
J. Parallel Distrib. Comput. 65 (2005) 729 – 742
www.elsevier.com/locate/jpdc

Fast and low-cost search schemes by exploiting localities in P2P networks

Lei Guoa, Song Jiangb, Li Xiaoc, Xiaodong Zhanga,∗
aDepartment of Computer Science, College of William and Mary, Williamsburg, VA 23187, USA

bPerformance and Architecture Laboratory, Computer and Computational Sciences Division, Los Alamos National Laboratory, Los Alamos,
NM 87545, USA

cDepartment of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA

Received 19 February 2004; received in revised form 9 December 2004; accepted 26 January 2005
Available online 7 April 2005

Abstract

Existing peer-to-peer (P2P) search algorithms generally target either the performance objective of improving search quality from a
client’s perspective, or the objective of reducing search cost from an Internet management perspective. Most existing work of designing
and optimizing search algorithms in unstructured P2P networks addresses the trade-off between the two performance objectives. In
contrast, our goal in this study is to attempt to achieve both objectives. Motivated by our observations on the content locality in the peer
community and the localities of search interests of individual peers, we proposecontent-abundantcluster-selectivelyprefetchingindices
from respondingpeers (CAC-SPIRP), a fast and low-cost P2P searching algorithm. Our algorithm consists of two components. The first
component aims to reduce the search cost by constructing aCAC, where content-abundant peers self-identify, and self-organize themselves
into an inter-connected cluster providing a pool of popular objects to be frequently accessed by the peer community. A query will be first
routed to the CAC, and most likely to be satisfied there, significantly reducing the amount of network traffic and the search scope. The
second component in our algorithm is client oriented and aims to improve the quality of P2P search, calledSPIRP. A client individually
identifies a small group of peers who have the same interests as itself to prefetch their entire file indices of the related interests, minimizing
unnecessary outgoing queries and significantly reducing query response time. Building SPIRP on the CAC Internet infrastructure, our
algorithm combines both merits of the two components to achieve both performance objectives. Our trace-driven simulations show that
CAC-SPIRP significantly improves the overall performance from both client’s perspective and Internet management perspective.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Peer-to-peer; Content search; Locality of content; Locality of search interest

1. Introduction

Many recent studies have shown that a tremendous
amount of information is not well utilized under current
client–server model in Internet systems (see e.g. [18,23]).
For example, public on-line information is estimated to be
400–550 times larger than the available information ac-
cessible by traditional search engines and by hyperlinks.
Peer-to-peer (P2P) systems aim to further utilize Internet

∗ Corresponding author. Fax: +1 757 221 1717.
E-mail addresses:lguo@cs.wm.edu(Lei Guo), sjiang@lanl.gov

(Song Jiang),lxiao@cse.msu.edu(Li Xiao), zhang@cs.wm.edu
(Xiaodong Zhang).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.01.007

information and resources, complementing the existing
client–server systems. A P2P system is composed of a de-
centralized community of peers, where each peer acts both
as aclient who requests information and services, and as
a server who produces and/or provides information and
services.

A lot of search schemes for decentralized, unstructured
P2P networks like Gnutella[9] have been proposed recently,
such as [12,16,22,24,25]. The effectiveness of content search
can be measured by two performance objectives that may
have conflicting interests. The first objective coming from
eachindividual peer’s perspective is to improve itssearch
quality, i.e., to increase the number of effective results and
to minimize the response time of each query. The second

http://www.elsevier.com/locate/jpdc
mailto:lguo@cs.wm.edu
mailto:sjiang@lanl.gov
mailto:lxiao@cse.msu.edu
mailto:zhang@cs.wm.edu

730 Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742

objective coming from the Internet management perspective
is to reduce the totalsearch costof thepeer community(all
peers in the system), i.e., to minimize the network bandwidth
consumptions and other related overheads, such as CPU and
storage demands. Existing search algorithms generally aim
at one of the objectives and have performance limits on the
other. For example, flooding search targets to maximize the
number of search results for each peer but results in too
much traffic in the system, while iterative deepening[24] and
random walking [16] target to reduce the search traffic for
the system but can lead to long response time for individual
peers.

The research community seems to believe that the essen-
tial issue of designing and optimizing search algorithms in
unstructured P2P networks is the trade-off between the two
performance objectives. However, out goal in this study aims
to achieve both objectives. In this paper, we analyze the
content serving regularities in the peer community and the
search patterns of individual peers, and show there exist two
kinds of localities in P2P content search. (1) Thelocality of
content servingin the peer community: most search results
are served by a small number of content-abundant peers. (2)
The localities of search interestsof individual peers: peers
generally target contents on a few interest topics, and can get
most requested objects from a small number of peers with
the same interests as themselves. Motivated by these two
observations and the existing trade-off between the two per-
formance objectives, we proposecontent-abundantcluster-
selectivityprefetchingindices fromrespondingpers (CAC-
SPIRP), a fast and low-cost P2P searching algorithm.

CAC-SPIRP algorithm comprises two complementary
techniques,CACandSPIRP. CAC technique aims to reduce
the search cost by exploiting the content serving locality
among the peer community. In this technique, a small num-
ber of content-abundant peers are self-identified based on
their query-answering histories, and self-organized into a
cluster calledCAC, which serves as a pool of popular ob-
jects to be frequently requested. SPIRP technique is client
oriented. By SPIRP, the search interest localities of individ-
ual peers can be well exploited to speedup query processing.
By combining both techniques, CAC-SPIRP algorithm is
highly effective in addressing the trade-off between the two
performance objectives, and does not produce additional
overheads in P2P networks, where the CAC is constructed,
and the SPIRP technique is facilitated in each peer, retaining
the merits of both CAC and SPIRP.

The contributions of our study are fourfold:

• Different from other measurement studies such as
[1,19–21], we have collected query traces and index
traces of a large amount of individual peers in Gnutella,
and characterized the content distributions and search
regularities in P2P systems.

• By exploiting the content locality in the peer commu-
nity and the search interest localities of individual peers,
we have proposed two efficient search techniques in

unstructured P2P networks from a perspective of network
management (CAC) and from a perspective of individ-
ual peers (SPIRP) respectively. In order to achieve both
optimization objectives for individual peers and network
management, we have combined the two techniques
and proposed a fast and low cost searching algorithm,
CAC-SPIRP.

• Using the traces collected from Gnutella networks and
considering the population dynamics in P2P systems, we
have evaluated our proposed algorithm and the two tech-
niques, respectively. Our performance results show that
unnecessary outgoing queries, network traffics, and query
response times are significantly reduced, and the over-
heads for CAC management and index prefetching are
insignificant.

• This paper provides a case study and analysis to address a
fundamental issue on the design of P2P search algorithms:
to improve the overall performance by optimizing both
the search quality and search cost.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses some existing P2P searching algorithms.
Section 3 presents our observations of the content serving
locality in the peer community and the search interest local-
ities of individual peers. Sections 4 and 5 present the two
searching techniques we proposed, CAC and SPIRP, respec-
tively. Section 6 describes the CAC-SPIRP algorithm. Sec-
tion 7 evaluates the two techniques and our proposed algo-
rithm. We summarize our work in Section 8.

2. Related work

Addressing the trade-off between the search quality and
search cost, researchers have proposed many search solu-
tions in unstructured P2P systems.Directed BFS[24] at-
tempts to take advantage of the irregular content distribution
by using very limited local information of the search history
instead of fully exploiting the skewness of content distribu-
tions like CAC.Random walksearch such as [4,16] can re-
duce search traffic effectively but can only give a small num-
ber of results and have long response time.Interest-based
locality approach [22] shares the same principle of SPIRP
by exploiting the common interests among different peers.
However, in this approach, a requesting peer connects to a
small number of peers with same interests directly, limiting
the locality of interests that can be exploited. Meanwhile, the
evaluation is mainly based on web traces and does not con-
sider the population dynamics in P2P systems, thus its per-
formance on real P2P systems is unknown.Super-nodeap-
proach [15,25], which is adopted by Morpheus [17], KaZaA
[13], and current Gnutella, limits query flooding in the do-
main of super peers. A super peer is a proxy and index server
of a number of leaf nodes. However, the size of super peer
network expands with the increase of system scale so that
we still need an efficient routing algorithm for super peers.

Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742 731

For example, currently Gnutella has about 100,000 nodes, in
which about 20,000 of them are super peers[11]. This size is
even greater than the sizes of early Gnutella networks. Fur-
thermore, a super peer is not necessarily a content-abundant
peer, even the contents of all its leaf nodes are considered.
Our algorithm can be applied on top of super peer architec-
ture to further improve search performance.

3. Characterizing the localities in the peer community
and individual peers

Existing measurement studies such as [1,20] investigated
file distributions in P2P systems by counting numbers in-
stead of by exploring contents. Existing algorithm studies
such as [16,22] used either synthetic traces or Web traces
for performance evaluations. Different from these studies,
we have collected a large amount of query traces and in-
dex traces of individual peers in order to fully understand
the serving regularities and access patterns of the peer com-
munity and individual peers. In this section, we present our
experimental observations on the P2P search patterns and
content distributions, and characterize the content serving
locality in the peer community and the search interest local-
ities of individual peers.

3.1. Data preparation

We have built two Gnutella network crawlers based on the
open source code of LimeWire Gnutella [14] and conducted
the following experiments to collect traces. We only consider
Gnutella super peers since leaf peers in Gnutella do not ac-
cept incoming connections. The first crawler is used to col-
lect queries in the Gnutella network. The crawler connects
to a number of peers and records the query trace of each
peer, including the connection establishment time, termina-
tion time, and the time and search criterion of each query it
sends. We ran 10 crawlers for 4 days and recorded 409,129
queries of 25,764 different peers altogether. Both the num-
ber of queries a peer sends and the duration of a peer’s con-
nection session follow heavy tail distributions. We randomly
selected 1600 peers and their corresponding queries (total
25,093 queries) in our traces as theP2P client setfor our
study.

The second crawler is used to collect the indices of shared
files of Gnutella peers. The crawler randomly connects to
a number of peers, and sends a “ping” message to each
neighbor to get the number of files it is sharing. Then the
crawler sends an indexing query [10] to get the index of
shared files. The crawler closes the connection and connects
to another peer after receiving the entire index from the peer.

We ran 40 index crawlers for 4 days and collected the
entire indices of 18,255 different peers, in which each peer is
identified by its (Globally Unique Identifier (GUID)—which
is attached in the query response messages) instead of its IP
address, since many peers use Dynamic Host Configuration

Protocol (DHCP) or Network Address Translation (NAT) to
access Internet. At the same time, we estimate that there are
37% free-riders in Gnutella networks based on the “pong”
messages we collected. We used all index traces as well as
the corresponding free-riders as theP2P server set(total
29,050 different peers) for our study.

Finally, we matched all queries sent by peers in the P2P
client set with all indices of peers in the P2P server set to
complete the data preparation.

3.2. The locality of content serving in the peer community

Study[20] shows a small percentage of peers share much
more number of files than other peers in P2P systems. Paper
[5] studied the locality of files stored and transferred in P2P
systems and found that a small percentage of popular files
account for most shared storage and transmissions in P2P
systems. However, from the perspective of content serving,
a peer’s ability to contribute contents depends on both the
contents it is sharing and the query distributions in P2P sys-
tems. In our study, we ranked all peers in the P2P server set
by the total number of queries they can reply and by the to-
tal number of results they can provide, respectively, since a
peer can reply a query with multiple results. Fig. 1(a) shows
the distribution of the number of queries that peers can re-
spond. We can see a significant heterogeneity of the ability
to reply queries among Gnutella peers: there are only about
6% peers that can reply more than 1000 queries (4% of all
queries) each, while there are more than 50% peers that can
only reply less than 100 queries (0.4% of all queries) each.
Fig. 1(b) shows the distribution of the number of results that
peers can provide. We can see that similar heterogeneity ex-
ists in this case as well: there are only about 10% peers that
can provide more than 2500 results (0.1 results per query
on average) each, while there are more than 60% of peers
that can only provide less than 500 results (0.02 results per
query on average) each. We call those peers who can reply
significantly more queries than other peers astop query re-
sponders, and call those peers who can provide significantly
more results than other peers astop result providers. We ob-
served in most cases that a top query responder of the peer
community is also a top result provider of the peer commu-
nity, and vice versa. For example, 84% of peers in the top
10% query responder set are in the top 10% result provider
set as well. Therefore, we call both of them astop content
providers.

Fig. 1(c) shows the cumulative contribution of these top
content providers. We computed the union set of queries
replied by top query responders and the cumulative number
of results provided by top result providers. We can see that
the top 5% query responders can reply more than 98% of
all queries altogether while the top 10% result providers can
provide about 55% of all results in the system altogether.

We have studied the diversity of peers’ content serv-
ing capacity in P2P systems. Figs. 2(a) and (b) show the

732 Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742

100 101 102 103 104
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 P

ee
rs

 (
%

)

Number of Queries
100 102 104 106
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 P

ee
rs

 (
%

)

Number of Results

20 40 60 80 100
0

20

40

60

80

100

Q
ue

rie
s

R
ep

lie
d

by
 T

op
 Q

ue
ry

 R

es
po

nd
er

s
(%

)

Top Content Providers (in percentage)

Top Query Responders

0
0

20

40

60

80

100

 R

es
ul

ts
 P

ro
vi

de
d

by
 T

op
 R

es
ul

t P
ro

vi
de

rs
 (

%
)

Top Result Providers

(a) (b)

(c)

Fig. 1. The skewness of Gnutella peers’ abilities to reply queries and to provide results: (a) the CDF of the number of queries that peers can reply, (b)
the CDF of the number of results that peers can provide and (c) the cumulative contributions of top query responders and result providers.

10-5 10-4 10-3 10-2 10-1 100
100

101

102

103

104

Peers in Fraction of System Size

N
um

be
r

of
 q

ue
rie

s
re

pl
ie

d

10-5 10-4 10-3 10-2 10-1 100
100

101

102

103

104

105

106

Peers in Fraction of System Size

N
um

be
r

of
 r

es
ul

ts
 p

ro
vi

de
d

10-5 10-4 10-3 10-2 10-1 100
0

1000

2000

3000

4000

5000

Peers in Fraction of System Size

N
um

be
r

of
 q

ue
rie

s
re

pl
ie

d

(a) (b)

(c)

Fig. 2. The distribution of peers’ capacity in query serving: (a) the query replying (in log–log scale), (b) the results providing (in log–log scale) and (c)
the query replying (onlyx is in log scale).

Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742 733

distribution of peers’ capacity to reply queries and to pro-
vide results in a log–log scale, respectively. We find that
it is easy to distinguish those content-abundant peers from
content-scare peers: there is a sharp decrease in both plots,
indicating the gap between these two kinds of peers. Both
distributions do not follow Zipf-like distribution such as
the reference locality in Web systems[2]. Had the data
distribution been Zipfian, both plots should be linear in a
log–log scale. Fig. 2(c) re-plots the distribution of peers’
capacity to reply queries in a log scale onx-axis only. We
find this plot can be well fitted in a straight line. The distri-
bution of peers’ capacity to provide results is not linear in
anx-axis log scale, but much more linear than a Zipf curve.
Our discovery means that the diversity of peers’ capacity
in P2P systems is much smaller than that of Internet Web
servers, which has two implications: (1) the diversity of
content requesting and serving is much lower in P2P world
than in the Web world; (2) the transient behavior of peers
cannot affect the performance of P2P systems as long as
the system population is big enough.

The experiments above show stronglocality of content
servingin the peer community: a small percentage of peers
(top content providers) account for most content contribu-
tions in the system. We also find the diversity of content
serving capacity of those content-abundant peers is small.

3.3. The localities of search interests of individual peers

The access patterns of individual peers differ from that
of the peer community as a whole. In the following exper-
iments, we try to get insight into the search behaviors of
individual peers. We only consider queries that have been
replied by other peers, and simply call themreplied queries.
We selected peers having at least 10 replied queries in the
P2P client set asrequesting peers. For a requesting peer, we
define thequery contributionof its each responder as the
number of queries the responder has replied, and define the
result contributionof its each responder as the number of
results it has provided. We ranked each peer’s responders by
their query contributions and by their result contributions,
respectively.

Fig. 3 shows the average query contributions of request-
ing peers’ top query responders and the average result con-
tributions of requesting peers’ top result responders. The
contributions are normalized by the overall contributions of
all responders of the corresponding requesting peers. In Fig.
3(a), the 5 bars represent the average contributions of the top
1, top 10, top 5%, top 10%, and top 20% query responders
of requesting peers, respectively. The top 1 query respon-
der of a requesting peer is a single peer who responds the
highest number of queries. This responder can respond 47%
of all replied queries on average. The top 5% query respon-
ders together can respond about 91% of all replied queries.
Fig. 3(b) shows that the top 10% result responders of the
requesting peers account for about 31% of all results they

receive on average, and that the top 20% result responders
account for about 60% of all results on average. Figs.3(a)
and (b) also show the top 10 query responders of requesting
peers can reply 71% of all replied queries on average, and
the top 10 result responders of requesting peers can provide
about 7.5% of all results on average. Further studies show
that the top content providers of individual requesting peers
are their top query responders, because a peer answering a
query with many results is not necessarily able to answer
other queries. Our studies also show that the top query/result
providers of an individual peer are not necessarily the top
content providers of the peer community, because the for-
mer depends on the search interests of the requesting peer,
while the latter depends on the group behaviors of the whole
community.

The experiments above show a small number of top query
responders of individual requesting peers account for most
content contributions of these peers. This fact indicates
that the requesting peers and their top query responders
have the same interests in content searching and content
sharing respectively. From the aspect of clients, there exist
strong localities of search interestsfor individual peers:
a peer’s requests generally focus on a few interest topics,
and it can be satisfied by a small number of peers with the
same interests.

3.4. Summary of our observations and motivations

We summarize our observations and motivations as
follows:

• Strong locality of content exists in the peer community:
a small percentage of peers, which are called top con-
tent providers in the community, account for most content
contributions in the system.

• The diversity of content serving capacity is small for those
content-abundant peers in P2P systems. Thus, the collec-
tion of top content providers can provide highly qualified
service.

• The search patterns of individual peers show strong local-
ities of search interests. For example, a requesting peer
shares the same interests with its top query responders.

• The content locality in the peer community implies that
the majority of peers are not able to provide satisfactory
query results. Thus, randomly propagating queries in P2P
networks are very likely to reach those peers who have
limited ability or inability to serve contents, significantly
wasting network bandwidth. This motivates us to design
an algorithm that objectively sends queries to those top
content providers in the peer community.

• The interest localities of individual peers indicate that the
requesting peers frequently access their top content
providers for the contents of their interests from time
to time. This motivates us to let these requesting peers
exploit their interest localities by prefetching the content

734 Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742

top 1 top 10 top 5% top 10% top 20%
0

20

40

60

80

100

Top Query Responders

Q
ue

ry
 C

on
tr

ib
ut

io
ns

 (
%

)

top 1 top 10 top 5% top 10% top 20%
0

10

20

30

40

50

60

Top Result Providers

R
es

ul
t C

on
tr

ib
ut

io
ns

 (
%

)

(a) (b)

Fig. 3. The average contributions (in percentage) of top query responders and top result providers for peers having at least 10 replied queries: (a) The
average query contributions (in percentage) of top 1, top 10, top 5%, top 10%, and top 20% query responders and (b) The average result contributions
(in percentage) of top 1, top 10, top 5%, top 10%, and top 20% result providers.

indices of their top content providers, so that content
search can be performed locally, significantly reducing
the response latency.

4. CAC technique: constructing CAC

The basic idea of CAC technique is to have a collection
of content-abundant peers in the peer community be self-
organized into a CAC to actively serve contents for the entire
P2P network. By being directed into the cluster for an effi-
cient search first, most queries can be satisfactorily answered
without meaninglessly bothering those content-scarce peers.
Because these content-scarce peers account for a significant
portion of the peer community, a large amount of network
traffic and computational cost can be saved. For a small
number of queries that cannot be satisfied in the cluster, we
relay them out of the cluster in an efficient fashion. The key
components of the CAC technique are presented as follows.

4.1. CAC initialization

The initialization of the CAC can be implemented by us-
ing a bootstrap site, a permanent host in the P2P system
like the host-cache sites in Gnutella. Initially, all cluster peer
candidates connect to the bootstrap site and report their lo-
cations. Then the bootstrap site sends a list of peer locations
to each of them. Then these peers self-organize into a clus-
ter (the CAC) by randomly selecting about 4–8 peers from
the list as their neighbors.

4.2. System structure

The content-abundant peers are those top content
providers of the peer community. In CAC technique, we
allow peers self-evaluate the quality of content service they
can provide based on the history of their query-answering.
The criterion ofcontent service qualityis the percentage
of queries a peer can reply. Peers whose content service
qualities reach a threshold are CAC member candidates

and have the same possibility to join the CAC. Both the
quality threshold for CAC members and the CAC size can
be predefined or updated periodically by some mechanism
to adapt to the dynamics in P2P networks. Our simulations
show that CAC has no strict requirements on these two
parameters (see Section7.3.1).

CAC technique is modular and can be easily deployed on
top of any P2P overlays. The CAC is a connected overlay
independent of the original P2P overlay. There are two types
of links in P2P systems implementing CAC technique: one
is the original P2P overlay link, the other is the CAC overlay
link. Each peer in the system is assigned alevel: the level of
each CAC peer is defined as 0, and the level of a non-CAC
peer is defined as the number of hops from this peer to the
nearest CAC peer. When the CAC overlay or the P2P overlay
changes, the level values of relevant peers can be updated
one by one quickly. By using levels, the unstructured P2P
system is organized logically for efficient and robust query
routing without changing the original P2P overlay.

4.3. Query routing

A query is routed from higher-level peers to lower-level
peers until reaching the CAC, shown in Fig. 4(a). We call this
operationup-flowing. As soon as a query enters the CAC, it
is flooded in the CAC to search contents.

The responses of a query are routed back to the requester
along the same path that it comes. The requester waits a
period of time for the arrival of responses from the CAC,
called theresponse waiting time. If the requester does not
get enough number of results during the waiting time, the
query will be routed in the entire system for a global search
as follows. First, the query is up-flowed to and then flooded
in the CAC again. Upon receiving the query, each CAC peer
propagates it to level 1 peers immediately. Then the query
is propagated from lower level peers to higher-level peers
in the P2P overlay. We call this operationdown-flooding,
shown in Fig. 4(b). Down-flooding is much more efficient
than simply flooding the query in the P2P overlay because
only links between two successive levels of peers are used for

Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742 735

E

C

B

D

F

A

3

0

00

1
1

1

1

2
2

2
2

2

2

4

3

0

2

2

3

2

1

0

0

3

1

2 2 3

0
1

2

3

3

1

J

I

G

H
1

0

00

1
1

1

1

2
2

2
2

2

2

4

3

0

2

2

3

2

1

0

0

3

1

2 2 3

0
1

2

3

3

(a)

(b)

Fig. 4. The up-flowing and down-flooding operations. Each circle denotes
a peer in the P2P network, and the number in the circle is the level of this
peer. The bold lines denote the CAC links and the thin lines denote the
original P2P links. (a) Up-flowing operation: shows the routing paths of a
query sent by peerA at level 3. The query is routed along the dash lines,
passing throughB, C, D and B, E, F until reaching the CAC. A query
may have multiple paths to reach the CAC, improving the robustness of
query routing. (b) Down-flooding operation: shows the routing paths of
down-flooding. The query is concurrently routed from all CAC peers to
level 1 peers, then level 2 peers, until reaching peers with the maximal
level. Only links from lower-level peers to higher-level peers are used to
route messages; links such asGH and IJ are not used for query routing.

propagating queries, reducing a great amount of unnecessary
traffic.

CAC has several advantages over the super peer structure
due to several major differences between the two structures.
Firstly, CAC is content-based, which has much richer re-
sources than index-based super peers. Secondly, in the super
peer structure, the index services are provided via individual
connections between peers and one or a few super peers. If
the connected super peer(s) fail, the peers will be out of ser-
vices. In contrast, CAC is significantly more robust in query
routing. The normal peers connect to CAC, where the fail-
ures of individual CAC peers would not affect to the normal
peers, because there will always be available CAC peers to
provide services. Finally, the routing paths for up-flowing
and down-flooding operations are on top of the P2P overlay
and self-adaptive. As long as the P2P overlay is connected,
the routing path will always exist.

4.4. System maintenance

The CAC is maintained in a proper size that can be prede-
fined or dynamically refreshed based on the query success
rate in CAC. In the static case, each CAC peer holds the
value of the CAC size locally and updates the value period-
ically by broadcasting ping messages and receiving corre-
sponding pong messages in the CAC. In the dynamic case,
each CAC peer maintains the success rate of queries that
are up-flowed to it, and uses the average success rate of its
neighbors within one-hop in the CAC overlay to estimate
the required CAC size. The maintenance overhead is trivial
since the constraint on CAC size is not hard to get good per-
formance, as shown in our evaluation (see Section7.3.1).

Each self-identified content-abundant peer,p, tries to join
the CAC by up-flowingjoin requests periodically until suc-
cess. Upon receiving a join request message, a CAC peer,P,
accepts or denies the request based on the CAC size value
it holds. If P believes the CAC needs more members, it ac-
cepts the request and sends a list of randomly chosen CAC
members back top. Thenp randomly selects several of them
as its neighbors to join the CAC. These CAC members can
still reject the connection request based on their local val-
ues of the CAC size, preventing malicious attacks such as
adding members to the CAC repeatedly.

CAC peers have the priority to receive and respond
queries. In CAC technique, each CAC peer randomly se-
lects 5% queries from all queries up-flowed to it, and
down-floods them in the P2P overlay in addition to flooding
them in the CAC simultaneously. Both CAC and non-CAC
peers evaluate their service qualities based on these queries
only. In P2P systems such as Gnutella, each peer receives
more than 1000 queries per minute, and our experiment
shows that 100–200 queries are sufficient to identify a
content-abundant peer.

CAC peers who cannot provide qualified services for some
period of time and overloaded peers leave the CAC to be-
come normal peers. Before leaving the CAC, a peer broad-
casts aleavemessage to let other CAC peers update the
CAC size values they hold. Even if a CAC peer disconnects
abnormally, other CAC peers can still update the size values
when broadcasting the next ping.

The performance of CAC is stable in spite of the popu-
lation dynamics due to the transient coming and going of
CAC peers. As shown in Section 3.2, the diversity of content
serving capacity of peers in P2P networks is small, mean-
ing that there is no peer significantly more powerful than
other peers in the CAC. Thus, CAC performance cannot be
affected as long as the CAC size is not very small.

4.5. The incentive for becoming CAC peers

CAC peers support more search workloads for the sys-
tem than common peers. Although the search workload is
relatively lighter than downloading workload, an incentive

736 Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742

mechanism would be beneficial to encourage CAC partici-
pation and improve the robustness of CAC system. Effec-
tive incentive mechanisms that encourage peers to contribute
bandwidth for P2P downloading service have been proposed,
such as BitTorrent[7]. Due to the priority to forward queries
and responses, CAC peers have more knowledge on the con-
tent distributed in the system. These information can be used
to build content index to speed up query processing, which
is the basic idea of SPIRP technique (see Section 5) and
forms an incentive to become CAC peers.

5. SPIRP technique: selectively prefetching indices
from responding peers

SPIRP technique is client oriented and motivated by the
search interest localities of individual peers. Although the
contents in a typical P2P network are huge and highly di-
verse, each peer’s interests are limited and generally focused
on a few topics. Queries from a requesting peer can be fre-
quently answered by a small number of serving peers. In
SPIRP, after receiving answers to its initial queries, a client
selectively identifies a small group of responders who have
the same interests as itself, and asks them to send their en-
tire file indices of the related interests to this client. With
SPIRP, the number of outgoing queries is minimized in the
client side by exploiting the common interests between the
requesting peer and its responders, reducing both the re-
sponse time and bandwidth consumptions. In addition, since
each requesting peer only prefetches and maintains the file
indices of a limited number of peers, the index transmission
overheads and the storage requirement are small.

5.1. Data structure

The basic data structure of SPIRP in each peer consists
of several key components. Each peer maintains a set of in-
dices of files to be shared in the P2P network, called the
outgoing index set. It also maintains a set of indices selec-
tively prefetched from its responders, called theincoming
index set. In addition, each peer maintains a set of respon-
ders who have replied to it, called theresponder set. This
set is organized as a hash table in which the key is the re-
sponder’s GUID and the value is the responder’s meta data.
The format of a responder’s meta data is shown in Table 1.
The responder set is also ranked as apriority queue, where
thepriority is defined as the number of queries a responder
has responded so far.

A peer does not keep any information for other peers
prefetching its indices. To help these peers refresh the indices
they prefetched, each responding peer averages its previous
on-line session durations as the estimated duration of its
current session, and averages its previous update intervals as
the estimated update interval. When indices in a responding
peer are prefetched, the estimated expire time, update time,

and current timestamp of the peer are piggybacked to the
requesting peer.

5.2. SPIRP operations

With the support of the above data structure, several key
SPIRP operations are defined as follows.

5.2.1. Sending queries
Initially the incoming index set and the responder set are

both empty. As a requesting peer sends a query, it searches
the incoming index set first. If any indices match the query,
the requesting peer checks if the corresponding responders
are still alive (see theChecking Index Expirationoperation)
and then returns the available matched results to the user.
If the query cannot be satisfied locally, the peer sends the
query to the P2P network in a normal way (e.g., flood-
ing search), and then returns the corresponding results to
the user. Then the peer updates the responder set and the
priority queue.

5.2.2. Prefetching and replacing indices
The requesting peer asks those high-priority responders,

which are not in the incoming index set currently, to send
their related indices until the incoming index set is full.
When the priority queue changes, a simple replacement pol-
icy is used. The peer removes the indices of low-priority
responders from the incoming index set and prefetches the
indices of high priority responders that are not in the incom-
ing index set currently.

5.2.3. Checking index expiration
When the estimated expiration time of a responder

reaches, or a query hits its incoming index set, the peer
checks if the responder is still alive. If not, the peer deletes
its indices from the incoming index set and its meta data
from the responder set, then updates the priority queue.

5.2.4. Checking index update
When the estimated update time of a responder reaches,

the peer sends the responder the timestamp of the prefetched
indices to check if update happens. If yes, the responder
sends the difference set of the indices or simply resends the
whole index set.

6. The CAC-SPIRP algorithm: combining CAC and
SPIRP techniques

The CAC technique has its strong merits on reducing both
bandwidth consumption and client response time when the
requests success in the CAC, while the SPIRP technique
shares the same advantage when the search interests is well
exploited by the selective prefetching. However, each tech-
nique has its limits. Although the percentage of requests

Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742 737

Table 1
The data structure of responder’s meta data

Field IP addr. Port Is cached Priority Index size Timestamp Expire time Update time Other fields

Bytes 4 2 2 4 4 4 4 4 16

that fail in the CAC is small, the miss penalty can be non-
trivial, negatively affecting the average latency. On the other
hand, the flooding operations of outgoing queries in SPIRP
produce a great amount of traffic. The motivation of CAC-
SPIRP algorithm is to combine the merits of these two com-
plementary techniques to improve the overall performance
of P2P search.

SPIRP is client oriented and overlay independent. On the
other hand, CAC is an application-level infrastructure for
unstructured P2P systems. Applying SPIRP technique on
the CAC infrastructure, we have the CAC-SPIRP algorithm.
The algorithm is simply to combine both CAC and SPIRP:
the peers use SPIRP to prefetch file indices, and use CAC to
route outgoing queries. Since outgoing queries are always
routed to CAC first, the bandwidth consumption of CAC-
SPIRP is at least as low as that of CAC. Each peer also
has the ability to selectively prefetch indices for locality
of interests, decreasing search latency and further reducing
bandwidth consumption.

7. Experiments and performance evaluation

7.1. Simulation methodology

In P2P systems, peers join and leave P2P network from
time to time. A measurement study in Gnutella and Napster
presented in[20] shows that the session duration of peers
follows heavy tail distribution, where the duration median
is about 60 min. This study is consistent with our obser-
vations about the connection durations between the query
collection crawler and Gnutella peers in Section 3.1. Study
[3] further shows the lifespan of peers follows the Pareto
distribution. Different from the simulations of existing stud-
ies such as [22], we considered the population dynamics in
our evaluation, since the performance of SPIRP can be af-
fected by the lifespan of responders. We assigned each peer
in the P2P server set a random value of session duration fol-
lowing the Pareto distributionP(x) = 14.5311∗ x−1.8598

based on the statistics in [20]. Assuming the total number
of on-line peers in a P2P system is constant, we replace a
peer with a randomly chosen new peer in the P2P server
set when its session terminates and the off-line peer is con-
sidered as a new peer for future use. We use the topol-
ogy traces provided by Clip2 Distributed Search Solutions
[6] and University of Chicago in our simulations. Due to
page limit, we only present the simulation on a Gnutella
snapshot of 6946 nodes. Experiments on other topologies
have similar results.

7.2. Performance metrics

In P2P systems, the satisfaction of a content search de-
pends on the number of results the user specifies (10–50
results are in the normal range covering both low and high
ends). In our simulations, we choose 1, 10, and 50 as the cri-
teria ofquery satisfactionto show the search performances
under different user requirements.

The metrics we used for content search in P2P systems
are theoverall network trafficin the system, theaverage
response time per query, and thequery success rate. The
overall network traffic is a major concern of system design-
ers and administrators, while the average response time and
query success rate are major concerns of end users.

The overall traffic in our simulation comes from the ac-
cumulated communications of all queries, responses, and
indices transferred in the network. Instead of modeling the
actual network latency, we use the number of hops to mea-
sure the response time. The response time of a single result
is measured by the number of a round trip hops from the
requester to the responder, plus the response waiting time
for CAC technique when the responder is not in CAC. For
SPIRP technique, the response time of a result found in the
incoming index set locally is defined as 0. The response time
of a successful query is defined as the average response time
of the firstN results the requester receives, whereN is the
query satisfaction.

Both the flooding search and our CAC/SPIRP techniques
can cover almost all peers in the system if necessary. What
we are really concerned is not the absolute success rate
of queries, but thecluster relative success ratefor CAC
technique, which is defined as the number of queries that can
be satisfied in the cluster over the number of queries that can
be satisfied by flooding search, and thelocal relative success
rate for SPIRP technique, which is defined as the number
of queries that can be satisfied in the incoming index set
over the number of queries that can be satisfied by flooding
search, respectively.

7.3. Performance evaluation

In this section, we first evaluate the two techniques sep-
arately to show their corresponding effectiveness, and then
evaluate our proposed algorithm to show the performance
of their combination. We chose the 1600 peers in the P2P
client set as requesting peers, and randomly placed these
requesting peers on the simulated P2P network. Each re-
questing peer sends queries according to the corresponding
timestamps in the query records.

738 Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

 Cluster Size
(in Percentage of P2P Network Size)

R
el

at
iv

e
C

lu
st

er
 S

uc
ce

ss
 R

at
e

Minimum Results = 1
Minimum Results = 10
Minimum Results = 50

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

 Cluster Size
(in Percentage of P2P Network Size)

O
ve

ra
ll

T
ra

ffi
c

(N
or

m
al

iz
ed

)

Minimum Results = 1
Minimum Results = 10
Minimum Results = 50

0 10 20 30 40 50
0

0.5

1

1.5

2

 Cluster Size
(in Percentage of P2P Network Size)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

 (
N

or
m

al
iz

ed
)

Minimum Results = 1
Minimum Results = 10
Minimum Results = 50

(a) (b)

(c)

Fig. 5. The performance of CAC technique under different query satisfactions and different sizes of clusters in which the cluster peers are those top query
responders. The overall traffic and average response time are both normalized by the corresponding values of flooding search: (a) the cluster relative
success rate, (b) the overall traffic in the P2P network and (c) the average response time per query.

The overall traffic and average response time presented
in the rest of the paper are normalized by the correspond-
ing performance values of flooding search under the same
trace-driven simulation. For example, if the overall traffic is
reported as 0.5, the real traffic is 50% of that of the flooding
search.

7.3.1. Performance evaluation of CAC technique
The effectiveness of CAC technique depends on both the

cluster size and the capacities of cluster peers. Our first
experiment evaluated the performance of CAC with different
sizes of clusters to find a good cluster size. We chose the
“best” content-abundant peers, those topNquery responders,
whereN is the cluster size, as the cluster peers. We set
the response waiting time as 12 hops. Changing the size of
cluster, we have measured the cluster relative success rate,
the overall network traffic, and the average response time
per query for different query satisfactions.

Fig. 5(a) shows the cluster relative success rates in clusters
of different sizes for different query satisfactions. The cluster
relative success rate increases with the increase of the cluster
size, and decreases as the query satisfaction value increases.
However, the curves of cluster relative success rates under
10 and 50 query satisfactions are quite close, indicating a
high quality of content service of CAC. The cluster relative
success rates are more than 55% for the cluster consisting of

top 5% content providers, and more than 70% for the cluster
consisting of top 10% content providers.

Although a large cluster helps to increase the cluster suc-
cess rate, it increases the intra-cluster traffic as well. Fig.
5(b) shows the overall traffic of CAC technique. We can see
the cluster of top 5% content providers is effective enough in
traffic reduction for all query satisfactions from 1 to 50. For
example, compared with flooding search, CAC technique
under this condition can reduce more than 90% traffic for
queries that need only one result, more than 75% traffic for
queries that need 10 results, and more than 60% traffic for
queries that need 50 results. Compared with super peer ap-
proach, assuming that the population of super peers in P2P
networks is about 20% of all peers in the system (see Sec-
tion 2), we can estimate that CAC approach has only 28%,
69%, and 75% traffic in super peer search solution under
different user satisfaction requirement of 1, 10, and 50 re-
sults, respectively.

The response time of CAC technique is not so good. Fig.
5(c) shows the response time under different cluster sizes
and query satisfactions. We can see the response time is
higher than that of flooding algorithm unless the cluster size
is very large and the query satisfaction is very small. This is
because the flooding search can always find the shortest and
fastest paths in the P2P network, while in CAC technique,
both flooding in the cluster and up-flowing to the cluster

Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742 739

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

Threshold of Content-Abundant Peers

R
el

at
iv

e
C

lu
st

er
 S

uc
ce

ss
 R

at
e

Minimum Results = 1
Minimum Results = 10
Minimum Results = 50

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

Threshold of Content-Abundant Peers

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

 (
N

or
m

al
iz

ed
)

Minimum Results = 1
Minimum Results = 10
Minimum Results = 50

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

Threshold of Content-Abundant Peers

O
ve

ra
ll

T
ra

ffi
c

(N
or

m
al

iz
ed

)
Minimum Results = 1
Minimum Results = 10
Minimum Results = 50

(a) (b)

(c)

Fig. 6. The performance of CAC technique under different query satisfactions and different quality thresholds of content-abundant peers. The cluster size
is set to 5% of the P2P network size. The overall traffic and average response time are both normalized by the corresponding values of flooding search:
(a) the cluster relative success rate, (b) the overall traffic in the P2P network and (c) the average response time per query.

consume time, and the response waiting time is a big penalty
for queries not satisfied in the cluster.

CAC technique randomly selects cluster peers from
content-abundant peers instead of ranking them and select-
ing the best ones, which is not realistic in practice. Our
second experiment evaluated the performances of CAC with
different qualities of cluster peers in order to find a proper
threshold for content-abundant peers. We set the cluster
size as 5% of the community population size, measured the
cluster relative success rate, overall traffic, and average re-
sponse time under different thresholds for content-abundant
peers. The results are presented as follows.

Fig. 6 shows that a high-quality threshold of content-
abundant peers helps to improve all performance metrics.
However, the overall network traffic is not sensitive to the
quality threshold, and the traffic can still be significantly re-
duced even the quality threshold is set to 0 (meaning the
cluster peers are randomly selected from the peer commu-
nity) due to the high efficiency of down-flooding. In the fol-
lowing experiments of this paper, we chose the threshold
of content-abundant peers as 0.035, corresponding to peers
who can respond 3.5% of all queries it receives. Under such
a threshold, the overall traffic and the average response time
are only 1.10 and 1.06 times of the corresponding perfor-
mances of the ideal CAC systems. Meanwhile, the number
of cluster peer candidates is about 1.7 times of the cluster
size, indicating moderate population dynamics cannot affect
the system performance seriously.

We have also compared the performance of CAC with it-
erative deepening[24] and expanding ring [16] algorithms.
Our experiments show that the overall traffic of CAC tech-
nique is less than half of both algorithms, and the response
time of CAC is lower than those of both algorithms under
the same conditions. We do not present the figures due to
page limit.

7.3.2. Performance evaluation of SPIRP technique
In this experiment, we maintained the incoming index set

of each requesting peer in a fixed size of buffer and measured
the overall network traffic, average response time, and the
local relative success rate in the incoming index set under
different query satisfactions and different sizes of buffers.
The results are presented in Fig. 7.

Fig. 7(a) shows that SPIRP can significantly decrease the
average response time of requesting peers. The response
time reduction increases with the increase of the number
of queries that are satisfied, because the interest localities
of peers can be better exploited with an improved accu-
racy by gaining more experiences of content search. Fig.
7(b) shows that the local relative success rate of SPIRP in-
creases with the number of queries satisfied. For peers with
more than 50 queries satisfied, the local relative success
rate and the reduction of response time can be as high as
more than 95%.

Figs. 7(a) and (b) also show that increasing the size of
incoming index set buffer helps to improve local success

740 Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742

0 2 4 6 8 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Size of Incoming Index Set Buffer
 (in M Bytes)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

 (
N

or
m

al
iz

ed
)

Peers having 2 to 5 queries satisfied
Peers having 10 to 20 queries satisfied
Peers having 30 to 40 queries satisfied
Peers having at least 50 queries satisfied

0 2 4 6 8 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Size of Incoming Index Set Buffer
 (in M Bytes)

R
el

at
iv

e
Lo

ca
l S

uc
ce

ss
 R

at
e

Peers having 1 to 5 queries satisfied
Peers having 10 to 20 queries satisfied
Peers having 30 to 40 queries satisfied
Peers having at least 50 queries satisfied

0 2 4 6 8 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Size of Incoming Index Set Buffer
 (in M Bytes)

O
ve

ra
ll

T
ra

ffi
c

(N
or

m
al

iz
ed

)

Query Satisfication = 1
Query Satisfication = 10
Query Satisfication = 50

(a) (b)

(c)

Fig. 7. The performance of SPIRP technique under different query satisfactions and different sizes of incoming index set buffers. The overall trafficand
average response time are both normalized by the corresponding values of flooding search: (a) the average response time per query (the query satisfaction
is 50), (b) the local relative success rate (the query satisfaction is 50) and (c) the overall traffic in the P2P network.

rate and response time. However, the local success rate and
response time improve little when the buffer size is greater
than 6 megabytes; and have no improvements when buffer
size is greater than 10 megabytes. There are two implications
for this: (1) SPIRP has a small storage requirement; (2) the
locality of interests is limited and only needs a small buffer
to hold.

SPIRP not only can improve user’s search performance,
but also an decrease the overall traffic in P2P networks. Fig.
7(c) shows the traffic reduction can be as high as more than
50% for query satisfaction of 1 result. This is because the
index prefetching traffic is small compared with the flooding
traffic of outgoing queries that are avoided. Our studies show
that the index prefetching cost is only about 3.8–9.4% of
the overall traffic in flooding algorithm for different query
satisfactions from 1 to 50. Meanwhile, the greater the query
satisfaction is, the smaller the traffic reduction will be. This
confirms the existence of the conflicts between the search
quality and the search cost.

7.3.3. Performance evaluation of CAC-SPIRP
CAC significantly reduces the overall network traffic at

the expense of performance degradation in response time.
SPIRP reduces the response time remarkably but the de-
crease of the network traffic is not satisfactory. Both tech-
niques only target one performance objective either from
the perspective of system management or from the aspect

of user experience. Our CAC-SPIRP algorithm considers
both objective. Under certain conditions, the performance
of CAC-SPIRP is nearly as good as that of SPIRP in terms
of average response time reduction, and outperforms CAC
in terms of the overall traffic reduction. The average re-
sponse time, local relative success rate in the incoming in-
dex set buffer, and overall traffic of CAC-SPIRP algorithm
are presented in Fig.8.

Fig. 8(a) shows that CAC-SPIRP can reduce the response
time up to 90% when the number of satisfied queries reaches
to a certain number (e.g., 40–50), as effectively as SPIRP.
When the number of satisfied queries is too small, the re-
sponse time is worse than SPIRP and the flooding algorithm
but still better than CAC technique.

Comparing Fig. 8(b) with Fig. 7(b), we can see that the
local relative success rate in the incoming index set buffer
of CAC-SPIRP is slightly lower than that of SPIRP. The
reason is that peers with the same interests as an individual
peer might not be in the CAC cluster since they are not
necessarily content-abundant peers. However, this difference
is very small (less than 3%).

Fig. 8(c) shows that the traffic reduction of CAC-SPIRP
is greater than those of both CAC and SPIRP. The reason is
that CAC can reduce network traffic by limiting the scope
of peers processing queries, and SPIRP can reduce traffic
by limiting the number of outgoing queries. These two joint
efforts are highly effective to reduce the overall traffic. The

Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742 741

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Size of Incoming Index Set Buffer
 (in M Bytes)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(N

or
m

al
iz

ed
)

Peers having 1 to 5 queries satisfied
Peers having 10 to 20 queries satisfied
Peers having 30 to 40 queries satisfied
Peers having at least 50 queries satisfied

0 2 4 6 8 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Size of Incoming Index Set Buffer
 (in M Bytes)

R
el

at
iv

e
Lo

ca
l S

uc
ce

ss
 R

at
e

Peers having 1 to 5 queries satisfied
Peers having 10 to 20 queries satisfied
Peers having 30 to 40 queries satisfied
Peers having at least 50 queries satisfied

0 2 4 6 8 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Size of Incoming Index Set Buffer
 (in M Bytes)

O
ve

ra
ll

T
ra

ffi
c

(N
or

m
al

iz
ed

)
Query Satisfication = 1
Query Satisfication = 10
Query Satisfication = 50

Fig. 8. The performance of CAC-SPIRP algorithm under different query satisfactions and different sizes of incoming index set buffers. The overall traffic
and average response time are both normalized by the corresponding values of flooding search: (a) the average response time per query (the query
satisfaction is 50), (b) the local relative success rate (query satisfaction is 50) and (c) the overall traffic in the P2P network.

overall traffic reductions of CAC-SPIRP for different query
satisfactions can be as high as 70–90%.

8. Summary

Efficient content locating in unstructured P2P networks
is a challenging issue because searching algorithm design-
ers need to consider the objectives of both improving search
quality and reducing search cost, which may have conflict-
ing interests. Existing search algorithms generally target
one or the other objective. In this study, we propose CAC-
SPIRP, a P2P searching algorithm aiming at both low traffic
and low latency. By exploiting both the search interest lo-
calities of individual peers and the content locality in the
peer community, we aim at achieving both objectives for
significant performance improvements. Performance evalu-
ation shows the effectiveness of our algorithm and system
organization.

9. Acknowledgments

This work is supported in part by the US National Science
Foundation under grants CNS-0098055, CCF-0129883 and
CNS-0405909. Some preliminary results of this work have
been presented in[8]. We thank Beverley Yang of Stanford

University, Matei Ripeanu and Adriana Iamnitchi at Univer-
sity of Chicago for providing their traces to us, and thank
Theresa Long for reading this paper and her comments.

References

[1] E. Adar, B. Huberman, Free riding on Gnutella, Technical Report,
Xerox PARC, August 2000.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching
and Zipf distributions: evidence and implications, in: Proceedings
of the 18th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM ’99), New York, USA, March,
1999.

[3] F. Bustamante, Y. Qiao, Friendships that last: peer lifespan and its
role in P2P protocols, in: Proceedings of the Eighth International
Workshop on Web Content Caching and Distribution, Hawthorne,
NY USA, 2003.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker,
Making Gnutella-like P2P Systems Scalable, in: Proceedings of ACM
SIGCOMM 2003, Karlsruhe, Germany, 2003.

[5] J. Chu, K. Labonte, B.N. Levine, Availability and locality
measurement of peer-to-peer file systems, in: Proc. ITCom:
Scalability and Traffic Control in IP Networks II Conferences, 2002.

[6] Clip2 Distributed Search Solutions,http://www.clip2.com
[7] B. Cohen, Incentives build robustness in BitTorrent, in: Proceedings

of the First Workshop on the Economics of Peer-to-Peer Systems,
Berkeley, CA, USA, June, 2003.

[8] L. Guo, S. Jiang, L. Xiao, X. Zhang, Exploiting content localities
for efficient search in P2P systems, in: Proceedings of the 18th
International Symposium on Distributed Computing, (DISC 2004),
Amsterdam, Netherlands, October, 2004.

http://www.clip2.com

742 Lei Guo et al. / J. Parallel Distrib. Comput. 65 (2005) 729–742

[9] Gnutella,http://www.gnutella.com
[10] Gnutella 0.6,http://rfc-gnutella.sourceforge.net
[11] http://www.limewire.com/english/content/netsize.shtml
[12] S. Jiang, L. Guo, X. Zhang, LightFlood: an efficient flooding scheme

for file search in unstructured peer-to-peer system, in: Proceedings
of the 2003 International Conference on Parallel Processing (ICPP
2003), Kaohsiung, Taiwan, China, 2003.

[13] KaZaA, http://www.kazaa.com
[14] LimeWire, http://www.limewire.org
[15] LimeWire LLC, Ultrapeers: another step towards Gnutella scalability,

http://www.limewire.com/developer/Ultrapeers.html
[16] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and replication

in unstructured peer-to-peer networks, in: Proceedings of the 16th
ACM International Conference on Supercomputing (ICS’02), New
York, USA, 2002.

[17] Morpheus,http://www.musiccity.com
[18] S. Raghavan, H. Garcia-Molina, Crawling the hidden web, in:

Proceedings of the 27th VLDB Conference, 2001.
[19] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, H. Levy, An Analysis

of Internet Content Delivery Systems, OSDI, 2002.
[20] S. Saroiu, P.K. Gummadi, S.D. Gribble, A measurement study of

peer-to-peer file sharing systems, in: Proceedings of MMCN 2002,
San Jose, USA, 2002.

[21] S. Sen, J. Wang, Analyzing peer-to-peer traffic across large networks,
in: Proceedings of ACM SIGCOMM Internet Measurement Workshop
2002.

[22] K. Sripanidkulchai, B. Maggs, H. Zhang, Efficient content location
using interest-based locality in peer-to-peer systems, INFOCOMM,
2003.

[23] TheDeepWeb:SurfacingHiddenValuehttp://www.completeplanet.com/
Tutorials/DeepWeb/

[24] B. Yang, H. Garcia-Molina, Improving search in Peer-to-peer
networks, in: Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS 2002), Viennam Austria,
2002.

[25] B. Yang, H. Garcia-Molina, Designing a super-peer network,
in: Proceedings of the 19th International Conference on Data
Engineering (ICDE 2003), Bangalore, India, 2003.

Lei Guo received his BS degree in space
physics and MS degree in computer science
from the University of Science and Tech-
nology of China in 1996 and 2002, respec-
tively. He is a PhD candidate in computer
science at the College of William and Mary.
His research interests are in the areas of dis-
tributed systems, peer-to-peer systems, mul-
timedia systems, and Internet measurement.

Song Jiang received the BS and MS de-
grees in computer science from the Univer-
sity of Science and Technology of China in
1993 and 1996, respectively, and received
his PhD degree in computer science from
the College of William and Mary in 2004.
He is a Postdoctoral Research Associate at
the Los Alamos National Laboratory, devel-
oping next generation operating systems for
high-end systems. He received the S. Park
Graduate Research Award at the College of
William and Mary in 2003. His research

interests are in the areas of operating systems, computer architecture, and
distributed systems.

Li Xiao received the BS and MS degrees in
computer science from Northwestern Poly-
technic University, China, and the PhD de-
gree in computer science from the College of
William and Mary in 2002. She is an assis-
tant professor of computer science and engi-
neering at Michigan State University. Her re-
search interests are in the areas of distributed
and Internet systems, system resource man-
agement, and design and implementation of
experimental algorithms. She is a member
of the ACM, the IEEE, the IEEE Computer
Society, and IEEE Women in Engineering.

Xiaodong Zhang received his BS degree
in electrical engineering from Beijing Poly-
technic University in 1982, MS and PhD
degrees in computer science from Univer-
sity of Colorado at Boulder in 1985 and
1989, respectively. He is the Lettie Pate
Evans Professor of Computer Science and
the Department Chair at the College of
William and Mary. He was the Program Di-
rector of Advanced Computational Research
at the US National Science Foundation
from 2001 to 2003. He is a past edito-
rial board member ofIEEE Transactions

on Parallel and Distributed Systems, and currently serves as an associate
editor of IEEE Transactions on Computers and IEEE Micro. His research
interests are in the areas of parallel and distributed computing and systems,
and computer architecture.

http://www.gnutella.com
http://rfc-gnutella.sourceforge.net
http://www.limewire.com/english/content/netsize.shtml
http://www.kazaa.com
http://www.limewire.org
http://www.limewire.com/developer/Ultrapeers.html
http://www.musiccity.com
http://www.completeplanet.com/Tutorials/DeepWeb/
http://www.completeplanet.com/Tutorials/DeepWeb/

