
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2007 Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of

the published version may differ .

Energy optimal data propagation in wireless sensor networks

Powell, Olivier; Leone, Pierre; Rolim, Jose

How to cite

POWELL, Olivier, LEONE, Pierre, ROLIM, Jose. Energy optimal data propagation in wireless sensor

networks. In: Journal of parallel and distributed computing, 2007, vol. 67, n° 3, p. 302–317. doi:

10.1016/j.jpdc.2006.10.007

This publication URL: https://archive-ouverte.unige.ch//unige:32491

Publication DOI: 10.1016/j.jpdc.2006.10.007

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:32491
https://doi.org/10.1016/j.jpdc.2006.10.007

1

1

Energy Optimal Data Propagation in Wireless Sensor
Networks

Olivier Powell, Pierre Leone, José Rolim

Abstract

We propose an algorithm to compute the optimal parameters of a probabilistic
data propagation algorithm for wireless sensor networks (WSN). The probabilistic
data propagation algorithm we consider was introduced in previous work, and it is
known that this algorithm, when used with adequate parameters, balances the energy
consumption and increases the lifespan of the WSN. However, we show that in the
general case achieving energy balance may not be possible. We propose a centralised
algorithm computing the optimal parameters of the probabilistic data propagation
algorithm, and prove that these parameters maximize the lifespan of the network
even when it is not possible to achieve energy balance. Compared to previous work,
our contribution is the following: (a) We give a formal definition of an optimal data
propagation algorithm: an algorithm maximizing the lifespan of the network. (b) We
find a simple necessary and sufficient condition for the data propagation algorithm
to be optimal. (c) We constructively prove that there exists a choice of parameters
optimizing the probabilistic data propagation algorithm. (d) We provide a centralised
algorithm computing these optimal parameters, thus enabling their use in a WSN.
(e) We extend previous work by considering the energy consumption per sensor,
instead of the consumption per slice, and propose a spreading technique to balance
the energy among sensors of a same slice. The technique is numerically validated by
simulating a WSN accomplishing a data monitoring task and propagating data using
the probabilistic data propagation algorithm with optimal parameters.

1 Introduction

Wireless sensor networks (WSN) are composed of sensor nodes which are small electronic
devices equipped with computing resources (CPU), environment sensing capabilities and
wireless links used in a multi-hop fashion to build a network structure [RAdS+00, WLLP01,
SL05]. Sensor nodes usually have restricted resources and this constraints the design of
distributed algorithms running on top of sensor networks. In this paper we specifically
address the constraint of energy consumption, motivated by the fact that sensors are

∗This research was supported in part by Swiss SER Contract No. C05.0030

2

usually battery powered. We consider one of the most common scenarios where sensors
have to report sensed events to a particular node of the network, called the sink, and
we analyse the lifespan of a distributed probabilistic data propagation algorithm. Since
sensors propagate data to the sink in a multi-hop fashion [BN04, AKK05, AY05], evenly
balancing the energy consumed among the entire set of sensors increases the lifespan of
the network. The probabilistic data propagation algorithm we consider for balancing the
energy was first introduced in [ENR06]. It allows each sensor responsible of propagating
data to choose between sending it to a next hop sensor, a procedure which requires a
relatively small amount of energy, or to send the data directly to the sink, a procedure
which requires a long hop and hence a relatively large amount of energy. The algorithm
we present computes optimal parameters for the probabilistic data propagation algorithm.
These parameters control the ratio of data sent directly to the sink and the ratio sent to
a next hop neighbour, and depend on the network topology and the distribution of sensed
events. The probabilistic data propagation algorithm we consider has already been used in
[ENR06, LNR05, JLPR06] and the main contributions of this paper are to formally prove
the connection between energy balancing and lifespan maximization, define the optimality
of data propagation algorithms as maximizing the lifespan of the network and prove that an
optimal probabilistic data propagation algorithm always exists. Moreover, we provide an
algorithm computing off-line the probability of sending data directly to the sink ensuring
the optimality of the probabilistic data propagation algorithm in terms of lifespan of the
network.

A typical application is to use the centralised algorithm to compute at the sink level
the optimal parameters and to broadcast them in the WSN, thus letting each node fulfill
its role in the distributed optimal data propagation algorithm. The input to the algorithm
running at the sink level is a description of the network in terms of density of sensors
per region and relative frequencies of sensed events per region. These could typically be
estimated statistically or observed dynamically during run-time of the WSN, as proposed
in [LNR05]. The formal analysis of the distributed probabilistic propagation algorithm
is based on modelling the network as a succession of slices and to balance the energy
consumed between the slices. The division of a WSN in slices is illustrated on figure 1.
The energy balancing among sensors belonging to the same slice is not considered by the
algorithm. Actually, numerical experiments discussed in this paper show that the energy
is usually not balanced among those sensors and a spreading technique is introduced and
numerically validated to ensure energy balancing among all sensors composing the network.

Minimizing the energy consumption has been considered under various approaches:
multi-hop transmission techniques [IGE00, CNS02], clustering techniques [HCB00], alter-
nating power saving modes [STGS02], varying transmission levels with route selection
[CT00], energy replenishment [LSS05], multi-path routing [HGWC02], combination of
sleep/awake and probabilistic forwarding techniques [BCN05] are amongst existing strate-
gies. However, these strategies minimize the energy consumption without taking into
account the overuse of some bottleneck regions of the network. These regions will prema-
turely run out of energy and eventually disconnect the multi-hop network, even if most of
the sensors still have enough energy to keep running. To our knowledge, a solution to the

3

premature energy depletion of sensors close to the sink was first proposed in [ENR06]. This
problem has since then been investigated in a setting similar to ours, where the network
is divided in slices, and energy consumption studied at the slice level, in a series of papers
[ENR06, LNR05, SD05, OS06, JLPR06]. In order to avoid or minimize the premature
depletion of sensors close to the sink, [ENR06, LNR05, JLPR06] use ejections, first in-
troduced in [ENR06]. Independently, [SD05] considers varying the battery levels between
slices, called rings, and [OS06] considers varying the emission ranges between slices, called
coronas; however, in both cases the data propagation is exclusively multi-hop.

In [ENR06], the problem of finding an energy-balanced solution to data propagation in
a Wireless Sensor Network was considered for the first time. The lifespan of the network
is maximised by ensuring that the energy consumption in each slice is the same. Sensors
are assumed to be randomly distributed with uniform distribution in a circular region or,
more generally, the sector of a disk. Data has to be propagated by the WSN towards a
sink located at the center of the disk, and it is shown that energy balance can be achieved
if a recurrence relation between the probabilities that a slice ejects a message to the sink is
satisfied.

In [LNR05], a more general case is studied: events may not happen according to a
uniform distribution, and the sensors may not be distributed uniformly over the area to be
monitored. Moreover it is assumed that the distribution of events is unknown. A solution
to the energy-balancing problem is then computed on-line by a centralised algorithm while
the distribution is inferred from observations of the events. The idea is then to broadcast
periodically the updated parameters, and it is shown that the algorithm converges to the
energy-balanced solution when this solution exists.

We point out that neither [ENR06] nor [LNR05] consider the case where an energy-
balanced solution does not exist. Results obtained in the present paper show that an
energy-balanced solution does not always exist, and in such a case, the algorithms of
[ENR06, LNR05] are useless. Our algorithm is a generalisation of these two approaches
since it finds the same optimal and energy-balanced solution when it exists, and finds an
optimal non energy-balanced solution otherwise.

The paper is organized as follows. In section 2, we introduce an appropriate mathemat-
ical model of a WSN, together with notational conventions and some preliminary technical
results. Section 3 presents the off-line centralised algorithm computing the parameters to
adjust the distributed probabilistic data propagation algorithm. Section 4 is a formal proof
of the optimality of the probabilistic data propagation algorithm using the parameters com-
puted by the centralised algorithm. Finally, section 6 presents numerical validations of the
data propagation algorithm and a simple spreading technique to overcome the unbalanced
energy amongst sensors of the same slice, an issue which was not taken into account by
the mathematical model of section 2.

4

2 Model and Notations

The model we study is the same as the one from [ENR06, LNR05, JLPR06] and resembles
the models of [SD05, OS06]. It is based on the division of a sensor network in slices. To
define slices, we first consider the unit disc graph built upon the sensor network with a
vertex for each sensor, including the sink, and an edge between any pair of sensors which
are at distance less than 1 from one another. The first slice, S1, is composed of all the
sensors located in the unit disc around the sink. The kth slice Sk is defined to be the union
of sensors located k hops away from the sink, as illustrated on figure 1. When considering

Figure 1: Network division in slices

a slice Sk, we take the convention to call Sk+1 the previous slice to Sk, while Sk−1 is the
next slice. By convention, S1 is the first slice, and the letter N is used for the last slice
SN , thus the slices range from S1 to SN . When a slice, for example Si, needs to send a
message to the sink, it can send it to the next slice, Si−1. However, as already mentioned
in the introduction, to ensure energy balance we follow [ENR06, LNR05, JLPR06] and
assume that a slice also has the option of sending a message directly to the sink. This
long hop is significantly different from the hops which are used to send a message from
a slice to the next slice, since it implies a larger amount of energy consumption. Indeed,
the energy consumption required to send a message at distance d is usually taken to be
dα, where α is an attenuation factor depending on the environment with typical values
between 2 and 6. In this paper, we take α = 2 but the results are similar for other values
of α. When a slice Si sends a message to its next slice Si−1, we say that the message is slid
from Si, and on the contrary, when the message is sent directly to the sink, we say it is
ejected from Si. In our model, the amount of energy consumed by Si to slide a message is

5

arbitrarily chosen to be 1 Joule per message (J/message), and the energy required to eject
a message is d2

i (J/message), where di is a constant depending on the network topology,
proportional to the distance between Si and the sink. Each time a slice detects an event,
it needs to report to the sink by sending a message. gi is the rate of events detection
in slice Si, the unit being messages per second (message/s). bi is the total amount of
energy available in slice Si, the unit being Joules (J). Assuming that each sensor has the
same amount of energy available, bi is proportional to the number of sensors in Si. fi is
the rate of sliding messages from Si to Si−1, the unit being (message/s). ji is the rate
of messages ejected from Si to the sink, the unit being (message/s). Pi is the power of
slice Si, it is the expected energy consumption per slice, defined in (J/s) or Watts (W).
Pi satisfies the following equation: Pi := fi + jid

2
i (J/s). It was shown in [ENR06] that

introducing a cost for receiving messages does not change results and is thus not relevant
for energy balancing. However, it increases the complexity of equations and diminishes
clarity, we therefore follow the common convention of not including in our model the cost
of receiving a message. This is also justified in a setting where the energy costs of waiting
for a message, or listening, and receiving a message are close. Notice that the following
recurrence relation holds

fi + ji (message/s) = fi+1 + gi (message/s)

These are flux equations, which account for the fact that messages are propagated along
the network slices, where each slice is a source with input rate gi. We define pi to be the
sliding probability, with pi = fi

fi+ji
.

Definition. We say that the network is energy-balanced if the power to battery ratio is a
constant, i.e. if for 1 ≤ i ≤ N it holds that Pi

bi
= P1

b1
, and the lifespan of the network is

defined as min {bi/Pi}1≤i≤N (s).

That is, the lifespan of the network is determined by the time until one of the slices
depletes all its energy, and the network is energy-balanced if the total energy available in
every slice is consumed during the same time period, namely bi/Pi (s).

Below is a table listing the symbols used in this article, together with their units and
interpretation.

Symbol Units Interpretation

fi (messages/s) Sliding rate from Si to Si−1

ji (messages/s) Ejection rate from Si to the sink
pi Sliding probability
gi (messages/s) Rate of events detection for slice Si

d2
i (J/messages) Cost for ejecting a message from Si

bi (J) Energy initially available in slice Si

Pi (J/s) Power of slice Si

Table: Summary of symbols

6

2.1 Preliminary result

Suppose Si ejects a message directly to the sink with probability εi. The mean energy
consumption per message handled in slice Si is equal to[

(1− εi) + εid
2
i

]
(J/message).

Hence, the mean number of messages which can be handled by slice Si before it runs out
of energy is given by

bi

(1− εi) + εid2
i

(message).

Among this total number of messages, a (1 − εi) fraction reaches slice Si−1 after having
been slid from slide Si (the rest being ejected directly to the sink). If the εi’s are chosen
to ensure that the following equality is satisfied for i, i− 1, . . . , 1

(1− εi)
bi

(1− εi) + εid2
i

(message) =
bi−1

(1− εi−1) + εi−1d2
i−1

(message) (1)

and if we assume that messages are only generated in slice Si, it results that the expected
lifespan of slices Si, Si−1, . . . , S1 is the same. More formally:

Proposition. Suppose that messages are slid by Si towards Si−1 with probability 1 − εi

and ejected with probability εi (for 1 ≤ i ≤ N). Suppose that the rates of event detections
{gi}Ni=k satisfy gi = 0 if i 6= k and gk > 0 for some 1 ≤ k ≤ N and that equation (1) is
satisfied if 2 ≤ i ≤ k. Then for every Si with 1 ≤ i ≤ k, the lifespan of Si is a constant
equal to

bk/gk

(1− εk) + εkd2
k

(s)

Relation (1) can be rewritten in the following useful form:

εi+1 =

bi+1

bi

(
1− εi + εidi

2
)
− 1

bi+1

bi

(
1− εi + εidi

2
)

+ di+1
2 − 1

(2)

Setting ε1 = 1 (which is natural since the first slice can only send messages directly to the
sink), we can directly compute the εi’s satisfying the recurrence relation for fixed bi’s and
di’s.

3 Computation of an Optimal Solution

We propose an algorithm to compute the sliding probabilities pi which ensure that a prob-
abilistic data propagation algorithm is optimal in the sense that it maximizes the lifespan
of the network, as defined in section 2. The input is a description of the network and a
statistical description of the data to be propagated in the form of three sequences of same

7

lengths {bi}1≤i≤N , {d2
i }1≤i≤N and {gi}1≤i≤N where the bi’s describe the energy available in

each slice in Joules (J), the d2
i ’s are the energy necessary to eject a message from slice Si

to the sink (J/message), and the gi’s are the distribution of events generating data to be
propagated in the network (message/s), as in section 2. The output is a sequence {pi}1≤i≤N

representing the parameters of the probabilistic data propagation algorithm: in order to
maximize the lifespan of the network, each slice Si for 1 ≤ i ≤ N should send data directly
to the sink with probability 1− pi and slide it to the next slice with probability pi.

The heuristic for balancing the energy consumed among slices relies on the observation
that the power of the first slice S1 induced by considering only the rate of events g1

generated in the first slice equals P1 = f1 + j1d
2
1 = g1 (J/s), where the last equality holds

because by convention, d1 = 1, and because we only consider g1. This is illustrated on the
leftmost picture of figure 2. In turn, with the energy balancing constraint of equation (2),
this will determine the power consumption P2 in slice S2 when taking into consideration
the rate of events g2 generated in S2. g1 was already considered in the previous step,
so a strategy to balance the energy consumed in the second slice S2 with S1 consists in
first ejecting the right number of messages in order to ensure that the power to battery
ratio P2/b2 (s−1) in the second slice is equal to the power to battery ratio P1/b1 from the
first slice, this is illustrated by the crossed-out rectangular of the middle picture of figure
2. Then, the remaining messages to be handled are slid to S1 using the probability ε2

computed in Proposition 2.1, hence equally increasing the power to battery ratio of slices
S1 and S2, which thus remain balanced, as illustrated by the black rectangular in the middle
picture of figure 2. The heuristic must be inductively applied considering slices S3, S4, . . .
up to SN , the case of S3 is illustrated on the rightmost picture of figure 2. Since the bi’s

Figure 2: Intuitive idea of the Algorithm

and di’s are given from the input for 1 ≤ i ≤ N , we can compute the εi’s (1 ≤ i ≤ N),
the solution to relation (1) with ε1 = 1.

Remark. Notice that although it although equation (1) implies that εi ≤ 1, nothing guar-
antees that εi ≥ 0. For simplicity, let us make the temporary assumption that εi ≥ 0. We
treat the case with negative ε’s in section 3.1.2.

For running, our algorithm needs the following variables, for 1 ≤ i ≤ N :

• Gi is the rate of messages to be treated at slice Si (message/s).

8

• Fi is the rate of messages forwarded from slice Si towards slice Si−1 (message/s).

• Ji is the rate of messages ejected from slice Si directly to the sink (message/s).

• Pi is the power consumed by slice Si, which is equal to Fi + Jidi
2 (J/s).

Using the gi’s from the input we initialize Fi = Ji = 0 and Gi = gi for every 1 ≤ i ≤ N .
The algorithm then treats each slice one at a time from S1 towards SN . First, S1 is being
treated according to the heuristic described at the beginning of this section: we let J1 = G1.
to account for the fact that all the messages generated at S1 are ejected to the sink. This
means an average power consumption in slice S1 of P1 = G1d

2
1 = J1d

2
1. Since all messages

have been ejected, there are no more messages to treat for S1 and we update the value of
G1 to G1 = 0.

We then repeat the following for each of the slices Si for i from 2 to N : First, let
Ji := bi

bi−1di
2 Pi−1, which is equivalent to

bi

Jidi
2 (s) =

bi−1

Pi−1

(s), (3)

This ensures that the time needed to exhaust the available energy bi−1 in slice Si−1 equals
the time needed to exhaust the energy bi in slice Si while considering only ejection, which
is represented by the crossed-out regions on figure 2. Notice that Ji > Gi means that
we are trying to eject more messages than the total amount of messages available to be
treated, which is not physically possible. Therefore, our approach requires the presence of
sufficiently many messages to be treated at slice Si, i.e. it should be that the following
holds:

Ji =
bi

bi−1di
2Pi−1 ≤ Gi. (4)

We overcome this limitation in section 3.1.1. For the time being, we consider only the case
where the initial Gi’s are large enough to ensure that equation (4) holds. So far energy
balance is achieved for slices Si to S1 (because of equation (3) and by induction), which is
represented by the crossed-out rectangles of figure 2 . Since Ji messages have been ejected,
we update Gi to Gi := Gi−Ji. The remaining Gi messages to be treated will be handled in
such a way that they will increase the power to battery ratio in each of the slices Si to S1

by exactly the same amount, as illustrated by the black rectangles of figure 2. The strategy
is the following: a fraction (1− εi) of the Gi messages yet to be treated is forwarded to the
next slice Si−1, while the rest is ejected directly to the sink, thus increasing the power of
slice Si. Formally, this means setting the following:

Fi := (1− εi) Gi

Ji := Ji + εiGi

Gi := 0

Among the Gi (1− εi) messages slid from Si towards Si−1, a fraction 1−εi−1 will be further
slid from Si−1 towards Si−2, while the rest is ejected directly to the sink from Si−1, thus

9

increasing the power of Si−1. This process goes down to the first slice, and the number
of slid and ejected messages have to be updated. The algorithm implementing this idea
needs to do the following:

Fi−1 := Fi−1 + (1− εi−1) (1− εi) Gi,

Ji−1 := Ji−1 + εi−1 (1− εi) Gi,

Fi−2 := Fi−2 + (1− εi−2) (1− εi−1) (1− εi) Gi,

Ji−2 := Ji−2 + εi−2 (1− εi−1) (1− εi) Gi,

Fi−3 := Fi−3 + (1− εi−3) (1− εi−2) (1− εi−1) (1− εi) Gi,

Ji−3 := Ji−3 + εi−3 (1− εi−2) (1− εi−1) (1− εi) Gi,

. . .

The messages handled increase the power of slice Si by an amount equal to

mi := Gi

[
(1− εi) + εid

2
i

]
(J/s)

while the increase in power for slice Si−1 equals

mi−1 := Gi (1− εi)
[(

1− εi−1 + εi−1d
2
i−1

)]
(J/s)

and so forth for slices Si−2, Si−3, up to S1. But because the εi’s satisfy equation (2), the
bj

mj
(s)’s (1 ≤ j ≤ i) have the same value, as follows from proposition 2.1. So when we finish

treating slice Si the average times before running out of energy in S1, S2, . . . , Si are equal.
Again, this is illustrated by the black rectangles of figure 2. We then go on to treat the
next slice (Si+1) until we reach the last slice, SN .

At this point and for each 1 ≤ i ≤ N slice Si treats a total of Fi + Ji (messages/s),
of which Fi are being slid and Ji are being ejected, and the network is energy-balanced.
The output of the algorithm representing the optimal parameters for the probabilistic data

propagation algorithm is the following ordered sequence:
{

Fi

Fi+Ji

}
1≤i≤N

3.1 Special cases

In this section, we lift the assumption that all ε’s are positive (remark 3), and from the
assumption that equation (4) holds, starting with the former.

3.1.1 First Case: Too Many Sensors or Too few Messages

Suppose that while executing the algorithm from the previous section, equation (4) does
not hold for some i, meaning that while treating slice Si, even if all the gi generated
messages are ejected to the sink, the power to battery ratio Pi/bi for Si will not be as high
as for Si−1. In figure 2, this means that the crossed-out rectangle is not as high as as the
white rectangle on its right.

10

In essence, the solution is to get slices previous to Si (i.e. Si+1, Si+2, etc...) to forward
some of their generated messages towards Si, so that Si can “catch-up” with the power
to battery ratio of Si−1. To do so, we recursively use the algorithm described earlier in
the following way: since the problem is that Si has not got enough messages to eject, we
recompute new values of ε’s satisfying equation 2, only this time we force εi = 1, which
means that slice Si will now eject every message which is slid from Si+1. This will eventually
enable Si to catch-up with Si−1, if sufficiently messages are slid from Si+1. If the power
to battery ratio Pi/bi of Si catches up with the power to battery ratio, we can lift the
constraint of having εi = 1 and go on with the previous values of ε’s.

When Si needs to catch-up with Si−1 and we need to force εi = 1, we say the algorithm
goes down one-level in the recursion. This brings the need to stack some values, which we
will be able to unstack when coming up one level in the recursion, and to compute some
new values. The following list explains how and what to stack.

• Stack the current value of a variable start, which remembers at what position the last
recursion started. (If this is the first level of recursion, we stack the value start = 1).
The new value of start is set to start = i, which is the position of the slice which is
trying to catch up.

• Stack the current value of a variable max. If this is the first level of recursion, we
stack the value max =∞. The new value of max is set to

max =
1

bstart−1

(
Fstart−1 + Jstart−1d

2
start−1

)
(s−1)

which is the power to battery ratio increase needed for Sstart to “catch up” with
Sstart−1.

• Stack the value of the previous ε’s. Set new current values for εj’s for start ≤ j ≤ N :

– εstart is set to 1, so that slice Sstart ejects every sliding messages it sees, in order
to try to catch up with Sstart−1.

– The other εk’s with start < k ≤ N are computed using equation (2).

Once this is done, we can go down one level in the recursion, which essentially means
redoing the algorithm from section 3, but using the above newly computed ε’s, and con-
sidering the possibility of either going further down one recursion level, or on the contrary
coming back up one recursion level. That is, once the algorithm has gone down on level of
recursion and while treating slices Sstart+1, Sstart+2, and so on, we have to take into account
that three different possible cases may occur (for the sake of comprehensiveness, suppose
we are treating slice Sk for some k > 0):

• Sk may in turn not be able to increase its power to battery ratio Pk/bk to the level
of Sk−1, in which case we need to go down one further level.

11

• Slice Sstart may be able to catch up (using messages previously slid from slices Sstart+1

to Sk−1 and the newly messages slid from Sk), i.e. sufficient messages will have been
slid from its previous slices. In this case, we shall have to go back up one recursion
level.

• Finally, it may be that neither of the two above cases happen: slices Sk, Sk−1, . . . , Sstart

have so far the same power to battery ratio (but less than Sstart−1), and we start
treating the next slice, Sk+1.

Keeping in mind these three possible cases, a description of how the algorithm of
section 3 should be adapted follows, assuming it has gone down some level of recursion
and slice Sk is being treated for some k > start while slice Sstart is trying to catch up with
slice Sstart−1.

1. If there are not enough messages for Sk to increase its power to battery ratio to the
level of Sk−1 and hence, even if all the Gk messages are ejected from slice Sk the lifes-
pan of Sk−1 remains smaller than the lifespan of Sk, i.e. if bk

Gkd2
k
(s) > bk−1

Fk−1+Jk−1d2
k−1

(s)

we just try do diminish this unbalanced lifespan as much as possible by ejecting all
the Gk messages, setting JK = GK , Gk = 0 and going further down one recursion
level. Now Sk will have to try to catch up with Sk−1.

2. Else, we eject Jk = bk

d2
kbk−1

(
Fk−1 + Jk−1d

2
k−1

)
messages from Sk and set Gk = Gk−Jk.

Sk now has the same lifespan as Sk−1, but there are still Gk messages to be treated.

Essentially, we now want to slide the remaining Gk messages along the network, from
Sk to Sstart, but with some precaution:

• First of all, we still have to take into the account the ε’s and eject “ε fractions”
of the messages sliding along the network from Sk to Sstart as was explained in
the previous section. This was explained in detail in equations

• If we have enough remaining messages, i.e. if Gk is still sufficiently large, we
will be able to let slice Sstart (and slices Sk to Sstart+1) catch up with Sstart−1.
If this is so, we want to slide just enough messages to catch up, then go back
up one recursion level and unstack the previous ε’s. The remaining messages
will then be slid along the network, this time using the ε’s that have just been
unstacked.

Here is how we propose to implement the above remark.

3. Set ∆t = (max − 1
bk

(Fk + Jkd
2
k))

−1 (s) and msgToGoUp = bk

∆t(εkd2
k+(1−εk))

. Let

Φ = max {Gk, msgToGoUp}. From the remaining Gk messages, we further slide
and eject respectively F = (1− εk) · Φ and J = εk · Φ messages. This ensures that
slices Sk to Sstart still have the same lifespan and that this is bounded from under
by the lifespan of slice Sstart−1. We thus need to make the following adjustments:
Fk = Fk+F , Jk = Jstart+J and Gk = Gk−F−J . The Fj’s and Jj’s for start ≤ j < k

12

also have to be adjusted, acknowledging the fact that F new messages are slid along
the network from Sk to Sk−1, and using as usual the ε’s to compute the ratio which
is slid and ejected by each slice.

4. If there are enough messages for Sstart to catch up with Sstart−1, i.e. if Φ was equal
to MsgToGoUp, we can go back up one recursion level, which means unstacking the
previous ε’s, unstacking the previous value of max and unstacking the previous value
of start. Otherwise, we do not unstack any variables, and keep them as they are.
Finally, if there are no more messages to treat for slice Sk, i.e. if Gk = 0, we can
start to treat the next slice, Sk+1. This means jumping to point 1 above, but this
time with k = k + 1, which also means we can stop the algorithm if k + 1 > N .
Otherwise, we need to treat the remaining Gk messages. This is done by jumping to
point 3 above.

In the end, if the algorithm returns from all the recursive calls to the main algorithm, it is
easily seen that energy balance is reached. Otherwise, we have a solution with increasing
lifespans (from slice S1 towards SN), and which is “locally” energy-balanced, for example,
we could have:

b1

P1

=
b2

P2

=
b3

P3

<
b4

P4

<
b5

P5

=
b6

P6

≤ . . .

Although not reaching energy balance, we shall prove in section 4 that this solution is
optimal in the sense that it maximizes the lifespan. An important thing to observe is that
if a recursion starts at slice Si, either one of the two cases happens:

• The algorithm returns from this recursive call and the solution is locally energy-
balanced: Pi

bi
= Pi−1

bi−1

• The algorithm does not return from this recursive call and the solution is not energy-
balanced: Pi

bi
< Pi−1

bi−1
. Furthermore, since Si was trying to “catch up” with Si−1 and

since we set εi = 1 (point (3.1.1) of the algorithm), it holds that Fi = 0, and thus
that

pi = 0 (5)

In section 4, we use equation (5) to show that this solution is always optimal.

3.1.2 Second Case: Too Few Sensors or Not Enough Battery

The second problem which may occur is when the assumption that all ε’s are positive, (i.e.
the assumption from the remark of page 8) does not hold. From equation (2), we can see
that this occurs only if some of the slices have little bi’s (thus the title of this subsection,
since bi’s are proportional to the amount of sensors). Let us first analyze what it means
for an ε, say εi, to be negative. Suppose slice i has, so far, ji ejected messages (per second)
and fi forwarded messages (per second). When it receives k sliding message from Si+1, it
should eject an εi fraction to the sink, and pass on the 1− εi rest to the next slice. After

13

this, there are ji + kεi ejected messages and fi + k (1− εi) slid messages. The fact that
the ε’s satisfy equation (2) ensures that energy balance is conserved (at least locally if we
are already into a recursive call as described in section 3.1.1). A difficulty follows from the
fact that since εi is negative, ji becomes negative if

k · εi + ji < 0⇔ k > ji/εi (6)

and thus the solution is not physical (a negative amount of messages cannot be ejected from
Si). The solution to this problem has some similarity with the previous one. Whenever a
slice (say the ith) is about to slide k messages along the network, it should ensure that no
slice will find itself in a non physical state afterward by bounding the number of messages
it allows itself to slide along the network. Suppose that, for some fixed k, a slice Sk wants
to slide messages along the network. We call maxSlide the maximum number of messages
Sk may slide along the network without putting any of its following slices in a non-physical
state. In order to compute maxSlide, we should remember what happens when k messages
are slid along the network by slice Sl: some (or part) of them are ejected by each of the
slices sliding the message, according to the ε’s, and therefore only a ki = k ·Πl

j=i+1 (1− εi)
fraction of the k initial messages reaches slice Si. maxSlide is defined as the maximum
value k such that kiεi + ji ≥ 0 for 1 ≤ i ≤ l, or equivalently, the maximum value such that
ki ≤ ji

|εi| for every 1 ≤ i ≤ l such that εi < 0, and it can be computed by the following
procedure.

14

Algorithm 3.1: computeMaxSlide(i)

Input: i, a slice number.
Output: max, the max number of messages Si can slide.
global ε[]comment: This is an array storing the values of the ε’s

local F ← 1
local ejected[]
for (k ← i; k ≥ 1; k ← k − 1)

do

{
ejected[k]← F ∗ ε[k]
F ← F ∗ (1− ε[k])

local max←∞
for (k ← i; k ≥ 1; k ← k − 1)

do



local j ← ejected[k]
if j < 0

then

do



j ← −j
if max =∞

then max← j[k]/j
else

do


local tmp max← j[k]/j
if tmp max < max

then max← tmp max
return (max)

Once we have computed maxSlide, we can decide what to do when slice Si wants to slide k
messages. If k ≤ maxSlide, then we can simply slide the k messages, but if k > maxSlide,
we have to be more careful. First, we can partially fulfill the aspiration of Si by allowing
it to slide maxSlide messages. At this stage, Si still wants to slide k−maxSlide messages
and one of the previous following slices (say Sk) has a negative εk and jk = 0. If any
more messages are slid, Sk will be in a “non-physical” state. So what we do is that we
recompute all εk’s for 1 ≤ k ≤ j,Notice that if we are inside a recursion of the type
described in section 3.1.1, we do not recompute all εk’s for 1 ≤ k ≤ N , but we rather set
εstart = 1 and recompute all the εi’s for start < i ≤ N , where start is the place where the
last recursion took place (c.f. point (3.1.1) of the enumeration on section 3.1.1). While
recomputing the ε’s, whenever an εk < 0 and jk = 0, we force εk to 0. What this does is,
first of all, to force the solution to be physical. Second, it breaks the relation from equation
(2), since for some k’s εk is forced to 0. The fact of breaking this relation prevents slices
from ejecting a negative amount of messages (and thus in a sense save some energy), when
this would lead them to be in a non-physical state. Thus slice Sk will spend more energy
than the (locally) energy-balanced solution would require, and on the other hand, slices
following Si (that is Si−1 to S1) will spend less since the negative amount of messages
which have been prevented from being ejected were supposed to be slid along the network.

15

We are therefore confronted with a “local peak”, in the sense that:

Pk

bk

>
Pk−1

bk−1

It should be observed that for the rest, energy balance is conserved (at least locally), and
furthermore whenever such a “peak” appears at Sk, it holds that:

pk = 1 (7)

which is an important fact we shall use to prove that the solution obtained is optimal.

3.2 Time Complexity

On input ({bi}Ni=1 , {di}Ni=1 , {gi}Ni=1), the algorithm presented in the previous section returns

a list {pi}Ni=1 of values. We explain at a high level level of abstraction why the runtime
of the algorithm has a worst case complexity of O(N3), and omit the tedious details. To
see this, first observe that the algorithm runs in a top-down fashion from slice S1 to slice
SN (so there are N slices to be treated). Each time a slice is treated (e.g. when slice Sk

is being treated for some 1 ≤ k ≤ N), new values of Ji and Fi have to be computed for
1 ≤ i ≤ k (as follows from equations 5 to 5). This already implies a O(N2) complexity.
The reason why the final complexity is not O(N2) but rather O(N3) is a bit more subtle.
What happens is that for each slice (say for slice Sk), the values of Ji and Fi may (in the
worst case) have to be updated up to k times (for some k ≤ N). The reason why the Fi

and Ji may have to be updated more then once is that each of the slices S1 to Sk−1 may
force the algorithm to update the Fi’s and Ji’s twice, by limiting the number of messages
to be slid from Sk to the sink on the first time. This may happen for two distinct reasons:
either because one of these slices was “catching up” and the algorithm “comes back up
one level of recursion”, as explained in section 3.1.1, thus forcing the update of the Ji’s
and Fi’s to happen twice. Alternatively this may happen because one of the slices has
a negative ε value (as explained in section 3.1.2), and it limits the maximum number of
messages allowed to be sent during the first step to maxSlide, the value which is computed
by the algorithm 3.1, the rest being sent in a second step. In the worst case, the slice Sk

thus has to update the values of {Fi}ki=1 and {Ji}ki=1 for every slice from 1 to k− 1. When

k = N , this means a total of (N − 1) updates of {Ji}Ni=1 and {Fi}Ni=1 (i.e. O(N2) updates).
This brings the worst-case runtime complexity of the algorithm to O(N3) since there are N
slices. It may be observed that when neither of the two special cases from section 3.1 occur
(i.e. when equation (4) holds or if condition (6) is never satisfied), then the algorithm runs
in O(N2).

4 Proof of Optimality

In this section, we prove that our algorithm produces an optimal solution, in the sense
that it maximizes the lifespan (c.f. definition 2).

16

Convention. In this section, we consider a fixed sensor network of size N , with fixed
event distribution {gi}1≤i≤N and fixed battery levels {bi}1≤i≤N . A configuration C of the
network is the choice of a sliding probability assignment {pi}1≤i≤N for each slice. If C and

C̃ are two configurations, we use the letters fi and f̃i to denote the slid messages under
configurations C and C̃ respectively. We do the same for the other parameter: ji’s, pi’s,
εi’s and Pi’s.

Lemma (No Win-Win modification). No configuration is strictly better in terms of lifespan
than another configuration: if C and C̃ are two configurations, then there exists an i such
that:

Pi

bi

≥ P̃i

bi

Proof. Suppose (absurd) this is not true. Therefore there exist two configurations C and
C̃ such that

∀i Pi

bi

≤ P̃i

bi

and for at least one of the i’s
Pi

bi

<
P̃i

bi

(8)

We now define the following configurations C0 = C̃ and CN = C, and more generally, Ci

is the configuration where the i last pi’s (i.e. pN , pN−1, . . . pN−i+1) are the same as the
pi’s from C, whereas the N − i first pi’s are the same as the pi’s from C̃. Then for each
1 ≤ i ≤ N , if we use iE and ib to designate the power and battery of configuration Ci, the
following holds:

iPk

ibk

= Pk

bk
∀N ≥ k > N − i

iPi

ibi

≥ Pi

bi

Where equation (9) follows from the definition of Ci and where equation (9) follows

from the easy observation that
iPi
ibi
≥ P̃i

b̃i
combined with equation (4). Next, let k =

max
{

i | Pi

bi
< P̃i

b̃i

}
1≤i≤N

, which exists by (8). Then for every i ≤ k the inequality in (9)

becomes strict. In particular, for i = 0 (and using the fact that C0 = C) it becomes
P0

b0
> P0

b0
, which is the contradiction we need. ut

The reason we give this lemma the name of no win-win modification lemma is that
a principle can be derived from it, the no win-win modification principle, which is the
following: if a configuration is modified to increase the lifespan in some parts of the network,
then necessarily the lifespan is decreased in another part of the network.

17

In [ENR06], the authors point out that looking at the numerical solutions, one observes
that an energy-balanced solution mostly uses single-hop data propagation, and only with
little probability propagates data directly to the sink. The authors then suggest that this
is an important finding implying that the energy-balanced solution is also energy efficient,
since it only rarely uses the costly single-hop direct ejection of messages to the sink. Our
previous lemma enables us to easily formalize this intuition:

Corollary. Any energy-balanced solution is optimal in terms of lifespan: If C is an energy-
balanced configuration (i.e. ∀i Pi

bi
= Pi+1

bi+1
), then for every other configuration C̃, we have

the following inequality, with equality if and only if C = C̃: min
{

bi

Pi

}
≥ min

{
b̃i

P̃i

}
, that

is, C maximizes the lifespan amongst all possible configurations.

Next we generalize corollary 4.

Lemma. Let C be a configuration of our network. Let max = max
{

Pi

bi

}
. Let k =

max
{

i | Pi

bi
= max

}
, and let l = min

{
i | Pi

bi
< max

}
, if such an l exists. The configura-

tion is optimal if and only if the conjunction of the following holds:

• (k < N and pk+1 = 0) or k = N

• (l < N and pl+1 = 1) or l = N or l was not well defined

Proof. We only give the main ideas of the proof. First, notice that slices Sk to Sl form a
tabletop-like maximum of the plotting of slice position against power to battery ratio (c.f.
figure 2). Since pk+1 = 0, nothing can be done on the left-hand side of the tabletop to lower
it. Second, since pl+1 = 1, the tabletop cannot rely on the slices on its right to take on a
larger part of the message sliding towards the sink. The only solution to produce a better
solution than C (i.e. if C was not an optimal solution) would therefore be to modify the
probabilities from pk to pl+1, i.e. to reorganize the configuration “inside the tabletop”. The
final point is to notice that this will break the energy balance of the tabletop, increasing
the maximum, using the no win-win modifications lemma of page 17. ut

Theorem. Our algorithm always produces an optimal solution

Proof. The demonstration would be complete if we could prove that our algorithm always
produces a solution where the power to battery ratio maximum is reached at a tabletop
with pi = 0 on the left and pi = 1 on the right, since this enables to use lemma 4. To see
that this is the case, the main ingredients are equations (5) and (7). We leave the easy
details to the reader. ut

18

5 Simulations

In this section, we present numerical validation of our algorithm. The approach consists in
randomly and uniformly scattering sensor nodes in a sector of the plane, with a sink placed
at the center of the sector, c.f. figure 1. We consider the unit disc graph constructed upon
the sensor nodes: we place an edge between two sensor nodes or the sink if and only if they
are at distance at most 1 from one another. The shortest path from a node to the sink
determines in which slice it is. For example, if the shortest path from a node to the sink
is a 3-hop path, the node is considered to be in the third slice S3. Let N be the maximum
slice number. For each 1 ≤ i ≤ N , bi is the number of sensor nodes in Si. Assuming a
uniform distribution of events, the expected number of events in Si is equal to the expected
number of sensors in Si, and thus we set gi = bi. Finally, in a pessimistic approximation,
we let di = i. Using these bi, gi and di as an input to the algorithm described in section 3,
we compute pi the sliding probability which are predicted to balance the energy between
slices. The simulations we present show that this is indeed the case.

5.1 First simulation

We divide the time in rounds, and during each round we let a randomly and uniformly
chosen sensor node detect an event. The sensor node which has detected an event adds a
message to be sent to its message queue. Also, during each round, each sensor node which
has a non-empty message queue sends one message according to the following strategy:
suppose that a sensor node n which is in the ith slice Si needs to send a message, it sends
the message directly to the sink (the message is ejected) with probability 1 − pi, thus
spending i2 (J), and with probability pi it slides the message to one of its neighbours in the
unit disk graph, thus spending 1 (J). In the case where the message is slid, the receiving
node is chosen amongst all neighbours of n which are in the slice Si−1. More precisely,
let R be the set of neighbours of n which are in Si−1, which is the next slice towards the
sink. n sends the message to the node of R which has the highest remaining energy. If
this node is not unique, a random decision is made. The implicit assumption that sensor
nodes are aware of the remaining battery level of their neighbours can be implemented in
a real WSN by adding information on the remaining battery level of emitting nodes in a
small header to the messages.

This routing protocol is inspired by the gradient based routing (GBR) family of routing
algorithms, see [SS01, HKK04, YZLZ05]. GBR was introduced in [SS01] and is inspired
by [IGE00]. In our simulations, the gradient is determined by the slice number and the
remaining battery level: a node is lower than another when its slice number is smaller, and
when the slice number is the same, a node is lower than another if is has spent less energy.

Simulations show that, as expected, the average energy consumption in each slice is
balanced. However, inside of each slice, the energy consumption is not well balanced. In
particular, we observe that in each slice, the nodes which are the further away from the sink
spend more energy than the nodes close to the sink. We understand that this phenomenon
happens because in slice Si the nodes which are the further away from the sink have a lot

19

of neighbours in Si+1 and just a few neighbours in Si−1 while the contrary happens for the
nodes of Si which are close to the sink. As a consequence, nodes on the “far from the sink”
side of Si receive more messages from Si+1 than nodes on the “close to the sink” side of Si.

On the left hand side of figure 3, we plot the radius of each of 6280 nodes scattered in
a 20 meter radius and 90 degrees sector against the energy spent by each of these nodes
while reporting events to the sink according to the strategy described here above for a
total of 118′000 rounds. For readability, the nodes which belong to a slice Si with i an
odd number are in grey and black is used when i is even. For each slice, we also compute
the average radius and the average energy spent, and plot this as the squares joined by a
line. The figure shows that the mean energy consumption from sensors of the same slice
is almost the same for every slice, but inside of each slice the energy consumption is not
balanced amongst sensors.

Figure 3: Simulations

5.2 Improvement with Spreading Techniques

The previous simulation shows that the probabilistic algorithm which makes slice Si eject
with probability (1− pi) and slide with probability pi balances energy well between slices.
Notice that this simulation validates our theoretical investigations since they are only
concerned with balancing energy among the slices. However, as previously pointed out,
the energy consumption is not well balanced among the sensors of a fixed slice. This can be
circumvented by using spreading techniques (c.f. [SS01]) on messages: the messages need
to be spread more evenly inside of each slice. We propose a simple spreading technique,
which is the following. When a message is to be ejected by a node n of slice Si, the node n
does not eject the message straight away. Instead, the message is marked for ejection, and
sent to a neighbour of m in the same slice as n, i.e. in slice Si. More precisely, let S be
the set of neighbours of n which are in the same slice as n. When n marks a message for
ejection, it passes it to the node of S which has spent the less energy so far. A node which
receives a message marked for ejection takes care of sending the message directly to the
sink. This spreading technique does not change the amount of ejected messages in each

20

slice, but it transfers the charge of ejecting messages to nodes which have more energy and
are, as explained in section 5.1, nodes of each slice which are close to the sink.

We show by simulation that this very simple spreading technique balances energy con-
sumption not only between slices, as was the case in the previous simulation, but also
between nodes of the same slice. Furthermore, the overhead due to the fact that messages
are passed to a node in the same slice before being ejected is low. On the right-hand side
of figure 3, we see that the use of the spreading technique induces a well balanced energy
consumption not only amongst slices but also amongst nodes of the same slice. Further-
more, comparison with the left-hand side plot shows that the mean energy consumption
while using the spreading technique is almost the same as the mean energy consumption
of the previous experiment, without spreading. This means that the overhead introduced
by the spreading technique has a minor impact. We conducted many similar experiments
(changing the radius, the angle, the density and the distribution of generated events), and
the simulations results are comparable to those presented in this section.

6 Conclusion

Previous to this work, data-propagation algorithms have been proposed to balance the
energy consumption evenly inside of a WSN using a combination of multi-hop short range
transmissions and long-range single-hop transmissions, also called ejections. We have
shown that ejections can be used to maximize the lifespan of a WSN even when an energy
balance solution does not exist. The main idea is to divide the WSN in slices, and to make
sensor nodes eject messages according to a probability depending on the slice in which they
are located. The probability, for each slice, is computed off-line by the algorithm described
in section 3. In the simulations of section 6, we adapt the GBR family of data-propagation
algorithms to use the ejection probabilities computed by our algorithm, and show that a
simple spreading technique is required and sufficient to make the energy evenly spread not
only amongst slices, but also amongst all sensors of the network. Probably other spreading
techniques could be used, which could be investigated in future work. Another interest-
ing question would be to find necessary and sufficient conditions for the existence of an
energy-balanced solution. Indeed, we show that when an energy-balanced solution exists it
is optimal but we did not address the question of finding necessary and sufficient conditions
for such a solution to exist. Another important issue would be to find a totally distributed
version of our algorithm: one where the computation of the ejection probabilities is made
at the sensor node level. The impact of collisions was not taken into account by our model,
and it would be interesting to study the impact of long-range transmissions on collisions.
Finally, in our model sensor nodes are allowed two sorts of transmissions: long-range ejec-
tions directly to the sink and short-range transmission to a neighbour node. Future work
could investigate the possibility of using “medium” range transmissions, for example from
a sensor node to a neighbour which is more than one hop away.

21

References

[AKK05] Jamal N. Al-Karaki and Ahmed E. Kamal. A taxonomy of routing techniques
in wireless sensor networks. In Mohammad Ilyas and Imad Mahgoub, editors,
Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems,
pages 6.1–6.24. CRC Press, 2005.

[AY05] Kemal Akkaya and Mohamed Younis. A survey on routing protocols for wire-
less sensor networks. Ad Hoc Network Journal, 3/3:325–349, 2005.

[BCN05] A. Boukerche, I. Chatzigiannakis, and S. Nikoletseas. Power-Efficient
Data Propagation Protocols for Wireless Sensor Networks. SIMULATION,
81(6):399–411, 2005.

[BN04] A. Boukerche and S. Nikoletseas. Wireless Communications Systems and Net-
works, chapter Protocols for Data Propagation in Wireless Sensor Networks:
A Survey, pages 23–51. Kluwer Academic Publishers, 2004.

[CNS02] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis. Smart dust protocols for
local detection and propagation. In 2nd Workshop on Principles of Mobile
Computing (POMC), pages 9–16. ACM, ACM Press, 2002.

[CT00] J. Chang and L. Tassiulas. Energy conserving routing in wireless ad hoc net-
works. IEEE INFOCOM, 1:22–31, 2000.

[ENR06] C. Efthymiou, S. Nikoletseas, and J. Rolim. Energy balanced data propagation
in wireless sensor networks. Wireless Networks (WINET) Journal, 2006. Best
papers of the 4th Workshop on Algorithms for Wireless, Mobile, Ad Hoc and
Sensor Networks (WMAN 2004).

[HCB00] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy efficient
communication protocol for wireless microsensor networks. In Hawaii Inter-
national Conference on Sytem Sciences (HICSS), number 33, 2000.

[HGWC02] X. Hong, M. Gerla, H. Wang, and L. Clare. Load balanced, energy-aware
communications for Mars sensor networks. Aerospace Conference Proceedings,
2002. IEEE, 3:3–1109, 2002.

[HKK04] Kook-Hee Han, Young-Bae Ko, and Jai-Hoon Kim. A novel gradient approach
for efficient data dissemination in wireless sensor networks. In International
Conference on Vehicular Technology Conference (VTC). IEEE, September
2004. To appear.

[IGE00] C. Intanagowiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable
and robust communication paradigm for sensor networks. In International
Conference on Mobile Computing (MOBICOM), number 6. ACM/IEEE, 2000.

22

[JLPR06] Aubin Jarry, Pierre Leone, Olivier Powell, and Jose Rolim. An optimal data
propagation algorithm for maximizing the lifespan of sensor networks. In To
appear in proceedings of DCOSS’06, 2006.

[LNR05] P. Leone, S. Nikoletseas, and J. Rolim. An adaptive blind algorithm for
energy balanced data propagation in wireless sensor networks. In The
First International Conference on Distributed Computing in Sensor Systems
(DCOSS), number 3560 in Lecture Notes in Computer Science. Springer Ver-
lag, June/July 2005.

[LSS05] L. Lin, N.B. Shroff, and R. Srikant. Asymptotically optimal power-aware rout-
ing for multihop wireless networks with renewable energy sources. Proceedings
of INFOCOM’05, 2005.

[OS06] S. Olariu and I. Stojmenovic. Design Guidelines for Maximizing Lifetime and
Avoiding Energy Holes in Sensor Networks with Uniform Distribution and
Uniform Reporting. In 25th Conference on Computer Communications (INFO-
COM). IEEE Communications Society, IEEE Computer Society Press, April
2006.

[RAdS+00] Jan M. Rabaey, M. Josie Ammer, Julio L. da Silva, Danny Patel, and Shad
Roundy. Picoradio supports ad hoc ultra-low power wireless networking. Com-
puter, 33(7):42–48, 2000.

[SD05] M.L. Sichitiu and R. Dutta. Benefits of Multiple Battery Levels for the Lifetime
of Large Wireless Sensor Networks. In NETWORKING 2005: 4th Interna-
tional IFIP-TC6 Networking Conference, Lecture Notes in Computer Science,
pages 1440–1444. Springer Berlin/Heidelberg, May 2005.

[SL05] Michael J. Sailor and Jamie R. Link. ”smart dust”: Nanostructures devices in
a grain of sand. Chemical Communication, (11):1375–1383, 2005.

[SS01] Curt Schurgers and Mani B. Srivastava. Energy efficient routing in wireless
sensor networks. In Military Communications Conference (MILCOM), pages
357–361, October 2001.

[STGS02] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Topology man-
agement for sensor networks: Exploiting latency and density. In International
Conference on Mobile Computing (MOBICOM), number 8. ACM/IEEE, 2002.

[WLLP01] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S.J. Pfister. Smart
dust: Communicating with a cubic-millimeter. computer, 34(1):44–51, 2001.

[YZLZ05] Fan Ye, Gary Zhong, Songwu Lu, and Lixia Zhang. Gradient broadcast: A
robust data delivery protocol for large scale sensor networks. Wireless Networks
(WINET), 2005. To appear.

23

A Pseudo code of the Algorithm

We provide hereunder a pseudo-code of the algorithm presented in this paper. This pseudo
code is rigorously based on a Perl implementation of the algorithm which was validated on
various inputs.

24

Algorithm A.1: computeOptimal(N ; g[]; b[]; d[])

global f []; j[]; max =∞; recLevel = 0; startPosition = 1; ε[]
comment: Following arrays used as stacks while changing recLevels

global startPositions[]; maxs[]; epsilons[]
main
global i = 0; initialG[] = g[];
for i← 1 to N

do
{
f [i] = j[i] = 0

ε[]← epsilons(1)
while i < N

do



i← i + 1
push(recLevels[], recLevel)
if i = 1
comment: First step

then

do

{
j[i]← g[i]
g[i]← 0

else
comment: From second step to the Nth

do



local E1← f [i− 1] + j[i− 1] ∗ d[i− 1]2

local idealj ← avgNrj(i− 1) ∗ b[i]/d[i]2

if idealj > g[i]
comment: Not enough messages to stay at this level

then

do

{
eject(g[i])
downOneLevel()

else
comment: Enough messages to stay at this level

do



eject(idealj)
while (g[i] > 0)

do



local nrjDelta← max− avgNrj(i)

local msgToGoUp← nrjDelta
1

b[i]
∗(e[i]∗d[i]2+(1−e[i]))

if recLevel = 0 or g[i] < msgToGoUp
comment: Slide the rest

then slide(g[i])

else
comment: Slide enough to go up one level

do

{
slide(msgToGoUp)
upOneLevel()

25

Algorithm A.2: Ejection and sliding of messages()

procedure eject(eject)
j[i]← eject
g[i]← g[i]− j[i]

procedure slide(F)
slideCareful(F)

procedure slideCareless(F)
g[i]← g[i]− F
for (k ← i; k ≥ 1; k ← k − 1)

do


f [k]← f [k] + F ∗ (1− e[k])
j[k]← j[k] + F ∗ e[k]
F ← F ∗ (1− e[k])

procedure slideCareful(F)
local maxCarelessSlide← computeMaxSlide()
if maxCarelessSlide =∞ or F <= maxCarelessSlide

then
do

{
slideCareless(F)

else

do


slideCareless(maxCarelessSlide)
F ← F −maxCarelessSlide
ε[]← epsilons(startPosition, ”withCaution”)
slide(F)

26

Algorithm A.3: Going up or down one level()

procedure upOneLevel()
local max← pop(maxs[])
startPosition← pop(startPositions[])
local tmp[]← pop(epsilons[])
ε[]← tmp[]
recLevel← recLevel − 1

procedure downOneLevel()
push(maxs[], max) comment: store old max

max← avgNrj(i− 1)
push(startPositions[], startPosition)
startPosition← i
local tmpArray[] = ε[]
push(epsilons[], tmpArray[]) comment: store old epsilons

e[]← epsilons(i)
recLevel← recLevel + 1

Algorithm A.4: Computation of the epsilons()

procedure epsilons(first; option)
local ε[]
for k ← 1 to first

do
{
ε[k] = 1

for k ← first + 1 to N

do



local A← d[k]2−1
b[k]

local B ← (ε[k − 1] ∗ (d[k − 1]2 − 1) + 1)/b[k − 1]

ε[k]← B−1/b[k]
A+B

if option = ”withCaution”
then

do


if ε[k] ≤ 0 and j[k] = 0 and k ≤ i

then
do

{
ε[k] = 0

return (epsilons[])

27

Algorithm A.5: Average energy and maximum number of messages to slide()

procedure avgNrj(pos)
return (1

b[pos])
(f [pos] + j[pos] ∗ d[pos]2))

procedure computeMaxSlide()
F ← 1 comment: Simulated slide of one packet from the current pos (i)

local ejected[]
for (k ← i; k ≥ 1; k ← k − 1)

do

{
ejected[k]← F ∗ e[k]
F ← F (1− e[k])

local max←∞
for (k ← i; k ≥ 1; k ← k − 1)

do



local j ← ejected[k]
if j < 0

then

do



j ← −j;
if (max =∞)

then

do max← j[k]
j

else

do


local tmpmax← j[k]

j

if tmpmax < max
then
do max = tmpmax

return (max)

28

