
J. Parallel Distrib. Comput. 67 (2007) 186–204
www.elsevier.com/locate/jpdc

Parallel image restoration using surrogate constraint methods�

Bora Uçara, Cevdet Aykanata,∗, Mustafa Ç. Pınarb, Tahir Malasc

aDepartment of Computer Engineering, Bilkent University, 06800 Ankara, Turkey
bDepartment of Industrial Engineering, Bilkent University, 06800 Ankara, Turkey

cDepartment of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey

Received 23 September 2005; received in revised form 5 July 2006; accepted 12 October 2006

Abstract

When formulated as a system of linear inequalities, the image restoration problem yields huge, unstructured, sparse matrices even for images
of small size. To solve the image restoration problem, we use the surrogate constraint methods that can work efficiently for large problems.
Among variants of the surrogate constraint method, we consider a basic method performing a single block projection in each step and a
coarse-grain parallel version making simultaneous block projections. Using several state-of-the-art partitioning strategies and adopting different
communication models, we develop competing parallel implementations of the two methods. The implementations are evaluated based on the
per iteration performance and on the overall performance. The experimental results on a PC cluster reveal that the proposed parallelization
schemes are quite beneficial.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Parallel computing; Image restoration; Linear feasibility problem; Surrogate constraint method

1. Introduction

The purpose of the present paper is to use state-of-the-art
parallel algorithms for the restoration of heavily distorted dig-
ital images. An ideal recording device would be expected to
record an image with the following idealized property: the in-
tensity of a pixel of the recorded image should be directly
proportional to the corresponding section of the scene being
recorded. However, this property is rarely observed in practice.
Either the recorded intensity of a pixel is related to the inten-
sity in a larger neighborhood of the corresponding section of
the scene (blurring), or the recorded intensities are contami-
nated by random noise [21,27]. Image restoration is concerned
with estimating the original scene from a distorted and noisy
one. Restoration of images that have been blurred by various
factors is usually posed as a linear estimation problem ob-
tained from a discretization process, where the characteristics
of the blurring system and the noise are assumed to be known a

� This work is partially supported by the Scientific and Technological
Research Council of Turkey (TÜBİTAK) under project EEEAG-106E069.
∗ Corresponding author. Fax: +90 312 266 4047.

E-mail addresses: ubora@cs.bilkent.edu.tr (B. Uçar),
aykanat@cs.bilkent.edu.tr (C. Aykanat), mustafap@ie.bilkent.edu.tr
(M.Ç. Pınar), tahir@bilkent.edu.tr (T. Malas).

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.10.001

priori [21]. The mathematical model of the recording opera-
tion which is usually an integral equation is discretized to yield
a linear system that is solved by a host of direct and itera-
tive methods [12,22,27,28]. Among these methods, we focus
on iterative methods. The advantage of iterative methods is that
they allow a flexible and improved formulation of the restora-
tion problem [21], and the large dimensions involved in image
restoration make these methods favorable.

We follow the work [30] and pose the image restoration
problem as a linear feasibility problem [8]. The linear feasibility
problem asks for a point that satisfies a set of linear inequalities.
In matrix notation, given an M×N matrix A and M×1 vector
b, the problem is to find an N × 1 vector x such that

Ax�b. (1)

We use iterative methods for solving the linear feasibility
problem. An important class of iterative methods for the linear
feasibility problem is the projection methods developed for the
solution of the linear systems by Kacmarz (see [32]), and Cim-
mino (see [8]). Kacmarz’s and Cimmino’s works are extended
to linear inequalities by Gubin et al. [11] and Censor and
Elfving [7]. The method in [11] is known as the successive or-
thogonal projections method. In this method, an initial guess is
successively projected onto hyperplanes corresponding to the

http://www.elsevier.com/locate/jpdc
mailto:ubora@cs.bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr
mailto:mustafap@ie.bilkent.edu.tr
mailto:tahir@bilkent.edu.tr

B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204 187

boundary of the violated constraints until a feasible point sat-
isfying all inequalities is found. The method in [7] is known
as the simultaneous orthogonal projections method, where the
current point is projected onto each of the violated constraint’s
hyperplanes simultaneously, and the new point is taken to be
the convex combination of all projections.

Kacmarz and Cimmino type methods become computation-
ally very expensive when applied to image restoration problem,
mainly because a projection is made for each violated con-
straint. The surrogate constraint methods proposed by Yang and
Murty [35] and the one that we use here eliminate this prob-
lem by processing a group of violated constraints at a time. At
each iteration, a surrogate constraint is derived from a group of
violated constraints, and the current point is orthogonally pro-
jected onto this surrogate constraint. The process is repeated
until a feasible solution is found.

Yang and Murty [35] proposed three variants of surrogate
constraint methods (see Section 3 for an overview). The Ba-
sic Surrogate Constraint Method (BSCM) takes all violated
constraints in the system and makes successive projections of
the current point. The Sequential Surrogate Constraint Method
(SSCM) and the Parallel Surrogate Constraint Method (PSCM)
on the other hand, work on a small subset of the violated con-
straints. SSCM is based on successive block projections, while
PSCM is based on simultaneous block projections. Although
the original PSCM converges slowly compared to SSCM, it
becomes competitive with an adjusted step sizing rule [30].

Since BSCM has been shown to be faster than SSCM [30],
we give efficient parallelizations of BSCM and the improved
version of PSCM. State-of-the-art partitioning strategies are
employed in the present paper for the parallelization of these
two methods. Both BSCM and PSCM involve repeated matrix-
vector and matrix-transpose-vector multiplies, and regular
operations such as inner products and vector updates. Partition-
ing sparse matrices is a crucial issue in the parallelization of
BSCM and PSCM, since matrix-vector multiplies incur irreg-
ular dependencies. Both one-dimensional (1D), e.g., rowwise,
and two-dimensional (2D), e.g., checkerboard, sparse matrix
partitioning techniques are investigated (Sections 4 and 5,
respectively). The recently proposed hypergraph partitioning
models [3,4,6,34] are used for load balancing and communica-
tion overhead minimization for both partitioning frameworks.
Parallel algorithms for BSCM and PSCM are implemented
for a message-passing multicomputer based on the above
mentioned partitioning frameworks. The performance of the
parallel implementations, the effects of different partitioning
strategies on the parallel performance and on the speed of
convergence, and the restoration abilities of the surrogate con-
straint methods are investigated experimentally in Section 6.

2. Background

2.1. Formulation of the problem

A general formulation of the image restoration problem with
nonseparable, anisotropic, space variant and nonlocal distor-
tions is given in [31], where the image g(r) recorded on the

film of an image f (�(r, t)) is given by

g(r) = c

∫ Tr

t=0
f (�(r, t)) dt. (2)

Here, t denotes time, Tr denotes the duration of the recording
period, r denotes the position vector on the 2D image, c is a
constant, f (�(r, t)) represents the observed (distorted) image,
�(r, t) represents the time varying, nonlinear distortion which
can model the following types of motion:

(1) Translational motion: �(r, t) = r − r(t), where �(r, t) is a
given function representing the motion of the original im-
age or camera as a function of time (arbitrary 2D motions
and accelerations are possible);

(2) Isotropic scaling: �(r, t) = r/m(t), where m(t) is an arbi-
trary scaling function of time (by properly choosing m(t),
it is possible to model the movement of the object towards
or away from the camera);

(3) Rotation: �(r, t) = R�(t) r , where R�(t) is the 2×2 rota-
tion matrix for �(t) which is an arbitrary function of time
representing the angle of rotation.

The image restoration problem consists of recovering f from g.
Since, Eq. (2) represents a linear relation between g and f, it is
possible to write it as

g(r) =
∫

r ′
H(r, r ′)f (r ′) dr ′, (3)

where H(r, r ′) represents the blurring system. The discrete
counterpart of Eq. (3) is simply the linear system of equations
g = Hf , where g and f are mn×1 vectors and H is an mn×mn

matrix for an image of size m× n.
Typically, there is a measurement error or noise associated

with the observation g, leading to an inconsistent system of
equations. Denoting the noisy observation by g′, the problem
can be expressed as a system of inequalities:

|(g′ −Hf)i |��, i = 1, . . . , mn, (4)

where (g′ − Hf)i is the ith component of g′ − Hf , and �
is a suitable error tolerance parameter which is usually taken
as a percentage of the mean value of g. For i = 1, . . . , mn,
|(g′ −Hf)i |�� implies that

Hfi � �+ g′i if g′i �Hfi,

−Hfi � �− g′i if g′i �Hfi. (5)

Thus, the above system is converted to a linear feasibility prob-
lem of the form

Ax�b by setting

A =
[

H

−H

]
2mn×mn

, x = fmn×1, b =
[

ε + g′
ε − g′

]
2mn×1

,

(6)

where ε is an mn×1 vector of �’s. For further details, the reader
is referred to [29, Chapter 5].

188 B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204

2.2. Parallel matrix-vector multiplies

2.2.1. Algorithms based on 1D matrix partitioning
Suppose that rows and columns of an M × N matrix H are

permuted to yield a K ×K block structure as
⎡
⎢⎢⎢⎣

H11 H12 · · · H1K

H21 H22 · · · H2K

...
...

. . .
...

HK1 HK2 · · · HKK

⎤
⎥⎥⎥⎦ (7)

for rowwise partitioning among K processors. Each processor
Pk holds the kth row-stripe Hk = [Hk1 · · ·HkK] of size mk×N ,
where

∑
mk = M . The kth column-stripe [HT

1k · · ·HT
Kk]T is of

size M × nk , where
∑

nk = N .
In row-parallel y ← Hx multiply, the y and x vectors are

partitioned as y = [yT
1 · · · yT

K]T and x = [xT
1 · · · xT

K]T , where
processor Pk is responsible for computing subvector yk of size
mk while holding subvector xk of size nk . In this setting, the
common algorithm [13,33,34] executes the following steps at
each processor Pk:

(1) For each nonzero off-diagonal block H�k , send sparse vec-
tor x̂�

k to processor P�, where x̂�
k contains only those en-

tries of xk corresponding to the nonzero columns in H�k .
For each nonzero off-diagonal block Hk�, receive x̂k

� from
processor P�.

(2) Perform the local matrix-vector multiply yk ← Hk× x̃k ,
where x̃k is the union of the local xk vector and x̂k

� sub-
vectors received in step 1.

In step 1, Pk might be sending the same xk-vector entry to
different processors according to the sparsity pattern of the
respective column of H. This multicast-like operation is referred
to as expand operation.

In column-parallel q ← HT � multiply, processor Pk effec-
tively stores (Hk)

T = HT
k which is the kth column-stripe of

HT . The � and q vectors are partitioned as � = [�T
1 · · · �T

K]T
and q = [qT

1 · · · qT
K]T , where processor Pk is responsible for

computing subvector qk of size nk while holding subvector �k

of size mk . In this setting, each processor Pk executes the fol-
lowing steps:

(1) Perform the local matrix-vector multiply qk ← HT
k �k .

(2) For each nonzero off-diagonal block HT
�k , form sparse vec-

tor q̂k
� which contains only those results of qk

� = HT
�k×�k

corresponding to the nonzero rows in HT
�k . Send q̂k

� to pro-
cessor P�. For each nonzero off-diagonal block HT

k� re-
ceive partial result q̂�

k from processor P�, and update qk ←
qk+q̂�

k .

In step 2, the multinode accumulation performed on qk-vector
entries is referred to as fold operation.

2.2.2. Algorithms based on 2D matrix partitioning
Consider a 2D checkerboard partitioning on H for the com-

putations of the form y ← Hx. In this partitioning scheme,
the rows and the columns of matrix H are divided into R

row-stripes and C column-stripes yielding an R × C block
structure. This block structure generalizes the one given in
Eq. (7), and can be mapped naturally onto a 2D mesh (R
rows and C columns) of K = R × C processors. Therefore,
the parallel system is considered as a logical 2D mesh [20].
In this setting, block Hk� is assigned to processor Pk�. Note
that nonzeros in any row (column) of matrix H are assigned
to the processors in the same row (column) of the processor
mesh.

For the sake of clarity, we define a two level partitioning on
the vectors x and y. In the first level, the row and column-stripes
of the H matrix define R- and C-way partitions on the y and x

vectors, respectively. In the second level, each x and y subvector
is assumed to be further partitioned into R and C subsubvectors,
respectively. For example, yk denotes the kth subvector of y

which contains subsubvector yk� for � = 1, . . . , C. In a dual
manner, x� denotes the �th subvector of x which contains xk� for
k = 1, . . . , R. A dual scheme is adopted in indexing the x and
y subsubvectors so that each processor holds the subsubvectors
of x and y with the same indices.

In 2D row-column-parallel y ← Hx multiply, each pro-
cessor Pk� is responsible for computing the subsubvector yk�

while holding subsubvector xk�. In this setting, C row-parallel
submatrix-vector multiplies algorithms are concurrently per-
formed along the columns of the processor mesh to compute C
partial result vectors y� for � = 1, . . . , C, where y = ∑

� y�.
That is, for each � = 1, . . . , C, all of the R processors in the
�th column of the processor mesh execute the row-parallel al-
gorithm for computing the submatrix-vector multiply y� ←
H∗� x�, where H∗� denotes the �th column-stripe of matrix H
in block structure. At the end of this step, processor Pk� holds
the kth portion y�

k of y�. Then, R fold operations are con-
currently executed along the rows of the processor mesh to
compute y ← ∑

� y�. That is, for each k = 1, . . . , R, all of
the C processors in the kth row of the processor mesh per-
form multinode accumulation on the yk-subvector entries so
that Pk� ends up with the subsubvector yk�. This last step effec-
tively corresponds to step 2—fold communication step—of the
column-parallel matrix-vector multiply algorithm yk ← Hk∗x,
where Hk∗ denotes the kth row-stripe of matrix H in block
structure.

3. Surrogate constraint methods

The successive orthogonal projections method developed by
Kacmarz (see [32]) successively projects iterate xt at iteration
t onto hyperplanes aix

t = bi corresponding to those inequal-
ities violated by xt , where ai denotes the ith row of A. Sur-
rogate constraint methods [35], on the other hand, derive sur-
rogate hyperplanes from a set of violated constraints, and take
the projection of the current point onto surrogate hyperplanes.
Surrogate hyperplanes eliminate the drawback of making pro-
jections for each of the violated constraints. Among the meth-
ods proposed by Yang and Murty [35], the BSCM derives sur-
rogate hyperplanes from all of the violated constraints in the
system, whereas the SSCM and the PSCM consider a subset of
the constraints.

B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204 189

Fig. 1. BSCM applied to Eq. (6).

3.1. Basic surrogate constraint method (BSCM)

BSCM combines all of the violated constraints and makes
just one projection at each iteration t : if the current point xt

violates the system Ax�b, a 1×M weight vector � is generated
where 0 < �i < 1 if the ith constraint is violated (i.e., aix

t >

bi), and �i = 0 otherwise. The �i values are normalized so that∑M
i=1 �i = 1 [35]. Then, the surrogate constraint (�A)xt �(�b)

is generated for which the corresponding surrogate hyperplane
is Sh = {x : (�A)xt = (�b)}. The next point xt+1 is obtained
by projecting xt onto Sh as

xt+1 = xt − �dt where dt = �Axt − �b

‖�A‖2 (�A)T . (8)

Here, dt is the projection vector, and � is a relaxation parameter
that determines the location of the next point which is in the
line segment joining the current point and its projection on the
hyperplane. When � = 1 the next point is the exact orthogonal
projection of the current point. If 0 < � < 1, the step taken is
shorter (underrelaxation) and if 1 < � < 2, then the step taken
is longer (overrelaxation) [8].

The selection of the weight vector � is an issue for the solu-
tion of the problem. Weights may be distributed equally among
all violated constraints or they can be assigned in proportion to
the amount of violations. We use a hybrid approach to compute
�i corresponding to the violated constraint i as

�i = w1
(aix

t − bi)∑
j∈V C(ajxt − bj)

+ w2

|V C| , (9)

where w1 and w2 are two appropriate weights summing up to
1, and VC is the set of indices of the violated constraints at
iteration t [29].

Verification of the convergence of the algorithm is based on
the strict Fejer-monotonicity of the generated sequence {xt }∞t=0,
i.e., for any feasible x and iteration t it is true that ‖xt+1−x‖ <

‖xt − x‖. If the feasibility check allows a certain degree of
tolerance �, so that Aix

t is compared with bi + �, then the
algorithm converges after a finite number of iterations [35].

Fig. 1 displays the pseudocode of BSCM applied to the sys-
tem in Eq. (6). Since the system is composed of two copies of

the same matrix with different signs, only the positive one is
held during the computations. We call the system Hx�ε+g as
the upper system and −Hx�ε− g as the lower system. Since
q = �+H + �−(−H) = (�+ − �−)H , we form the vector
�← �+ − �− and then perform the multiply �H . To compute
y− ← −Hx, simply y ← Hx is negated. As a result the sparse
matrix vector multiplies −Hx and �−(−H) are avoided. Note
that the original form of BSCM can be recovered by remov-
ing the operations involving vectors with a “−” superscript. In
Fig. 1 and in the following pseudocodes, bold upper case let-
ters denote matrices, bold lowercase letters denote column vec-
tors of appropriate dimensions, plain lowercase letters denote
scalars, and 〈·, ·〉 denotes the inner product of two vectors.

The run time of a single iteration of BSCM applied to
Eq. (6) is

TBSCM = (4Z + 13M + 5N)tflop, (10)

where Z denotes the number of nonzeros in matrix H, and tflop
denotes the time taken for a single scalar addition or multipli-
cation operation.

3.2. Sequential surrogate constraint method (SSCM)

Instead of working on the entire A matrix, SSCM partitions
the system into subsystems and then solves the feasibility prob-
lem by applying the basic method on the subsystems in a cyclic
order. Specifically, let matrix A be partitioned rowwise into K

submatrices, and the right-hand side vector b be partitioned
conformably into K subvectors, as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1
...

Ak

...

AK

⎤
⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1
...

bk

...

bK

⎤
⎥⎥⎥⎥⎥⎥⎦

. (11)

Here, Ak is an mk×N submatrix having zk nonzeros, bk is
an mk × 1 subvector, and

∑K
k=1 mk = M and

∑K
k=1 zk = Z.

Surrogate constraints are defined as (�kAk)x��kbk for each
block, where �k is of dimension mk and is as defined above.

190 B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204

Fig. 2. PSCM applied to Eq. (6).

SSCM proceeds by projecting the current iterate onto surrogate
hyperplanes (�kAk)x = �kbk successively for k = 1, . . . , K in
cyclic order and increments t at each block. For each block,
the next point is computed as

xt+1= xt −�dt
k where dt

k =
�t

k(Akx
t − bk)

‖�t
kAk‖2 (�t

kAk)
T . (12)

Here, dt
k is the projection vector of the kth block.

In SSCM each point xt that is projected on block k is a result
of the projection of xt−1 performed in the preceding block
k − 1. Thus, successive block projections imply a dependency
between the blocks of the system, causing the algorithm to be
highly sequential.

The run time of SSCM applied to Eq. (6) is

TSSCM =
K∑

k=1

(4zk + 13mk + 5N)tflop

= (4Z + 13M + 5NK)tflop. (13)

Note that each block brings an extra computation time of
5Ntflop.

3.3. Parallel surrogate constraint method (PSCM)

Yang and Murty [35] proposed PSCM as a coarse-grain par-
allel variant of SSCM which overcomes its serial nature. PSCM
carries out simultaneous block projections and generates the
next point as a convex combination of these projections. As
in SSCM, A is divided rowwise into K contiguous blocks as
shown in Eq. (11). At iteration t of PSCM, the next point xt+1

is computed as

xt+1 = xt − �
K∑

k=1

�kd
t
k. (14)

Here, �k are nonnegative numbers summing up to 1, and dt
k is

as defined in Eq. (12).
In Eq. (14), each projection has its own influence �k . This

influence is taken into account to accelerate the convergence.
Hence, �k can be taken to be proportional to the number of vio-
lated constraints or the cumulative error of the respective block.
However, as clarified in [29], no matter how �k is chosen, the
progress of PSCM is much slower than that of SSCM. Actu-
ally this method is a variant of the Cimmino type algorithms
which are known to suffer from slow convergence. To allevi-
ate this problem, García-Palomares and Gonzales-Castaño [9]
proposed an acceleration procedure for the Cimmino type algo-
rithms by giving an improved step sizing rule. Later, Özaktaş
et al. [30] used this rule in the parallel surrogate algorithm and
generated the next point as follows:

xt+1 = xt − �

∑K
k=1 ‖dt

k‖2

‖
K∑

k=1
dt
k‖2

K∑
k=1

dt
k, (15)

where dt
k is defined as in Eq. (12). With this modification,

the step sizes taken are enlarged so that the parallel method
converges much more rapidly. Fig. 2 displays PSCM applied
to Eq. (6).

The run time of PSCM applied to Eq. (6) is

TPSCM =
K∑

k=1

(4zk + 13mk + 6N)tflop + 4Ntflop (16)

= (4Z + 13M + 6NK + 4N)tflop. (17)

For SSCM and improved PSCM, as the number of blocks, K ,
increases, the number of iterations required for convergence
is likely to decrease. However, each block brings an extra run
time of 5Ntflop and 6Ntflop for SSCM and PSCM, respectively.

B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204 191

Hence, the run times of SSCM and PSCM may increase by the
increasing K , especially for highly sparse systems.

4. Parallelization based on 1D matrix partitioning

As seen in Figs. 1 and 2, repeated matrix-vector and matrix-
transpose-vector multiplies of the forms y ← Hx and q ←
HT � constitute the computational kernels of both BSCM and
PSCM. These methods also involve linear vector operations
such as inner products and vector updates. In terms of the de-
pendencies between matrix-vector multiplies and linear vector
operations, the vectors can be classified as x-space and y-space
vectors so that the linear vector operations occur only between
the vectors that are in the same space. In this setting, x, q, and
d are x-space vectors, whereas y, b+, b−, �, �+, �−, �+, and
�− are y-space vectors.

In 1D parallelization of BSCM, the matrix H may be par-
titioned rowwise or columnwise. However, since the PSCM
formulation is based on rowwise blocking, it requires rowwise
partitioning of matrix H. Thus, for the sake of simplicity, we
assume a K-way rowwise partitioning of H for both methods,
where K denotes the number of processors. A rowwise parti-
tion on H induces a columnwise partition on HT . Therefore,
the row-parallel algorithm is adopted for y ← Hx, and the
column-parallel algorithm is adopted for q ← HT �.

4.1. Basic surrogate constraint method

Parallel BSCM based on 1D partitioning executes the steps
given in Fig. 3 at each processor Pk . In this figure and the
following figures, subscripts are used to denote the subvectors
and submatrices that are stored locally in a processor, whereas
superscripts are used to denote the partial results computed by
a processor. For example, Hk denotes the kth row-stripe of the

Fig. 3. Parallel BSCM based on 1D partitioning of the H matrix.

global H matrix stored by the processor Pk; xk denotes the kth
stripe of the global x vector maintained by processor Pk; 	k ←
〈qk, qk〉 denotes partial inner product result for the global in-
ner product 	← 〈q, q〉 computed by processor Pk . The global
communication operators globalAnd and globalSum combine
the input arguments of each processor using the operations and
and sum respectively, and distribute the result back to all pro-
cessors. As seen in Fig. 3, scalars
 and 	 are reduced together
in order to amortize the latency overhead in the reduction op-
erations.

4.2. Parallel surrogate constraint method

Let the number of blocks, K , be equivalent to the number of
processors, that is each processor is given a single block. Then,
parallel PSCM executes the steps given in Fig. 4 at each pro-
cessor Pk . Since the resulting vector q for q ← HT � multiply
need not to be constructed, the parallelization of PSCM does
not necessitate the execution of the column-parallel multiply
algorithm as a whole. As seen in the figure, the local projec-
tion vector dk is obtained from the local intermediate vector
qk through linear vector operations, and then the sum of the
local projection vectors is computed through a fold operation
on these local dk vectors. This fold operation on the local dk

vectors can be considered as the delayed execution of the fold
operation in step 2 of the column-parallel multiply algorithm.
Note that this fold operation also provides each processor Pk

with the subvector dk needed to update xk . The scalar � is ob-
tained through reducing the inner products of local projection
vectors �k = ‖dk‖2 using the globalSum operator. The scalar �
is obtained through computing the inner product of global pro-
jection vector d. Computing � in parallel requires reducing the
�k = ‖dk‖2 values. The scalars � and � are reduced together
for efficiency issues as in parallel BSCM.

192 B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204

Fig. 4. Parallel PSCM based on 1D partitioning of the H matrix.

4.3. Load balancing and communication-overhead
minimization

Sparse matrix partitioning for parallel matrix-vector multi-
plies of the form y ← Hx is formulated in terms of the graph
[17] and hypergraph partitioning problems [4]. Both of these
problems are NP-complete [10,23]. We use the hypergraph-
based formulation for two reasons. First, the objective in
hypergraph-based formulation is an exact measure of the total
communication volume. Second, the matrices in our methods
are unsymmetric; standard graph partitioning is not readily
applicable [4,13,14].

We use the column-net hypergraph model of Çatalyürek and
Aykanat [4] to obtain a K-way rowwise partition on matrix H.
The rowwise partition on H induces a columnwise partition on
HT . As is known [13,34], the communication requirements of
the row-parallel y ← Hx and the column-parallel q ← HT �
multiplies are the same in terms of the total volume and num-
ber of messages. Therefore, the above partitioning enables effi-
cient multiplies with HT as well. As mentioned earlier, the x-
and y-space vectors do not undergo linear vector operations.
Hence, an unsymmetric partitioning on H is allowable. We use
the techniques discussed in [34] to exploit this freedom in or-
der to minimize the communication overhead due to the total
number of messages, maximum volume and number of mes-
sages handled by a single processor as well as the total volume
of messages.

In parallelizing BSCM and PSCM, we consider balancing
the computational loads of the processors only for the matrix-
vector and matrix-transpose-vector multiplies. The loads of the
processors during linear vector operations are determined by
the partitioning on H. Therefore, imbalances in processors’

loads may occur during these operations. Obtaining balance in
the vector operations is possible within multi-constraint parti-
tioning framework [5,18,19]. In this work, we omit obtaining
computational balance during linear vector operations for two
reasons. First, imbalances in linear vector operations are tol-
erable, because these operations are not costly. Second, multi-
constraint formulation restricts the search space in a hypergraph
partitioning problem; this restriction may lead to a higher com-
munication cost.

5. Parallelization based on 2D matrix partitioning

The row-column-parallel algorithm is used for both the
matrix-vector multiply y ← Hx and matrix-transpose-vector
multiply q ← HT �. There is a duality between the interpro-
cessor communication patterns of y ← Hx and q ← HT �
multiplies. The communication pattern of the expand operation
in q ← HT � is exactly the same as that of the fold operation
in y ← Hx and vice versa.

5.1. Basic surrogate constraint method

Parallel BSCM based on checkerboard partitioning executes
the steps given in Fig. 5 at each processor Pk�. We use the
same convention on the usage of subscripts and superscripts.
This time, however, we use two indices k� to designate proces-
sor Pk�’s data. The single indices k or � are used for the results
pertaining to the kth row-stripe or �th column-stripe, respec-
tively. Recall that the communication operations required for
matrix-vector multiplies are confined to the rows or columns
of the processor mesh. Only the scalars
 and 	 are obtained
via a global sum operation among all processors.

B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204 193

Fig. 5. Parallel BSCM based on 2D checkerboard partitioning of the H matrix.

Fig. 6. Parallel PSCM based on 2D checkerboard partitioning of the H matrix.

5.2. Parallel surrogate constraint method

Different from the 1D partitioning, the number of row blocks
for PSCM is R not K . Parallel PSCM based on checkerboard
partitioning executes the steps given in Fig. 6 at each processor

Pk�. As seen in Fig. 6, the 2D implementation of PSCM is
similar to the 2D implementation of BSCM. However, in order
to calculate the projection vector of the kth row-stripe, local

k� and 	k� scalars are computed and are added up in the kth

row of the processor mesh. Since � = ∑R
k=1

∑C
�=1 �k� and

194 B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204

� = ∑R
k=1

∑C
�=1 �k�, a global sum operation is required to

apply the step sizing rule.

5.3. Load balancing and communication-overhead
minimization

A number of different techniques for checkerboard parti-
tioning of sparse matrices are given in [6,15,25,24]. Among
these, only the hypergraph partitioning model of Çatalyürek
and Aykanat [6] exploits sparsity to reduce communication cost.
Therefore, we use hypergraph partitioning model to obtain an
R × C checkerboard partition on the matrix H.

Since the communication operations are confined to the rows
and columns of the processor mesh, the maximum number of
messages handled by a single processor for a parallel system
with K = R×C processors is at most R+C−2 (compared to
K−1 in 1D). Therefore, the checkerboard partitioning method
leads to reduced communication latency overhead without ex-
plicit effort.

The row-column-parallel matrix-vector multiply algorithm
given in Section 2.2.2 uses point-to-point (personalized) com-
munication scheme for the expand and fold operations. Since
the expand and fold operations are confined to a smaller number
of processors in 2D checkerboard partitioning, all-to-all com-
munication schemes are viable, i.e., an all-to-all broadcast and
a multinode accumulation can be performed for the expand and
fold operations. These algorithms can be implemented using
hypercube algorithms to reduce the maximum number of mes-
sages handled by a processor to
log R� +
log C� ≈
log K�.
The 2D hypergraph model [6] can be extended to handle the
minimization of communication volume overhead in this all-
to-all communication scheme [2].

6. Results

The parallel performance and the restoration abilities of the
surrogate constraint methods are evaluated experimentally. Par-
allel performance analysis is first carried on an iteration ba-
sis. This approach shows the amount of gain achieved by the

Table 1
Properties of the H matrices

H matrix Number of rows/cols Number of nonzeros

Total Per

Row/col Row Col

Avg Min Max Min Max

iso150× 200 30 000 209 377 6.98 1 16 1 7
iso300× 400 120 000 839 377 6.99 1 16 1 7
iso600× 800 480 000 3 359 377 7.00 1 16 1 7

rot150× 200 30 000 168 775 5.63 1 8 1 6
rot300× 400 120 000 681 907 5.68 1 8 1 6
rot600× 800 480 000 2 734 319 5.70 1 8 1 6

irt150× 200 30 000 205 633 6.85 1 19 3 7
irt300× 400 120 000 823 661 6.86 1 19 3 7
irt600× 800 480 000 3 294 639 6.86 1 19 3 7

Fig. 7. Sparsity patterns of the H matrices corresponding to the three types
of blur: (a) iso150× 200; (b) rot150× 200; (c) irt150× 200.

proposed parallelization schemes. Then, overall performance
results and examples of blurred and restored images are given.

The experiments were carried out on a Beowulf Cluster
equipped with 400 MHz Intel Pentium II processors with
512 KB cache size and 128 MB RAM. The operating system is
Debian GNU/Linux 3.0 distribution with Linux kernel 2.4.14.
The interconnection network is comprised of a 3COM Su-
perStack II 3900 managed switch connected to Intel Ethernet
Pro 100 Fast Ethernet network interface cards at each node.
The parallel algorithms were implemented using LAM/MPI
6.5.6 [1].

6.1. Experimental setup

Three types of blurs were used for the construction of the
distorted images. In all of the blurs, the record time was set
as 3.5 s and the movement of the object is sampled at 0.5 s
intervals. The first type of blur models isotropic scaling. The
x- and y-axis coordinates of the function � were chosen as
x/(1+ 0.1s2) and y/(1+ 0.1s2). The second blur is a result of
rotation motion. The object was rotated clockwise 6◦ per second
for the first 1.5 s and then was rotated counter-clockwise 4◦ per
second for the remaining 2 s. The third blur denotes a combined
effect of translational motion, isotropic scaling, and rotation. In
the translational motion, the object accelerates with 0.5 m/s2

in the x direction for the first 1.5 s and then it turns back with
a constant speed of 1.0 m/s, and moves along the y direction
with a constant speed of 1.0 m/s throughout the recording time.
Isotropic scaling and rotation effects of this blur are the same
as those of the first and second blurs, respectively.

B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204 195

Table 2
Per iteration execution times of parallel BSCM and PSCM (in ms)

H matrix Sequential BSCM K Parallel BSCM Parallel PSCM

1D 2D 1D 2D

P2P P2P A2A P2P P2P A2A

iso150× 200 75.1 4 19.7 15.9 17.1 19.7 16.5 17.3
8 11.3 9.8 11.2 11.2 10.1 10.5

16 7.3 6.9 9.6 7.1 7.1 8.0
24 6.0 6.3 10.5 6.0 6.5 8.0

iso300× 400 324.1 4 81.1 67.7 69.4 81.8 70.2 70.1
8 41.3 34.2 37.9 41.2 35.0 36.6

16 22.3 19.7 24.8 22.3 20.0 22.3
24 16.5 15.4 23.2 16.7 15.6 19.0

iso600× 800 1430.1 4 335.4 281.8 288.8 343.4 294.9 295.1
8 171.8 141.5 149.0 175.0 146.8 149.3

16 86.5 73.5 85.1 87.6 76.5 81.3
24 60.1 51.6 64.7 60.5 52.8 59.0

rot150× 200 71.2 17.9 14.6 15.6 18.0 15.4 16.0
8 10.0 8.7 9.8 10.1 9.0 9.5

16 6.3 6.1 8.0 6.4 6.3 6.9
24 5.3 5.7 8.5 5.3 6.0 6.7

rot300× 400 299.5 4 75.9 63.0 65.1 76.9 65.4 66.0
8 38.4 32.0 34.3 38.9 33.0 34.0

16 20.4 17.9 21.1 20.6 18.3 19.6
24 14.8 13.7 18.1 14.8 14.3 15.8

rot600× 800 1319.3 4 320.8 255.9 269.2 329.7 269.6 275.0
8 164.7 132.5 138.7 169.1 138.0 140.9

16 85.1 69.1 74.9 86.2 71.9 74.3
24 56.2 47.8 56.1 56.7 49.6 53.1

irt150× 200 75.6 4 25.2 20.7 22.4 25.3 21.1 21.9
8 17.3 15.1 23.0 17.5 15.5 18.3

16 12.8 11.7 21.6 13.0 12.2 15.2
24 10.9 9.8 23.0 10.9 10.2 15.7

rot300× 400 325.1 4 106.3 89.5 94.7 107.5 90.1 92.5
8 84.8 59.6 85.4 86.1 60.7 74.8

16 63.0 44.6 73.0 63.3 45.8 53.9
24 43.9 32.1 74.1 44.3 33.5 51.6

rot600× 800 1419.7 4 508.6 407.8 412.8 518.5 418.5 416.3
8 351.7 291.1 383.0 356.8 294.7 363.8

16 274.7 171.1 301.4 277.3 171.0 259.8
24 246.5 130.7 274.6 245.8 129.7 224.4

Average speedup 4 3.7 4.5 4.3 3.6 4.3 4.2
8 6.4 7.8 6.8 6.4 7.6 7.1

16 11.0 12.9 10.1 11.0 12.6 11.2
24 14.8 16.8 11.6 14.7 16.3 13.6

Using these blurring effects, three different images of
150×200, 300×400, and 600×800 pixels were produced with
zero boundary condition, i.e., pixels outside the borders of
the images are black [28]. Noise was simulated by adding
%1 normally distributed zero mean random variables with a
standard deviation of one, e.g., normally distributed random
noise scaled such that 2-norm of the noise is 0.01 times the

2-norm of the blurred image. This type of noise is typical
in similar works (see [27,26,28] and the references therein).
Table 1 and Fig. 7 display the properties and the sparsity pat-
terns of the resulting H matrices. The prefixes “iso”, “rot”,
and “irt” are, respectively, used to denote the isotropic, ro-
tation, and combined (isotropic + rotation + translational)
blurs.

196 B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204

0

2

4

6

8

10

12

14

16

18

20

22

24

4 8 16 24

Number of processors

4 8 16 24

Number of processors

P
e
r

it
e
ra

ti
o

n
 s

p
e
e
d

u
p

0

2

4

6

8

10

12

14

16

18

20

22

24

P
e
r

it
e
ra

ti
o

n
 s

p
e
e
d

u
p

1D-P2P 2D-P2P 2D-A2A

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

1D-P2P 2D-P2P 2D-A2A

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

0

2

4

6

8

10

12

14

16

18

20

22

24

4 8 16 24

Number of processors

P
e
r

it
e
ra

ti
o

n
 s

p
e
e
d

u
p

1D-P2P 2D-P2P 2D-A2A

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

(b)

(a)

(c)

Fig. 8. Per iteration speedup charts of BSCM and PSCM for the images of size 300× 400: (a) isotropic blur; (b) rotation blur; (c) combined blur.

The hypergraph partitioning tool PaToH [5] was used with
the default parameters to obtain the desired 1D and 2D parti-
tionings. Since PaToH incorporates randomized algorithms, it

was run 10 times starting from different seeds for every par-
titioning instance. In all partitioning instances, the observed
imbalance ratios were below 5%. Averages of the parallel

B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204 197

Table 3
Communication patterns for the H matrices corresponding to the images of size 300× 400

H matrix K Total message Maximum message

Volume Number Volume Number Volume Number

y = Hx / q = HT � y = Hx q = HT �

1D-P2P
iso300× 400 4 1721 7.4 560 2.5 702 2.8

8 3682 21.2 654 4.2 803 4.6
16 7794 48.5 703 6.5 859 5.4
24 12 539 76.9 745 7.5 962 6.1

rot300× 400 4 598 6.2 187 2.1 248 2.1
8 1452 16.0 260 3.3 306 3.2

16 3159 35.2 297 4.2 333 3.6
24 5451 59.4 317 5.1 400 4.7

irt300× 400 4 33 827 6.4 11 089 2.2 15 417 3.0
8 100 993 29.8 15 086 5.8 18 833 5.8

16 163 814 104.7 11 579 10.4 14 327 10.3
24 180 096 168.3 8777 15.0 10 904 11.3

2D-P2P
iso300× 400 4 1800 7.6 590 2.0 590 2.0

8 4075 29.9 733 4.0 733 4.0
16 10 547 82.4 1170 6.0 1170 6.0
24 17 303 163.3 1282 8.0 1282 8.0

rot300× 400 4 645 6.0 238 2.0 238 2.0
8 1945 26.6 357 4.0 357 4.0

16 6073 67.1 784 5.5 784 5.5
24 9756 124.2 819 7.5 819 7.5

irt300× 400 4 27 430 8.0 10 112 2.0 10 112 2.0
8 79 212 31.2 11 963 4.0 11 963 4.0

16 145 351 94.0 11 813 6.0 11 813 6.0
24 175 723 191.8 9198 8.0 9198 8.0

2D-A2A
iso300× 400 4 1405 8.0 557 2.0 557 2.0

8 6225 24.0 1034 3.0 1034 3.0
16 20 701 64.0 1867 4.0 1867 4.0
24 37 169 120.0 2413 5.0 2413 5.0

rot300× 400 4 655 8.0 246 2.0 246 2.0
8 2692 24.0 480 3.0 480 3.0

16 10 524 64.0 989 4.0 989 4.0
24 19 555 120.0 1239 5.0 1239 5.0

irt300× 400 4 27 346 8.0 10 107 2.0 10 107 2.0
8 121 924 24.0 18 252 3.0 18 252 3.0

16 259 999 64.0 18 478 4.0 18 478 4.0
24 391 431 120.0 18 341 5.0 18 341 5.0

performance and convergence results obtained from these
runs are displayed in the following tables and bar charts. In
all tables and figures, “P2P” and “A2A” refer to the point-
to-point and all-to-all communication schemes, respectively.
In 2D partitionings, the number of processors in rows and
columns of the processor mesh are not restricted to be pow-
ers of two. Therefore, all-to-all communication primitives
needed in fold and expand operations are implemented us-
ing the all-to-all broadcast algorithm proposed by Jacunski
et al. [16].

6.2. Per iteration performance

Table 2 displays per iteration run times of the parallel im-
plementations of BSCM and PSCM, and the serial run time of
BSCM. The bottom of the table displays the speedup values
averaged over all instances for each possible number of pro-
cessors. The per iteration run time of BSCM is taken as the
sequential run time in calculating the speedups. The bar charts
for the individual speedup values are displayed in Fig. 8 for
300× 400 images.

198 B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204

Table 4
Communication patterns of the 2D partitionings—dissected into fold and expand phases—for the H matrices given in Table 3

H matrix K Expand Hx / Fold HT � Fold Hx / Expand HT �

Volume Number Volume Number

Total Max Total Max Total Max Total Max

P2P
iso300× 400 4 678 237 3.6 1.0 1122 354 4.0 1.0

8 2223 452 21.9 3.0 1852 346 8.0 1.0
16 1878 276 33.6 2.9 8717 1095 48.0 3.0
24 3700 322 91.3 5.0 13 603 1074 72.0 3.0

rot300× 400 4 197 99 2.0 1.0 448 140 4.0 1.0
8 829 153 18.6 3.0 1116 215 8.0 1.0

16 818 148 19.1 2.5 5255 712 48.0 3.0
24 1458 133 52.2 4.5 8298 746 72.0 3.0

irt300× 400 4 12 157 5920 4.0 1.0 15 273 4192 4.0 1.0
8 44 535 7744 23.2 3.0 34 677 5597 8.0 1.0

16 44 722 4237 46.0 3.0 100 629 8984 48.0 3.0
24 77 991 4034 119.8 5.0 97 733 5313 72.0 3.0

A2A
iso300× 400 4 597 296 4.0 1.0 808 260 4.0 1.0

8 4410 637 16.0 2.0 1815 396 8.0 1.0
16 4313 493 32.0 2.0 16 388 1373 32.0 2.0
24 10 924 833 72.0 3.0 26 246 1581 48.0 2.0

rot300× 400 4 201 100 4.0 1.0 454 146 4.0 1.0
8 1625 278 16.0 2.0 1067 203 8.0 1.0

16 1632 221 32.0 2.0 8892 768 32.0 2.0
24 4280 312 72.0 3.0 15 275 928 48.0 2.0

irt300× 400 4 12 144 5921 4.0 1.0 15 202 4186 4.0 1.0
8 87 538 12 874 16.0 2.0 34 386 5378 8.0 1.0

16 87 635 6858 32.0 2.0 172 364 11 620 32.0 2.0
24 226 086 10 275 72.0 3.0 165 345 8066 48.0 2.0

Processors are organized into dimensional meshes of size 2× 2 for K = 4, 4× 2 for K = 8, 4× 4 for K = 16, and 6× 4 for K = 24.

As seen in Table 2, the 2D-P2P scheme leads to better
performance than the other two schemes. In particular, the 2D-
P2P scheme leads to faster execution in 34 and 31 instances
out of 36 instances for parallel BSCM and parallel PSCM, re-
spectively. The 1D-P2P scheme obtains faster execution times
in only 5 instances for both BSCM and PSCM. The 2D-A2A
scheme is the fastest only in 4-way parallelization of PSCM
for iso600× 800 and irt600× 800. As seen in Table 2, BSCM
and PSCM display comparable parallel performance, where
BSCM performs slightly better on the average. This perfor-
mance difference slightly increases in favor of parallel BSCM
in 2D partitioning. These experimental findings were expected
because PSCM incurs extra computation as discussed in
Section 3. Moreover, parallel PSCM requires an extra commu-
nication along the rows of processor mesh for computing the

k and 	k values in 2D partitioning as seen in Fig. 6.

As seen in Table 2 and Fig. 8, among the blur types used,
the data sets produced by the isotropic and rotation blur lead
to comparable speedup values, whereas the data sets produced
by combined blur lead to inferior parallel performance. This
phenomenon can be attributed to the absence of columns with
only one nonzero in “irt” matrices, i.e., these matrices are likely

to yield harder partitioning instances in terms of communication
overhead minimization.

Tables 3 and 4 are presented in order to further investigate
the effect of the matrix partitioning schemes on the parallel
performance of BSCM and PSCM. Table 3 displays the com-
munication patterns in the parallel matrix-vector and matrix-
transpose-vector multiplies obtained by the 1D and 2D parti-
tioning schemes for the images of size 300×400. Table 4 shows
the dissection of the communication patterns into expand and
fold phases for 2D schemes.

In Tables 3 and 4, message-volume values are given in terms
of the words communicated. In terms of the total communi-
cation volume, the 1D partitioning scheme produces the best
partitions in 7 out of 12 instances, whereas the 2D-P2P scheme
produces the best partitions in 8-, 16-, and 24-way partitionings
of irt300× 400, and the 2D-A2A scheme produces best parti-
tions in 4-way partitioning of iso300 × 400 and irt300 × 400.
This experimental outcome may be due to the fact that 1D row-
wise partitioning disturbs only column coherence, whereas the
2D partitioning schemes disturb both row and column coher-
ences. In terms of the total number of messages, 1D scheme
competes with the 2D-A2A scheme, where 2D-P2P displays

B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204 199

Table 5
The number of iterations to convergence for BSCM and parallel PSCM

H matrix BSCM K PSCM

1D 2D

Block Cyclic HP HP-P2P HP-A2A

iso150× 200 1818 4 1400 2490 1237 1400 1511
8 1330 2243 932 1239 1172

16 1234 1666 967 1207 1327
24 1034 1458 800 1164 1094

iso300× 400 2055 4 2332 6569 1700 2205 2018
8 1837 4666 1336 1997 2097

16 1802 3703 1236 1754 1724
24 1794 2824 1270 1565 1674

iso600× 800 4550 4 5797 20 027 3570 4505 4103
8 6280 13 056 2694 3510 3558

16 4154 10 769 2625 3162 3615
24 4347 9032 2254 2801 3466

rot150× 200 2414 4 538 4309 994 1315 1419
8 666 1248 813 978 1072

16 521 1112 682 1021 1047
24 443 1248 582 933 909

rot300× 400 6055 4 2151 7206 2731 3525 3570
8 2455 3143 2328 2941 2975

16 3490 4345 2072 2881 2741
24 3405 3939 2004 2463 2210

rot600× 800 10 640 4 4119 11 332 4287 5376 5241
8 4892 6761 2761 3676 3774

16 3688 5768 2380 3721 3778
24 2094 4088 2229 3226 3019

irt150× 200 2363 4 1621 3981 1708 1890 2003
8 1375 4206 1564 2003 1781

16 1257 2650 1374 1817 1919
24 1166 1927 1475 1968 1594

irt300× 400 2957 4 5437 7517 5058 3790 3802
8 4124 7500 3984 4907 4214

16 7055 5029 3679 4781 4324
24 5427 4286 2922 4355 5165

irt600× 800 4390 4 9723 28 890 9128 7659 8013
8 8875 19 905 9277 10 198 11 041

16 7933 14 512 6759 11 160 9242
24 6353 11 131 5977 10 525 9219

the worst performance. The 1D and 2D-A2A schemes produce,
respectively, the best partitions in 9 and 3 instances out of
12 instances. The performance of the 1D partitioning scheme
relies on the enhancement given in [34]. The relatively bet-
ter performance of 2D-A2A is expected as discussed in Sec-
tion 5.3. Note that the number of messages in 2D-A2A is
always the same for a given number of processors because
of the regular communication operations. In terms of maxi-
mum message volume, the 1D scheme produces best results
in all partitioning instances of rot300 × 400 and 8-, 16-, and
24-way partitioning of iso300 × 400, whereas 2D-P2P pro-

duces best results in all partitioning instances of irt300 × 400
and 4-way partitioning of iso300 × 400. This relatively bet-
ter performance of the 1D scheme can also be attributed to
the enhancement [34] which involves explicit effort towards
balancing the communication-volume loads of processors. In
terms of maximum number of messages handled by a sin-
gle processor, the 2D schemes produce considerably better re-
sults than the 1D scheme, where 2D-A2A is slightly better
than 2D-P2P.

Combining these experimental outcomes for communi-
cation pattern results and considering the interconnection

200 B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204

0

5

10

15

20

25

30

35

40

45

50

55

60

65

4 8 16 24

Number of processors

O
v

e
ra

ll
 s

p
e

e
d

u
p

1D-P2P 2D-P2P 2D-A2A

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0

5

10

15

20

25

30

35

40

45

50

55

60

65

4 8 16 24

Number of processors

4 8 16 24

Number of processors

O
v

e
ra

ll
 s

p
e

e
d

u
p

1D-P2P 2D-P2P 2D-A2A

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

O
v

e
ra

ll
 s

p
e

e
d

u
p

1D-P2P 2D-P2P 2D-A2A

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

(b)

(a)

(c)

Fig. 9. Overall speedup charts of BSCM and PSCM for the images of size 300× 400: (a) isotropic blur; (b) rotation blur; (c) combined blur.

B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204 201

Table 6
Preprocessing times for the images of size 400×300, expressed in terms of the per iteration times of the respective PSCM implementation

H matrix K Partitioning scheme

1D-P2P 2D-P2P 2D-A2A

iso400× 300 4 125 115 220
8 291 302 149

16 618 835 110
24 912 1287 81

rot400× 300 4 68 83 144
8 184 248 110

16 458 553 70
24 699 858 55

irt400× 300 4 335 230 514
8 1413 596 494

16 4093 1290 258
24 5228 3106 247

network of our PC cluster, we expect 2D-P2P to be the best
because of its lower number of message requirements and mod-
erate communication volume requirements. In fact, the parallel
performance of BSCM and PSCM given in Table 2 and Fig. 8
confirm those expectations. However, depending on the ma-
chine architecture, the aforementioned communication metrics
would have different impacts on the parallel performance of
BSCM and PSCM. For example, on an interconnection network
with a high communication bandwidth, 2D-A2A may perform
better than 2D-P2P since it mainly suffers from high commu-
nication volume.

6.3. Overall performance

In our experiments, the tolerance parameter was set to 0.8%
of the mean value of the observed image. In general, the smaller
the tolerance parameter �, the better the quality of the restored
images, and the larger the iteration numbers. For 0–255 gray-
scale images, this value of the tolerance parameter provides
high quality restorations. The relaxation parameter � was taken
as 1.7 as in [35]. The algorithms were initialized with the zero
vector meaning that every pixel in the image to be recovered
was assumed to be initially black. With these values, the num-
ber of iterations required for convergence are given in Table 5
for the proposed partitioning schemes. The overall convergence
results for partitionings based on natural ordering are also in-
cluded. The reason for this inclusion is to demonstrate that the
partitioning schemes used for achieving efficient parallel imple-
mentations do not degrade overall convergence performance.
In Table 5, “Block” and “Cyclic” refer to block-striped and
cyclic partitionings applied to the natural row order of the H
matrix. Finally, “HP” denotes the partitionings obtained using
hypergraph models.

Comparison of PSCM and BSCM highlights the fact that
increasing number of blocks reduces the number of iterations
to convergence, in general. Furthermore, comparison of PSCM

results for 1D partitionings shows that HP-based partitionings
do not have a negative impact on the number of iterations to
convergence. Comparison of 1D and 2D results reveals that
2D leads to larger number of iterations for a given number of
processors. This is to be expected since the number of row
blocks determines the speed of convergence of PSCM. Re-
call that the number of row blocks in a 2D mesh of K =
R × C processors is R as opposed to K in a 1D K-way
partitioning.

Fig. 9 displays the overall speedup values of parallel BSCM
and PSCM for the images of size 300 × 400. As seen in the
figure, PSCM is superior to BSCM in all instances except for the
irt300× 400 matrix. Although 2D-P2P leads to better speedup
on the per iteration basis, the winner with respect to overall
performance is not clear. Note that the superlinear speedups
for the isotropic and rotation cases are because of the reduced
number of iterations.

Finally, we consider the preprocessing overhead of our par-
allel implementations. Table 6 gives the partitioning times of
the matrices expressed in terms of the per iteration run time of
the PSCM. This table shows that the cost of preprocessing is
amortized in achieving accurate results.

6.4. Restoration results

We evaluate the restoration performance of the parallel meth-
ods using the three images shown in Fig. 10(a). Blurred image g
is generated using Eq. (2), or by simply multiplying f (original
image) with H so that g = Hf and adding the noise described
earlier in this section. In Fig. 10(b)–(d), the resulting distorted
images are shown for the isotropic, rotational, and combined
blurs, respectively.

With the same parameter values given earlier, we have re-
stored the images by the surrogate constraint methods. The re-
sults corresponding to the isotropic, rotational, and combined
blurs are given in Fig. 10(e)–(g).

202 B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

(b)

(e) (f) (g)

(a)

(c) (d)

Fig. 10. Blurred and restored images: (a) original images; (b) noisy isotropic blur; (c) noisy rotational blur; (d) noisy combined blur; (e) restore b; (f) restore
c; (g) restore d.

7. Conclusion

We studied the image restoration problem by formulating it as
a system of linear inequalities. We used the surrogate constraint
methods which are well suited to large problems and amenable
to parallelization. The study concentrated on BSCM, which is
the basic method, and on an improved version of the paral-
lel method PSCM. We developed several parallel implementa-
tions. For efficient parallelization based on 1D and 2D partition-
ings of the coefficient matrix, we used state-of-the-art hyper-
graph partitioning schemes that minimize communication over-
head while maintaining the load balance. Restoration abilities
of the surrogate constraint implementations are validated us-
ing the parallel implementations for restoring severely blurred
images.

The parallel implementation of BSCM was observed to pro-
duce better results compared with PSCM as far as the per
iteration performance is concerned. However, increasing the
number of blocks accelerates the speed of convergence signif-
icantly, hence PSCM outperforms BSCM with respect to the
overall performance. In parallel PSCM, although 2D partition-
ing scheme leads to better speedup than the 1D scheme on the

per iteration basis, 1D partitioning scheme performs compara-
bly based on overall performance.

Note that satisfactory restorations can be achieved by de-
creasing the tolerance parameter at the expense of increased
running time. Actually, the system parameters can be set ac-
cording to the requirements of the application. Moreover, the
iterative restoration technique has the advantage that the image
can be viewed during the restoration process, and the process
can be terminated as soon as the restoration level satisfies the
application requirements.

Acknowledgment

We are indebted to anonymous referees whose comments
helped improve the presentation of Section 6.

References

[1] G. Burns, R. Daoud, J. Vaigl, LAM: an open cluster environment for
MPI, in: J.W. Ross (Ed.), Proceedings of Supercomputing Symposium,
1994, pp. 179–186.

B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204 203

[2] Ü.V. Çatalyürek, Hypergraph models for sparse matrix partitioning and
reordering, s.D. Thesis, Computer Engineering and Information Sciences,
Bilkent University, 1999.

[3] Ü.V. Çatalyürek, C. Aykanat, Decomposing irregularly sparse matrices
for parallel matrix-vector multiplication, Lecture Notes in Computer
Science, vol. 1117, 1996, pp. 75–86.

[4] Ü.V. Çatalyürek, C. Aykanat, Hypergraph-partitioning-based decom-
position for parallel sparse-matrix vector multiplication, IEEE Trans.
Parallel and Distributed Systems 10 (1999) 673–693.

[5] Ü.V. Çatalyürek, C. Aykanat, PaToH: a multilevel hypergraph partitioning
tool, version 3.0, Technical Report BU-CE-9915, Computer Engineering
Department, Bilkent University, 1999.

[6] Ü.V. Çatalyürek, C. Aykanat, A hypergraph-partitioning approach for
coarse-grain decomposition, in: Proceedings of Scientific Computing
2001 (SC2001), Denver, Colorado, 2001, pp. 10–16.

[7] Y. Censor, T. Elfving, New method for linear inequalities, Linear Algebra
Appl. 42 (1982) 199–211.

[8] Y. Censor, S.A. Zenios, Parallel Optimization: Theory, Algorithms, and
Applications, Oxford University Press, Oxford, 1997.

[9] U.M. García-Palomares, F.J. Gonzalez-Castaño, Acceleration technique
for solving convex (linear) systems via projection methods, Technical
Report, Escola Tecnica Superior de Enxeneiros de Telecomunicacion,
1996.

[10] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman & Co., New York, NY,
USA, 1979.

[11] L.G. Gubin, B.T. Polyak, E.V. Raik, The method of projections for
finding the common point of convex sets, USSR Comput. Math. and
Math. Phys. 6 (1967) 326–333.

[12] M. Hanke, Conjugate gradient type methods for ill-posed problems,
Pitman Research Notes in Mathematics Series, Longman Scientific and
Technical, Essex CM20 2JE, England, 1995.

[13] B. Hendrickson, T.G. Kolda, Partitioning rectangular and structurally
nonsymmetric sparse matrices for parallel processing, SIAM J. Sci.
Comput. 21 (1998) 2048–2072.

[14] B. Hendrickson, T.G. Kolda, Graph partitioning models for parallel
computing, Parallel Comput. 26 (2000) 1519–1534.

[15] B. Hendrickson, R. Leland, S. Plimpton, An efficient parallel algorithm
for matrix-vector multiplication, Internat. J. High Speed Comput. 7
(1995) 73–88.

[16] M. Jacunski, P. Sadayappan, D. K. Panda, All-to-all broadcast on switch-
based clusters of workstations, in: IPPS ’99/SPDP ’99, Proceedings of
the 13th International Symposium on Parallel Processing and the 10th
Symposium on Parallel and Distributed Processing, IEEE Computer
Society, Washington, DC, USA, 1999, pp. 325–329.

[17] G. Karypis, V. Kumar, MeTiS: a software package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices Version 4.0, University of
Minnesota, Department of Computer Science/Army HPC Research
Center, Minneapolis, September 1998.

[18] G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint
graph partitioning, Technical Report 98-019, University of Minnesota,
Department of Computer Science/Army HPC Research Center,
Minneapolis, May 1998.

[19] G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint
hypergraph partitioning, Technical Report 99-034, University of
Minnesota, Department of Computer Science/Army HPC Research
Center, Minneapolis, November 1998.

[20] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to
Parallel Computing: Design and Analysis of Algorithms, The
Benjamin/Cummings, Menlo Park, CA, 1994.

[21] R.L. Lagendijk, J. Biemond, Iterative Identification and Restoration of
Images, Kluwer Academic Publishers, Dordrecht, MA, 1991.

[22] K.P. Lee, J.G. Nagy, Steepest descent, CG and iterative regularization
of ill-posed problems, BIT 43 (2003) 1003–1017.

[23] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,
Wiley-Teubner, Chichester, UK, 1990.

[24] J.G. Lewis, D.G. Payne, R.A. van de Geijn, Matrix-vector multiplication
and conjugate gradient algorithms on distributed memory computers, in:

Proceedings of the Scalable High Performance Computing Conference,
Knoxville, TN, USA, 1994, pp. 542–550.

[25] J.G. Lewis, R.A. van de Geijn, Distributed memory matrix-vector
multiplication and conjugate gradient algorithms, in: Proceedings of
the 1993 ACM/IEEE conference on Supercomputing, IEEE, Portland,
Oregon, USA, 1993, pp. 484–492.

[26] J.G. Nagy, D.P. O’Leary, Fast iterative image restoration with a
spatially-varying PSF, in: F.T. Luk (Ed.), Advanced Signal Processing
Algorithms, Architectures, and Implementations IV, vol. 3162, 1997,
pp. 388–399.

[27] J.G. Nagy, D.P. O’Leary, Restoring images degraded by spatially-variant
blur, SIAM J. Sci. Comput. 19 (1998) 1063–1082.

[28] J.G. Nagy, K. Palmer, L. Perrone, Iterative methods for image deblurring:
a Matlab object oriented approach, Numer. Algorithms 36 (2004)
73–93.

[29] H. Özaktaş, Algorithms for linear and convex feasibility problems: a
brief study of iterative projection, localization and subgradient methods,
Ph.D. Thesis, Department of Industrial Engineering, Bilkent University,
1998.

[30] H. Özaktaş, M.Ç. Pınar, M. Akgül, The parallel surrogate constraint
approach to the linear feasibility problem, Lecture Notes in Comput.
Sci. 1184 (1996) 565–574.

[31] H. Özaktaş, M.Ç. Pınar, M. Akgül, Restoration of space-variant global
blurs caused by severe camera movements and coordinate distortions, J.
Optics 29 (1998) 303–310.

[32] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing
Co., Boston, 1996.

[33] R.S. Tuminaro, J.N. Shadid, S.A. Hutchinson, Parallel sparse matrix
vector multiply software for matrices with data locality, Concurrency:
Practice and Experience 10 (1998) 229–247.

[34] B. Uçar, C. Aykanat, Encapsulating multiple communication-cost metrics
in partitioning sparse rectangular matrices for parallel matrix-vector
multiplies, SIAM J. Sci. Comput. 25 (2004) 1827–1859.

[35] K. Yang, K.G. Murty, New iterative methods for linear inequalities, J.
Optim. Theory Appl. 72 (1992) 163–185.

Bora Ucar received the Ph.D. degree (2005) in
Computer Engineering from Bilkent University,
Ankara, Turkey. His research interests are com-
binatorial scientific computing and high perfor-
mance computing.

Cevdet Aykanat received the B.S. and M.S.
degrees from Middle East Technical University,
Ankara, Turkey, both in electrical engineering,
and the Ph.D. degree from Ohio State Univer-
sity, Columbus, in electrical and computer engi-
neering. He was a Fulbright scholar during his
Ph.D. studies. He worked at the Intel Supercom-
puter Systems Division, Beaverton, Oregon, as
a research associate. Since 1989, he has been
affiliated with the Department of Computer En-
gineering, Bilkent University, Ankara, Turkey,
where he is currently a professor. His research

interests mainly include parallel computing, parallel scientific computing and
its combinatorial aspects, parallel computer graphics applications, parallel
data mining, graph and hypergraph-partitioning, load balancing, neural net-
work algorithms, high performance information retrieval systems, parallel and
distributed web crawling, parallel and distributed databases, and grid com-
puting. He has (co)authored over 40 technical papers published in academic
journals indexed in SCI. He is the recipient of the 1995 Young Investigator
Award of The Scientific and Technical Research Council of Turkey. He is a
member of the ACM and the IEEE Computer Society. He has been recently
appointed as a member of IFIP Working Group 10.3 (Concurrent Systems)
and INTAS Council of Scientists.

204 B. Uçar et al. / J. Parallel Distrib. Comput. 67 (2007) 186–204

Mustafa Ç. Pinar received the Ph.D. degree
(1992) in Systems Engineering from the Univer-
sity of Pennsylvania. His research interests are
Applied Optimization and Scientific Computing.
He is a professor in the Industrial Engineer-
ing Department of Bilkent University, Ankara,
Turkey.

Tahir Malas received his M.Sc. degree in 2004
from Computer Engineering Department of
Bilkent University, Ankara, Turkey. Currently
he is working towards the Ph.D. degree in
the Department of Electrical and Electronics
Engineering of Bilkent University. His current
working area is in computational electromagnet-
ics; in particular he deals with preconditioning
methods for fast solvers.

