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Abstract

The core of current-generation high-performance multiprocessor systems is out-of-order execution processors with aggressive branch pre-
diction. Despite their relatively high branch prediction accuracy, these processors still execute many memory instructions down mispredicted
paths. Previous work that focused on uniprocessors showed that these wrong-path (WP) memory references may pollute the caches and increase
the amount of cache and memory traffic. On the positive side, however, they may prefetch data into the caches for memory references on the
correct-path. While computer architects have thoroughly studied the impact of WP effects in uniprocessor systems, there is no comparable work
for multiprocessor systems. In this paper, we explore the effects of WP memory references on the memory system behavior of shared-memory
multiprocessor (SMP) systems for both broadcast and directory-based cache coherence. Our results show that these WP memory references can
increase the amount of cache-to-cache transfers by 32%, invalidations by 8% and 20% for broadcast and directory-based SMPs, respectively,
and the number of writebacks by up to 67% for both systems. In addition to the extra coherence traffic, WP memory references also increase
the number of cache line state transitions by 21% and 32% for broadcast and directory-based SMPs, respectively. In order to reduce the per-
formance impact of these WP memory references, we introduce two simple mechanisms—filtering WP blocks that are not likely-to-be-used
and WP aware cache replacement—that yield speedups of up to 37%.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and executes many memory references down the wrong-path
(WP). Although these WP memory references are not allowed
to change the processor’s architectural state, they do change the
data and instructions that are in the processor’s caches, which
can affect its performance.

Previous work [1,2,6,9,13,20-25,4,28-30] studied the
effects that speculatively executed memory references have on
the performance of out-of-order superscalar processors. These
papers yield several conclusions. First, WP memory references
may function as prefetches by bringing data into the cache that
are needed later by instructions on the correct execution path
[22,30,29,4]. Unfortunately, these WP memory references also
increase the amount of memory traffic (i.e., increased band-
width consumption) and can pollute the cache with cache blocks

Shared-memory multiprocessor (SMP) systems are typically
built around a number of high-performance out-of-order su-
perscalar processors, each of which employs aggressive branch
prediction techniques in order to achieve a high issue rate. Dur-
ing program execution, these processors speculatively execute
the instructions after the predicted target of the branch. When
a branch is mispredicted, the processor must restore its state to
the state that existed prior to the mispredicted branch before the
processor can start executing instructions down the correct path
(CP). However, during speculative execution, i.e., before the
branch outcome is known, the processor speculatively issues
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that are not referenced by instructions on the CP [21,22,30,28].
Of these two effects, cache pollution—particularly in the L2
cache—is the dominant negative effect [21,22]. The results in
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[22] also show that it is extremely important to model WP
memory references, since they have a significant impact on the
estimated performance.

In this paper, we focus on the effect that WP memory refer-
ences have on the memory system behavior of SMP systems, in
particular, for both broadcast-based and directory-based cache
coherence. For these systems, not only do the WP memory
references affect the performance of the individual processors,
they also affect the performance of the entire system by increas-
ing the number of cache coherence transactions, the number of
cache line state transitions, the number of writebacks and in-
validations due to WP coherence transactions, and the amount
of resource contention (buffer usage, bandwidth, ezc.).

To minimize the effect that WP memory references have on
the performance of a SMP system, in this paper, we propose and
evaluate a simple mechanism to filter out the WP cache blocks
that are unlikely to be used on the CP. Our filtering mechanism
uses temporal locality and L1 data cache evictions to determine
if the corresponding cache block should be evicted from the L2
cache. In addition to this filtering mechanism, we also propose
a cache replacement policy that is WP aware. More specifically,
we add a field to each cache line to indicate whether or not that
cache line was due to an instruction on the CP or the WP. When
evicting a cache block from a set, evict the oldest WP cache
block. Our results show that both of these simple mechanisms
can significantly reduce the negative impact that WP memory
accesses have on the performance of SMP systems.

This paper makes the following contributions:

1. It quantifies and analyzes the effect that WP memory ac-
cesses have on the performance of SMP systems, in partic-
ular, how WP memory accesses affect the cache coherence
traffic and state transitions, and the resource utilization.

2. It proposes a filtering mechanism and a replacement policy
to minimize the impact that WP memory references have on
the performance of SMP systems.

The remainder of the paper is organized as follows—Section
2 describes the effects that WP memory references can have
on the memory system behavior of SMP systems. Sections 3
and 4 present the details of the simulation environment and the
simulation results, respectively. Section 5 describes our filtering
mechanism and the WP aware replacement policy, and how
they reduce negative effects of WP memory references. Section
6 describes some related work, while Section 7 concludes and
suggests some future work.

2. WP effects

When designing a coherent shared-memory interconnect, the
most important design decision is the choice of the cache co-
herence protocol. Popular protocols include: MSI (Modified,
Shared, Invalid), MESI (Modified, Exclusive, Shared, Invalid),
MOSI (Modified, Owned, Shared, Invalid), and MOESI (Modi-
fied, Owned, Exclusive, Shared, Invalid) [8]. When a processor
accesses memory, the coherence state (i.e., M, O, E, S, or I)
of the cache lines in the processors’ data caches may change.
However, although the branch prediction accuracy of modern

high-performance processors is high, when a branch mispre-
diction does occur, loads on the mispredicted path access the
memory subsystem, which can generate additional coherence
traffic. While these extra state transitions do not violate the co-
herency of the data copies, they may degrade the performance
of the cache coherence protocol and, subsequently, the perfor-
mance of the memory subsystem, and, finally, the performance
of the the SMP. In the remainder of this section, we discuss the
potential effects that WP memory references can have for each
of the aforementioned four cache coherence protocols (MSI,
MESI, MOSI, and MOESI).

2.1. Replacements

A speculatively-executed load instruction that is later deter-
mined to be on a mispredicted path may bring a cache block
into the data cache that replaces another block that may be
needed by a load on the CP. As a result of these replacements,
WP loads pollute the data cache [21,30], which may cause ad-
ditional cache misses. Fig. 1, Step 2 shows an example of this
situation. In this example, Processor 0 speculatively requests
Block A, which causes the replacement.

On the other hand, these speculatively accessed memory ref-
erences can potentially hide the memory latency for later CP
misses, i.e. prefetching [22,30,29,4], which can improve the
processor’s performance.

2.2. Writebacks

In contrast to the writebacks caused by the CP replacements,
in a SMP system, the coherence actions caused by WP mem-
ory references can also cause writebacks. For example, if the
requested WP block has been modified by another processor,
i.e., its cache coherence state is M, a shared copy of that block
is sent to the requesting processor’s cache, which subsequently
may cause a replacement. When the evicted block has a cache
coherence state of M (exclusive, dirty) or O (shared, dirty) state,
this causes an additional writeback, which would not have oc-
curred if the WP load had not accessed memory in the first
place. Step 2 in Fig. 1 illustrates this example. Extra write-
backs, in addition to what is discussed above, may occur in
MSI or MESI coherence SMPs. For these two protocols, if the
requested WP block is in the M state in another processor’s
cache, a shared copy of that block is sent to the requesting pro-
cessor’s cache and also it is written back to the memory. Then
the cache coherence state of that cache block is demoted from
M to S in the original owner’s cache. This additional writeback
may not occur without the WP load.

2.3. Invalidations

The, loads issued down the WP may cause additional invali-
dations. For example, assuming a MOESI protocol, when a WP
load instruction accesses a cache block that another processor
has modified, the state of that cache block changes from M to
O in the owner’s cache and will have a cache coherence state
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Fig. 1. Summary of the wrong-path effects on a SMP system for MOSI (Modified, Owned, Shared, Invalid) or MOESI (Modified, Owned, Exclusive, Shared,
Invalid) coherence protocols. Blocks A and B map to the same cache: (1) initially, block B is in the Modified (M) state in PO’s cache and it is the LRU (least
recently used) block in the set, while block A is in P1’s cache in the M state; (2) PO speculatively reads block A. A Shared (S) copy of the block replaces
block B and causes a writeback. The copy in P1’s cache changes its state to O; (3) speculation turns out to be incorrect. Note the extra cache transactions
and state transitions; and (4) P1 writes on block A and gets the exclusive ownership (state of block A is M now). This causes invalidation to be sent to the

caches sharing block A.

of shared, S, in the requester’s cache. If the owner of that cache
block needs to write to it, the owner changes the state of that
block from O to M and invalidates all other copies of that cache
block. Therefore, as this example shows, changes in the cache
coherence state of a cache block due to a WP load can cause
additional invalidations. Fig. 1, Step 4 illustrates this example.

2.4. Cache block state transitions

In addition to causing additional replacements, writebacks,
and invalidations, WP memory references can also cause tran-
sitions in the cache coherence state of a cache block. For exam-
ple, when a WP memory reference accesses a modified cache
block in another processor’s cache, under the MOESI protocol,
the cache coherence state of that block changes from M to O in
the owner’s cache. The state of that cache block changes back
to M when the owner writes to that block. These changes in the
cache coherence are due solely to the WP access. Therefore,
in this case, a WP memory access in another processor results
in two extra cache state transitions in the owner’s cache (see
Steps 2 and 4 in Fig. 1).

The extra cache block state transitions caused by WP mem-
ory references may degrade the performance. For example,
when implementing a snooping coherence protocol, the oper-
ation of detecting a write miss, obtaining the bus, getting the
most recent value, and updating the cache cannot be done as if

it took a single cycle. This requires adding a number of tran-
sient states for pending write misses and write-backs (for a
write-back cache). The controller will leave those states when
the bus is available. A WP memory reference, which causes
this type of extra transitions, competes with other CP requests
to acquire the bus. The processor will also stall when it requests
a block that is in transient state due to an earlier WP request.
Such problems are slightly worse in a directory-based system
that does not have a broadcast mechanism like a bus, which
can be used to order all requests.

2.5. Data/bus traffic and coherence transactions

Due to these extra replacements, writebacks, invalidations,
and changes in the cache coherence state, WP memory accesses
increase the amount of traffic due to L1 and L2 cache accesses,
as well as increasing the number of snoop and directory re-
quests.

2.6. Power consumption

In the best case, even if WP memory references do not affect
the performance of the SMP system, they still may increase
system’s overall power consumption [19].

Several previous studies proposed methods to reduce the
power in snoop-based systems [19,18,27,10,11] by filtering
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Table 1
Benchmarks and input data sets
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Benchmark Description Input data set
fit Complex 1-D FFT 64 K points
radix Integer radix sort 2 M integers, radix 1024

ocean

water-spatial Simulation of water molecules

Simulates large-scale ocean movements

128 x 128 ocean
512 molecules

em3d Electromagnetic force simulation 400K nodes, degree 2, span 5, 15% remote
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Fig. 2. (a) Broadcast and (b) directory based SMPs.

unnecessary snoops. In particular, Moshovos et al. [19] showed
that filtering unnecessary snoops can reduce the total L2 cache
power by 30%. Accordingly, reducing the cache line transi-
tions and cache coherence traffic due to WP memory accesses
should also reduce the power consumption. However, in this
paper, we defer a detailed examination of the attendant power
consumption implications to future work.

2.7. Resource contention

Finally, in addition to the aforementioned effects, WP mem-
ory accesses can also increase the amount of resource con-
tention. More specifically, WP memory accesses compete with
CP memory accesses for the multiprocessor’s resources, such
as request and response queues at the communication intercon-
nect, and interprocessor bandwidth. The additional cache co-
herence transactions may increase the frequency of full service
buffers. In this paper, however, we assume a sufficient network
bandwidth to keep the network contention low. With the possi-
ble exceptions of fft, which uses all-to-all communication, and
em3d, network contention was not a problem for the bench-
marks that we studied in this paper. However, for other work-
loads, network contention could have a serious performance
impact.

3. Experimental methodology
3.1. Benchmarks

Table 1 lists the five benchmarks that we used in this paper.
The first four benchmarks are benchmarks from the SPLASH-2

Table 2
Broadcast (snoop)-based and directory-based SMP system parameters
Parameter Value
Processors 16 UltraSPARC 1II processors
Processor 2 GHz 15-stage pipeline, out-of-order execution
parameters
8-wide dispatch/retirement
256/128-entry ROB/scheduler
10 cycle branch misprediction penalty
GSHARE branch predictor with 4 K PHT
64-entry return address stack
32 Entry CAS and CAS exception table
L1 Caches Split I/D, 32kB 2-way, 128 Byte Blocks, with
2ns access latency 32 Entry MSHRs
L2 Caches Unified, 2 MB 2-way, 20 ns hit latency

Exclusive L1 and L2s
4 GByte per bank, 240ns DRAM latency
Hierarchical switch

Main Memory
Interconnect

benchmark suite [34],! while em3d [7] is an electromagnetic
force simulation benchmark.

3.2. Simulated system configurations

In this paper, we evaluate a 16-processor SPARC v9 sys-
tem running an unmodified copy of Solaris 9. We simulate
both snoop-based and directory-based SMP systems with
an invalidation-based cache coherence. We use the MOSI
and MOESI cache coherence protocols, respectively, for the

I'We were not able to simulate all SPLASH 2 benchmarks because we
had problems with compilation and/or in adding the checkpoints/breakpoints
to the SPLASH benchmark code for simulation on SIMICS.
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snooping-based and directory-based SMP systems. Each node
includes an aggressive, dynamically-scheduled, out-of-order
processor core [16], two-levels of cache, coherence protocol
controllers, and a memory controller [17]. Fig. 2 shows the
block diagram of simulated directory and broadcast-based
SMP systems and Table 2 lists the relevant processor and
system parameters.

3.3. Simulation methodology

We collect our simulation results using the GEMS [16] exten-
sion to Virtutech’s Simics [15], which is a full system simulator.
GEMS adds cycle-accurate models of an out-of-order proces-
sor core [17], cache hierarchy, various cache coherence proto-
cols, multibanked memory (unified or distributed), and various
interconnection networks to the base-version of Simics.

GEMS uses timing-first simulation approach [17], in which
functional and timing aspects of the simulators are decoupled.
The timing modules interact with SIMICS to determine when
SIMICS should execute an instruction. However, what the result
of the execution of the instruction is ultimately dependent on
SIMICS. The GEMS simulator is reported to be 100% correct,
and the worst case performance error is 2.4% [16].

To avoid measuring the time needed for thread-forking, we
begin our measurements at the start of the parallel phase by
using Simics’ functional simulation to execute the benchmarks
until the start of the parallel phase. Then, we use first iteration
of the loop to warm-up the caches and branch predictors. After
the first iteration, we simulate the benchmark for an additional
iteration to gather our simulation results.

4. Evaluating the WP effects

In this section, we evaluate the impact that executing WP
memory references have on the caches, the communication be-
tween processors due to coherence transactions, and the overall
performance of the SMP. To measure the various WP effects,
we track the speculatively generated memory references and
mark them as being on the WP when the branch misprediction
is known.

4.1. L1, L2, and coherence traffic

In this section, we quantify the percentage increase in the L1
cache, L2 cache, and coherence traffic due to the WP memory
references for 4- and 16-processor SMP systems. Fig. 3 shows
the increase in the traffic between the processor and its L1
data cache and between the L1 cache and the L2 cache due to
WP memory references, as a percentage of the total number of
memory references, for broadcast-based SMPs. Fig. 4 does the
same for directory-based SMPs.

Fig. 3 shows that, for a 4-processor broadcast-based SMP,
WP loads increase the total number of L1 and L2 cache ac-
cesses by an average of 8% and 14%, respectively. For a 16-
processor broadcast-based SMP, this increase is 15% for L1 and
35% for L2 cache accesses. For directory-based SMPs, Fig. 4

shows that these loads increase the percentage of L1 and L2
cache accesses by an average of 9% and 14%, respectively, for
four processors, and 13% and 32%, respectively, for 16 pro-
cessors. With 16 processors, for all benchmarks and for both
SMP systems, the percentage increase in the number of L2 ref-
erences is larger than the percentage increase in the number
of L1 cache references. With four processors, however, except
em3d, there is no such a trend. For em3d, while the percentage
increase in the number of L1 cache accesses is negligible for
both 4 and 16 processors and for both systems, the number of
L1 misses increases by as much as 45%. Overall, 16-processor
SMPs are affected by WP memory references much more than
4-processor SMPs are.

Fig. 5 shows that WP memory accesses increase the num-
ber of coherence transactions by an average of 18% and
32%, for 4 and 16 processors, respectively, for both broadcast
and directory-based SMPs. For em3d, the coherence traffic
increases by over 60%.

The results from Figs. 3—5 show that the extra traffic due to
WP memory references increases as the number of processors
increases. Therefore, for rest of the paper, we only analyze their
effects on 16 processor systems.

4.2. Cache line replacements

From a performance point-of-view, WP memory references
can have both a positive and negative effect on the processor’s
performance by either prefetching data into the caches or by
polluting them [21,22,30,29], respectively. To determine the
potential performance impact that WP memory references have
in SMP systems, we categorize the misses caused by WP loads
into four groups: unused, used, direct miss, and indirect miss.
In the unused WP block category, the WP cache block is either
evicted before being used or is never used by a correct-path. On
the other hand, cache blocks in the used WP block category are
eventually used by a CP memory reference. Direct miss cache
blocks can severely degrade the systems performance because
they replace a cache block that a later CP load accesses, but the
WP block is evicted before being used. Finally, since unused
WP misses change the LRU state of cache blocks in that set,
which may eventually cause CP misses, we call these misses
indirect misses. For example, A, B, C and D are cache blocks
that map to the same cache set. Assume that in this example
the: (1) cache is two-way set-associative cache that initially
contains blocks A and B, (2) where B is the LRU block, (3) C
is the WP reference, and (4) both A and D are on the CP. In this
situation, the sequence of operations is as follows: WP block
C replaces B, CP miss block D replaces A, CP miss block A
replaces C. If WP reference for block C did not occur, then the
CP reference for block A would have been a cache hit because
block D would replaced block B instead. Fig. 6 illustrates this
situation.

Fig. 7 classifies the WP-caused cache misses into the afore-
mentioned four categories. The results show that 55-67% of
the WP replacements in the L1 data cache and 12-36% of
the WP replacements in the L2 are used in broadcast-based
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systems. Direct misses account for 5-62% of all WP replace-
ments and account for a higher percentage of WP misses in
broadcast-based SMP systems than for directory-based. Finally,
indirect misses account for less than 5% of all WP misses for
most of the benchmarks and systems tested.

It is important to note that direct and indirect misses are
responsible for the pollution caused by the WP memory ref-
erences. While they have similar effect on the L1 data cache
for both broadcast and directory systems, their effects on
L2 cache are different between the two SMP systems. For
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directory-based, almost all of the L2 replacements are used,
while the opposite is true for broadcast-based. This suggests
that WP memory references have a greater effect on broadcast-
based systems. However, a small number of remote misses
caused by WP loads may have a disproportionately large per-
formance impact in a directory-based system, as compared to
a broadcast-based system.

4.3. Servicing cache coherence transactions

Broadcast-based cache coherence provides the lowest possi-
ble latency to retrieve data since misses can either be served by
remote caches or shared memory. In contrast, in a directory-
based SMP, misses can be served locally (including the local
directory), at a remote home node, or by using both the home
node and the remote node that is caching an exclusive copy,
i.e., a three-hop miss. The latter case has a higher cost be-
cause it requires interrogating both the home directory and a
remote cache. Coherence misses account for most of the remote
misses.

Figs. 8 and 9 show how the CP and WP cache coherence
transactions are serviced for broadcast and directory-based
SMP systems, respectively. The figures show that the results
are similar for both SMP systems. Namely, remote caches ser-
vice a greater percentage of the WP misses than for CP misses
for all benchmarks except em3d. For those benchmarks, the
percentage of misses serviced by remote caches varies from

12% to 80% for CP loads and 55-96% for WP loads. For
the directory-based SMP, in all benchmarks, local memory
services only a very small percentage of both CP and WP
memory references.

4.4. Replacements and writebacks

As described in Section 2.2, WP replacements may cause
extra writebacks that would not occur otherwise. Figs. 10and 11
show the percentage increase in the number of replacements and
writebacks due to WP memory references. Fig. 10 shows the
percentage increase in the number of E (for directory MOESI)
and S line replacements. E — I transitions—which increased
by 2—63%—are particularly important since the processor loses
the ownership of a block and, more importantly, the ability
to silently upgrade its value, which can significantly increase
the number of invalidations needed for write upgrades. For
em3d, there is a large increase in both the replacements and
writebacks.

Fig. 11 shows that WP memory accesses increase the num-
ber of writebacks from 4% to 67%. It is important to note that
writebacks may result in additional stall cycles when an L2
cache miss occurs after the processor starts to perform a write-
back, since it cannot begin to service the miss until the write-
back completes.
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4.5. Cache line state transitions

Fig. 12 shows the impact that WP memory references
have on the number of cache line state transitions. The re-
sults show that the number of cache line state transitions

increase by 20-24% for a broadcast-based SMPs and
by 27-44% for directory-based. Although the percentage
increase is smaller for the broadcast-based system, the
number of cache line state transitions is much higher to
begin with.
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A processor loses ownership of an exclusive cache block
(M or clean E) when another processor references it. In order to
regain ownership, the processor has to first invalidate all other
copies of that cache block, i.e., S — I, for all other proces-
sors. Fig. 13 shows that there is 8—11% increase in the number
of write misses due to WP references—each of which subse-
quently causes an invalidation—for broadcast-based SMPs; this
percentage is higher, 15-26%, for the directory-based SMPs.

DIRECTORY

wrong-path references in broadcast and directory-based SMPs.

5. Filtering and replacement policies for WP memory
references

In Section 4, we described the effects that WP memory
references can have on the memory subsystem behavior of
broadcast and directory-based SMP systems. In this section,
we evaluate two enhancements that try to minimize the neg-
ative effects of WP memory references, while retaining their
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positive effects (i.e., prefetching), to improve the performance
of an SMP system without significantly increasing the com-
plexity of the memory subsystem.

5.1. Marking the WP blocks

The first step to reduce the negative effects of WP memory
references is to detect the WP requests. Mispredicted branches
are usually resolved in the branch execution unit (BEU) be-
fore most of the WP L1 misses, and before almost all of the
WP L2 misses complete [22]. Therefore, whether an L1 or L2
cache miss is down the WP is usually known before the block is
placed into the cache. Most of the current processors use miss
status holding registers (MSHRs) to track outstanding memory
requests. Each MSHR entry stores the speculative tag for the
missed load instruction. When a branch misprediction is sig-
naled by the BEU, the speculative tag for the corresponding
branch can be matched with the tags in MSHRs and marked
as WP. In order to implement a WP-aware replacement policy,
each cache block also needs a 1-bit to specify whether the block
is brought into the cache due to WP or CP. This bit is set to
CP by default. The WP loads which miss in L1 and that are al-
ready completed (e.g., serviced by a L2 hit) before the branch
resolution are not detected and thus marked as CP. However,
with the help of a simple mechanism, almost all of the blocks
brought by WP loads can be marked as WP. If a speculative
load request misses in the L1 and is serviced by the L2, the L1-
missed address may be kept in a small first-in—first-out (FIFO)
queue (4-8 entries speculative load miss queue, SLMQ) when
removed from the MSHRs giving more time to BEU to signal
the misprediction. The WP addresses in this queue matching
the mispredicted branch tag can then be used to access the data
cache and mark the WP blocks. This operation can be done
by probing the cache whenever there is available access port
to the cache, thus it does not compete with the ordinary mem-
ory requests. Most of the blocks brought by WP loads can be
marked as WP even without this FIFO queue. However, such a
queue is useful when a predicted branch instruction’s operands
depend on a long latency operation (such as a load that misses
in L2) to produce the operand value. In this case, we may not
be able to capture the WP loads in the MSHRs because of the
late branch resolution. Therefore, an SLMQ will be beneficial.
On the other hand, another scenario may help on-time marking
of load misses as WP. When the branch is resolved but cannot
be committed because it is waiting for a long latency opera-
tion which is at the reorder buffer head to complete execution
and commit, the out-of-order core continues execution. The
WP loads in the load queue which were not ready to be issued
can become ready after the branch resolution and can simply
be marked as WP when placed in the MSHRs if they miss in
L1. Figs. 14 and 15 show the basic operation of how to mark
cache blocks as being from the WP and the implementation in
the SMP.

5.2. A WP aware replacement policy

Based on the results in Section 4, we propose a WP-aware
cache block replacement policy. To make the cache replacement
policy WP aware, when a block is brought into the cache, it

is marked as being either on the CP or on the WP. (There are
several possible ways to design such a mechanism, one of which
was discussed in the previous section.) Later, when a block
needs to be evicted from that set in the cache, assuming that
all cache blocks are valid (if not, an invalid block is “replaced”
first), WP blocks are evicted first, on a LRU basis if there are
multiple WP blocks. The WP block evicted from L1 data cache
will now be written into L2 cache (exclusive L1-L.2), however,
when placed in L2, it will stay as LRU. This will ensure that
the WP block that was not used in L1 will not reside in the
L2 cache for very long (unless it is used). On the other hand,
a WP block that services a CP reference is marked as if it was
on the CP, thus excluding it from the WP replacement policy.
If all cache blocks originated from a CP reference, then the
LRU block in that set is chosen for eviction. Fig. 16 shows the
algorithm for WP-aware replacement.

5.3. Reducing cache pollution via filtering

Our second proposed enhancement is a filtering mechanism
that reduces the cache pollution due by direct and indirect miss
WP references, and by evicting the unused WP blocks early.
We apply our filtering mechanism to the L2 cache due to the
long latency of L2.

We base our filtering mechanism on the observation that if
a speculatively fetched cache block is not used while it resides
in the L1 cache, then it is likely that block will not be used at
all or will not be used before being evicted from the L2 cache
[21].

In this paper, we evaluate exclusive L1 and L2 caches. A
block that misses both in L1 and L2 allocates a line only in the
L1 cache. Then, when a block is evicted from the L1 cache, it
is written to L2.

Our filtering mechanism works as follows: If a WP block is
evicted from the L1 cache before being used by a CP memory
reference, it is allocated to the L2 cache only if its L2 set has
an empty way, i.e., at least one cache way is invalid. If not,
then that cache block is discarded, i.e., not allocated to the L2
cache, but written to memory only. A WP block that services
a CP reference is handled in the same way as a CP block.

We can further filter WP blocks from being placed in L2
cache by canceling the WP references in the L2 cache request
queue as soon as the misprediction is known. For example, if a
requested block is an L1 cache miss, a request is sent to the L2
cache controller and placed in a request queue. At the time that
the L2 cache controller processes this request, if it is known
that the load instruction was on a mispredicted branch path,
then this request is simply discarded without being serviced. (If
this request were not discarded, it would cause an L2 miss and
could possibly replace a valid block in the L2 cache.) However,
if there is an invalid line in the set, the L2 cache controller
services that WP memory reference and overwrites the invalid
line. Otherwise, the L2 cache controller processes this request
as usual.

5.4. Performance evaluation

Fig. 17 shows the speedup results for the enhancements de-
scribed in Sections 5.2 and 5.3. In this figure, there are a total
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speculative load miss queue; BEU: branch execution unit; WP: wrong-path; CP: correct-path.

of three enhancements: replacement, filter, and their combina-
tion, i.e., filter 4+ replacement.

The results in Fig. 17 show that a simple WP aware replace-
ment policy may perform very well for some benchmarks. For
example, for water, all three enhancements yield speedups of
about 30% or more for the broadcast-based SMPs. Overall, the
performance of the enhancements varies across benchmarks and
systems. On average, filtering yields higher speedups than WP
aware replacement, while also outperforming replacement for
all benchmarks for directory-based SMPs. For broadcast-based

SMPs, filtering performs better than WP aware replacement for
radix, water and em3d. Employing a simple WP replacement
policy does not significantly improve the performance of ocean
and fft.

WP-aware replacement policy degrades the performance in
some cases: 1% for radix (broadcast), 4% for fft (directory)
and 8% for water (directory). The performance degradation is
mainly due to the WP-aware replacements that are not useful
because they reduce prefetching effect of useful WP blocks
by replacing them first (this blocks may be used later by CP
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Fig. 16. Wrong-path aware replacement policy.

if they were not replaced). For a WP filter mechanism, only
Jit (for directory-based SMP) is negatively affected (3% per-
formance degradation for directory-based SMP). This perfor-
mance degradation is due to the decision that if a WP block
is not used in L1 cache it is more likely not to be used in L2
cache. Even if the WP block is not used by a later CP block
while it resides in L1 cache, it might have been used later
when it resides in L2 cache. A filter policy, which is based

on this general observation, therefore, may not work for all
applications. For both mechanisms, the performance degrada-
tion is due to reducing prefetching effect of some useful WP
blocks. However, performance degradation does not occur often
as most of the results are positive. When we combine filter and
the WP aware replacement, their advantages may cancel out
each other in some cases (radix and ocean in broadcast-based
SMPs).
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6. Related work

To best of our knowledge, no previous work examined the
effects that WP memory references have on SMPs. However,
several papers examined the effect that speculative execution
had on the performance of uniprocessor systems. Mutlu et al.
[22,23] analyzed the performance impact that WP references
have for different memory latencies and instruction window
sizes. Their results showed that the major reason for perfor-
mance degradation due to WP memory references is L2 cache
pollution.

Sendag et al. [30] proposed using the fully-associative
wrong-path cache (WPC) to eliminate the cache pollution
caused by WP references. The WPC stores data brought into
the processor by WP load instructions and evicted from the L1
cache. The processor accesses the WPC and the L1 data cache
in parallel. Hence, the WPC functions both as a victim cache
[13] and a buffer to store data fetched by WP references. This
approach eliminates the pollution caused by WP references
in the L1 cache. Sendag et al. [29] also studied the effects of
incorrect speculation on the performance of a concurrent mul-
tithreaded architecture. They analyzed how wrongly-forked
threads affected the memory system performance in addition
to the known effects by the WP load instructions in a unipro-
CESSOr.

Mutlu et al. proposed using the L1 caches as filters to re-
duce the pollution in the L2 cache caused by speculative mem-
ory references, including both WP and prefetched references
[21]. Their mechanism takes advantage of the observation that
pollution in the L1 cache caused by speculative references has
less impact on the performance than pollution in the L2 cache.
Their approach reduces the L2 cache pollution due to specula-
tive references for both for out-of-order and runahead proces-
sors, without requiring extra storage to hold the data fetched
by the speculative references.

Finally, Pierce and Mudge studied the effect of WP memory
references on cache performance [24]. Their study used trace-
driven simulation, where they injected a fixed number of in-
structions to emulate the WP. However, this is not very realistic
because the number of instructions executed on the WP is not

fixed in a real processor [6]. They also introduced an instruc-
tion cache prefetching mechanism, which shows the usefulness
of WP memory references to the instruction cache [25]. Their
mechanism fetches both the fall-through and target addresses
of conditional branch instructions.

7. Conclusion

In this paper, we evaluate the effects of executing WP mem-
ory references on the memory behavior of cache coherent mul-
tiprocessor systems. Our evaluation reveals the following key
conclusions:

1. It is important to model WP memory references in cache
coherent SMPs. Neglecting to model them may result in
incorrect design decisions, especially for future systems with
longer memory interconnect latencies and processors with
larger instruction windows.

2. For SMP systems, not only do the WP memory references
affect the performance of the individual processors due to
prefetching and pollution, they also affect the performance
of the entire system by increasing the number of cache co-
herence transactions, the number of cache line state tran-
sitions, the number of writebacks and invalidations due to
WP coherence transactions, and the amount of resource con-
tention (buffer usage, bandwidth, etc.).

3. For a workload with many cache-to-cache transfers, WP
memory references can significantly affect the coherence
actions.

4. Finally, simple mechanisms such as filtering unlikely to-be-
used WP blocks from being placed into L2 or making the
replacement policy WP aware can significantly improve the
SMP performance.
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