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Abstract

The design of algorithms exhibiting a high degree of tem-
poral and spatial locality of reference is crucial to attain
good performance on current and foreseeable computing
systems featuring ever deeper memory hierarchies. Previ-
ous work has demonstrated that task parallelism can be ef-
ficiently transformed into locality of reference in two-level
hierarchies. Recently, we moved a step forward and showed
how the more structured type of parallelism exposed by sub-
machine locality can be efficiently turned into temporal lo-
cality on arbitrarily deep hierarchies. In this work, we com-
plete and extend the above result by encompassing also spa-
tial locality. Specifically, we present a scheme to simulate
parallel algorithms designed for the Decomposable BSP (a
BSP variant which captures submachine locality) on the Hi-
erarchical Memory Model with Block Transfer. The simula-
tion yields good hierarchy-conscious sequential algorithms
from parallel ones, and provides evidence of the strict re-
lation between submachine locality in parallel computation
and locality of reference (both temporal and spatial) in the
hierarchical memory setting.

1. Introduction

Modern memory systems feature a complex multilevel
hierarchical structure, with capacity and access times in-
creasing as levels grow farther from the CPU. In order to
amortize the larger costs incurred when accessing distant
levels of the hierarchy, data is transferred between the lev-
els in blocks of contiguous locations. The main idea behind
the efficient exploitation of such a hierarchical organization
is that an algorithm will be able to reduce memory access
costs by organizing the computation so that the same data
are frequently reused within a short time interval, and that
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consecutive data in memory are involved in consecutive op-
erations, two properties known astemporalandspatial lo-
cality of reference, respectively.

It is well known that classical algorithms for prominent
computational problems developed under the assumption of
flat memory (RAM model) often exhibit poor performance
when run on real machines with hierarchical memory. As
a consequence, in the last decade, a number of computa-
tional models have been proposed which explicitly account
for the hierarchical structure of the memory system. Among
the others, theHierarchical Memory Model(HMM) defined
in [1], is a random access machine where access to memory
location x requires timef(x), for a given nondecreasing
functionf(x), thus encouraging the exploitation of tempo-
ral locality. TheHierarchical Memory Model with Block
Transfermodel (BT, for short) [2, 21] was subsequently in-
troduced with the intention of also rewarding spatial locality
by augmenting HMM with the capability of moving blocks
of memory at a reduced cost. Also, a two-level memory or-
ganization is featured by theExternal Memory(EM) model
[3, 20], which has been extensively used in the literature to
develop I/O-efficient algorithms. Finally, the cache models
defined in [15, 16] have been at the base of the vast literature
on cache-efficient algorithms.

Earlier works provided evidence that efficient sequen-
tial algorithms for two-level hierarchies can be obtained by
simulating parallel ones. In [10, 12, 17] schemes are pre-
sented that simulate parallel algorithms designed for coarse-
grained parallel models, such as BSP [18], BSP* [4], CGM
[11], on the EM model. The main intuition behind these
works is that the interleaving between large local compu-
tation and bulk communication phases, which characterizes
coarse-grained parallel algorithms, maps nicely on the two-
level structure of the EM model. However, the flat paral-
lelism offered by the above coarse-grained models is unable
to afford the finer exploitation of locality which is required
by deeper hierarchies.

Another approach to the development of efficient EM
algorithms was proposed in [8] based on the simulation
of fine-grained PRAM algorithms. Beside proving a gen-



eral simulation result, the authors show how to turn PRAM
computations that involve geometrically smaller subsets of
processors into highly efficient EM algorithms. This sug-
gests that some form of submachine locality in the parallel
setting can be profitably transformed into locality of refer-
ence in the memory accesses. The simulation of PRAM
algorithms to obtain efficient sequential ones has also been
explored in [19] where parallelism is turned into efficient
cache prefetching strategies.

A more general study on the relation between parallelism
and locality of reference has been initiated in [13], where
we have shown how a more structured form of parallelism,
such as the one exhibited by the Decomposable BSP (a clus-
tered variant of BSP defined in [9]) can lead to the design
of sequential algorithms that feature an optimal exploita-
tion of temporal locality on arbitrarily deep memory hier-
archies. More precisely, the main contribution of that work
is a strategy that simulates a D-BSP algorithm on HMM
with a slowdown which is merely proportional to the loss of
parallelism, thus proving that no extra cost is incurred in ac-
cessing the much larger memory of the sequential machine.
This result crucially relies on a nontrivial exploitation of
the submachine locality exposed in D-BSP to organize the
sequential computation into phases where accesses are con-
fined to small subsets of data.

The objective of the current paper is to continue the
above investigation to encompass spatial locality, so to as-
sess to what extent structured parallelism can lead to a com-
bined exploitation of both forms of locality of reference in
multi-level hierarchies. More specifically, building on the
results of [13] we devise an efficient strategy to simulate D-
BSP algorithms on the BT model. The simulation reveals
that efficiency in the BT model can be achieved starting
from D-BSP algorithms exhibiting a much coarser level of
submachine locality than the one needed by the simulation
in [13], which required a decomposition into submachines
strictly dependent on the access cost function. However,
some examples provide evidence that a certain level of sub-
machine locality must nonetheless be exhibited by the D-
BSP algorithm in order to achieve optimal or quasi-optimal
BT algorithms. Our results are in accordance with the re-
sults in [2], which show that an efficient exploitation of the
powerful block transfer capability of the BT model is able
to hide access costs almost completely.

The importance of our contribution is twofold. On the
one hand, to the best of our knowledge, ours is the first work
that establishes a relation between the locality of communi-
cations embodied in parallel algorithms and both temporal
and spatial locality of reference in sequential algorithmsfor
general hierarchies. On the other, our simulation provides
a powerful tool to obtain efficient BT algorithms automati-
cally from the large body of parallel algorithms developed
in the literature over the last two decades.

The rest of the paper is organized as follows. Section 2
defines our reference models. Section 3 describes and ana-
lyzes the simulation algorithm. Finally, section 4 discusses
several implications of our result and its application to some
relevant case studies.

2. Machine Models

BT. The f(x)-BT (Hierarchical Memory Model with
Block Transfer) was introduced in [2] by augmenting the
f(x)-HMM model of [1] with a block transfer facility.
Specifically, as in the HMM, an access to memory loca-
tion x requires timef(x), for a given nondecreasing func-
tion f(x), but the model makes also possible to copy a
block of b memory cells[x − b + 1, x] into adisjoint block
[y − b + 1, y] in time max{f(x), f(y)} + b, for arbitrary
b > 1. As all other works in the literature, we will focus our
attention onpolynomially boundedaccess functions, that
is, functionsf(x) for which there exists a constantc such
thatf(2x) ≤ cf(x), for anyx. Particularly interesting and
widely studied special cases are the functionsf(x) = xα,
for a positive constantα < 1, andf(x) = log x.

It must be remarked that the block transfer mechanism
featured by the model is rather powerful since it allows for
the pipelined movement of arbitrarily large blocks. This is
particularly noticeable if we look at the fundamentaltouch-
ingproblem, which requires to bring each of a set ofn mem-
ory cells to the top of memory. The following proposition
is proved in [2].

Proposition 1 The touching problem onf(x)-BT requires
time Θ (n log∗ n) if f(x) = log x, and Θ (n log log n) if
f(x) = xα, for a positive constantα < 1.

This proposition gives a nontrivial lower bound on the ex-
ecution time of many problems where all the inputs, or at
least a constant fraction of them, must be examined. For
the sake of comparison, observe that onf(x)-HMM the
touching problem requires timeΘ (nf(n)), which shows
the added power introduced by block transfer.

Although the powerful transfer capability of BT might
appear unrealistic with respect to current technology, the
architectural feasibility of unlimited pipelined transfers
within memory hierarchies has recently been advocated in
[5].

D-BSP. The Decomposable Bulk Synchronous Parallel
(D-BSP) model was introduced in [9] to capture subma-
chine locality in a structured way through submachine de-
composition, and was further investigated in [6, 7, 14].

Let v be a power of two. A D-BSP(v, µ, g(x)) is
a collection ofv processors{Pj : 0 ≤ j < v} com-
municating through a router whose bandwidth character-
istics are captured by functiong(x); each processor is
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equipped with a local memory of sizeµ. For 0 ≤ i ≤
log v, thev processors are partitioned into2i fixed, disjoint
i-clustersC

(i)
0 , C

(i)
1 , · · · , C(i)

2i
−1 of v/2i processors each,

where the processors of a cluster are capable of commu-
nicating among themselves independently of the other clus-
ters. The clusters form a hierarchical, binary decomposition
tree of the D-BSP machine: specifically,C log v

j = {Pj}, for

0 ≤ j < v, andC
(i)
j = C

(i+1)
2j ∪ C

(i+1)
2j+1 , for 0 ≤ i < log v

and0 ≤ j < 2i.
A D-BSP program consists of a sequence oflabeled su-

persteps. In an i-superstep, 0 ≤ i ≤ log v, each pro-
cessor executes internal computation on locally held data
and sends messages exclusively to processors within itsi-
cluster (an output and an input queue for message exchange
are part of each processor’s local memory). The superstep
is terminated by a barrier, which synchronizes processors
within eachi-cluster independently. It is assumed that mes-
sages are of constant size, and that messages sent in one
superstep are available at the destinations only at the begin-
ning of the next superstep. It is also reasonable to assume
that any D-BSP computation ends with a global synchro-
nization. If each processor spends at mostτ units of time
performing local computation during the superstep, and if
the messages that are sent form anh-relation,h > 0, (i.e.,
each processor is the source or destination of at mosth mes-
sages), then the cost of thei-superstep is upper bounded by
τ +hg(µv/2i). With this particular choice of the cost func-
tion, communication within ani-cluster is envisioned as a
sort of remote access with access functiong(x) outside the
aggregate memory of the cluster.

Since the objective of this paper is to assess to what ex-
tent submachine locality can be transformed into locality
of reference, we will concentrate on the simulation offine-
grainedD-BSP programs where the local memory of each
processor has constant size (i.e.,µ = O (1)). In this fashion,
submachine locality is the only locality that can be exhib-
ited by the parallel program.

3. The Simulation Algorithm

In this section we present an algorithm that simulates a
D-BSP(v, µ, g(x)) programP onf(x)-BT. We will refer to
D-BSP and BT as theguestandhostmachine, respectively.
We assume thatf(x) = O (xα), for some arbitrary constant
0 < α < 1, and thatΘ (v log log v) memory is available
on the host BT machine. Note that all relevant BT access
functionsf(x) considered in the literature [2] are captured
by the above scenario. Moreover, as mentioned before, we
concentrate on the caseµ = O (1).

We adopt the same overall simulation strategy as the one
presented in [13] for the HMM model, which we briefly re-
call below. The memory of the host machine is divided into

blocksof µ cells each, with block0 at the top of memory. At
the beginning of the simulation, blockj, j = 0, 1, . . . , v−1,
contains thecontext(i.e., the local memory) of processor
Pj , but this association changes as the simulation proceeds.
The simulation is organized into a number ofrounds, where
a round simulates the operations prescribed by a certain su-
perstep ofP for a certain cluster, and performs a number of
context swaps to prepare for the execution of the next round.
Specifically, let the supersteps ofP be numbered consec-
utively and letis be the label of thes-th superstep, with
s ≥ 0 (i.e., thes-th superstep is executed independently
within is-clusters). Anis-clusterC is said to bes-ready
if, for all processors inC, supersteps0, 1, . . . , s − 1 have
been simulated, while supersteps has not been simulated
yet. The algorithm in figure 1 iteratively simulates ready
clusters whose processor contexts are located consecutively
in the topmost memory blocks.

while truedo
1 P ← processor whose context is on top of memory

s← superstep number to be simulated next forP
C ← is-cluster containingP

2 Simulate supersteps for C
3 if P has finished its programthen exit
4 if is+1 < is then

Let Ĉ be theis+1-cluster containingC, and let
Ĉ0 . . . Ĉ

2
is−is+1

−1
be its componentis-clusters,

with C = Ĉj for some indexj
4.1 if j > 0 then swap the contexts ofC with those ofĈ0

4.2 if j < 2is−is+1 − 1 then
swap the contexts of̂C0 with those ofĈj+1

Figure 1. Structure of the simulation scheme.

The correctness of the resulting strategy was proved in
[13]. Note that the simulation brings new clusters to the top
of memory only whenis+1 < is since, in order to simu-
late supersteps + 1 for anis+1-clusterĈ, supersteps must
have been executed for all of theis-clusters contained in̂C.
Instead, ifis+1 ≥ is, no cluster swaps are performed, and
the next round will simulate supersteps + 1 for the top-
mostis+1-cluster that is contained within theis-clusterC
currently residing on top of memory. Advancing the simula-
tion unevenly for the different D-BSP submachines proved
crucial in [13] to transform the submachine locality exhib-
ited byP into temporal locality. However, in order to ex-
ploit also spatial locality effectively, as encouraged by the
BT model, the actual implementation of the above scheme
requires major modifications over the one in [13]. Subsec-
tion 3.1 describes a suitable memory layout needed by such
an implementation; a detailed implementation of step 2 will
then be presented in subsection 3.2; finally, the running time
of the simulation will be determined in subsection 3.3.
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3.1. Memory Layout

Although the simulation algorithm of [13] yields a valid
BT program, it is not designed to exploit block transfer. For
example, during the simulation of local computation, the
scheme brings one context at a time to the top of mem-
ory, which is highly inefficient in the BT framework. As
suggested in [2] a good BT algorithm must be recursive,
and block transfer must be used at every level of recursion.
Since the BT model supports block copy operations only for
nonoverlapping memory regions, additional buffer space is
required to perform swaps of large chunks of data; more-
over, in order to minimize access costs, such buffer space
must be allocated close to the blocks to be swapped. As a
consequence, the required buffers must be interspersed with
the contexts.

During the simulation, buffer space is dynamically cre-
ated or destroyed by means of PACK and UNPACK subrou-
tines. More specifically, UNPACK(i), with 0 ≤ i ≤ log v,
is invoked when all contexts of ani-cluster are consecu-
tively stored on top of memory, followed by an empty space
equal to the cluster size (i.e.,v/2i empty blocks). The code
for UNPACK(i) is the following:

if i = log v then return
Shift blocksv/2i+1, . . . , v/2i − 1

to blocksv/2i, . . . , 3v/2i+1 − 1
UNPACK(i + 1)

Note that the shift operation executed by UNPACK can be
performed as a single block transfer. The net effect of a
call to UNPACK(i) when ani-clusterC is on top of mem-
ory, is to intersperse thev/2i empty blocks which followed
C among the contexts ofC itself. figure 2 illustrates how
the memory layout is modified by a call to UNPACK(0)
whenv = 8. It is not difficult to prove that the buffer cre-
ation process guarantees that the starting memory address
for each context inC is at most doubled by the presence of
the buffers. Sincef(x) is polynomially bounded, we can
conclude that the buffers do not alter memory access time
by more than a multiplicative constant.

Subroutine PACK(i) performs the same operations of
UNPACK(i) but in reverse order, thus compacting the con-
texts belonging to the (unpacked) topmosti-cluster. (The
code is omitted for brevity.) A simple recurrence proves
that the complexity of UNPACK(i) is dominated by the ini-
tial movement ofv/2i+1 blocks, which takes time propor-
tional to the size of the topmosti-cluster. Clearly, the same
complexity applies to PACK(i). Thus, the running times of
the two subroutines are

TUNPACK(i), TPACK(i) = O
(

v/2i
)

. (1)

In order to create the required buffer space for swaps dur-
ing the simulation, we augment the code presented in the
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UNPACK(0)

Figure 2. Snapshots of the BT memory layout
during an UNPACK(0) operation. The host D-
BSP machine has 8 virtual processors. Solid
boxes indicate processor contexts, and white
boxes indicate empty buffers.

previous section as shown in figure 3. Observe that the aug-
mented code maintains the invariant that at the beginning of
each round, the overall memory layout is the same as the
one resulting from a call to UNPACK(0).

0 UNPACK(0)
while truedo

1 P ← processor whose context is on top of memory
s← superstep number to be simulated next forP
C ← is-cluster containingP

1.a PACK(is)
2 Simulate supersteps for C
3 if P has finished its programthen exit
4 if is+1 < is then

Let Ĉ be theis+1-cluster containingC, and let
Ĉ0 . . . Ĉ

2
is−is+1

−1
be its componentis-clusters,

with C = Ĉj for some indexj
4.1 if j > 0 then swap the contexts ofC with those ofĈ0

4.2 if j < 2is−is+1 − 1 then
swap the contexts of̂C0 with those ofĈj+1

5 UNPACK(is)

Figure 3. The revised simulation scheme.

3.2. Simulation of a superstep

The simulation of supersteps for an is-clusterC (step
2 of the algorithm presented before) is performed in two
phases: first, local computations are executed in a recursive
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fashion, and then the communications required by the su-
perstep are simulated.

Simulation of local computations. Thanks to the invari-
ant mentioned before and by step 1.a of the algorithm in
Figure 3, the simulation of supersteps for clusterC begins
with all contexts ofC packed at the top of memory, fol-
lowed by|C| empty blocks. In order to exploit both tempo-
ral and spatial locality, processors’ contexts are iteratively
brought to the top of memory in chunks of suitable size,
and the prescribed local computation is then performed for
each chunk recursively. To specify the chunk size we need
the following definition.

Definition 1 Let n be a power of2. Definec(n) as the
greatest power of 2 such thatc(n) ≤ min{f(µn)/µ, n/2}.

Clearly, we have thatc(n) > (1/2)min{f(µn)/µ, n/2}.
The local computation of supersteps for C is simulated by
invoking the recursive function COMPUTE(n), whose code
is given in figure 4, withn = v/2is .

COMPUTE(n)
if n = 1 then

Simulate local computation for the context in block0
else

c← c(n)
t← n/c {number of chunks}
Shift blocksc, . . . , n− 1 to blocks2c, . . . , n + c− 1
COMPUTE(c)
for j ← 2 to t do

Swap blocks0, . . . , c − 1
with blocksjc, . . . , (j + 1)c− 1

COMPUTE(c)
Swap blocksjc, . . . , (j + 1)c− 1

with blocks0, . . . , c− 1
Shift blocks2c, . . . , n + c− 1 to blocksc, . . . , n− 1

Figure 4. The COMPUTE subroutine.

The correctness of COMPUTE(n) can be proved by in-
duction, based on the observation that each of the recursive
calls to COMPUTE(c) starts and ends with thec proces-
sor contexts packed on top of memory followed byc empty
blocks, which leaves sufficient space to perform the swaps
using block transfer.

Since local computation for a processor is always per-
formed while the corresponding context is stored in the
topmost block of memory cells, the running time of
COMPUTE(n) is given by the sum of the original compu-
tation times for the guest processors belonging to clusterC,
plus the overhead caused by memory swaps. LetTM(n)
denote this overhead. Since each shift or swap operation re-
quires a constant number of block transfers, it is easy to see

that

TM(n) =
n

c(n)
TM (c(n)) + O



n +

n/c(n)
∑

j=1

f(jc(n))



 .

By noting that
∑n/c(n)

j=1 f(jc(n)) = O ((n/c(n))f(n)) and
by applying the definition ofc(n), we conclude that the ad-
ditive term in the equation for the casen > 1 is O (n). Let
c(k)(x) be the iterated function obtained by applyingc(·) k
times, and letc∗(x) = min{k ≥ 1 : c(k)(x) ≤ 1}. Then, it
can be seen that

TM(n) = O (nc∗(n)) .

As specific instances, we have thatTM(n) is O (n log∗ n))
if f(x) = log x, andO (n log log n) if f(x) = xα. For
the purposes of our simulation it is sufficient to say that
TM(n) = O (n log log n) for anyf(x) = O (xα). There-
fore, we have that the time required to simulate the local
computation ofis-clusterC for supersteps is

TCOMP(C, s) =
v

2is
τ + O

( v

2is
log log

v

2is

)

, (2)

whereτ denotes maximum computation time spent by any
processor inC during supersteps.

Simulation of communications. The second phase of the
simulation of supersteps for is-clusterC takes care of the
communication prescribed by the superstep. For ease of
presentation, suppose that a processorPj exchanges mes-
sages through a unified input/output queue which resides at
the end ofPj ’s context. To deliver all messages to their des-
tinations, we make use of sorting. Specifically, the contexts
of C are divided intoΘ (|C|) constant-sized elements which
are then sorted in such a way that after the sorting, contexts
are still ordered by processor number and all messages des-
tined to processorPj are stored in the queue at the end of
Pj ’s context. This is easily achieved by sorting elements
according to suitably chosen tags attached to the elements1.

Although the idea behind the message delivery phase
is quite simple, there are two technical issues that must
be dealt with. First of all, the sorting algorithm must
use block transfer effectively. To satisfy this requirement,
we employ theApprox-Median-Sortalgorithm proposed in
[2]. This algorithm is capable of sortingm constant-sized
items in timeO (m log m) if f(x) = O (xα), for any con-
stant0 < α < 1; unfortunately, the algorithm requires
Θ (m log log m) space. In our case, the number of elements
to sort isΘ

(

v/2is
)

so the required memory space is

L(is) = O
( v

2is
log log

v

2is

)

.

1The required tagging can be produced during the simulation of local
computation without asymptotically increasing the running time. Full de-
tails will be provided in the final version of the paper.
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Our buffer policy ensures that when we start simulating the
message exchange, theis-cluster is followed by an empty
space of sizeµv/2is , which is clearly not enough for sort-
ing. To obtain more free space, we are forced to involve a
cluster bigger thanC in the sorting stage. Recall that the
buffer creation policy ensures that for every0 ≤ i ≤ is, if
we pack the topmosti-cluster, we create an adjacent free
memory region having the same size of the cluster. Let
ik < is be the biggest integer such thatµv/2ik ≥ L(is),
or 0 if µv < L(is). Then, we can free a sufficient amount
of space for sorting through the following steps.

UNPACK(is)
PACK(ik)
Shift blocksv/2is , . . . , v/2ik − 1 to the memory region

that starts with blockv/2is + dL(is)/µe

It is easily seen that these steps can be completed in
O (L(is)) time. Clearly, after sorting is completed, the
same steps must be executed in reverse order.

The second technical issue arises since the message de-
livery phase may alter the size (hence the position) of the
contexts. Indeed, the size of a processor’s input queue af-
ter sorting is proportional to the amount of data received by
the processor, and each processor may receive a different
amount of data. As a consequence, it is necessary to re-
align the contexts so that the context of thej-th processor
of C ends up again in memory blockj, for 0 ≤ j < |C|.
This operation can be performed by the following recursive
subroutine (initially invoked withn = |C| = v/2is).

ALIGN(n)
if n = 1 then exit
Locate the(n/2)-th topmost context
Shift contextsn/2, . . . , n− 1 to the memory region

that starts with blockn
ALIGN(n/2)
Swap blocks0, . . . , n/2− 1 with blocksn, . . . , 3n/2− 1
ALIGN(n/2)
Move blocks0, . . . , n/2− 1 to blocksn/2, . . . , n− 1
Move blocksn, . . . , 3n/2 − 1 to blocks0, . . . , n/2− 1

A context can be easily located through binary search over
the tags. It is easy to see that each recursive call to
ALIGN(x) is made withx contexts occupying (at most)
the topx blocks, followed byx empty blocks. This pro-
vides sufficient space for the swaps to be performed. A
simple analysis shows that the running time of ALIGN(n)
is O (n log n), which is the same time taken by sorting.

Since the time required by the creation of buffer space
prior to sorting and the corresponding recompaction at the
end is dominated by the sorting time, we conclude that the
simulation of the message exchange prescribed by superstep
s for is-clusterC can be accomplished in time

TCOMM(C, s) = O
( v

2is
log

v

2is

)

. (3)

3.3. Analysis of the simulation time

By adding up the contributions of the local computation
and communication phases (equations 2 and 3, respectively)
we conclude that the simulation of supersteps for an is-
clusterC requires time

v

2is
τ + O

( v

2is
log

v

2is

)

.

It is important to observe that this bounddoes notdepend
on g(x) or f(x), as long asf(x) = O (xα), for some con-
stant0 < α < 1. Moreover, we remark that, besides the
unavoidable term(v/2is)τ , the sorting time is the dominant
factor.

If is+1 < is, the simulation algorithm incurs an addi-
tional cost due to the need of moving a newis-cluster to
the top of memory, as prescribed by steps 4.1 and 4.2 of
the pseudo-code presented in figure 3. Thanks to the avail-
ability of buffer space, the swaps required by thej-th such
move,0 ≤ j < 2is−is+1 , can be performed with at most two
block transfers taking timeO (f(j|C|) + |C|). By sum-
ming over all values ofj, we have that the overhead incurred
by cluster swaps before the simulation of anis+1-cluster is

O
(

2is−is+1f
( v

2is+1

)

+
v

2is+1

)

. (4)

Assume now that for any two consecutive superstepss and
s + 1 in P , with is+1 < is, the hypothesisf(v/2is+1) ≤
v/2is is satisfied. If this is the case, we can immediately
conclude that the overhead of cluster swaps isO

(

v/2is+1

)

,
hence it is amortized by the cost of the future simulation
of theis+1-cluster. As a consequence, the cost of step 4 of
the simulation can be completely neglected and the time for
simulatingP is simply the sum of the times for the simula-
tion of the clusters that compose the various supersteps of
P . As shown below, the hypothesis on consecutive super-
step indexes can be removed without asymptotically affect-
ing the running time of the simulation. Thus, we obtain the
following general result.

Theorem 1 Consider a program P for D-
BSP (v, O (1) , g(x)), where each processor performs
local computation for O (τ) time, and there areλi

i-supersteps, for0 ≤ i ≤ log v. If f(x) = O (xα),
0 < α < 1, thenP can be simulated onf(x)-BT in time

O

(

v

(

τ +

log v
∑

i=0

λi log(v/2i)

))

.

Proof. Before the simulation begins,P is augmented by
inserting the minimum number ofdummy superstepsto en-
force the property that any two consecutive superstepsj and
j + 1, with ij+1 < ij in P satisfy the inequality

f(v/2ij+1) ≤ v/2ij , (5)
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so that the complexity analysis performed at the beginning
of this subsection holds. Consider now two “original” su-
perstepss and s + 1 of P with is+1 < is which do not
satisfy inequality 5. The numberk of dummy supersteps
to be inserted is such thatf (k)(v/2is+1) ≤ v/2is , whence
k ≤ f∗(v/2is+1) = O

(

log log(v/2is+1)
)

.
With regard to the simulation, the scheme we described

in subsection 3.2 is slightly modified to treat dummy and
nondummy supersteps differently: to be precise, the simu-
lation algorithm skips step 2 for dummy supersteps. As a
consequence, the only cost incurred in simulating a dummy
ij-superstep is due to the need of moving a certain number
of ij-clusters to the top of memory (step 4). This cost is
given by equation (4) and is

O
(

2ij−ij+1f(v/2ij+1) + v/2ij+1
)

,

where ij+1 < ij . Since ij and ij+1 now satisfy in-
equality (5), the cost for the simulation of the dummyij-
superstep for allij-clusters isO

(

v/2ij+1

)

. Based on this
result, we can say that for everyis+1-cluster, the extra cost
for dealing with theO

(

log log(v/2is+1)
)

dummy super-
steps which are placed between nondummy superstep in-
dexesis andis+1 is

O
( v

2is+1
log log(v/2is+1)

)

,

which is clearly amortized by cost of the simulation of the
is+1-superstep.

4. Discussion and Applications

Theorem 1 shows that the simulation algorithm is quite
efficient. Indeed, Proposition 1 implies that for relevant
access functionsf(x), any straightforward approach sim-
ulating one entire superstep after the other would require
time ω(v) per superstep just for touching thev processor
contexts, while our algorithm can overcome such a bar-
rier by carefully exploiting submachine locality. For con-
creteness, consider the case ofmatrix multiplication. On
D-BSP(v, O (1) , g(x)), the algorithm of [9, 13] multiplies
two

√
v ×√

v matrices by using2i 2i-supersteps, for every
0 ≤ i < log(v)/2, performing constant local computation
per superstep. It is easy to see that our simulation of this al-
gorithm yields an optimalO

(

v3/2
)

algorithm forf(x)-BT,
while a trivial step-by-step D-BSP simulation would have
required at least timeΩ

(

v3/2 log∗ v
)

for f(x) = log x, and
timeΩ

(

v3/2 log log v
)

for f(x) = xα.
Although the exploitation of submachine locality was al-

ready featured by the simulation algorithm in [13], the ef-
ficiency of that algorithm crucially relied on the fact that
the cost functiong(x) of the guest D-BSP machine wasthe
sameas the access functionf(x) of the host HMM ma-
chine. In contrast, for the simulation presented in this pa-
per, the running time is independent of the actual values of

these two functions. Intuitively, this phenomenon can be
attributed to the exploitation of spatial locality afforded by
block transfer, which flattens, in part, the access costs to the
memory hierarchy. This finding is in accordance with the
results of [2], which show how relevant problems (such as
sorting, FFT, matrix multiplication) require the same time
on such diverse machines aslog x-BT andxα-BT.

A natural deployment of our result is obtaining sequen-
tial algorithms that exploit both temporal and spatial local-
ity by simulating fine-grained D-BSP algorithms. However,
different D-BSP cost functions may require different algo-
rithmic strategies, and without a strict correlation between
the D-BSP cost functiong(x) and the BT access function
f(x) in the simulation, the question arises of which func-
tion g(x) suggests the best “coding practices” forf(x)-BT.

Unlike the HMM scenario [13], the choiceg(x) = f(x)
is not always the best. Consider, for instance, the problem
of computing theDiscrete Fourier Transformof v points
(v-DFT). Two D-BSP algorithms for this problem are ap-
plicable: the first algorithm is a standard execution of the
v-input FFT dag, while the second is based on a recursive
decomposition of the same dag into two layers of

√
v in-

dependent
√

v-input subdags, which are assigned to dis-
tinct clusters of the parallel machine, and are separated by
a transpose permutation requiring a0-superstep. On D-
BSP (v, O (1) , xα), both algorithms yield a running time
of O (vα) [13], which is optimal. However, it is easy to see
that the simulation times of these two algorithms on thexα-
BT areO

(

v log2 v
)

andO (v log v log log v), respectively.
This implies that the choiceg(x) = f(x) is not effective
[7], in the sense that D-BSP(v, O (1) , xα) does not re-
ward the use of the second algorithm over the first. On the
other hand, it can be shown that D-BSP(v, O (1) , log x)
correctly distinguishes among the two algorithms, since
their respective parallel running times areO

(

log2 v
)

and
O (log v log log v).

The above example is a special case of the follow-
ing more general consideration. Observe that Theo-
rem 1 yields a linear-slowdown simulation for any D-
BSP (v, O (1) , log x) program onf(x)-BT, and that a
program for D-BSP(v, O (1) , g(x)) is also valid for D-
BSP (v, O (1) , log x). Combining these observations, it
can be argued that the choiceg(x) = log x yields the
most effective instance of the D-BSP model for obtaining
sequential algorithms for the class off(x)-BT machines.
Indeed, observe that given two D-BSP algorithmsA1, A2

solving the same problem, if the simulation ofA1 onf(x)-
BT runs faster than the simulation ofA2, then A1 ex-
hibits a better asymptotic performance thanA2 also on D-
BSP(v, O (1) , log x).

Finally, we remark that the proposed simulation cannot
be further improved in the general case, since the lower
bound proved in [2] on the execution of random permu-
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tations onf(x)-BT can be employed to design a D-BSP
program for which the time of our simulation algorithm
is the least possible. However, an improved simulation
can be obtained when the communication patterns gen-
erated by the algorithm are knowna priori and exhibit
certain regularities. As an example, consider again the
O (log v log log v)-time algorithm for thev-DFT designed
for D-BSP (v, O (1) , log x). By simulating the transpose
permutation generated by each superstep of the algorithm
by the rational permutation algorithm in [2], rather than
through sorting, the running time of the simulation be-
comesO (v log v), which is optimal onf(x)-BT for both
f(x) = xα and f(x) = log x. This shows that, in this
case, the algorithmic strategy indicated by D-BSP is indeed
the optimal one for BT and that nonoptimality is due to the
generality of the simulation that must deal with worst case
scenarios (e.g., by the use of sorting to cope with random
permutations).

References

[1] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir. A
model for hierarchical memory. InProceedings of the 19th
Annual ACM Symposium on the Theory of Computing, pages
305–314, 1987.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. Hierarchical
memory with block transfer. InProceedings of 28th An-
nual IEEE Symposium on Foundations of Computer Science,
pages 204–216, Los Angeles, USA, October 1987.

[3] A. Aggarwal and J. S. Vitter. The input/output complexity of
sorting and related problems.Communications of the ACM,
31(9):1116–1127, 1988.
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