
J. Parallel Distrib. Comput. 68 (2008) 37–53
www.elsevier.com/locate/jpdc

Middleware for data mining applications on clusters and grids�

Leonid Glimchera, Ruoming Jinb, Gagan Agrawala,∗
aDepartment of Computer Science and Engineering, Ohio State University, 2015 Neil Avenue, Columbus, OH 43210, USA

bDepartment of Computer Science, Kent State University, Kent, OH 44242, USA

Received 24 August 2006; received in revised form 9 June 2007; accepted 9 June 2007
Available online 10 July 2007

Abstract

This paper gives an overview of two middleware systems that have been developed over the last 6 years to address the challenges involved
in developing parallel and distributed implementations of data mining algorithms. FREERIDE (FRamework for Rapid Implementation of Data
mining Engines) focuses on data mining in a cluster environment. FREERIDE is based on the observation that parallel versions of several
well-known data mining techniques share a relatively similar structure, and can be parallelized by dividing the data instances (or records or
transactions) among the nodes. The computation on each node involves reading the data instances in an arbitrary order, processing each data
instance, and performing a local reduction. The reduction involves only commutative and associative operations, which means the result is
independent of the order in which the data instances are processed. After the local reduction on each node, a global reduction is performed.
This similarity in the structure can be exploited by the middleware system to execute the data mining tasks efficiently in parallel, starting from
a relatively high-level specification of the technique.

To enable processing of data sets stored in remote data repositories, we have extended FREERIDE middleware into FREERIDE-G (FRamework
for Rapid Implementation of Data mining Engines in Grid). FREERIDE-G supports a high-level interface for developing data mining and
scientific data processing applications that involve data stored in remote repositories. The added functionality in FREERIDE-G aims at
abstracting the details of remote data retrieval, movements, and caching from application developers.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Data mining; Clusters; Grids; Middleware

1. Introduction

Data mining is an inter-disciplinary field, having applications
in diverse areas like bioinformatics, medical informatics, scien-
tific data analysis, financial analysis, consumer profiling, etc. In
each of these application domains, the amount of data available
for analysis has exploded in recent years, making the scalabil-
ity of data mining implementations a critical factor. To this end,
parallel and distributed versions of most of the well-known data
mining techniques have been developed. However, we believe
that the following challenges still remain in effectively using
large data sets and in performing scalable data mining:

Ease of development: Developing efficient parallel applica-
tions is a difficult task on today’s parallel systems. Clusters of

� This research was supported by NSF Grants #CNS-0203846,
#CCF-0541058, and CNS #0403342.

∗ Corresponding author. Fax: +1 614 292 2911.
E-mail addresses: glimcher@cse.ohio-state.edu (L. Glimcher),

jin@cs.kent.edu (R. Jin), agrawal@cse.ohio-state.edu (G. Agrawal).

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.06.007

SMPs or multi-core systems, which have been popular or are
emerging, offer both distributed memory and shared memory
parallelism, which makes application development even harder.

Dealing with large data sets: The data sets available in many
application domains, like satellite data processing and medical
informatics, easily exceed the total main memory on today’s
small and medium parallel systems. So, to be scalable to realis-
tic data sets, the parallel versions need to efficiently access disk
resident data. Optimizing I/O on parallel configurations is gen-
erally harder than on a uniprocessor, which further adds to the
complexity of parallel data mining application development.

Maintaining and performance tuning parallel versions:
Maintaining, debugging, and performance tuning a parallel
application is an extremely time consuming task. As paral-
lel architectures evolve, or architectural parameters change,
it is not easy to modify existing codes to achieve high per-
formance on new systems. As new I/O, communication, and
synchronization optimizations are developed, it is useful
to be able to apply them to different parallel applications.

http://www.elsevier.com/locate/jpdc
mailto:glimcher@cse.ohio-state.edu
mailto:jin@cs.kent.edu
mailto:agrawal@cse.ohio-state.edu


38 L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53

Currently, this cannot be done for parallel data mining imple-
mentations without a high programming effort.

Support for processing remote data sets: Analysis of large
geographically distributed scientific data sets, also referred to
as distributed data-intensive science [10], has emerged as an
important area in recent years. Scientific discoveries are in-
creasingly being facilitated by analysis of very large data sets
distributed in wide area environments. Careful coordination of
storage, computing, and networking resources is required for
efficiently analyzing these data sets. Even if all data are avail-
able at a single repository, it is not possible to perform all
analysis at the site hosting such a shared repository. Network-
ing and storage limitations make it impossible to down-load
all data at a single site before processing. Thus, an application
that processes data from a remote repository needs to be bro-
ken into several stages, including a data retrieval task at the
data repository, a data movement task, and a data processing
task at a computing site. Because of the volume of data that is
involved and the amount of processing, it is desirable that both
the data repository and computing site may be clusters. This
can further complicate the development of such data processing
applications.

This paper gives an overview of two middleware systems that
have been developed over the last 6 years to address the above
challenges. FREERIDE (framework for rapid implementation
of data mining engines) focuses on data mining in a cluster en-
vironment. FREERIDE is based on the observation that parallel
versions of several well-known data mining techniques share
a relatively similar structure. We have carefully studied paral-
lel versions of a priori association mining [1], bayesian net-
work for classification [8], k-means clustering [22], k-nearest
neighbor classifier [19], and artificial neural networks [19]. In
each of these methods, parallelization can be done by divid-
ing the data instances (or records or transactions) among the
nodes. The computation on each node involves reading the data
instances in an arbitrary order, processing each data instance,
and performing a local reduction. The reduction involves only
commutative and associative operations, which means the re-
sult is independent of the order in which the data instances are
processed. After the local reduction on each node, a global re-
duction is performed. This similarity in the structure can be
exploited by the middleware system to execute the data mining
tasks efficiently in parallel, starting from a relatively high-level
specification of the technique.

To enable processing of data sets stored in remote data
repositories, we have extended FREERIDE middleware into
FREERIDE-G (FRamework for Rapid Implementation of
Data mining Engines in Grid). FREERIDE-G supports a high-
level interface for developing data mining and scientific data
processing applications that involve data stored in remote
repositories. The added functionality in FREERIDE-G aims
at abstracting the details of remote data retrieval, movements,
and caching from application developers.

This paper also presents a subset of application development
efforts and experimental results we have obtained from these
two systems. Specifically, we describe our experience in devel-
oping a molecular defect detection application on FREERIDE.

We also present initial performance evaluation of FREERIDE-
G using three data mining algorithms and two scientific data
processing applications.

The rest of this paper is organized as follows. An overview of
FREERIDE is presented in Section 2. Molecular defect detec-
tion case study is discussed in Section 3. FREERIDE-G design
described in Section 4 and experimentally evaluated in Section
5. We given an overview of related research efforts in Section
6 and conclude in Section 7.

2. FREERIDE middleware

In this section, we describe the basic functionality and inter-
face of our FREERIDE middleware.

FREERIDE is a general framework for parallelizing data
mining algorithms on both distributed and shared memory con-
figurations. It also provides support for efficient execution on
disk-resident data sets. In the past, FREERIDE has been used
for a number of well-known data mining algorithms, includ-
ing a priori and FP-tree based association mining, k-means and
EM clustering, decision tree construction and nearest neighbor
searches. The details of the functionality and results from eval-
uation of the system are available in our earlier publications
[24–29].

FREERIDE is based on the observation that a number of
popular data mining algorithms share a relatively similar struc-
ture. Their common processing structure is essentially that of
generalized reductions. During each phase of the algorithm,
the computation involves reading the data instances in an ar-
bitrary order, processing each data instance, and updating ele-
ments of a reduction object using associative and commutative
operators.

In a distributed memory setting, such algorithms can be par-
allelized by dividing the data items among the processors and
replicating the reduction object. Each node can process the data
items it owns to perform a local reduction. After local reduc-
tion on all processors, a global reduction can be performed. In
a shared memory setting, parallelization can be done by assign-
ing different data items to different threads. The main challenge
in maintaining the correctness is avoiding race conditions when
different threads may be trying to update the same element
of the reduction object. We have developed a number of tech-
niques for avoiding such race conditions, particularly focusing
on the impact of locking on memory hierarchy. However, if the
size of the reduction object is relatively small, race conditions
can be avoided by simply replicating the reduction object.

A particular feature of the system is the support for efficiently
processing disk-resident data sets. This is done by dividing
the data set into a set of chunks. Then, the processing time is
minimized by reading the chunks in an order that minimizes
the disk seek time, and aggressively using asynchronous read
operations.

Since our main focus is on parallelization in a distributed
memory environment and scaling to disk-resident data sets, we
describe the interface available for facilitating these. The fol-
lowing functions need to be written by the application devel-
oper using our middleware.



L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53 39

The subset of data to be processed: In many cases, only a
subset of the available data needs to be analyzed for a given data
mining task. These can be specified as part of this function.

Local reductions: The data instances or chunks owned by a
processor and belonging to the subset specified are read. A local
reduction function specifies how, after processing one chunk,
a reduction object (declared by the programmer), is updated.
The result of this processing must be independent of the order
in which the chunks are processed on each processor.

Global reductions: The reduction objects on all processors
are combined using a global reduction function.

Iterator: A parallel data mining application often comprises
of one or more distinct pairs of local and global reduction func-
tions, which may be invoked in an iterative fashion. An itera-
tor function specifies a loop which is initiated after the initial
processing and invokes local and global reduction functions.

3. A detailed case study using FREERIDE

This section presents a case study in creating a parallel and
scalable implementation of a scientific data analysis applica-
tion using FREERIDE. We focus on a defect detection and
categorization application [34]. This application analyzes data
sets produced by molecular dynamics (MD) simulations, which
comprise locations of the atoms and the associated physical
quantities. The goal of the analysis is to detect and categorize
the defects in the data sets. Because of the presence of noise
in these simulations, it is important to classify the identified
defects into similar classes. Thus, this application involves two
major phases. In the defect detection phase, atoms are marked
as defect atoms based on statistical rules and then clustered to
form defect structures. In the defect categorization phase, we
use a shape matching algorithm to try and match each defect
to an existing defect catalog.

In parallelizing this application, we had the following three
goals. First, we obviously wanted to achieve high parallel ef-
ficiency. Second, we wanted to create an implementation that
can scale to disk-resident data sets. Finally, we wanted to cre-
ate an easy to maintain and modify implementation, which is
possible only through using high-level interfaces.

3.1. Feature based mining approach

Direct numerical simulations are being increasingly used to
study many physical, chemical and biological phenomena. An
important goal of MD simulations is to uncover fundamental
defect nucleation and growth processes in Silicon (Si) lattices,
either in the presence of thermal sources or extra atoms (e.g.,
additional Si atoms or dopants such as Boron). These defects
can alter electrical and material properties (e.g., capacitance)
of semi-conductor devices dramatically. Therefore, to precisely
control the mechanisms of device fabrication, it is important to
understand the extent and evolution of the defect structures.

The challenges in detecting defects and classifying them from
data produced by an MD simulation are daunting. The data sets
produced by MD simulation are often very large. The output is
comprised of the locations of the atoms and associated physical

quantities, including energy and potential. In typical Si defect
simulations, more than 10 million time steps are generated to
study the evolution of single- or multi-interstitial in a lattice.
Manual analysis to seek and classify individual defects is both
cumbersome and error-prone. Therefore, there is a need to de-
velop fast automatic detection and classification schemes that
scale well to increasingly large lattice systems.

A detection and categorization framework has been devel-
oped to address the above need. It consists of the two phases
with several sub-steps in each phase. We next briefly sum-
marize both phases with the associated sub-steps. A more
detailed overview of the approach is available in a recent
publication [34].

3.1.1. Phase 1-defect detection
In this phase the atoms are marked as defect atoms based on

statistical rules and then clustered to form one or more defect
structures.

Local operators: The local operators (rules) check each
atoms for correct number of neighbors and bond angles. All
the atoms which do not follow these rules are marked as defect
atoms. For Silicon lattice the number of neighboring atoms
should be 4 and each dihedral angle should be ∈ [90◦,130◦].
Two atoms are neighboring atoms if the euclidean distance
between them is �2.6 Å.

A bulk silicon atom has precisely four neighbors within the
distance of 2.6 Å and the angles between any two bonds lie
within [90◦,130◦]. Any other atom is a defect. Similar defini-
tions can be formulated for other systems. In a solid, the peri-
odic boundary condition has to be treated with care to obtain
the correct bond lengths and distances near the boundary.

Clustering the marked atom: Segmentation of defects is per-
formed through aggregating defect atoms in one or more con-
nected sub-structures (defects). A line is drawn connecting all
defect atoms that lie within a distance of 4 Å of each other.
Each cluster is then a connected graph, which is computation-
ally inexpensive to obtain given the relatively small number of
atoms in a defect. Fig. 1 shows two defects embedded in a 512
atom lattice. The different shades represent distinct and sepa-
rated spatial clusters (defects) in a 512-atom Si lattice.

Fig. 1. Lattice with two detected defects.



40 L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53

3.1.2. Phase 2-defect categorization
This phase consist of two substeps. The first step, which is

computationally inexpensive, provides with a set of candidate
defect classes. The second step tries to match the candidate
classes from first step using a relatively expensive exact shape
matching algorithm.

Pruning using feature vectors: The shape of the defect is
well represented by using central moment till third order. A
k-nearest neighbor classifier is then used to pick the closest K
classes. These K classes are the input to next step.

Exact match using largest common sub-structures: This step
finds the largest common sub-structure (LCS) between the de-
fect to be classified and candidate classes. The LCS is found
by using distance and orientation of atoms. The class which
gives largest size LCS is considered the class of the defect.
However, if the number of atoms in LCS is �M (a user spec-
ified threshold), then the defect is considered to be new and
the moment vector and positions of atoms are added to the
database.

3.2. Parallel algorithm and implementation

We now describe a number of algorithmic and implementa-
tion issues in parallelizing the defect detection and categoriza-
tion application described in the previous section.

Initially, we discuss the key ideas involved in our implemen-
tation. Then, we describe how we use FREERIDE as the mid-
dleware for parallelization. Finally, we describe the sequence
of steps involved in the parallel implementation.

3.2.1. Key issues
The key issues in our parallel implementation are as follows.

First, we wanted to have an implementation which can scale
to disk-resident data sets easily. This requires organizing and
processing input data as chunks, and not assuming that the data
set can fit in main memory. The second important consideration
was achieving good load balance, which can be challenging
for the defect categorization phase. Finally, we had to avoid
sequentializing any computation, which again was challenging
for the defect matching phase.

Data organization and chunk boundary replication: Parti-
tioning of the data set into chunks is a necessity for scaling
the processing on disk-resident data sets. The input grid is par-
titioned in the 3-D space and cubical sections of a uniform
size are assigned to a chunk. The grid points corresponding to
a chunk are stored contiguously. In a parallel setup, an equal
number of chunks are assigned to each processor.

One particular issue in data organization came up because
of the need to avoid communication during the binary clas-
sification phase. As we had discussed earlier, for binary clas-
sification of each atom the bond lengths to all neighbors in
space are required. This poses a challenge for processing the
atoms located at any of the surfaces of each chunk. A naive
approach would require a round of communication to perform
classification of the boundary atoms. Moreover, even on each
node, the lattice atoms within a chunk cannot be processed
independently.

The above problems can be addressed by replicating the
atoms that are on any of the surfaces of a chunk. Such surface
atoms are now included as part of the original chunk, as well
as its neighbor.

The silicon lattice is partitioned in the following way: atoms
with minimum and maximum coordinates in a 3-D space make
up corners of a rectangular box, inside which the lattice would
fully fit. Instead of partitioning the lattice, we now partition its
container: for every time each of the three dimensions is split
into 2i parts the number of chunks increases by a factor of
23i . All atoms that are located within four bond lengths of the
chunk boundary are replicated as a part of data belonging to
both chunks that share the boundary.

Achieving good load balance: Good load balance is essential
for any parallel implementation. As we will demonstrate in the
experimental results section, both defect detection and defect
categorization are computationally demanding. Thus, achieving
good parallel performance for both of these phases is critical
to our implementation.

Achieving good load balance for the detection phase is rela-
tively easy. The lattice is partitioned into chunks of equal size,
and the same number of such chunks is assigned to each pro-
cessing node. Moreover, it turns out that each lattice chunk is
almost equally likely to contain a defect, so the work is split
up evenly between the processing nodes.

To achieve good load balance in the categorization phase, the
number of defects that each node classifies should be roughly
the same, or, at least, no single node should have to do signif-
icantly more work than the other processing nodes. There are
two ways defects can be identified in our parallel implemen-
tation. The first possibility is that a defect is local to a node,
i.e., the corresponding atoms were on one or more chunks on
a single node. The second possibility is that the correspond-
ing atoms spanned multiple processing nodes. In this case, the
nodes send incomplete defects to a master node, which then
completes the growth of the defect.

A naive implementation will be to have the defects of the
second type categorized on the master node. The rest of the
defects, then, would be categorized on whichever node they
belong to. This, however, would assign significantly more work
to the master node, and would result in poor load balance. We
avoid this problem with a simple heuristic that was easy to
implement and did not introduce any significant communication
overhead.

When each node sends its set of incomplete defects, it also
sends the number of complete defects it has. Let the number of
complete defects on a node i be m(i). Let the number of defects
identified on the master node using two or more incomplete
defects be n and let the number of nodes be p. We do the
following calculations:

T =
∑

i

m(i) + n,

A(i) = max(T /p − m(i), 0),

D =
∑

i

A(i) − n.



L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53 41

T is the total number of defects in the system. Ideally, we
will like to have T/p defects for classification on each node.
If no node has more T/p defects identified locally, we can
assign T/p − m(i) defects from the master node to the node
i. However, this may not always be true. In such cases, D is
the deficit on the number of defects to be reassigned, which
must be evenly balanced among all nodes being reassigned
defects.

This simple scheme avoid expensive communication for
achieving perfect load balance, and works quite well in
practice.

Categorizing non-matching defects: Categorization is per-
formed by comparing a moment vector of a defect with mean
moment vector for defect classes available from the defect cat-
alog. But what happens when a certain class is not represented
in the catalog? This usually means that the catalog is incom-
plete, and that it needs to be updated to include mean moment
vectors for the non-matching defect. Once the catalog is up-
dated, we need to use the new catalog for further matches.

The need for updating and maintaining a consistent cata-
log creates a problem in correct parallelization. One approach
will be to perform categorization of non-matching defects
on the master node. However, this requires that part of the
work be sequentialized. In the worst case, the database could
be empty initially and every defect encountered could be
new, which will result in all of categorization phase being
sequentialized.

Our implementation uses a better approach. Each processing
node adds each non-matching defect it encounters to its own
private copy of the database under a temporary name. This
step ensures that all of the defects that are of the same class
and are to be processed after the current one will match the
database, and will be assigned this temporary class name. Each
processing node also keeps a separate record of all the new
classes that it encountered while performing the categorization
phase. This collection of new classes from each processing node
is then sent to the master node, where the duplicates across the
nodes are identified. Then, each class with a temporary name
is assigned a new name, and these names are broadcasted to all
nodes. Each node then replaces the temporarily assigned class
names with the new names.

3.2.2. Using FREERIDE
Our parallel implementation was carried out using a cluster

middleware called FREERIDE.
The FREERIDE system and its programming interface can

easily allow the following steps: (1) retrieval of chunks of in-
terest on each node, (2) local processing over the data elements
comprising a chunk, (3) processing on individual nodes after
all chunks of interest have been processed, (4) a global combi-
nation step, and (5) postprocessing on one or more nodes.

The above five steps can be repeated multiple times, which
is required in order to split up the defect detection and the
defect categorization phases between iterations of the parallel
application. Consider the steps of the defect detection and cat-
egorization framework presented in the previous section. The
analysis is usually performed on the entire lattice, which means

all chunks resident on a node need to be retrieved and processed
in the detection phase.

The first step, i.e. rule discovery, involves calculating bond
lengths and angle between an atom and each of its neighbors in
the lattice. For a silicon lattice, every atom that forms a num-
ber of bonds other than 4, or whose bond angles are outside a
specified range are classified as defects. Because of the bound-
ary replication that we described earlier, this can be done easily
as a part of local processing.

The second step, i.e. segmentation of defects, is the more
involved of the two steps in this phase. When the neighboring
atoms classified as defects are within a chunk, this segmentation
can be done as a part of local processing on the chunk. How-
ever, one defect can easily extend across multiple chunks or
even nodes. Thus, this segmentation step needs to be performed
through a combination of local processing on each chunk, the
processing step after all chunks on a node have been processed,
and the global combination step. Further details of this will be
the core of Section 3.2.3.

The first step of the classification phase, i.e. pruning, is (like
rule discovery) purely local, except for the need for load bal-
ancing that we described earlier. The second step of classifica-
tion, i.e. matching, is more complex. As we described earlier,
if a defect under question matches the entry in the database,
LCS matching can be carried out as a part of local processing.
However, if a defect does not match the database and needs to
be added to it, then the LCS matching step needs to be carried
out as a combination of both local and global processing steps.

Overall, the structure of our target application matches the
processing structure of the FREERIDE system. In the next sub-
section, we give full details of the parallel algorithm.

3.2.3. Parallel algorithm description
This subsection gives a more detailed description of the par-

allel algorithm and its implementation. The implementation
broadly consists of seven steps, which are:
1. Detecting defects on each chunk and classification of defects

as complete or incomplete. The defects are stored as a part
of the reduction object.

2. Combining or growing incomplete defects detected across
different chunks belonging to each node. At the end of this
process, the defects are again classified as complete or in-
complete.

3. Communicating information required for further defect
growth to a master node.

4. Growing incomplete defects from all nodes.
5. Redistributing defects to processing nodes for the cate-

gorization phase. Performing pruning and LCS matching.
Matching defects are classified in this step and need no
further processing. Non-matching defects are marked for
further processing and assigned to temporary classes.

6. Communicating non-matching defects to the master node.
These are representatives of the new defects to be added
to the defect catalog. Matching new defects from all nodes
against each other to get rid of duplicates. Resulting list is
used to update the catalog.



42 L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53

7. The master node broadcasts the new class names back to all
processing nodes. These names are used to finalize classifi-
cation of the non-matching defects on all nodes.

The rest of this subsection describes each of the above steps
in more details.

Step 1: Binary classification and intra-chunk region growth.
Deciding whether or not a specific lattice atom belongs to a
defect depends on the number of bonds and the size of bond
angles that each atom forms with its neighbors. Once the sur-
face points have been replicated across the chunks, this step
is quite simple. After the detection and binary classification,
the aggregation step is initiated within the chunk. In the origi-
nal sequential algorithm, the aggregation step simply involves
finding a grid point that is classified as being part of a defect,
and then continuing to add its immediate neighbors that meet
the same criteria. As we described earlier, when applying this
step within a chunk, there are two possibilities when we find
that a defect cannot be grown any further, which correspond to
having complete and incomplete defects, respectively.

One of the challenges is how we can store information about
incomplete chunks and facilitate growing them using points
from other chunks. We store what we refer to as face imprints.
Up to six face imprints can be stored for each incomplete defect,
one for each of the surfaces of the chunk. For each surface, a
face imprint simply stores the points belonging to the defect
that are on a surface of the chunk.

Step 2: Intra-node aggregation. After processing each chunk
independently, an intra-node aggregation step tries to grow each
defect that was incomplete at the end of the previous step.
This step can be performed by using only the reduction object,
where the face imprints of incomplete defects from all chunks
are stored. The entire chunks do not need to be read again.
We assume that the face imprints of incomplete defects of all
chunks can be easily stored in main memory. The intra-node
aggregation phase involves several steps, as listed below:

1. Coordinate mapping: For aggregating defects across
chunks, we need to have a consistent coordinate system across
different chunks. Because the coordinates of atoms are not ex-
plicitly stored, the only identifier of a point within a chunk is
its offset. Using the location of chunk in the original grid and
the offset within the chunk, we need to compute the position
of a point within the entire grid.

2. Defect growing: Consider any incomplete defect. For each
of its face imprints, we find the chunk that has the adjacent
surface. We first check if this chunk has an incomplete defect
and that defect has a face imprint on that surface. If so, we
compare the two face imprints. If one or more points from the
first face imprint neighbors a point from the second face imprint,
the two defects can be merged. This process is repeated till no
two defects can be merged any further. By careful organization,
the above can be carried out using only a single pass on the set
of chunks within the node.

3. Creating new data-structures: At the end of the intra-node
defect growing phase, we determine the new set of complete
and incomplete defects.

Step 3: Inter-process communication. After the end of local
processing, a communication step is carried out. One important

question is, what data structures need to be communicated. One
possibility is to communicate all points from all incomplete de-
fects to a single node and then try to grow them further. How-
ever, this can be unnecessarily expensive. The face imprints of
all incomplete defects are sufficient to determine which defects
could be merged. Therefore, our implementation is limited to
communicating the face imprints of each incomplete defect.
Another piece of information that is exchanged is the number
of points in each complete and incomplete defect. This infor-
mation is required for the categorization phase of the algorithm
in Section 3.1.

Step 4: Inter-node aggregation. The process of growing the
incomplete defects from different nodes is very similar to the
process of growing incomplete defects from different chunks
within a node. Therefore, we simply repeat the defect growing
phase we had described as part of the Step 2 above.

After applying this step, we will have the set of defects which
are formed after combining the defects from different nodes.
This set, together with the defects which were complete on each
node earlier, is the complete set of defects we are interested in.

Step 5: Defect re-distribution and categorization. Each node
will work on its completed defects locally. However, defects
whose growth was completed on the master node are divided
up equally between processing nodes to achieve better load bal-
ance. This is done by assigning equal number of defects to each
processor’s space in the reduction object. If this communication
operation was not performed then the execution times of our
parallel implementation would not be scalable to the number
of processing nodes, as demonstrated further in Section 3.3.2.

Matching is performed based on moment vector computed
for a defect that is being categorized. This vector is compared
to mean moment vectors for a number of classes available from
the database. The number of classes represented in the database
can have an effect on the application execution time, since de-
fects that match require no further processing to be categorized,
but non-matching defects need to have their “newly encoun-
tered” class added to the database. The defects that match are
assigned to their respective classes then. Therefore, the pro-
cessing nodes keep track of their non-matching defects for two
distinct purposes:
1. to update the intermediate representation of the database

used for matching the defects whose processing follows, and
2. to add the new defect classes to the catalog at the end of the

categorization phase.
Step 6: Communicating non-matching defects to master

node and updating the defect catalog. All non-matching de-
fects are communicated to the master node as a part of the
reduction object. All new defect classes are matched with each
other using a brute force approach in order to make sure that
only one representative per class is inserted into the catalog.
After all the duplicates are removed, new permanent class
names are assigned to the defect classes and the catalog is
updated.

Step 7: Broadcast of class names and their update on the pro-
cessing nodes. New class names are broadcasted back to the
processing nodes to finalize the categorization of defects. The
names are communicated as a part of the reduction object. The



L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53 43

1 2 4 8
0

200

400

600

800

1000

1200

Processing nodes (#)

T
im

e
 (

s
)

0/3 in db
1/3 in db
2/3 in db
3/3 in db

Fig. 2. Parallel performance on a 130 MB data set.

non-matching defects from each processing node are assigned
new classes, in accordance to the names received in the broad-
cast.

3.3. Experimental results

In this section, we evaluate the performance of our parallel
algorithm and implementation. We conducted a number of ex-
periments with different data sets. One factor that impact the
performance of the defect categorization phase is database hit
ratio. Database hit ratio is defined as the percentage of de-
fects that match the classes in the database or the catalog that
is initially provided. We conducted experiments with different
values of database hit ratio.

We had the following goals in our experiments: (1) studying
the parallel scalability of our implementation, (2) investigating
how database hit ratio effects the execution time of our parallel
implementation, (3) evaluating the effect of our load balancing
scheme, and (4) evaluating our approach to performing defect
matching in parallel. Our experiments were conducted on a
cluster of 700 MHz Pentium machines. The nodes in the cluster
are connected through Myrinet LANai 7.0. The main memory
on each node is 1 GB.

3.3.1. Evaluating scalability
This subsection reports experiments evaluating parallel scal-

ability, with increasing data set sizes. We used three data sets,
of sizes 130, 450 MB, and 1.8 GB, respectively. Each of these
data sets were partitioned into eight chunks.

Fig. 2 presents the execution time for the 130 MB data set on
1, 2, 4, and 8 nodes of the cluster. We conducted experiments
with four different values of database hit ratio, which were
0/3, 1/3, 2/3, and 3/3. On 2 nodes, the speedups range from
1.942 to 1.985. On 4 nodes, the speedups range from 3.851 to
3.925. Finally, on 8 nodes, the speedups range from 7.470 to
7.706. These results show that distributed memory paralleliza-
tion works well, resulting in speedups which are very close to

1 2 4 8
0

500

1000

1500

2000

2500

3000

3500

4000

Processing nodes (#)

T
im

e
 (

s
)

0/3 in db
1/3 in db
2/3 in db
3/3 in db

Fig. 3. Parallel performance on a 450 MB data set.

linear. Speedups are good even though the size of the data set
is quite small, where we could have expected parallelization
overheads to be significant. The variation in speedups with dif-
ferent values of hit ratios is quite small, though the speedups
are a bit lower when this ratio is small. This is because both the
amount of inter-processor communication and the sequential
computation on the master node increase when there are fewer
matches with the data set. However, the variation in speedups
with different values of hit ratios is at most 3%, which demon-
strates that our approach to dealing with defects that do not
match the database is quite scalable.

Our second experiment evaluated parallel speedups on a
larger data set (450 MB) with four different values of the hit
ratio. Execution times on 1,2,4, and 8 nodes of the cluster
are presented in Fig. 3. On 2 nodes, the speedups range from
1.946 to 1.982. On 4 nodes, the speedups range from 3.845 to
3.919. On 8 nodes, the speedups range from 7.457 to 7.703.
These results are very similar to those from the experiment with
the 130 MB data set, once again demonstrating that distributed
memory parallelization is working well, parallelization over-
heads are small, and increasing the number of defects that do
not match the database has only a small effect on the parallel
performance.

Our next experiment was conducted to evaluate the parallel
performance on a 1.8 GB data set. Fig. 4 demonstrates execution
times on 1,2,4, and 8 nodes of a cluster, configured so that the
hit ratio stays constant at 0/3. The figure presents:
• total execution time of detection and categorization phases

combined (total),
• detection phase time (detect), and
• categorization phase time (categorize).

On 2 nodes, the speedups are 1.960 for total, 1.967 for detect,
and 1.951 for categorize. On 4 nodes, the speedups are 3.841
for total, 3.890 for detect, and 3.783 for categorize. And, finally,
on 8 nodes, the speedups are 7.425 for total, 7.493 for detect,
and 7.345 for categorize. This experiment demonstrates that
the efficiency of the parallel detection phase is slightly higher



44 L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53

1 2 4 8
0

2000

4000

6000

8000

10000

12000

14000

16000

Processing nodes (#)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Total time

Detection time

Categorization time

Fig. 4. Parallel performance on a 1.8 GB data set: defect detection and
categorization stages (no defect matches the database).

1 2 4 8
0

2000

4000

6000

8000

10000

12000

14000

Processing nodes (#)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Total time

Detection time

Categorization time

Fig. 5. Parallel performance on a 1.8 GB data set: defect detection and
categorization stages (2/3 of the defects match the database).

than that of the parallel categorization phase, but the overall
speedups for both are quite close to linear. Again, distributed
memory parallelization is working well as the size of the data
set has increased.

A similar experiment was conducted to evaluate the parallel
performance on the same 1.8 GB data set, but this time with
the database hit ratio being 2/3. Fig. 5 shows execution times
on 1, 2, 4, and 8 nodes of the cluster, with the breakdown of
execution times similar to Fig. 4. On 2 nodes, the speedups are
1.946 for total, 1.967 for detect, and 1.927 for categorize. On
4 nodes, the speedups are 3.845 for total, 3.890 for detect, and
3.804 for categorize. And, finally, on 8 nodes, the speedups are
7.457 for total, 7.493 for detect, and 7.424 for categorize.

Several observations can be made from this experiment. First,
the speedups of the detection phase remained unchanged, since
the hit ratio does not change the detection algorithm. Second,

1 2 4 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Processing nodes (#)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Parallel detection

Categorization without redistribution

Categorization with redistribution

Fig. 6. Parallel categorization with and without load balancing (no defect
matches the database).

the categorization phase efficiency was lagging behind the de-
tection phase efficiency, just as it was for the experiment de-
scribed in Fig. 4. But since more defects matched the database
in this experiment than in the previous one, less of the com-
pute intensive matching had to be performed sequentially by
the master node. This increased the parallel efficiency. Total
execution time speedups, therefore, grew even closer to linear.

Overall, the four experiments we have presented in this sub-
section show that the processing time is mostly proportional to
the size of the data set, and that the parallel efficiency is not
greatly effected by the increased size of the problem.

3.3.2. Evaluating effects of the load balancing scheme
One of the significant aspects of our implementation was the

scheme used for load balancing for the defect categorization
phase. In this subsection, we evaluate the impact of this scheme
on the parallel performance.

The first experiment was conducted to compare parallel de-
tection time with parallel categorization time with and without
the redistribution. In the implementation without the redistri-
bution, defects that span more than 1 node are categorized se-
quentially on the master node. Fig. 6 shows results from the
experiment performed using the 450 MB data set, with the hit
ratio being 0/3. On 1, 2, 4, and 8 nodes, we present execution
times for the parallel detection, categorization without redis-
tribution, and categorization with redistribution. The time for
the parallel detection phase is presented as a baseline, because,
as we saw in Section 3.3.1, the detection phase achieves near
linear speedups.

The categorization version without redistribution gets signif-
icantly slower as the number of nodes increase. The speedups
of categorization without redistribution were 1.65 on 2 nodes,
2.32 on 4 nodes, and 2.14 on 8 nodes. In comparison, the
speedups of both the parallel detection and categorization with
redistribution are almost linear. For the entire application, the
speedup on 8 nodes will be only 3.3 if we used categorization



L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53 45

1 2 4 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Processing nodes (#)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Parallel detection

Categorization without redistribution

Categorization with redistribution

Fig. 7. Parallel categorization with and without load balancing (2/3 defects
match the database).

without redistribution. This shows that the redistribution per-
formed in our load balancing scheme is critical for parallel
scalability.

In Fig. 7, we show results from a similar experiment, the only
difference being the hit ratio, which is now 2/3. The speedups
for defect detection and categorization with redistribution were
once again near linear. For categorization without redistribu-
tion, the speedups were 1.60 on 2 nodes, 2.07 on 4 nodes, and
1.75 on 8 nodes. These results, again, demonstrate that redistri-
bution achieves acceptable load balance, whereas without such
redistribution, parallel efficiency is low. Also, as we partition
our lattice across more nodes, the number of defects that span
more than 1 node increases. This is why sequentializing the
categorization of such defects gives us worse performance on
8 nodes than on 2 nodes.

3.3.3. Evaluating parallel matching approach
Another important aspect of our implementation was how

we parallelize categorization of non-matching defects. In this
subsection, we evaluate our approach and compare it to the
naive approach, in which we can send all non-matching defects
to the master node and categorize them sequentially.

Fig. 8 summarizes the parallel execution times of the naive
approach. We use a 450 MB data set with the hit ratio varied
between 0/3 and 3/3. The performance of naive version de-
pends heavily on the hit ratio. When the hit ratio is 0/3, the
execution times for the categorization phase do not scale at all.
When the hit ratio is 3/3, the speedups are near linear. This is
because categorization is sequentialized when no defects match
the database. In comparison, when all the defects match the
database, the naive version is not really different from the op-
timized version. The results when the hit ratio is 1/3 or 2/3 are
consistent with our expectations, i.e., the naive version only
achieves modest speedups.

The parallel performance of our optimized version is
shown in Fig. 9. Unlike the naive version, our approach for

1 2 4 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Processing nodes (#)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

0/3 in db
1/3 in db
2/3 in db
3/3 in db

Fig. 8. Sequential categorization of non-matching defects: 450 MB data set.

1 2 4 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Processing nodes (#)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

0/3 in db

1/3 in db

2/3 in db

3/3 in db

Fig. 9. Parallel categorization of non-matching defects: 450 MB data set.

parallelizing this step achieved almost linear speedups for all
four values of hit ratio.

4. FREERIDE-G: from clusters to grid

FREERIDE-G is an extension of FREERIDE which targets
processing of data stored in remote repositories.

4.1. System design

This subsection describes the overall design of the
FREERIDE-G middleware. The basic functionality of the sys-
tem is to automate retrieval of data from remote repositories
and coordinate parallel analysis of such data using end-user’s
computing resources, provided an inter-connection exists be-
tween the repository disk and the end-user’s computing nodes.
This system expects data to be stored in chunks, whose size is
manageable for the repository nodes.



46 L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53

Data Caching Data Retrieval

Computation

Computation

Data Caching Data Retrieval

Data Communication

Computation

Data Caching Data Retrieval

Data Communication

Data Retrieval

Data Distribution

Data Communication

Data Communication

Data Retrieval

Data Distribution

Compute NodesData Server

Data Communication

Resource Selection
Framework

Compute Resource Selection
Replica Selection
Remote Caching• • •

• • •

Fig. 10. FREERIDE-G system architecture.

This middleware is modeled as a client–server system.
Fig. 10 shows the three major components, including the
data server, the compute node client, and a resource selection
framework. As we stated earlier, the resource selection frame-
work is part of our ongoing work on FREERIDE-G, and is
beyond the scope of this paper.

The data server runs on every on-line data repository node
in order to automate data delivery to the end-users processing
node(s). More specifically, it has three roles:
1. Data retrieval: Data chunks are read in from repository

disk.
2. Data distribution: Each data chunk is assigned a

destination—a specific processing node in the end-user’s
system.

3. Data communication: After destination assignment is made
in the previous step, each data chunk is sent to the appro-
priate processing node.

A compute server runs on every end-user processing node
in order to receive the data from the on-line repository and
perform application specific analysis of it. This component has
four roles:
1. Data communication: Data chunks are delivered from a cor-

responding data server node.
2. Data retrieval: If caching was performed on the initial iter-

ation, each subsequent pass retrieves data chunks from local
disk, instead of receiving it via network.

3. Computation: Application specific data processing is per-
formed on each chunk.

4. Data caching: If multiple passes over the data chunks will
be required, the chunks are saved to a local disk.

The current implementation of the system is configurable to
accommodate N data server nodes and M user processing nodes
between which the data has to be divided, as long as M �N .
The reason for not considering cases where M < N is that our
target applications involve significant amount of computing,
and cannot effectively process data that is retrieved from a
larger number of nodes.

The configuration illustrated in Fig. 10 presents a setup with
N = 2 data servers and M = 3 compute nodes. Active data
repository (ADR) [6,7] was used to automate the data retrieval
parts of both components.

4.2. System implementation issues

This section describes a number of implementation issues
in the FREERIDE-G middleware system. The main issues are:
managing and communicating remote data, load distribution,
parallel processing on compute nodes, and caching of remote
data.

4.2.1. Managing and communicating remote data
As we stated in the previous section, data are organized as

chunks on remote repositories, using an existing ADR middle-
ware. The processing of data is organized in phases. In each
phase, a generalized reduction is performed on the comput-
ing nodes. Because of the property of reductions, the order of
retrieving, communicating, and processing data elements does
not impact the correctness.

At the beginning of each phase, the compute nodes forward
the information on the subset of the data to be processed to
data server. The data server determines the chunks of the data
that need to be retrieved, as well as a schedule for retrieving
these on each data server node.

Initially, let us suppose that the number of data server nodes
equals the number of compute nodes. In such a scenario, each
data server node forwards all the chunks it retrieves to a single
compute node. The support for declustering of chunks in ADR
helps maintain a good balance, even with such a simple scheme.
The corresponding data server and compute nodes coordinate
when the next chunk should be communicated, and also the size
of the buffer that needs to be allocated on the compute node.
In our current implementation, stream socket mechanism was
used for all such communication.



L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53 47

4.2.2. Load distribution
Data mining and scientific processing applications are often

compute-intensive. In such cases, they can benefit from a con-
figuration where the number of compute nodes is larger than
the number of data server nodes. However, in such cases, care-
ful load distribution must be performed.

We again use a simple mechanism. Each data server node
now communicates its chunks to M compute nodes. The value
M is the smallest value which will still enable load balance on
each compute node. A hash function (mod) based on a unique
chunk id is used to distribute the retrieved chunks among the
M compute nodes a data server node is communicating with.

4.2.3. Caching
If an iterative mining application needs to take more than

a single pass over the data, reading the data from the remote
location on every iteration is redundant. For such applications,
data chunks belonging to a certain compute node can be saved
onto the local disk, provided sufficient space. Such caching is
performed during the initial iteration, after each data chunk is
communicated to its compute node by the data server and the
first pass of application specific processing has been completed.

Each chunk is written out to the compute node’s disk in a
separate file, whose name is uniquely defined by the chunk id.
These filenames are also indexed by the chunk ids, speeding
up retrieval for the subsequent iterations. The benefit of such
caching scheme is evident: for an application requiring P passes
over the data, the last P − 1 iterations will have the data avail-
able locally on the compute node. Since each round out data
communication from the server would have to perform retrieval
in order to send the data, the total number of retrievals does
not change. Instead, for iterations subsequent to the initial one,
data retrieval is performed on the compute node.

5. Experimental results from FREERIDE-G

In this section, we evaluate the performance of the
FREERIDE-G middleware. We use the five data analysis ap-
plications described in Section 5.1. Several different data sets,
of varying sizes, were used for each of these. We had the
following goals in our experiments:
1. Studying parallel scalability of applications developed using

FREERIDE-G. Here, we focused on configurations where
the numbers of compute and data repository nodes are al-
ways equal.

2. Investigating how the computing can be scaled, i.e., perfor-
mance improvements from increasing the number of com-
pute nodes independent of the number of data server nodes.

3. Evaluating the benefits of performing caching in applica-
tions that require multiple passes over data.

For efficient and distributed processing of data sets available
in a remote data repository, we need high bandwidth networks
and a certain level of quality of service support. Recent trends
are clearly pointing in this direction. However, for our study,
we did not have access to a wide-area network that gave high
bandwidth and allowed repeatable experiments. Therefore, all
our experiments were conducted within a single cluster. The

cluster used for our experiment comprised 700 MHz Pentium
machines connected through Myrinet LANai 7.0. In experi-
ments involving caching, the communication bandwidth was
simulated to be 500 KB/s and 1 MB/s.

5.1. Applications

In this section we describe the applications that we have used
to carry out the experimental evaluation of our middleware.
We have focused on three traditional data mining techniques:
k-means clustering [20], EM clustering [14], k-nearest neigh-
bor search [19], as well as two scientific feature mining al-
gorithms: vortex analysis [32] and molecular defect detection
[34]. As molecular defect detection was described earlier in this
paper, we only present parallelization details of the first four
applications.

5.1.1. k-Means clustering
The first data mining algorithm we describe is the k-means

clustering technique [20], which is one of the most popular and
widely studied data mining algorithms. This method consid-
ers data instances represented by points in a high-dimensional
space. Proximity within this space is used as criterion for clas-
sifying the points into clusters.

Three steps in the sequential version of this algorithm are as
follows:
1. start with k given centers for clusters;
2. scan the data instances. For each data instance (point), find

the center closest to it, assign this point to a corresponding
cluster, and then move the center of the cluster closer to this
point; and

3. repeat this process until the assignment of the points to
cluster does not change.

This method can be parallelized as follows. The data in-
stances are partitioned among the nodes. Each node processes
the data instances it owns. Instead of moving the center of the
cluster immediately after the data instance is assigned to the
cluster, the local sum of movements of each center due to all
points owned on that node is computed. A global reduction
is performed on these local sums to determine the centers of
clusters for the next iteration.

5.1.2. Expectation maximization clustering
The second data mining algorithm we have used is the ex-

pectation maximization (EM) clustering algorithm [14], which
is one of the most popular clustering algorithms. EM is a
distance-based algorithm that assumes the data set can be mod-
eled as a linear combination of multi-variate normal distribu-
tions. The goal of the EM algorithm is to use a sequence of
expectation and maximization steps to estimate the means C, the
covariances R, and the mixture weights W of a Gaussian prob-
ability function. The algorithm works by successively improv-
ing the solution found so far. The algorithm stops when the
quality of the current solution becomes stable, which is mea-
sured by a monotonically increasing statistical quantity called
loglikelihood.



48 L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53

This algorithm can be parallelized in the following manner.
The input data instances (the array Y) are distributed between
the nodes. The arrays C, R, and W, whose initial values are
provided by the user, are replicated on all nodes. The E step
is carried out on each node, using data instances local to it.
Global combination involved in the E step consists of the in-
formation necessary to compute the means and mixture weight
arrays being aggregated by the master node, and then being
re-broadcasted. Next, the M step is performed locally on each
node’s data instances. Information necessary to compute co-
variance is then updated during the M step, through an aggre-
gation step followed by a re-broadcast.

At the end of any iteration, each node has an updated value
for C, R, W and llh, and the decision to execute or abort another
iteration is made locally.

These parallelization steps can be expressed easily using the
FREERIDE-G API described earlier in this paper [16].

5.1.3. k-Nearest neighbor search
k-Nearest neighbor classifier is based on learning by analogy

[19]. The training samples are described by an n-dimensional
numeric space. Given an unknown sample, the k-nearest neigh-
bor classifier searches the pattern space for k training samples
that are closest, using the euclidean distance as measure of
proximity, to the unknown sample.

Again, this technique can be parallelized as follows. The
training samples are distributed among the nodes. Given an
unknown sample, each node processes the training samples
it owns to calculate the k-nearest neighbors locally. After
this local phase, a global reduction computes the overall
k-nearest neighbors from the k-nearest neighbor on each
node.

5.1.4. Vortex detection algorithm
Vortex detection is the first of the two scientific data

processing applications we have used. Particularly, we have
parallelized a feature mining based algorithm developed by
Machiraju et al. A more detailed overview of the algorithm is
available in a recent publication [37]. The key to the approach
is extracting and using volumetric regions to represent features
in a CFD simulation output.

This approach identifies individual points (detection step)
as belonging to a feature (classification step). It then aggre-
gates them into regions. The points are obtained from a tour
of the discrete domain and can be in many cases the vertices
of a physical grid. The sensor used in the detection phase
and the criteria used in the classification phase are physically
based point-wise characteristics of the feature. For vortices,
the detection step consists of computing the eigenvalues of
the velocity gradient tensor at each field point. The classifi-
cation step consists of checking for complex eigenvalues and
assigning a swirl value if they exist. The aggregation step
then defines the region of interest (ROI) containing the vortex.
Regions insignificant in size are then eliminated, and the re-
maining regions are sorted based on a certain parameter (like
size or swirl).

1 2 4 8
0

500

1000

1500

2000

2500

3000

Processing nodes (#)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

1.85 GB

710 MB

260 MB

Fig. 11. Vortex detection application parallel performance on 1.85 GB, 710,
and 260 MB data sets.

Parallelizing this application requires the following steps
[17]. First, when data are partitioned between nodes, an over-
lap area between data from neighboring partitions is created,
in order to avoid communication in the detection phase. Detec-
tion, classification and aggregation are first performed locally
on each node, followed by global combination that joins parts
of a vortex belonging to different nodes. Denoising and sorting
of vortices is performed after the final aggregation has been
completed.

5.2. Evaluating overall system scalability

The number of compute nodes used for these experiments
was always equal to the number of data repository nodes. In this
situation pair-wise correspondence between data and compute
nodes can be established, and no distribution of data to multiple
compute nodes is required from the data server. All scalability
experiments were conducted on up to 16 nodes (eight data and
compute node pairs).

Vortex detection was evaluated with three data sets, with size
of 260, 710 MB, and 1.85 GB, respectively. Fig. 11 presents
the execution times from these three data sets on 1, 2, 4, and 8
pairs of nodes. On 2 pairs of nodes, the speedups are 1.99 for
the 260 MB data set, 1.98 for 710 MB data set, and 1.97 for
the 1.8 GB data set. This demonstrates that distributed memory
parallelization is working very well, resulting in nearly perfect
speedups. Speedups are good even for the smallest data set,
where execution time is expected to be mostly dominated by
the parallelization overhead. Also, since data communication
overhead is kept relatively low, communication time scales as
well with data size as data retrieval and analysis times.

On 4 pairs of nodes, the speedups are 3.99 for the 260 MB
data set, 3.98 for 710 MB data set, and 3.96 for the 1.8 GB data
set. On 8 pairs of nodes, the speedups are 7.95 for the 260 MB
data set, 7.92 for 710 MB data set, and 7.90 for the 1.8 GB
data set.



L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53 49

1 2 4 8
0

2000

4000

6000

8000

10000

12000

14000

Processing nodes (#)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

1.8 GB

450 MB

130 MB

Fig. 12. Defect detection application parallel performance on 1.8 GB, 450,
and 130 MB data sets.

Fig. 12 presents parallel execution times for the molecular
defect detection algorithm. This application was evaluated on
three data sets of sizes 130, 450 MB, and 1.8 GB. On 2 pairs
of nodes, the speedups in execution time were 1.97 for the
130 MB data set, 1.97 for the 450 MB data set and 1.96 for
the 1.8 GB data set. Again, near perfect speedups demonstrate
good parallelization efficiency.

On 4 pairs of nodes, the speedups were 3.92 for the 130 MB
data set, 3.89 for the 450 MB data set and 3.82 for the 1.8 GB
data set. The drop-off in speedups here demonstrates that the
overhead associated with communication between compute
nodes that is required for defect detection is not as small as
that for vortex detection. But, with parallel efficiency some-
what limited by the application itself, the speedups are still
very good. On 8 pairs of nodes, the speedups are 7.52 for the
130 MB data set, 7.50 for the 450 MB data set and 7.34 for the
1.8 GB data set.

Figs. 13–15 present execution times from the additional
scalability experiments that were conducted. EM clustering,
k-means clustering, and k-nearest neighbor search were evalu-
ated on three data sets of size 350, 700 MB, and 1.4 GB.

On 8 pairs of nodes, parallel EM achieved speedups of 7.56
for 350 MB data set, 7.49 for 700 MB data set and 7.30 for
1.4 GB data set. In the same configuration, parallel k-means
achieved speedups of 7.25 for 350 MB data set, 7.21 for 700 MB
data set and 7.10 for 1.4 GB data set. Parallel k-nearest neighbor
search, executed on 8 pairs of nodes, achieved speedups of 7.26
for 350 MB data set, 7.15 for 700 MB data set and 6.98 for
1.4 GB data set.

Results were once again consistent with those of the previ-
ous two experiments. Parallel efficiency observed was high, al-
though in some cases limited by the application. Data retrieval,
communication and processing all demonstrated good scalabil-
ity with respect to increasing both the problem size and the
number of compute nodes.

1 2 4 8
0

0.5

1

1.5

2

2.5

3
x 104

Processing nodes (#)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

1.4 GB

700 MB

350 MB

Fig. 13. Expectation maximization clustering parallel performance on 1.4 GB,
700, and 350 MB data sets.

1 2 4 8
0

0.5

1

1.5

2

2.5

Processing nodes (#)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

1.4 GB

700 MB

350 MB

x 104

Fig. 14. K-means clustering parallel performance on 1.4 GB, 700, and 350 MB
data sets.

5.3. Evaluating scalability of compute nodes

In processing data from remote repositories, the number of
available nodes for processing may be larger than the number
of nodes on which data is hosted. As we described earlier, our
middleware can support processing in such configurations. In
this subsection, we evaluate the performance of applications in
such cases.

We used three of the five applications, i.e., defect detection,
vortex detection and k-nearest neighbor search, for these ex-
periments. Unlike the other two applications (k-means and EM
clustering), each of these three applications only take a single
pass (of retrieval and communication) over the data. So, any



50 L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53

1 2 4 8
0

500

1000

1500

2000

2500

Processing nodes (#)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

1.4 GB

700 MB

350 MB

Fig. 15. k-nearest neighbor search parallel performance on 1.4 GB, 700, and
350 MB data sets.

1 2 4 8
0

2000

4000

6000

8000

10000

12000

14000

Data Nodes (#)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

1 cn
2 cn
4 cn
8 cn
16 cn

Fig. 16. Defect detection parallel performance as the number of compute
nodes is scaled (1.8 GB data set).

change in performance achieved by the middleware would be
due to each data node distributing processing work to multiple
compute nodes, and not due to caching.

Among the data sets used in the experiments in the previous
subsection, we report results from only the largest ones. The
number of data nodes was varied up to 8 and the number of
compute nodes was varied up to 16 for each experiment. While
both numbers were restricted to be powers of two to achieve
perfect load balance, nothing in the middleware implementation
requires such restriction.

Fig. 16 presents parallel defect detection execution times
on a 1.8 GB data set, as the number of both data nodes and
compute nodes was varied. Using a single compute node, the
speedups achieved were 1.70 for 2 compute nodes, 2.64 for 4,
and 3.65 for 8. The speedups are sub-linear because only the

1 2 4 8
0

500

1000

1500

2000

2500

3000

Data Nodes (#)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

1 cn
2 cn

4 cn
8 cn
16 cn

Fig. 17. Vortex detection parallel performance as the number of compute
nodes is scaled (1.85 GB data set).

data processing work is being parallelized, with data retrieval
and communication tasks remaining sequential. However, these
experiments do show that in cases where additional compute
nodes are available, our middleware can use them to obtain
further speedups, even if these speedups are sub-linear.

Using two data nodes, the additional speedups achieved were
1.67 for 4 compute nodes, 2.63 for 8, and 3.63 for 16. With
four data nodes, the speedups were 1.67 for 8 compute nodes,
and 2.62 for 16. And, finally, using eight data and 16 compute
nodes, the speedup was 1.67. These results demonstrate that a
very decent speedup can be achieved by using twice as many
compute nodes as data nodes, but as the number of compute
nodes keeps increasing, a drop off in parallel efficiency is to be
expected.

Fig. 17 presents parallel vortex detection execution times on
a 1.85 GB data set. Again, the number of both data and compute
nodes is varied. Using a single data node, the speedups achieved
were 1.63 for 2 compute nodes, 2.40 for 4, and 3.61 for 8. Again,
speedups are sub-linear because only a fraction of execution
time has been parallelized. In fact, a larger fraction of time
is spent on data retrieval in the vortex detection application,
resulting in slightly lower speedups. Using two data nodes, the
additional speedups are 1.61 for 4 compute nodes, 2.39 for 8,
and 3.14 for 16. The lower speedup of the last configuration is
attributed to parallelization overhead starting to dominate over
execution time. With four data nodes, the speedups achieved
were 1.61 for 8 data nodes, and 2.35 for 16. And, finally, using
eight data and 16 compute nodes, the speedup was 1.60. These
results are consistent with the defect detection experiment, only
indicating a slightly higher tendency for vortex detection to be
“I/O bound.”

Fig. 18 presents parallel execution times for k-nearest neigh-
bor search evaluated on the 1.4 GB data set. Once again, the
number of data and compute nodes is varied. Using a single data
node, the speedups achieved were 1.48 on 2 compute nodes,
1.98 on 4, and 2.38 on 8. This indicates that the fraction of



L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53 51

1 2 4 8
0

500

1000

1500

2000

2500

Data Nodes (#)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

1 cn
2 cn
4 cn
8 cn
16 cn

Fig. 18. k-nearest neighbor search parallel performance as the number of
compute nodes is scaled (1.4 GB data set).

time spent on data retrieval is even higher for this application.
Again, as a larger fraction of execution time remains sequen-
tialized, the speedup decreases. With two data nodes, the addi-
tional speedups achieved are 1.45 on 4 compute nodes, 1.96 on
8, and 2.36 on 16. These results are consistent with previous
experiments with both this application and other applications.
Using four data nodes, the speedups achieved are 1.46 on 8
compute nodes, and 1.96 for 16. Finally, using eight data and
16 compute nodes, the speedup was 1.44.

Overall, the results indicate that scaling up the number of
compute nodes beyond the number of data nodes results in
a more modest speedup than scaling both compute and data
nodes. However, these results do show that additional comput-
ing nodes can be used to decrease processing rates.

5.4. Evaluating effects of caching

When a data processing application involves multiple passes
over data, FREERIDE-G supports the ability to cache remote
data. This subsection describes experiments evaluating the ben-
efits of such caching. We use the two multi-pass applications
from our set of applications, which are k-means and EM clus-
tering. As the results from these two applications were very
similar, we are only presenting results from EM in this subsec-
tion. We executed this application for five iterations, and used
simulated cluster inter-connection bandwidth of 500 KB/s and
1 MB/s.

As in Section 5.2 three data sets of size 350, 700 MB, and
1.4 GB, respectively, were used. Two versions were created:
Cache version utilizes a caching framework, as described in
Section 4.2.3, and the No cache version, which does not save
the data locally during the initial iteration, and, therefore, re-
quires that the server node communicates it again to the com-
pute node during each subsequent iteration.

Fig. 19 demonstrates a comparison of parallel execution
times of the cache and no cache versions of the EM

1 2 4 8
0

0.5

1

1.5

2

2.5

3
x 104

Processing nodes (#)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

1.4 GB – no cache

1.4 GB – cache

700 MB – no cache

700 MB – cache

350 MB – no cache

350 MB – cache

Fig. 19. Comparing EM performance with and without caching on 350,
700 MB, and 1.4 GB data sets (1 MB/s bandwidth).

1 2 4 8
0

0.5

1

1.5

2

2.5

3

3.5
x 104

Processing nodes (#)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

1.4 GB no cache
1.4 GB cache

700 MB no cache

700 MB cache

350 MB no cache

350 MB cache

Fig. 20. Comparing EM performance with and without caching on 350,
700 MB, and 1.4 GB data sets (500 KB/s bandwidth).

clustering application, with 1 MB/s bandwidth. In all 1-to-1
parallel configurations across all three data sets, the decrease
in execution time due to caching is around 1.27. This demon-
strates that there is a significant benefit to caching the data
locally. In fact, when the breakdown of the execution times
were considered, data communication time for the cache
version was about 20% of the same time for the no cache
version. Such results were to be expected, since cache com-
municates data only once, whereas no cache communicates
it five times, once per iteration.

Finally, Fig. 20 illustrates the caching benefits for the EM
application, but with communication bandwidth of 500 KB/s.



52 L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53

Parallel EM in this setup demonstrates a speedup of around
1.51 in all 1-to-1 parallel configurations, across three data sets.

Overall, caching experiments presented demonstrate that the
relative benefit achieved from our caching framework is rela-
tively independent of the size of the problem or the parallel
configuration. Instead, communication bandwidth available and
the ratio of communication time to compute time determine the
factor of improvement in execution times.

6. Related work

One effort somewhat similar to our cluster middleware ef-
fort is from Becuzzi et al. [2]. They use a structured paral-
lel programming environment PQE2000/SkIE for developing
parallel implementation of data mining algorithms. Darlington
et al. [13] have also used structured parallel programming for
developing data mining algorithms. Our work is distinct in at
least two important ways. First, they only target distributed
memory parallelism (while they report results on an SMP ma-
chine, it is using MPI). Second, I/O is handled explicitly by
the programmers in their approach. Goil and Choudhary have
developed PARSIMONY, which is an infrastructure for anal-
ysis of multi-dimensional data sets, including OLAP and data
mining [18]. PARSIMONY does not offer high-level interfaces,
starting from which parallelization and I/O optimization may
be achieved.

Several groups have been developing support for grid-based
data mining. One effort in this area is from Cannataro et al.
[4,5]. They present a structured Knowledge Grid toolset for de-
veloping distributed data mining applications through workflow
composition. Brezanny et al. [3,23,31] have also developed
a GridMiner toolkit for creating, registering and composing
data mining services into complex distributed and parallel
workflows. Ghanem et al. [12,15] have developed Discovery
Net, an application layer for providing grid-based services
allowing creation, deployment and management of complex
data mining workflows. The goal of DataMiningGrid, carried
out by Stankovski et al. [36], is to serve as a framework for
distributed knowledge discovery on the grid.

There are significant differences between these efforts and
our work. These systems do not offer a high-level interface for
easing parallelization and abstracting remote data extraction
and transfer. We believe that FREERIDE-G is able to reduce the
time required for developing applications that perform remote
data analysis. On the other hand, our system is not yet integrated
with Grid standards and services.

Jacob et al. have created GRIST [21], a grid middleware for
astronomy related mining. This effort, however, is very domain
specific, unlike FREERIDE-G, which has been used for a va-
riety of data mining and scientific analysis algorithms.

Much work has been done on parallelization of classification
algorithms [30,33,35,38]. The algorithm for defect categoriza-
tion we parallelize is very different than the algorithms consid-
ered in these efforts, and therefore, the issues in parallelization
are quite different.

Several researchers have parallelized feature extraction al-
gorithms, especially, in the context of computer vision. This

includes the work from Chung and Prasanna [11] and Chen and
Silver [9]. Our work is distinct in two important ways. First,
we also parallelize the defect categorization phase. Second, we
have shown how a cluster middleware could be used for both
parallelization and scaling on disk-resident data sets.

7. Conclusions

This paper has given an overview of two middleware systems
that have been developed over the last 6 years to address the
challenges involved in developing parallel and distributed im-
plementations of data mining algorithms. FREERIDE focuses
on data mining in a cluster environment. FREERIDE-G sup-
ports a high-level interface for developing data mining and sci-
entific data processing applications that involve data stored in
remote repositories. The added functionality in FREERIDE-G
aims at abstracting the details of remote data retrieval, move-
ments, and caching from application developers.

This paper has presented some of the application develop-
ment efforts and experimental results we have obtained from
these two systems. Specifically, we have described our expe-
rience from developing a molecular defect detection applica-
tion on FREERIDE. We have also presented initial performance
evaluation of FREERIDE-G using three data mining algorithms
and two scientific data processing applications.

References

[1] R. Agrawal, J. Shafer, Parallel mining of association rules, IEEE Trans.
Knowl. Data Eng. 8 (6) (1996) 962–969.

[2] P. Becuzzi, M. Coppola, M. Vanneschi, Mining of association rules in
very large databases: a structured parallel approach, in: Proceedings of
Europar-99, Lecture Notes in Computer Science (LNCS), vol. 1685,
Springer, Berlin, August 1999, pp. 1441–1450.

[3] P. Brezany, J. Hofer, A. Tjoa, A. Wohrer, Gridminer: an infrastructure
for data mining on computational grids, in: Proceedings of Australian
Partnership for Advanced Computing Conference (APAC), Gold Coast,
Australia, October 2003.

[4] M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, P. Trunfio, Distributed
data mining on grids: services, tools, and applications, IEEE Trans.
Systems Man Cybernet. Part B 34 (6) (2004) 2451–2465.

[5] M. Cannataro, D. Talia, KNOWLEDGE GRID: an architecture for
distributed knowledge discovery, Comm. ACM 46 (1) (2003) 89–93.

[6] C. Chang, A. Acharya, A. Sussman, J. Saltz, T2: a customizable parallel
database for multi-dimensional data, ACM SIGMOD Record 27 (1)
(1998) 58–66.

[7] C. Chang, R. Ferreira, A. Acharya, A. Sussman, J. Saltz, Infrastructure
for building parallel database systems for multidimensional data, in:
Proceedings of the Second Merged IPPS/SPDP (13th International
Parallel Processing Symposium and 10th Symposium on Parallel and
Distributed Processing). IEEE Computer Society Press, Silva Spring,
HD, April 1999.

[8] P. Cheeseman, J. Stutz, Bayesian classification (autoclass): theory and
practice, in: Advanced in Knowledge Discovery and Data Mining,
pp. 61–83. AAAI Press, MIT Press, Cambridge, Ma, 1996.

[9] J. Chen, D. Silver, Distributed feature extraction and tracking, in:
Proceedings of SPIE Conference on Vizualization and Data Analysis,
2002.

[10] A. Chervenak, I. Foster, C. Kesselman, C. Salisbusy, S. Tuecke, The
data grid: towards an architecture for the distributed management and
analysis of large scientific data sets, J. Network Comput. Appl. 23 (3)
(2001) 187–200.



L. Glimcher et al. / J. Parallel Distrib. Comput. 68 (2008) 37–53 53

[11] Y. Chung, V. Prasanna, Parallelizing image feature extraction on coarse-
grain machines, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) (12)
(1998) 1389–1394.

[12] V. Curcin, M. Ghanem, Y. Guo, M. Kohler, A. Rowe, J. Syed,
P. Wendel, Grid knowledge discovery processes and an architecture
for their composition, in: The Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Edmonton,
Alberta, Canada, July 2002.

[13] J. Darlington, M.M. Ghanem, Y. Guo, H.W. To, Performance models
for co-ordinating parallel data classification, in: Proceedings of
the Seventh International Parallel Computing Workshop (PCW-97),
Canberra, Australia, 1997.

[14] A. Dempster, N. Laird, D. Rubin, Maximum likelihood estimation from
incomplete data via the EM algorithm, J. Roy. Statist. Soc. 39 (1) (1977)
1–38.

[15] M. Ghanem, Y. Guo, A. Rowe, P. Wendel, Grid-based knowledge
discovery services for high throughput informatics, in: The Eleventh
IEEE International Symposium on High Performance Distributed
Computing, Edinburgh, Scotland, 2002.

[16] L. Glimcher, G. Agrawal, Parallelizing EM clustering algorithm on a
cluster of SMPs, in: Proceedings of Europar, 2004.

[17] L. Glimcher, X. Zhang, G. Agrawal, Scaling and Parallelizing a Scientific
Feature Mining Application Using a Cluster Middleware, in: Proceedings
of the International Parallel and Distributed Processing Symposium
(IPDPS), 2004.

[18] S. Goil, A. Choudhary, PARSIMONY: an infrastructure for parallel
multidimensional analysis and data mining, J. Parallel Distributed
Comput. 61 (3) (2001) 285–321.

[19] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan
Kaufmann Publishers, Los Altos, CA, 2000.

[20] J.A. Hartigan, M.A. Wong, A k-means clustering algorithm, Appl.
Statistics (28) (1979) 100–108.

[21] J.C. Jacob, R. Williams, J. Babu, S.G. Djorgovski, M.J. Graham,
D.S. Katz, A. Mahabal, C.D. Miller, R. Nichol, D.E. Vanden Berk, H.
Walia, Grist: grid data mining for astronomy, in: Astronomical Data
Analysis Software and Systems (ADASS) XIV, October 2004.

[22] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall,
Englewood cliffs, NJ, 1988.

[23] I. Janciak, P. Brezany, A. Min Tjoa, Towards the wisdom grid: goals
and architecture, in: Proceedings of Fourth International Conference on
Parallel Processing and Applied Mathematics PPAM, 2003, pp. 796–803.

[24] R. Jin, G. Agrawal, An efficient implementation of apriori association
mining on cluster of SMPS, in: Proceedings of the Workshop on High
Performance Data Mining, Held with IPDPS 2001, April 2001.

[25] R. Jin, G. Agrawal, A middleware for developing parallel data mining
implementations, in: Proceedings of the First SIAM Conference on Data
Mining, April 2001.

[26] R. Jin, G. Agrawal, Shared memory parallelization of data mining
(algorithms): techniques, programming interface, and performance, in:
Proceedings of the Second SIAM Conference on Data Mining, April
2002.

[27] R. Jin, G. Agrawal, Shared memory parallelization of decision tree
construction using a general middleware, in: Proceedings of Europar
2002, August 2002.

[28] R. Jin, G. Agrawal, Communication and memory efficient parallel
decision tree construction, in: Proceedings of Third SIAM Conference
on Data Mining, May 2003.

[29] R. Jin, G. Agrawal, Shared memory parallelization of data mining
algorithms: techniques, programming interface, and performance, IEEE
Trans. Knowl. Data Eng. (TKDE) 17 (1) (2005) 71–89.

[30] M.V. Joshi, G. Karypis, V. Kumar, Scalparc: a new scalable and
efficient parallel classification algorithm for mining large data sets, in:
Proceedings of the International Parallel Processing Symposium, 1998.

[31] G. Kickinger, P. Brezany, A. Tjoa, J. Hofer, Grid knowledge discovery
processes and an architecture for their composition, in: Proceedings
of the IASTED International Conference on Parallel and Distributed
Computing and Networks (PDCN 2004), Innsbruck, Austria, February
2004.

[32] R. Machiraju, J. Fowler, D. Thompson, B. Soni, W. Schroeder,
EVITA—efficient visualization and interrogation of terascale data sets,
in: R.L. Grossman et al. (Eds.), Data Mining for Scientific and
Engineering Applications, Kluwer Academic Publishers, Dordrecht,
2001, pp. 257–279.

[33] M. Mehta, R. Agrawal, J. Rissanen, Sliq: a fast scalable classifier for
data mining, in: Proceedings of the Fifth International Conference on
Extending Database Technology, Avignon, France, 1996.

[34] S. Mehta, K. Hazzard, R. Machiraju, S. Parthasarathy, J. Willkins,
Detection and visualization of anomalous structures in molecular
dynamics simulation data, in: IEEE Conference on Visualization, 2004.

[35] J. Shafer, R. Agrawal, M. Mehta, SPRINT: a scalable parallel classifier
for data mining, in: Proceedings of the 22nd International Conference
on Very Large Databases (VLDB), September 1996, pp. 544–555.

[36] V. Stankovski, M. May, J. Franke, A. Schuster, D. McCourt, W. Dubitzky,
A service-centric perspective for data mining in complex problem solving
environments, in: Proceedings of International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA), 2004,
pp. 780–787.

[37] D.S. Thompson, R. Machiraju, M. Jiang, V.S. Dusi, J. Nair, G. Craciun,
Physics-based mining of computational fluid dynamics data sets, IEEE
Comput. Sci. Eng. 4 (3) (2002).

[38] M.J. Zaki, C.-T. Ho, R. Agrawal, Parallel classification for data mining
on shared-memory multiprocessors, in: IEEE International Conference
on Data Engineering, 1999, pp. 198–205.

Leonid Glimcher recieved his B.S. and M.S. degrees in Computer Sci-
ence and Engineering from the Ohio State University in 2003 and 2007,
respectively. He is currently a Ph.D. candidate in the Computer Science and
Engineering Department at the Ohio State University. His research interest
include data grid computing, parallel and distributed data analysis, and high-
performance computing.

Ruoming Jin is an Assistant Professor in the Department of Computer Science
at the Kent State University, Ohio. He received his B.E. and M.E. degrees
in Computer Engineering from the Beijing University of Aeronautics and
Astronautics, China in 1996, 1999, respectively. He received his M.S. degree
in Computer Science from the University of Delaware in 2001 and Ph.D.
degree in Computer Science from the Ohio State University in 2005. His
research interest includes system support and algorithm design for scalable
data mining, data stream processing, massive graph mining, databases and
bioinformatics. He has published over 40 research papers in these areas.

Gagan Agrawal is a Professor of Computer Science and Engineering at the
Ohio State University. He received his B.Tech degree from Indian Institute of
Technology, Kanpur, in 1991, and M.S. and Ph.D degrees from the University
of Maryland, College Park, in 1994 and 1996, respectively. His research
interests include parallel and distributed computing, compilers, data mining,
grid computing, and processing of streaming data. He has published more
than 140 refereed papers in these areas. He is a Member of ACM and IEEE
Computer Society. He received a National Science Foundation CAREER
award in 1998.


