, it remains different
from ⊥ forever. By LemmaA.15, p proposes a value only
if estVp = ⊥. A contradiction with the fact thatp proposes
a value twice. �

Lemma A.17. If two processes p and q propose a value,
then at least one of p and q is suspected by a majority of
processes in�S .

Proof. We prove this by contradiction. We assume that nei-
therp nor q are suspected by a majority of processes in�S .
From LemmaA.15 and the rotating coordinator paradigm
(there is only one coordinator in each round),p and q do
not propose a value in the same round. Letrp (resp.rq) be
the round in whichp (resp.q) proposes a value. Let us as-
sume, without loss of generality, thatp proposes beforeq
(rp < rq).

During roundrp, any process in�S either suspectsp or
adoptsp’s estimate (lines 35,36,37). Sincep is not suspected
by a majority of processes in�S (assumption), a majority
of processes adoptp’s estimate. By LemmaA.14, it follows
that (1) a majority of the processes have an estimate different
from ⊥ for any roundr > rp.

Consider now roundrq with coordinatorq. At line 22, q
waits for a majority of estimate messages. From (1), at least
one of the estimate messages contains an estimateestV �= ⊥.
So the test at line 25 returns false, andq does not callgiv
at line 26. A contradiction with the fact thatq proposes a
value in roundrq . �

Corollary A.1 (Weak laziness). If two processes p and q
propose a value, then at least one of p and q is suspected
by some processes in�S .

Proof. Follows directly from LemmaA.17.
LemmaA.17 is obviously not necessary to prove the weak

laziness property defined in Section3.2. However, as stated
in Footnote9 on p. 9, it is interesting to show that our
algorithm ensures a property stronger than weak laziness.
The property is established by LemmaA.17. �

Theorem A.2. Algorithm 2 solves the weak Lazy Consen-
sus problem using♦S in asynchronous systems withf =⌊

n−1
2

⌋
.

Proof. Follows directly from LemmaA.8 (termination),
LemmaA.9 (uniform integrity), LemmaA.10 (agreement),
LemmaA.11(validity), LemmaA.16(proposition integrity),
and LemmaA.1 (weak laziness). �

References

[1] M.K. Aguilera, W. Chen, S. Toueg, Using the heartbeat failure
detector for quiescent reliable communication and consensus in
partitionable networks, Theoret. Comput. Sci. 220 (1) (1999) 3–30.

[2] M.K. Aguilera, W. Chen, S. Toueg, Failure detection and consensus
in the crash-recovery model, Distrib. Comput. 13 (2) (2000) 99–125.

[3] M.K. Aguilera, W. Chen, S. Toueg, On quiescent reliable
communication, SIAM J. Comput. 29 (6) (2000) 2040–2073.

[4] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, Thrifty
generic broadcast, in: M. Herlihy (Ed.), Proceedings of the 14th
International Symposium on Distributed Computing (DISC’00),
Lecture Notes in Computer Science, vol. 1914, Toledo, Spain,
October 2000, pp. 268–282.

[5] P.A. Alsberg, J.D. Day, A principle for resilient sharing of distributed
resources, in: Proceedings of the Second International Conference on
Software Engineering, San Francisco, CA, USA, 1976, pp. 562–570.

[6] K. Birman, R. van Renesse (Eds.), Reliable Distributed Computing
with the Isis Toolkit, IEEE Computer Society Press, Silver Spring,
MD, 1994.

[7] N. Budhiraja, K. Marzullo, F.B. Schneider, S. Toueg, The primary-
backup approach, in: S. Mullender (Ed.), Distributed Systems, 2nd
ed., ACM Press Books, Addison-Wesley, Reading, MA, 1993, pp.
199–216 (Chapter 8).

[8] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable
distributed systems, J. Assoc. Comput. Math. 43 (2) (1996) 225–267.

[9] B. Charron-Bost, X. Défago, A. Schiper, Time vs. space in fault-
tolerant distributed systems, in: Proceedings of the Sixth IEEE
International Workshop on Object-oriented Real-time Dependable
Systems (WORDS’01), Rome, Italy, January 2001.

[10] G. Chockler, I. Keidar, R. Vitenberg, Group communication
specifications: a comprehensive study, ACM Comput. Surv. 33 (4)
(2001) 427–469.

[11] X. Défago, P. Felber, A. Schiper, Optimization techniques for
replicating CORBA objects, in: Proceedings of the Fourth IEEE
International Workshop on Object-oriented Real-time Dependable
Systems (WORDS’99), Santa Barbara, CA, USA, January 1999, pp.
2–8.

[12] X. Défago, A. Schiper, N. Sergent, Semi-passive replication, in:
Proceedings of the 17th IEEE International Symposium on Reliable
Distributed Systems (SRDS’98), West Lafayette, IN, USA, October
1998, pp. 43–50.

[13] X. Défago, A. Schiper, P. Urbán, Total order broadcast and
multicast algorithms: taxonomy and survey. RR IS-RR-2003-009,
Japan Advanced Institute of Science and Technology, Ishikawa, Japan,
September 2003.

[14] X. Défago, Agreement-Related Problems: from Semi-Passive
Replication to Totally Ordered Broadcast. Ph.D. Thesis, École
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, August
2000, No. 2229.

[15] D. Essamé, J. Arlat, D. Powell, PADRE: a protocol for asymmetric
duplex redundancy, in: IFIP Seventh Working Conference on
Dependable Computing in Critical Applications (DCCA-7), San Jose,
CA, USA, January 1999, pp. 213–232.

[16] P. Felber, X. Défago, P. Eugster, A. Schiper, Replicating CORBA
objects: a marriage between active and passive replication, in:
Proceedings of the Second IFIP International Working Conference
on Distributed Applications and Interoperable Systems (DAIS’99),
Helsinki, Finland, June 1999, pp. 375–387.

[17] C. Fetzer, Perfect failure detection in timed asynchronous systems,
IEEE Trans. Comput. 52 (2) (2003) 99–112.

[18] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed
consensus with one faulty process, J. Assoc. Comput. Math. 32 (2)
(1985) 374–382.

[19] U. Fritzke, P. Ingels, A. Mostéfaoui, M. Raynal, Consensus-based
fault-tolerant total order multicast, IEEE Trans. Parallel Distrib.
Systems 12 (2) (2001) 147–156.

[20] D. Gries, F.B. Schneider, A Logical Approach to Discrete Math.,
Texts and Monographs in Computer Science, Springer, Berlin, 1993.

[21] R. Guerraoui, A. Schiper, Software-based replication for fault
tolerance, IEEE Comput. 30 (4) (1997) 68–74.

[22] M. Hurfin, R. Macêdo, M. Raynal, F. Tronel, A general framework
to solve agreement problems, in: Proceedings of the 18th

1398 X. Défago, A. Schiper / J. Parallel Distrib. Comput. 64 (2004) 1380–1398

IEEE International Symposium on Reliable Distributed Systems
(SRDS’99), Lausanne, Switzerland, October 1999, pp. 56–67.

[23] M. Hurfin, A. Mostéfaoui, M. Raynal, Consensus in asynchronous
systems where processes can crash and recover, in: Proceedings of the
17th IEEE International Symposium on Reliable Distributed Systems
(SRDS’98), West Lafayette, IN, USA, October 1998, pp. 280–286.

[24] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, R.K. Budhia, C.A.
Lingley-Papadopoulis, T.P. Archambault, The Totem system, in:
Proceedings of the 25th International Symposium on Fault-Tolerant
Computing (FTCS-25), Pasadena, CA, USA, 1995, pp. 61–66.

[25] R. Oliveira, R. Guerraoui, A. Schiper, Consensus in the crash-recover
model, TR 97/239, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, August 1997.

[26] F. Pedone, A. Schiper, Handling message semantics with generic
broadcast protocols, Distrib. Comput. 15 (2) (2002) 97–107.

[27] S. Pleisch, A. Schiper, Modeling fault-tolerant mobile agent execution
as a sequence of agreement problems, in: Proceedings of the 19th
IEEE International Symposium on Reliable Distributed Systems
(SRDS’00), Nürnberg, Germany, October 2000, pp. 11–20.

[28] S. Poledna, Replica determinism in distributed real-time systems: a
brief survey, Real-Time Systems 6 (3) (1994) 289–316.

[29] D. Powell, Delta4: A Generic Architecture for Dependable Distributed
Computing, volume 1 of ESPRIT Research Reports, Springer, Berlin,
1991.

[30] A. Schiper, Early consensus in an asynchronous system with a weak
failure detector, Distrib. Comput. 10 (3) (1997) 149–157.

[31] F.B. Schneider, Implementing fault-tolerant services using the state
machine approach: a tutorial, ACM Comput. Survey 22 (4) (1990)
299–319.

[32] J.B. Sussman, K. Marzullo, Comparing primary-backup and state
machines for crash failures, in: Proceedings of the 15th ACM
Symposium on Principles of Distributed Computing (PODC-15),
Philadelphia, PA, USA, May 1996, p. 90.(Brief announcement).

[33] P. Urbán, I. Shnayderman, A. Schiper, Comparison of failure detectors
and group membership: performance study of two atomic broadcast
algorithms, in: Proceedings of the IEEE International Conference on
Dependable Systems and Networks (DSN’03), San Francisco, CA,
USA, June 2003, pp. 645–654.

[34] R. van Renesse, K.P. Birman, R. Cooper, The HORUS system, TR
Department of Computer Science, Cornell University, Ithaca, NY,
USA, 1993.

[35] C. Yahata, J. Sakai, M. Takizawa, Generalization of consensus
protocols, in: Proceedings of the Ninth International Conference on

Information Networking (ICOIN-9), Osaka, Japan, 1994, pp. 419–
424.

[36] C. Yahata, M. Takizawa, General protocols for consensus in
distributed systems, in: Proceedings of the Sixth International
Conference on Database and Expert Systems Applications
(DEXA’95), Lecture Notes in Computer Science, vol. 978, Springer,
London, UK, September 1995, pp. 227–236.

[37] H. Zou, F. Jahanian, Real-time primary-backup replications with
temporal consistency, in: Proceedings of the 18th IEEE International
Conference on Distributed Computing Systems (ICDCS-18),
Amsterdam, The Netherlands, May 1998, pp. 48–56.

Xavier Défago is a research associate pro-
fessor of the School of Information Science
at JAIST (Japan Advanced Institute of Sci-
ence and Technology) since 2003. He is
also a research fellow of PRESTO, JST
(Japan Science and Technology Agency)
since 2002. He obtained his Ph.D. in Com-
puter Science in 2000 from the EPFL (Fed-
eral Institute of Technology in Lausanne,
Switzerland), and joined JAIST as a re-
search associate shortly thereafter. In 1995
and 1996, he also worked at the NEC C&C
Research Labs in Kawasaki (Japan). His

research interests include distributed algorithms, fault tolerance and group
communication, and their application to cooperative autonomous mobile
systems.

André Schiper has been professor of Com-
puter Science at EPFL (Federal Institute of
Technology in Lausanne, Switzerland) since
1985, leading the Distributed Systems Labo-
ratory. During the academic year 1992-1993,
he was on sabbatical leave at the Univer-
sity of Cornell, Ithaca, New York. His re-
search interests are in the area of distributed
systems, middleware, group communication,
and, recently mobile ad hoc networks. From
2000 to 2002, he was the chair of the steer-
ing committee of the International Sympo-
sium on Distributed Computing (DISC).

He is currently member of the editorial board of the following two
journals: ACM Distributed Computing, IEEE Transactions on Dependable
and Secure Computing.

	Semi-passive replication and Lazy Consensus62626262
	Introduction
	Overview of semi-passive replication
	Structure of the paper

	System model and definitions
	System model
	Failure detectors
	Unreliable failure detectors
	Perfect failure detectors
	Group membership

	Replication model
	Sequences

	Problem specifications
	Specification of semi-passive replication
	Generic Replication Problem
	Passive and semi-passive replication

	Specification of Lazy Consensus

	Semi-passive replication algorithm
	Basic idea: Consensus on ``update'' values
	Semi-passive replication algorithm
	Parsimony of the semi-passive replication algorithm

	Solving Lazy Consensus
	Chandra--Toueg Consensus algorithm using SSSS
	Lazy Consensus algorithm (informal description)
	Optimizations
	Optimization of Phase 1
	Adaptive rotating coordinator

	Lazy Consensus algorithm with SSSS
	Variables
	Algorithm description

	Selected scenarios for semi-passive replication
	Semi-passive replication in good runs
	Semi-passive replication in the case of one crash

	Conclusion
	Acknowledgements
	Correctness proof of the semi-passive replication algorithm
	Correctness proof of the Lazy Consensus algorithm

	References

