Pronto: High Availability for Standard
Off-the-shelf Databases*!

Fernando Pedone* Svend Frolund?

*University of Lugano (USI)

Switzerland

fGatehouse A/S

Denmark

Abstract

Enterprise applications typically store their state in databases. If a database fails, the
application is unavailable while the database recovers. Database recovery is time consum-
ing because it involves replaying the persistent transaction log. To isolate end-users from
database failures we introduce Pronto, a protocol to orchestrate the transaction process-
ing by multiple, standard databases so that they collectively implement the illusion of a
single, highly-available database. Pronto is a novel replication protocol that handles non-
determinism without relying on perfect failure detection, does not require any modifications
in existing applications and databases, and allows databases from different providers to be

part of the replicated compound.

Index terms: database replication, failover, heterogeneous databases, primary-backup,

atomic broadcast

*A shorter version of this paper appeared previously in the Proceedings of the 19th IEEE Symposium on

Reliable Distributed Systems (SRDS), October 2000.
TPart of the work done while the authors were at Hewlett-Packard Laboratories (HP Labs), USA.

1 Introduction

High availability is essential for mission-critical computing systems. This is especially true
for Internet-based e-commerce applications: if the application is unavailable, the business is
closed. Such applications commonly follow a three-tier structure, where front-end web browsers
send http requests to middle-tier web servers, which perform transactions against a back-end
database. As for most online transaction processing systems, the database is the availability
bottleneck in three-tier applications. This is not surprising because the database usually contains
the entire application state. In contrast, web servers are typically stateless. If a web server
fails, browsers can failover to another web server and immediately continue their processing.
Rebinding to another web server is usually orders of magnitude faster than recovering a database
from a failure. Thus, one way to reduce the impact of database failures on the overall system
downtime and to increase the availability of the three-tier application is to use multiple replicated
databases in the back-end.

This paper presents Pronto, a protocol that orchestrates the execution of replicated databases.
Pronto uses standard, off-the-shelf, and possibly heterogeneous, database systems for the back-
end transaction processing. Moreover, Pronto guarantees strong consistency (i.e., one-copy
serializability [9]), providing to the clients the illusion that the database ensemble is a single,
highly-available database system. Being highly available means that users of the ensemble never
wait for database recovery, even if individual databases in the ensemble fail.

Pronto supports “interactive” transactions whose structure and SQL statements are not
known up front. This allows Pronto to be deployed as a special implementation of a standard
transaction interface, such as JDBC [54]. With JDBC, transactions may be constructed in-
crementally, passing only a single SQL statement through the interface at a time. Deploying
Pronto as a special implementation of JDBC means that neither the databases nor the applica-
tion require changes—we can force the application to load the Pronto JDBC driver instead of
the standard JDBC driver by simply changing the CLASSPATH variable.

Pronto is a hybrid between primary-backup replication [12] and active replication [31, 51],*
similarly to the leader-follower approach [7], developed in the context of real-time systems. Es-
sentially, Pronto deals with database non-determinism by having a single (primary) database

execute transactions in a non-deterministic manner. Rather than checkpoint the resulting state

! Active replication is a technique according to which replicas receive and execute all requests in the same total
order. If the execution is deterministic, after having executed the same sequence of operations, every replica will

reach the same local state [31, 51].

to backups, the primary sends the transaction itself to the backups along with ordering infor-
mation that allows the backups to make the same non-deterministic choices as the primary.
Like active replication, every database processes all transactions. Unlike traditional active repli-
cation, the backups process transactions after the primary, which allows the primary to make
non-deterministic choices and export those choices to the backups. By shipping transactions in-
stead of transaction logs, Pronto can support heterogeneous databases with different log formats,
and prevent the contamination that may result if the data in one database becomes corrupt.

Primary-backup techniques usually rely on failure detectors (i.e., timeout mechanisms) to
trigger the election of a new primary when the current one fails [9]. Setting the right time-
out value is not straightforward, however. While fast failure detection is crucial for high
availability—the longer it takes for the failure of the primary to be detected, the smaller the
availability of the system—being too aggressive may result in false detections and multiple
primaries executing simultaneously, which may compromise consistency. Pronto’s solution to
this problem is to allow the existence of several primaries during certain transitory conditions
without leading to database inconsistencies. With Pronto, timeout mechanisms can be tuned
to aggressively detect primary failures, without incurring inconsistencies due to false failures
suspicions.

A remark is now in order considering Pronto’s approach. Pronto was not designed to “com-
pete” in performance with proprietary solutions. Even though the overhead introduced by
Pronto is “acceptable”—experiments conducted with an ensemble of commercial databases,
using a Java prototype interfaced through JDBC, have shown that when compared to a single-
database configuration the overhead introduced by Pronto is below 20% in throughput and
below 26% in response time—access to database internals allows optimizations not possible in
a middleware protocol. On the other hand, Pronto is reasonably simple, can be readily put to
use with off-the-shelf databases, and addresses the very practical problem of failure detection
tuning.

The remainder of the paper is structured as follows. Section 2 describes the system model
and some abstractions used in the paper, and formally states the problem we are concerned
about. Section 3 presents the Pronto protocol in detail and discusses some additional aspects
about Pronto. Section 4 describes our Pronto prototype, the experiments we conducted with it,
and the results found. Section 6 concludes the paper. Proofs of correctness are presented in the

Appendix.

2 Model, Definitions and Problem

2.1 Processes, Communication and Failures

We assume an asynchronous system composed of two disjoint sets of processes: a set C =
{c1, 2, ...} of database client processes (e.g., middle-tier web servers), and a set S = {s1, s2, ..., Sn }
of database server processes (i.e., back-end databases). Every database server has a copy of all
data items. Processes can only fail by crashing (e.g., we do not consider Byzantine failures).
For simplicity, database recovery is not introduced in the model, and treated later in the paper
(see Section 3.4). We further assume that database clients and servers have access to failure
detectors [15], used to monitor database server processes. The class of failure detectors we con-
sider guarantees that every database server process that crashes is eventually suspected to have
crashed (completeness), and there is a time after which some database server process that does
not crash is never suspected (accuracy) [15].

Processes are all connected through reliable channels, which neither lose nor duplicate mes-
sages. We do not exclude link failures, as long as we can assume that any link failure is eventu-
ally repaired. In practice, the abstraction of reliable channels is implemented by retransmitting
messages and tracking duplicates. Reliable channels are defined by the primitives send(m) and
receive(m). Database server processes can also exchange messages using a broadcast abstraction
built on top of reliable channels (also known as Atomic Broadcast or Total Order Broadcast).
Broadcast communication is defined by the primitives broadcast(m) and deliver(m), and guar-
antees that if a database server process delivers a message m, then all database server processes
that do not crash eventually deliver m (agreement), and if two database servers, s; and s;, both

deliver messages m and mg, then they do so in the same order (total order).

2.2 Databases and Transactions

Databases are specified by a set of primitives and their associated behavior. The syntax and
semantics of our database primitives are those of standard off-the-shelf relational database sys-
tems. We define transactions as sequences of database requests.

A database is an abstraction implemented by database server processes. The database

abstraction is defined by the primitives presented next.

e begin(t,) and response(t,, —). The begin primitive starts a transaction ¢, in the database.

It has to precede any other operations requested on behalf of t,. The database issues a

response once it is ready to process t,’s requests.

e exec(t,, sql-st) and response(t,, result). The exec primitive requests the execution of
an SQL statement to the database. sql-st can be any SQL statement, except for commit
and abort (e.g., select or update). The result can be the values returned from sql-st or

an abort notification if ¢, was involved in a deadlock, for example.

e commit(t,) and response(t,, result). The commit primitive terminates a sequence of
exec’s for transaction t, and requests t,’s commit. The response returns a confirmation

that t, has been committed or an abort notification.

e abort(t,). The abort primitive terminates a sequence of requests for transaction ¢, and
requests t,’s abort. We assume that when submitted to the database, an abort request can

always be executed, and so, there is no need for a confirmation response from the server.

We define a transaction ¢, as a finite sequence (begin(t,);response(ty, —);exec(tq, —);
response(ty, —);...;| commit(t,); response(t,, —)/ abort(t,)]), where commit(t,); response(t,, —)
and abort(t,) are mutually exclusive, although one must take place. Our definition of a trans-
action differs from traditional definitions (e.g., [9]) in that we focus on the requests submitted
to the database and not on the operations performed by the database on the data items. For
example, in some cases, even if a commit is requested for some transaction t,, the database may

decide to abort t,.

A database server process s; guarantees the following properties:

DB-1 Transactions are serialized by s; using strict two-phase locking (strict 2PL).
DB-2 If a valid transaction is continuously re-submitted, it is eventually committed.

DB-3 No transaction remains pending forever.

Property DB-1 ensures serializability, that is, any concurrent transaction execution £ has
the same effect on the database as some serial execution £ of the same transactions in £.
Furthermore, strict 2PL schedulers have the following property, exploited by our protocol: if
transaction t, has been committed before transaction t; by s; in some execution £, and t, and

ty conflict,? then in every serial execution & equivalent to &, t, precedes t; [9].

2Transactions t, and tp conflict if they both access a common data item and at least one of them modifies the

data item.

Property DB-2, although not explicitly stated as such, is often assumed to be satisfied by
current database systems. A transaction is valid if it does not violate any integrity constraints
(e.g., withdrawing money from an account without enough funds). DB-2 reflects the fact that
even though in general, databases do not guarantee that a submitted transaction will commit
(e.g., the transaction may get involved in a deadlock and have to be aborted), this does not
mean that no liveness guarantee is provided.

Property DB-3 ensures that transactions terminate, either by committing, i.e., making their
changes permanent to the database, or aborting, i.e., rolling them back. Thus, if a transaction
cannot make progress because it is deadlocked or the client submitting the transaction’s opera-
tions has crashed, the transaction will be eventually aborted by the database (and all its locks

will be removed).

2.3 Clients and Transactional-Jobs

The transactional-job abstraction models the business logic that runs in middle-tier web servers.
The execution of a job generates a transaction that will be executed by database server pro-
cesses. A job j terminates successfully if the transaction it generates requests a commit and is
committed, or requests an abort.

The execution of a transactional job (or simply job, for short) is defined by the primitives
submit(j) and response(result). The submit(j) primitive requests the execution of a job, and
the response(result) primitive returns the results of the job.

Pronto uses the transactional-job abstraction to allow clients to access a replicated database
as if they were accessing a highly-available single-copy database. It satisfies the following prop-

erties.

RDB-1 If € is an execution of the replicated database system, then there exists some serial

execution & that is equivalent to £.

RDB-2 If a client submits a transactional job j, and does not crash, then the client will

eventually receive a response for j.

RDB-1 is the serializability property in the context of replicated databases (also called one-
copy serializability). RDB-2 states that the submission of a job should always result in its

execution against the database system.

3 The Pronto Failover Protocol

3.1 The Protocol at a Glance

The protocol is based on the primary-backup replication model, where one database server, the
primary, is assigned a special role. The primary is the only server supposed to interact with
the clients, who submit transaction requests resulting from the execution of a job. The other

database servers (the backups) interact only with the primary.

3.1.1 Failure-/Suspicion-Free Execution

To execute a transactional job j, a client ¢ takes the first transaction request originated from
the execution of j (i.e., begin transaction) and sends this request to the database server s that
¢ believes to be, most likely, the current primary. After sending the begin transaction request,
¢ waits for the result or suspects s to have crashed. The execution proceeds as follows (see

Figure 1).

(a) If s is the current primary, it executes the request and sends the result to c. In this case,
c continues the execution of j, by submitting other transaction requests to the primary
on behalf of j. If the primary does not crash and is not suspected by ¢, the execution

proceeds until ¢ requests the transaction termination (see below).

(b) If s is not the current primary, it returns an error message to ¢, which will choose another

database server s’ and send to s’ the transaction request.

(c) The case where ¢ suspects s to have crashed is treated later in the section.

If the primary does not crash and is not suspected, the client eventually issues a request
to terminate the transaction (i.e., “commit” or “abort”). The primary executes a commit
request from the client by broadcasting the transaction unique identification, the SQL statements
associated with the transaction, and some control information (defined later in the section) to
all backups.

Upon delivering a committing transaction, each database server executes a validation test
to decide to commit or abort the transaction and sends the transaction’s outcome to the client.
The validation test depends on the delivery order of transactions. Since this order is the same
for all servers and the validation test is deterministic, no two servers reach different outcomes

(i.e., “commit” or “abort”) for the same transaction.

If a database server decides to commit the transaction, it executes the SQL statements
associated with the transaction against the local database, making sure that if two transactions
t1 and to have to be committed, and ¢; is delivered before to, t1’s SQL statements are executed
before t3’s SQL statements.

As aresponse to the commit request, a client will eventually receive the transaction’s outcome
from the primary or from the backup servers or from both. If the outcome is “commit” or
“invalid” (i.e., the transaction should be aborted because it violates integrity constraints), the
client issues a response for job j. Otherwise the client has to re-execute job j. A server may
decide to abort a valid transaction during its execution if it finds out that the transaction
is involved in a (local) deadlock or it suspects that the client submitting the transaction has
crashed.

subm t(j) response(res
begi n(t) exec(t, sql -st) conm t(t)

Client S [S S

((N

Primary L I) L]
execute execute
begi n(t) exec(t,sql-st)
br oadcast (t

Backup 1

commit t

Backup 2

commit t

Figure 1: Pronto without crashes and suspicions

Transactions pass through some well-defined states. A transaction starts in the executing
state and remains in this state until a commit or abort is requested. If the client requests
to commit the transaction, the transaction passes to the committing state and is broadcast
to all database servers by the primary. A transaction delivered by a database server is in
the committing state, and it remains in the committing state until its fate is known by the
database server (i.e., commit or abort). The executing and committing states are transitory

states, whereas the committed and aborted states are final states.

3.1.2 Failure/Suspicion Handling

After submitting a request, a client ¢ may suspect the primary s to have crashed. This may
happen because s has crashed or because ¢ incorrectly suspects s. In either case, ¢ sends an
abort transaction message to s, just in case it was a false suspicion, chooses another database
server s', and re-executes j, by sending the begin transaction request, using s’.

If the primary crashes or is suspected to have crashed, the execution evolves as a sequence
of epochs?; in executions in which the primary does not crash nor is suspected to have crashed,
however, there is only one epoch. During an epoch, there can only exist one primary, which is
deterministically computed from the epoch number.

The epoch change mechanism works as follows. When a backup suspects the primary to have
crashed, it broadcasts a message to all database servers to change the current epoch, which will
result in another database server as the primary. A backup may suspect the current primary
incorrectly. In such a case, the primary also delivers the change epoch message, and will abort all
transactions in execution and inform the application servers corresponding to these transactions
that a new epoch has started with a new primary. Clients have to re-start the execution of their
jobs in the new primary, as described before.

Due to the unreliable nature of the failure detection mechanism used by database servers and
the time it takes for messages to reach their destinations, it is possible that at a given time during
the execution, database servers disagree on the current epoch, and so, multiple primaries may
actually be able to process transactions simultaneously. To prevent database inconsistencies (i.e.,
non-serializable executions) that may arise from transactions executing concurrently on different
primaries, a transaction passes a validation test before committing. In order to do that, every
transaction is broadcast together with the epoch in which it executed. The validation test
ensures that a transaction is only committed by some database server if the epoch in which the
database server delivers the transaction and the epoch in which the transaction was executed
are the same.

As a consequence, Pronto can tolerate inaccurate failure detection without hurting consis-
tency. For performance reasons, however, failure detection should be as accurate as possible
since it may lead to unnecessary aborts and resubmission of transactions. In any case, Pronto’s
modular design results in a primary-backup technique that does not have to care about how

failure detection is implemented.

3The notion of epoch used in Pronto differs from the one in [21]. Epochs are used in [21] to synchronize the

installation of log records coming from transactions that executed at primary sites.

Figure 2 depicts a scenario where two primaries try to commit transactions ¢ and t. When
Primary 1 broadcasts transaction ¢, it has not delivered the new epoch message. Transaction
t is delivered after the new epoch message, and so, it is aborted since ¢ did not execute in the
epoch in which it is delivered. Transaction ¢’ is committed by every database server after it is
delivered since it executed and is delivered in the same epoch. Although not shown in Figure 2,
after validating a transaction, each database server sends the transaction outcome to the client.

del i ver (new epoch)

broadcast (t) deli ver(t(’j()el iver

Primary 1 ((

br oadcast (new epoch) -
broadcast (t

committ’ abort

Primary 2 [
! abort t
deliver(t)

Backup

commit t’ abort t

— epoch e ﬁ<— epoch e+l

Figure 2: Two primaries scenario

Failures and failure suspicions may lead to situations in which a client should execute the
same transactional job twice. Since communication is asynchronous, this may happen even in
cases in which the first execution was successful, and the corresponding transaction committed
(e.g., the primary fails after committing the transaction, its reply is lost, and it takes “too
long” for the backups to reply to the client). As we discuss in the next sections, if required by
the application, exatly-once semantics—i.e., only one transaction is committed despite multiple

executions of the same transactional job—can be easily integrated in Pronto.

3.2 The Detailed Algorithm

Algorithm 1 is the client side of the Pronto protocol. The algorithm is divided into two parts.
In the first part, the client locates the primary server, and in the second part the client executes
the transactional job. A transactional job is modeled as a function that receives the results from

the previous request to generate the next request. The first request generated by a job j, is

10

begin(t,) (i-e., jo(L) = begin(t,)).

e Locating the primary server (lines 2-14). Initially, the client chooses one database
server (lines 7-8), tries to start the transaction on this server (line 9), and waits for an
answer or suspects the server to have crashed (line 10). If the client suspects the server
to have crashed (line 11), the client chooses another server and, as before, tries to start
the transaction on this server. Clients (and servers) interact with their failure detection

module by inspecting variable D. Client ¢ suspects database server process s if s € D,.

e Executing a transactional job (lines 15-25). The client sends the transaction re-
quests, resulting from the execution of the transactional job, to the primary. After sending
a request (line 17), the client waits until it receives an answer or it suspects the primary to
have crashed (line 18). In the latter case, the client sends an abort request to the primary
and starts again, possibly with a different primary. The message sent by the client is an
optimization, which in case of a wrong suspicion, will not leave the transaction hanging in
the server and possibly blocking other transactions. A suspicion leads the client to loop
back to the first part of the algorithm, and re-execute the job on a new primary, if the
previous has crashed. If the primary decides to abort a valid transaction (i.e., due to a

local deadlock), the client re-executes the job using the same database server.

In both parts of the algorithm, when a client suspects a primary p. (lines 10, 18, and 19),
before trying to execute the transaction in another server, the client sends an abort transaction
message to p. (lines 12 and 20). This is done because the client may falsely suspect the primary,
and in this case, before starting a new transaction, the client terminates the previous one.

Algorithm 2 is the server side of the Pronto protocol. Except for lines 15-19, the algorithm
is executed as a single task with several entry points (lines 5, 28, 44, and 46). For brevity, we do
not present the server code handling transactions aborted by a database during their execution

(e.g., due to a local deadlock).

e Executing transactions (lines 5-26). This is the primary’s main procedure. If a client
sends a begin(t,) request to a backup, the backup refuses to process the request (lines
7-8), but if the client sends the begin(t,) request to the primary, the primary initializes the
transaction’s state (lines 10-12) and returns an acknowledgment that the database is ready
to process exec(t,, —) requests. If the request is an exec(t,,sql-st), the server executes

it as an independent task (lines 15-19). This is done to prevent the server from executing

11

Algorithm 1 Database client ¢

1: To execute submit(jq)...

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

pe 0
findPrimary <— true
repeat
repeat
request «— jq (L)
if findPrimary = true then
Pe — (pe mod n) + 1
send (tq,request) to pc

wait until (receive (tq,result) from p¢) or (p. € D.)

if not(received (tq,result) from p.) then
send (tq,abort(ta)) to pe

until (received (tq, result) from p.) and (result # “I'M NOT PRIMARY”)

findPrimary < false

repeat
request «— jq(result)
send (tq,request) to pc

wait until (receive (tq,result) or (p. € D)

if p. € D. then
send (tq,abort(ts)) to pe
result <« ABORTED
findPrimary < true

until (result € {COMMITTED, INVALID, ABORTED})

until (request = ABORT) or (request = COMMIT and result 7 ABORTED)

response(result)

12

Algorithm 2 Database server s;

1: Imitialization...

2: e — 1

3 pi—1

4: To execute a transaction...

5: when receive (request) from ¢

6: case request = begin(t,):

7 if s; # p; then

8: send (e, ta, “I'M NOT PRIMARY”) to ¢
9: else

10: state(tq) < EXECUTING

11: begin(t,)

12: wait for response (tq, result)
13: send (tq,result) to c

14: case (request = exec(tq,sql-st)) and (state(t,) = EXECUTING):
15: exec task

16: exec(tq,sql-st)

17: wait for response(tq, result)

18: if result € {INVALID, ABORTED} then state(t,) < ABORTED
19: send (tq,result) to c

20: case (request = commit(t,)) and (state(t,) = EXECUTING):
21: state(tq) < COMMITTING

22: sqlSeq(tq) < all exec(tq,sql-st) in order

23: broadcast(s;, €;, ¢, ta, sqlSeq (ta))

24: case (request = abort(tq)) and (state(t,) = EXECUTING):
25: state(tq) < ABORTED

26: abort(tq)

27: To commit a transaction...

28: when deliver(s;, e;, ¢, tq, sqlSeq(ta))
29: if e; < e; then

30: state(tq) < ABORTED

31: if s; = p; then abort(t,)

32: else

33: if s; # p; then

34: state(tq) < COMMITTING

35: begin(tq)

36: for each exec(tq,sql-st)E€sqlSeq(t,) do
37: exec(tq,sql-st)

38: wait for response(tq, result)

39: commit(tq)

40: wait for response(tq, result)

41: if result # INVALID then state(t,) < COMMITTED else state(t,) «— ABORTED

42: send (tq,result) to ¢

13

Algorithm 2 (cont.) Database server s;

43:

44:
45:

46:
47:
48:
49:
50:
51:
52:
53:

To change an epoch...

when p; € D;
broadcast(e;, “NEW EPOCH”)

when deliver(e;, “NEW EPOCH”) and (e; = e;)
if p;, = s; then
for every t, such that state(t,) = EXECUTING do

state(tq) < ABORTED
abort(tq)
send (ta, ABORTED) to ¢

pi — (e; mod n) +1

e «—e; + 1

requests sequentially against the database. If the primary receives a commit request for
transaction t,, it updates t,’s current state to committing (line 21), and broadcasts t,’s
identifier, the epoch when t, executed, the client identifier associated with t,, and t,’s
operations to all database servers (line 23). The exec(t,, —) statements are broadcast as a
sequence. This allows the backups to execute t,’s requests in the same order as they were
executed by the primary. Notice that if read and write requests can be easily distinguished,

then read statements do not have to be broadcast to the database servers.

e Committing transactions (lines 28-42). Committing transactions are delivered by
the when statement at line 28. After delivering some transaction t,, a server first validates
tqe (line 29). The validation consists in checking whether the epoch in which ¢, executed
is the current epoch. If it is not, t, is aborted by the server (lines 30-31). If ¢, executed
in the current epoch, ¢, passes the validation test and is locally committed (lines 33-41).
At the primary, committing ¢, consists of issuing a database commit request and waiting
for the response (lines 39-40). At the backups, committing ¢, consists of executing all ¢,’s
exec(t,, —) operations (lines 34-38), issuing a database commit operation, and waiting for

the response.

e Changing epochs (lines 44-53). The when statements at lines 44 and 46 handle epoch

changes. When a server s suspects the current primary to have crashed, s broadcasts a 'new
epoch’ message (lines 44-45). Upon delivering the 'new epoch’ message, a server determines
the new primary from the epoch number (line 52) and updates the current epoch (line 53).

If the primary has not crashed (i.e., in case of false suspicion), it also delivers the 'new

14

epoch’ message, and before passing to the next epoch, it aborts all local transactions in
execution (lines 48-51). Aborting local transactions in execution before passing to the
next epoch is an optimization as no such transactions will pass the validation test: these

transactions will not be delivered in the epoch in which they executed.

3.3 Exactly-Once Transactional Jobs

In some systems, it is crucial to ensure that a transactional job commits only a single transaction
in each database. Consider the case of a client that detects the crash of the current primary
server. To ensure progress, the client may have to re-execute its transactional job against the new
primary. However, if the former primary has managed to execute the client’s job to completion
(e.g., it failed after committing the transaction but before notifying the client), in the end two
transactions will be committed by the new primary as the result of a single transactional job
execution. An exactly-once transactional job prevents such a case from happening.

There are several mechanisms to ensure the exactly-once property [20]. In principle, clients
should assign unique identifiers to transactional jobs and servers should keep track of previ-
ously executed jobs, making sure that two transactions for the same job will not both commit.
In Pronto, this check can be executed after a transaction commit request is delivered by the
database. If a transaction for the same job has already been committed, the server aborts the
second transaction and notifies the client. The client can also be notified before submitting the
transaction, as soon as the server realizes that the job has already been dealt with.

Clients can obtain unique identifiers by combining a local monotonically increasing sequencer
(e.g., the local clock) with their own unique identifiers (e.g., their IP addresses). Keeping track
of previously executed transactional jobs can be done in many ways. They can be kept in
memory, and asynchronously written to disk, if it is unlikely that all servers simultaneously fail.

Alternatively, they can be stored in the database as part of the committing transaction.

3.4 Database Recovery

Databases interact with each other in Pronto using only the underlying Atomic Broadcast ab-
straction. The agreement and total order properties of Atomic Broadcast ensure a natural way
to deal with database recovery: While agreement forces failing databases to deliver missed trans-
actions upon recovery, total order prevents a failing database from delivering messages in the

wrong order. This uniform treatment of failing and operational databases ensures that once a

15

database recovers, the order in which it committed its transactions is consistent with the order
other databases committed the same transactions.

Known Atomic Broadcast protocols implement uniform agreement and total order in the
presence of crash and recovery in different ways [32, 49]. The protocol in [49], for example,
allows a recovering process to retrieve the entire history of delivered messages. That is, the
recovering process has access to all messages it delivered before it crashed and all messages
that other processes delivered while it was down. In its simplest form, a recovering process in
Pronto would have to replay the entire history of delivered messages. This would bring the
epoch variable e; up to date, and it would execute all transactions that the process missed while
it was down. Notice that the exactly-once mechanisms discussed in Section 3.3 ensure that
transactions are not re-executed during recovery.

Even though such an approach hides the complexities related to recovery, it may not be
efficient if the recovering database has missed “too many” transactions: the cost of catching
up with the operational databases by processing missing transactions may become higher than
simply copying the database from an up-to-date site. A more general discussion about how to
efficiently integrate group communication primitives and database recovery is beyond the scope

of this paper. For further reference see, e.g., [6, 26, 29].

4 Evaluation of the Protocol

4.1 Analytical Evaluation

In a system with a single database server, when a client requests the commit of some transaction,
the server tries to execute the commit operation against the database, and returns the answer
to the client. In the Pronto protocol, before a server tries to execute the commit operation, it
has to deliver and validate the transaction. Since the validation test is very simple (actually an
integer comparison), the overhead introduced in the transaction response time by the Pronto
protocol is expected to be mostly due to the broadcast primitive.

To discuss the cost of broadcasting transactions, we consider the Optimistic Atomic Broad-
cast algorithm [42] (OPT-broadcast) and the Paxos algorithm [33]. Both algorithms are non-
blocking and tolerate an unbounded number of false failure suspicions.

The OPT-broadcast makes the optimistic assumption that in some networks there is a good
probability that messages arrive at their destinations in a total order. When this assumption

holds, messages can be delivered “fast”; when it does not, the algorithm incurs in further

16

computation to ensure that total order is preserved [42]. If ¢ is the transmission delay along
communication links, then the latency, that is, the time between the primary broadcasts and
delivers a transaction, is 20. When communication between servers is point-to-point, OPT-
broadcast injects (n + 1)(n — 1) messages in the network, where n is the number of servers. If
a network-level broadcast primitive is available (e.g., IP-multicast), then (n 4+ 1) messages are
generated per broadcast.

The complete Paxos protocol has latency of 46. It injects 5(n — 1) messages when com-
munication is point-to-point, and 2(n + 1) messages when communication uses network-level
broadcast. If most messages are broadcast by the same sender, which is the expected behavior
of Pronto, where most messages are update transactions broadcast by the primary, the protocol
can be optimized leading to a latency of 26, and 3(n — 1) and n + 1 messages for point-to-point
and low-level broadcast communication, respectively. Backups rely on the original protocol.

As a reference, we also consider the performance of 1-safe and 2-safe primary-backup repli-
cation [24]. Although [24] considers a single backup, we have specified the complexity for n — 1
backups. Using the 1-safe configuration, the primary can commit a transaction before exchang-
ing messages with the backups, however, the backups may miss some transactions if the primary
crashes. This leads to zero latency, and n — 1 point-to-point messages or 1 network-level broad-
cast. To commit a transaction using the 2-safe configuration, the primary has to wait for a
round-trip message with each backup. If the primary crashes, 2-safe guarantees that the back-
ups have all transactions committed by the primary. However, in order to ensure consistency
(i.e., at most one primary at a time), 2-safe techniques rely on accurate failure detection. This
approach has a latency of 29, and injects 2(n — 1) and n messages in the network for cases in
which communication is by point-to-point and low-level broadcast, respectively.

Table 1 compares Pronto with OPT-broadcast and Paxos, 1-safe, and 2-safe. This compar-
ison is only done for reference purposes since the 1-safe and 2-safe approaches make different
assumptions about the underlying system and ensure different guarantees than Pronto with
OPT-broadcast and Paxos. Pronto equipped with OPT-broadcast and optimized Paxos has
the same latency as 2-safe. As for the number of messages, in point-to-point networks OPT-
broadcast is O(n?) while the other approaches are O(n). The message complexity of OPT-
broadcast could be reduced to O(n) at the expense of an increase of one J unit in the latency.
If the network provides a low-level broadcast primitive, OPT-broadcast and optimized Paxos
inject about the same number of messages as 2-safe. We notice however that false failure detec-

tion may lead to inconsistencies with 2-safe. With Pronto, false failure suspicions may prevent

17

transactions from committing temporally, but consistency is always ensured.

Protocol / Latency | Point-to-point | Broadcast | Remarks
Approach messages messages

OPT-broadcast 246 (n+1)(n—-1) n+1 optimistic order
Paxos 446 5(n—1) 2 (n+1) | general case
Paxos (optimized) 206 3(n-1) n+1 adapted to Pronto
1-safe 0 n—1 1 lost transactions
2-safe 24 2(n-1) n accurate timeouts

Table 1: Cost of terminating a transaction

4.2 Pronto Prototype

We built a simple prototype to assess the overhead introduced by Pronto relative to a non-
replicated configuration. Figure 3 depicts the architecture of our Pronto prototype. Continuous
lines between clients and the servers represent point-to-point communication; for simplicity we do
not draw them for all clients. Dashed lines between servers represent broadcast communication.

In the prototype, every server has several execution threads and one communication thread.
Each execution thread can execute one transaction at a time against the local database (i.e.,
the JDBC model). The communication thread implements atomic broadcast. At the backups,
only one execution thread is active; the others simply wait for the server to become primary.
Transactions are generated locally at the primary server.

Each execution thread has a JDBC connection to the local database, through which it sends
SQL requests. After sending a request to the database, the thread waits for its response. If
the request is a commit operation, before forwarding it to the database, the thread sends all
SQL requests to the other servers, starting the broadcast execution for this transaction. The
broadcast execution is then continued by the communication thread in the primary and in the
backups.

Atomic broadcast is implemented based on the optimized Paxos protocol [33]. All messages
are exchanged using TCP /IP. In the absence of failures and failure suspicions, a broadcast results
in a message from the primary to all backups, an acknowledge message from each backup to
the primary, and a final message from the primary to the backups. The primary can deliver
the transaction after it receives an acknowledgment from a majority of servers (including itself).

Backups deliver the transaction upon receipt of the second message from the primary. In case

18

8| = !
& © > ‘
o DL |
£3| 8 Datsbase | !
£s| 8
A
. Primary
|
I \
3 = !
o8| B |
£3| 8 Database
£s| 8
A
. Backup 1
|
e \
o B |
5| = !
o8| B |
€3 3 Datsbase |
3| 8 N
Backup 2

Figure 3: Pronto architecture

of failures and failure suspicions, more messages are exchanged to ensure that whatever delivery
order is chosen by the primary is always respected by any future primary [33]. We assume that
there is always a majority of servers up, and do not execute a synchronous logging as part of
the broadcast [5].

After the execution thread broadcasts a transaction, it waits for a local event corresponding
to its delivery. This event is raised by the communication thread once the transaction is delivered.
The execution thread reacts to the delivery event by certifying the transaction. If the transaction
passes the certification test, the execution thread sends a commit operation to the database;
otherwise, it sends an abort operation.

Concurrent transactions never have their order reversed due to non-determinism of thread
execution. To see why, consider threads 77 and 715 executing two transactions, ¢, and t;, concur-
rently. If ¢, and ¢, conflict, there is some data item they both try to access. The first transaction
that succeeds to hold a lock on the data, say t,, proceeds but the second one, t;, will be blocked

by the database. Therefore, T5 will not have a chance to broadcast t; until ¢, can access the

19

requested data item, and t, will only access the data item after ¢, releases its locks. Transaction
t, will release its locks after it is delivered, and thus, it cannot be that t; will be committed

before t,.

4.3 The Experiments’ Setup

For the experiments, we used three database servers connected through a 10 MBit Ethernet
network. The Primary executes in a 550 MHz Pentium III CPU with 256 MByte RAM; one of
the backups (hereafter, Backup 1) executes in a 600 MHz Pentium III CPU with 128 MByte
RAM; the second backup (hereafter, Backup 2) executes in a 200 MHz Pentium Pro CPU
with 128 MByte RAM. The Primary and Backup 2 run Windows NT 4.0, and Backup 1 runs
Windows 2000 Professional. All servers run a commercial database, installed without any tuning.
Communication with the database is through JDBC 2.0.

The database has 6 similar tables, accountO, accountl, ..., account5, with 10000 records
each. A record is composed of 6 fields: acct_num (10 bytes), name (10 bytes), branch_id (1
byte), balance (10 bytes), and temp (10 bytes). Each table is indexed by the acct_num field.

We have considered only update transactions in the experiments since these are the ones
that generate interactions between servers, and can slow down the failover mechanism. JDBC
has API’s that allow applications to distinguish queries from update transactions. Thus, the
primary can use these API’s to process queries only locally. Each transaction has between 1
and 6 write operations. The number of operations in a transaction, and the tables and entries
they update are randomly generated following a uniform distribution. A typical SQL operation

looks like 'update accountO set balance = 1000.00 where acct_num = 1234’.

4.4 The Performance of Pronto

In our experiments, we varied the multiprogramming level (MPL), that is, the number of exe-
cution threads in the primary and the think time (THT), that is, the time an execution thread
in the primary waits after it finishes one transaction and before it starts another one. Once a
threads starts a transaction, it executes the transaction as fast as it can. The think time controls
the rate of transactions executed by a single thread.

To build the graphs presented next, we conducted a series of experiments, each one with
about 40000 transactions. The executions were broken up into segments of about 20 seconds.

At the end of each segment, a sample of values of interest was taken (e.g., throughput, response

20

time) and at the end of the execution, we calculated their mean value. To eliminate initial
transients, the values sampled in the first segment were discarded. All mean values are presented
with a confidence interval of 95%.

In each experiment we measured two aspects of system performance:

e Response time. The time it takes to execute a single transaction end-to-end at the Primary.
The start time is measured immediately before initiating the transaction; the end time is
measured immediately after committing the transaction. The response time is then the

difference between the end time and start time.

e Throughput. The transactions per second that a server process commits. As for response
time, the throughput is measured by the Primary. As previously described, the execution
is divided into segments. The throughput of the execution is calculated as the average of

the throughput of each segment.

4.4.1 The Cost of Replication

The graphs in Figures 4-7 show the overhead of running Pronto as compared to a non-replicated,

single machine system. We quantify the overhead in terms of both response time and throughput.

80 w w 450
0y — e 400
& 60k e f%'":jjjfiiff-'"'“‘%g """"""""""""""""""" 5 g 350
e iy) £ 300
~ 50 [@ 7 O
5 e 250
g8 40| -] £
£ &y @ 200
3 30°F J &
£ S 150
E 2t 0 msec —x— @' 100
0msec (R) % x
10 100msec o 504 e
0 ‘ 100msec (R) —©O 0 ‘ 100msec (R), —©
5 10 15 20 25 5 10 15 20 25
Multiprogramming level (MPL) Multiprogramming level (MPL)
Figure 4: Ensemble throughput Figure 5: Ensemble response time

The graphs in Figures 4 and 6 show the relationship between throughput and multi-programming
level for various think times. For each think time, we show a throughput graph for a sin-

gle database system and a replicated database system. We can then determine the overhead

21

60 w w w 300
K
50 % o 250 | Py
@ *
7 . I
2 3 — £ 10 -
s , 8 ¥iog
2 204 : S 100 4
= 250msec —— g B0msec ——
10 Ei 250 msecC (R) ””” % """ B o 50 250 msec (R) ””” % """ 4
500msec il 500msec il
0 ‘ 500msec (R) —© 0 H 500msec (R), —©
5 10 15 20 25 5 10 15 20 25
Multiprogramming level (MPL) Multiprogramming level (MPL)
Figure 6: Ensemble throughput (cont.) Figure 7: Ensemble response time (cont.)

of Pronto by comparing the graph for a single database system to the graph for a replicated
database system for a given think time. For example, for a think time of 0 (see Figure 4) run-
ning Pronto results in a throughput decrease of about 13% when the multi-programming level
is 5 and 20% when the multi-programming level is 25. Moreover, a think time of 0 illustrates
the worst-case scenario for Pronto. In this scenario, there is maximal contention for network
resources. If instead we consider a think time of 500 msec (Figure 6), the overhead for any think
time is less than 10%.

The graphs in Figures 5 and 7 quantify the response-time overhead of running Pronto. As for
the throughput measurements, a response time graph shows the relationship between response
time and multi-programming level for a given think time. Again, the worst-case overhead occurs
with a think time of 0 and the maximum multi-programming level considered (i.e., 25). In this
particular case, the response time overhead is about 26%. As can be seen from the response-time
graphs, the higher the multi-programming level, the bigger the overhead of running Pronto. As

the multi-programming level increases, so does the contention for network resources.

4.4.2 Response Time Break-Down

In Figures 8 and 9 we show a break-down of the response time measurements—we show where
the elapsed time was actually spent. For the break-down, we use three categories: (a) Exec time,
the elapsed time for executing SQL statements through the JDBC interface, (b) Abcast time, the

elapsed time (as seen by the primary server) of executing Atomic Broadcast, and (¢) Commit

22

time, the elapsed time to execute the transaction commit operation by the primary server.

Figures 8 and 9 show a response-time break-down for a think time of 0 and 500 msec,
respectively. Both figures show the break down as “stacked” graphs, with Abcast time stacked
on top of Exec time, and Commit time stacked on top of Abcast time. This means that a data
point on the graph labeled Exec time is the actual measured value for Exec time. In contrast, a
data point on the graph labeled Abcast time is the sum of the measured Abcast time and the
measured Exec time. Furthermore, a data point on a graph labeled Commit time is the sum
of the measured Commit time, the measured Abcast time, and the measured Exec time. Thus,
the commit-time graph actually shows the end-to-end response time. The distance between the
graphs in a given figure then denotes the actual break-down into categories.

As can be seen from the graphs, the time spent executing Atomic Broadcast increases as
the multi-programming level increases. As indicated above, this effect explains why the cost of
Pronto increases as the multi-programming level increases. Moreover, the system spends more
time executing Atomic Broadcast with a think time of 0 as it does with a think time of 500
msec: We have more contention for network resources with a think time of 0 than we do with a

think time of 500 msec.

450 \ \ \ 450
400 Gy 400 f
_ 350 - J]] 1 _ 350
Fe| R > -
g 200 - g - § 200 + g
® 150t ® 150 1
1004 Exectime —x 100 1 R
503k Abcast time —k— | SO cast time ——k— 1
0 Committime {4 O Commit time {4~
5 10 15 20 25 5 10 15 20
Multiprogramming level (MPL) Multiprogramming level (MPL)
Figure 8: Resp.time break-down (THT=0) Figure 9: Resp.time break-down (THT=500)

4.4.3 Keeping Up with the Primary

Figures 10 and 11 show the relationship between the throughput in the primary, under various

multi-programming levels and think times, and the throughput in the backups, with multi-

23

25

programming level 1 and no think time. A ratio smaller than or equal to 1 means that the
backup can process transactions faster than or as fast as the primary; a ratio greater than 1
means that the backup is slower than the primary. If the backup cannot process transactions as
fast as the primary, transactions will have to be queued. If the workload is constant, the ratio

gives a measure of the growth rate of the backup queue.

2 ‘
Omsec —<—
100 msec K
-% 250 msec -% K el
L 15 500 msec O 1 Y 15 X 4
[*2] (=2}
> > 1 x .
e o R ©
< e .
E 5 N
§ § 05 | © Omsec —X—
@ o 100 msec K
250 msec -t
500 msec ©
0 ‘ ‘ ‘ 0 ‘ ‘
5 10 15 20 25 5 10 15 20 25
Multiprogramming level (MPL) Multiprogramming level (MPL)
Figure 10: Throughput ratio (Backup 1) Figure 11: Throughput ratio (Backup 2)

From Figure 10, Backup 1 never lags behind the primary (i.e., for every multi-programming
level and think time, the throughput ratio in Backup 1 is smaller than 1). The same does not
hold for Backup 2. Figure 11 shows that Backup 2 cannot process transactions as fast as the
primary when the think time is 0 or 100 msec. Nevertheless, Backup 2 can keep up with the
primary when the think time is 250 msec and the multi-programming level below 10, and the

think time is 500 msec and the multi-programming level below 20.

5 Related Work

Database replication has been the subject of much research in the past years and many pro-
tocols have been proposed. Gray et al. [23] have classified database replication into eager
and lazy. Eager replication, the category Pronto falls into, ensures strong consistency. Lazy
replication increases performance by allowing replicas to diverge, possibly exposing clients to
inconsistent states of the database. Eager replication can be based on the update everywhere

or on the primary-backup approach [23]. Update everywhere allows any copy of the database

24

to be updated. Primary-backup assigns a single database, the primary, to process transactions
and checkpoint its state to one or more backups. The backups will simply reproduce the pri-
mary’s state by locally applying the shipped state. Usually, the actual information shipped to
the backups is not the new database state but the transaction log [24].

Early work on eager update everywhere has been based on the read-one/write-all approach
[9] and on quorum systems (e.g., [1, 2, 22, 35, 53]). More recently, several works have proposed
implementing eager update everywhere replication using an underlying total order broadcast
abstraction (e.g., [4, 14, 25, 41, 55]). In general, these protocols capture different trade-offs
between scalability (in terms of throughput) of the replicated database system, underlying net-
work assumptions, generality of the transaction model, and use of standard or custom databases.
For example, some protocols have been optimized for wide-area networks [6, 48], while others
exploit special local-area network properties [36]. The approach in [28] is to modify the under-
lying databases so that all write locks for a transaction can be acquired in a single atomic step.
Compared to these existing approaches, Pronto uses standard databases and supports interac-
tive transactions, whose structure is determined dynamically (i.e., the result of a previous query
may determine which requests to execute subsequently).

In [40] the authors discuss conflict classes for synchronizing update transactions. A conflict
class represents a partition of the database (e.g., one class per table). Replicas commit transac-
tions in the same conflict class in the same order; total order broadcast is used to ensure that
transactions belonging to more than one conflict class will execute in the same order. Transac-
tions execute on one site and only their updates are processed by remote replicas, similarly to
Pronto. Differently from [40], however, Pronto does not need any partitioning information.

Amza et al. [13] introduces a database replication protocol that guarantees strong consistency
(one-copy serializability), typical of eager replication, and scaling properties typical of lazy
replication. A scheduler is interposed between database clients and the replicas. Transactions
are scheduled according to their access patterns. Multi-query transactions must declare what
tables they read or write before they start the execution.

Pacitti et al. [38] present a replication protocol that supports update everywhere and partial
replication. The consistency is guaranteed by annotating transactions with a chronological
timestamp value and ensuring FIFO order among messages send by a replica. The transaction
is allowed to execute on a database server only when the upper bound of the time needed
to multicast a message has exceeded. Further optimizations of the protocol allow concurrent

transactions execution at the replicas and reduction of delays.

25

Many works have considered alternative consistency criteria for database replication, such as
Snapshot Isolation [8], and its variations for replicated settings [34, 50]. Kemme et al. discuss in
[27] how to implement both serializability and snapshot isolation using group communication; all
protocols presented require modifications to the database engine. Ganymed [43], Postgres-R(SI)
[56], and Tashkent [18] are database replication protocols based on snapshot isolation.

Primary-backup replication can be configured as 1-safe or 2-safe [19, 24]. With a 1-safe
configuration, the primary commits the transaction locally and then sends the transaction log
to the backups. With a 2-safe configuration, the primary ships the transaction log to the backups
and an atomic commit is used to ensure that either all databases will commit the transaction
or none of them will. While 1-safe may result in lost transactions if the primary fails after
committing the transaction locally and before sending the transaction log to the backups [24],
2-safe prevents the primary from committing a transaction before it is safely received at the
backups [44] or the primary reliably detects the failure of the backups. Comparatively, Pronto
prevents lost transactions and allows incorrect failure suspicions.

Disaster recovery in a system consisting of a group of primary sites executing distributed
transactions is discussed in [21]. Backup sites duplicate the database stored in the primary sites.
Each primary site sends its transaction log to its corresponding backup site (or sites, if more
than one backup exists). For performance reasons, the algorithm used is 1-safe. Even though
update transactions are required to execute at primary sites, overall system performance can
be improved by executing read-only queries at backup sites [45]. The authors have concluded
that although a 1-safe mechanism reduces processing and communication significantly, a 2-safe
approach may be preferable if transactions cannot be lost or if communication and processing
are fast and lock contention is not serious [44].

Lazy replication usually leads to weak consistency models [46, 30] and has to deal with is-
sues not related to Pronto replication model, such as data freshness, i.e., how often the primary
should propagate updates to the backups and how often the backups should process these up-
dates [39]. For example, in [58] a real-time primary-backup replication scheme which enforces
temporal consistency among replicated servers is considered. Although the work does not ad-
dress databases explicitly, one could possibly apply the ideas in the context of databases. To
detect failures, the primary and the backups permanently exchange ping messages. After the
detection of a failure, the backup simply starts a backup version of the application and uploads
the current state information. The authors have found that “in general, the total detection and

recovery time is dominated by the detection time.”

26

Database replication has also been implemented using epidemic techniques. The idea is that
updates pass through the system like an infectious disease, from site to site [17]. Although the
approach is particularly suited for weak consistency [47], some epidemic protocols have been
augmented to ensure serializability [3]. Ensuring serializability with lazy propagation has also
been achieved by restricting the placement of replicas [10, 16] and building global replication
graphs [11].

Commercial products (e.g., [37, 57]) have traditionally favored failover based on storage
systems that are shared among the cluster nodes (e.g., a disk array), whereas Pronto does not
assume a shared storage system among the replicas. Besides, lazy replication has been provided
by virtually every major commercial database, usually targeting at on-line analytical processing

[52].

6 Conclusion

This paper presents Pronto, a protocol that allows clients to access an ensemble of databases
as if it were a single database. Clients access the ensemble through a standard interface, such
as JDBC. The benefit of using an ensemble instead of a single database is that the ensemble
can provide uninterrupted service in the presence of database failures. This capability pro-
vides a highly-available transaction-processing system, and allows enterprise applications to be
continuously available.

Pronto relies on practical assumptions: clients access databases through standard interfaces,
databases from different vendors can be part of the ensemble (the only requirement is to support
the standard interfaces), and the correctness of the system does not need perfect failure detection.
Performance evaluation conducted with a prototype in an environment composed of off-the-shelf
databases has shown that Pronto can synchronize the database ensemble with a reasonable

performance overhead.

Acknowledgments

The authors would like to thank the anonymous reviewers for their comments on this work.

27

References

1]

[6]

[10]

A. El Abbadi and S. Toueg. Maintaining availability in partitioned replicated databases.
ACM Transactions on Database Systems, 14(2):264-290, 1989.

D. Agrawal and A. El Abbadi. The tree quorum protocol: an efficient approach for managing
replicated data. 16th Int. Conference on Very Large Databases, pages 243254, 1990.

D. Agrawal, A. El Abbadi, and R. Steinke. Epidemic algorithms in replicated databases.
In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Tucson (USA), May 1997.

D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting atomic broadcast in repli-
cated databases. In Proceedings of EuroPar (EuroPar’97), Passau (Germany), September
1997.

M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-
recovery model. In Proceedings of the International Symposium on Distributed Computing

(DISC’98), pages 231-245, September 1998.

Y. Amir and C. Tutu. From total order to database replication. In International Conference

on Distributed Computing Systems (ICDCS), July 2002.

P.A. Barrett, A.M. Hilborne, P.G. Bond, D.T. Seaton, P. Verissimo, L. Rodriguez, and N.A.
Speirs. The Delta-4 extra performance architecture (XPA). In Proceedings of 20th Annual
International Symposium on Fault-Tolerant Computing (FTCS), 1990.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI
SQL isolation levels. SIGMOD Record (ACM Special Interest Group on Management of
Data), 24(2):1-10, June 1995.

P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, 1987.

Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz. Update propa-
gation protocols for replicated databates. In Proceedings of the 1999 ACM SIGMOD Inter-
national Conference on Management of Data: SIGMOD ’99, volume 28(2), pages 97-108,
1999.

28

[11]

[18]

Y. Breitbart and H. F. Korth. Replication and consistency: being lazy helps sometimes.
In Proceedings of the Sizteenth ACM SIG-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 173-184, New York (USA), 1997.

N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. Optimal primary-backup pro-
tocols. In Distributed Algorithms, 6th International Workshop, WDAG 92, volume 647 of
Lecture Notes in Computer Science, pages 362-378, Haifa, Israel, 2—4 November 1992.

W. Zwaenepoel C. Amza, A. Cox. Distributed versioning: Consistent replication for scaling
back-end databases of dynamic content web sites. In M. Endler and D. C. Schmidt, edi-
tors, Middleware 2003, ACM/IFIP/USENIX International Middleware Conference, Rio de
Janeiro, Brazil, June 16-20, 2003, Proceedings, volume 2672 of Lecture Notes in Computer
Science, pages 282-304. Springer, 2003.

E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database clustering
middleware. In Proceedings of USENIX Annual Technical Conference, Freenix track, 2004.

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225-267, March 1996.

P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. Deferred updates and data placement in
distributed databases. In Proc. of the 12th Int. Conference on Data Engineering, pages
469-476, February 1996.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic algorithms for replicated database maintenance. In Proc. of the 6th
ACM Symposium on Principles of Distributed Computing, pages 1-12, Vancouver (Canada),
August 1987.

S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: Uniting Durability with Transaction
Ordering for High-Performance Scalable Database Replication. In Proceedings of FuroSys,
2006.

L. Frank. Evaluation of the basic remote backup and replication methods for high avail-

ability databases. Software Practice and Experience, 29:1339-1353, 1999.

S. Frglund and R. Guerraoui. A pragmatic implementation of e-Transactions. In Proceedings

of the 21th IEEE Symposium on Reliable Distributed Systems (SRDS), October 2000.

29

[21]

H. Garcia-Molina, C. A. Polyzois, and Robert B. Hagmann. Two epoch algorithms for
disaster recovery. In 16th International Conference on Very Large Data Bases, pages 222—

230, Brisbane, Queensland, Australia, 13-16 August 1990. Morgan Kaufmann.

D. K. Gifford. Weighted voting for replicated data. In Proceedings of the Seventh Symposium
on Operating System Principles SOSP 7, pages 150-162, Pacific Grove (USA), December
1979.

J. N. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangers of replication and a solution.
In Proceedings of the 1996 ACM SIGMOD International Conference on Management of
Data, Montreal (Canada), June 1996.

J. N. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, 1993.

J. Holliday, D. Agrawal, and A. El Abbadi. The performance of database replication with
group multicast. In Proceedings of International Symposium on Fault Tolerant Computing

(FTCS29), pages 158-165. IEEE Computer Society, 1999.

R. Jiménez-Peris, M. Pati no Martinez, and G. Alonso. Non-intrusive, parallel recovery
of replicated data. In Symposium on Reliable Distributed Systems (SRDS), pages 150-159,
2002.

B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new way to implement
database replication. In Proceedings of 26th International Conference on Very Large Data

Bases (VLDB’2000), pages 134-143, Cairo, Egypt, September 2000.

B. Kemme and G. Alonso. A new approach ro developing and implementing eager database
replication protocols. ACM Transactions on Database Systems (TODS), 25(3), September
2000.

B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfiguration in replicated databases
based on group communication. In Proceedings of the Internationnal Conference on De-

pendable Systems and Networks (DSN2001), Géteborg, Sweden, June 2001.

N. Krishnakumar and A. J. Bernstein. Bounded ignorance in replicated systems. In Proc.
of the Tenth ACM SIGACT-SIGMOD-SOGART Symposium on Principles of Database
Systems, volume 51(2), pages 63-74, 1991.

30

31]

[32]

33]

[34]

[40]

[41]

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-

cations of the ACM, 21(7):558-565, July 1978.

L. Lamport. The part-time parliament. Technical Report 49, DEC Systems Research
Center, 1989. Also published in ACM Transactions on Computer Systems (TOCS), Vol.
16, No. 2, 1998.

L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133-169, 1998.

Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jiménez-Peris. Middleware based data
replication providing snapshot isolation. In Proceedings of the 2005 ACM SIGMOD Inter-

national Conference on Management of data, 2005.

M. Maekawa. A /N algorithm for mutual exclusion in decentralized systems. ACM Trans-
actions on Computer Systems, 3(2):145-159, May 1985.

M. Pati no Martinez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable replication in

database clusters. In Disctributed Computing (DISC), 2000.
Oracle Parallel Server for Windows NT clusters. Online White Paper.

E. Pacitti, C. Coulon, P. Valduriez, and M. Tamer Ozsu. Preventive replication in a database

cluster. Distributed and Parallel Databases, 18(3):223-251, nov 2005.

E. Pacitti and E. Simon. Update propagation strategies to improve freshness in lazy master
replicated databases. VLDB Journal: Very Large Data Bases, 8(3-4):305-318, February
2000.

M. Patino-Martinez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Middle-r: Consistent
Database Replication at the Middleware Level. ACM Transactions on Computer Systems,
2005.

F. Pedone, R. Guerraoui, and A. Schiper. Transaction reordering in replicated databases.
In Proc. of the 16th IEEE Symposium on Reliable Distributed Systems, Durham (USA),
October 1997.

F. Pedone and A. Schiper. Handling message semantics with generic broadcast protocols.

Distributed Computing, 15(2):97-107, 2002.

31

[43]

[44]

C. Plattner and G. Alonso. Ganymed: scalable replication for transactional web applica-
tions. In Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middle-
ware, 2004.

C. A. Polyzois and H. Garcia-Molina. Evaluation of remote backup algorithms for
transaction-processing systems. ACM Transactions on Database Systems, 19(3):423-449,
September 1994.

C. A. Polyzois and H. Garcia-Molina. Processing of read only queries at a remote backup.

In Symposium on Reliable Distributed Systems (SRDS ’94), pages 192-201, October 1994.

C. Pu and A. Leff. Replica control in distributed systems: an asynchronous approach.
SIGMOD Record (ACM Special Interest Group on Management of Data), 20(2):377-386,
June 1991.

M. Rabinovich, N. H. Gehani, and A. Kononov. Scalable update propagation in epidemic
replicated databases. In 5th International Conference on Extending Database Technology
(EDBT’96), volume 1057 of Lecture Notes in Computer Science, pages 207—222. Springer,
1996.

L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P Vicente. Strong replication in
the GLOBDATA middleware. In Workshop on Dependable Middleware-Based Systems, 2002.

L. Rodrigues and M. Raynal. Atomic broadcast in asynchronous crash-recovery distributed
systems. In 20th Int. Conference on Distributed Computing Systems (ICDCS ’00), pages
288-297, April 2000.

F. Pedone S. Elnikety and W. Zwaenepoel. Database replication using generalized snapshot

isolation. In 2/th IEEE Symposium on Reliable Distributed Systems (SRDS’2005), 2005.

F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A

tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.

D. Stacey. Replication: DB2, Oracle, or Sybase? SIGMOD Record, 24(5):95-101, December
1995.

R. H. Thomas. A majority consensus approach to concurrency control for multiple copy

databases. ACM Trans. on Database Systems, 4(2):180-209, June 1979.

32

[54]

[55]

[56]

S. White, M. Fisher, R. Cattell, G. Hamilton, and M. Hapner. JDBC API Tutorial and
Reference, 2nd edition. Addison-Wesley, Menlo Park, California, 1994.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding replication
in databases and distributed systems. In Proceedings of 20th International Conference on

Distributed Computing Systems (ICDCS’2000), pages 264-274, Taipei, Taiwan, April 2000.

S. Wu and B. Kemme. Postgres-R(SI):combining replica control with concurrency control
based on snapshot isolation. In Proceedings of the IEEE International Conference on Data

Engineering, 2005.
Informix extended parallel server 8.3. Online White-Paper.

H. Zou and F. Jahanian. A real-time primary-backup replication service. IEEE Transactions

on Parallel and Distributed Systems, 10(6):533-548, June 1999.

33

Appendix

For the following proofs, C'(&f) is the committed projection of the execution &, created by the
Pronto protocol during epoch e at database server process s;. C(Ef) is a partial order, that is,
C(&F) = (X5, <§), where X¢ is the set of committed transactions in £, and <§ is a set defining
a transitive binary relation between transactions in ¥f. We define C(£¢) = C(&f) U C(£5) such
that X¢ = X7 UXS and <= <} U <.

Lemma 1 For all epochs e > 1 and every two servers s; and sj that execute epoch e to comple-

tion, C(&F) = C(&5).

PROOF (SKETCH): We show that database servers s; and s; commit the same transactions (i.e.,
¥§ = Xf) in the same order (i.e., <f=<§). Let s, be the primary in epoch e.

To prove that Xf = X, assume s; commits transaction ¢ in epoch e. Therefore, ¢ passed
the validation test, and so, s; delivered message (sp(), e, —t, sqlSeq(t)) before delivering any
message of the type (e, “NEW EPOCH”). From the agreement and total order properties of the
broadcast primitive, s; also delivers (sp), e, —,t, sqlSeq(t)) before delivering any message of
the type (e, “NEW EPOCH”). Thus, ¢ passes the validation test at s; and is committed by s;.

We now show that <f=<%. Assume ¢, precedes t; at s;. We prove that the same holds at s;.
(Notice that from the definition of serializability [9], one transaction can only precede another

if they execute conflicting operations.) There are three cases to be considered:

e Case 1. s; and s;j are backups. Then it follows directly from the total order property of
the broadcast primitive and the fact that transactions are executed sequentially according

to the delivery order that s; and s; will commit ¢, and t; in the same order.

o Case 2. s; is the primary (i.e., s; = s,()) and s; is a backup. Since s; executes transactions
using a 2PL scheduler, if ¢, precedes tp, then t, commits before t; at s;. From the algorithm,
t, is delivered before ;. By total order of the broadcast primitive and the fact that backups
commit transactions in the same order as they are delivered, s; delivers and commits ¢,

before t;,. Thus, t, precedes t; at s;.

o Case 3. s; is a backup and s; is the primary. Since t, precedes t;, at s;, (a) t, must have
been delivered before t;, at s; (from the way transactions are executed at the backups) and
(b) both transactions execute conflicting operations (from the definition of serializability).

From (a), it must be that t, is delivered before t;, at s;. Thus, ¢, was broadcast by s;. Since

34

both transactions execute conflicting operations (from (b)) and s; uses a 2PL scheduler,
it follows from the fact that ¢, cannot reach the committing state until ¢, commits and

releases all its locks. Therefore, ¢, precedes t; at s;. O

Lemma 2 For each epoch e > 1, if conflicting transactions t, and tp are committed by server

s; in e, then their execution has been serialized in e.

PROOF (SKETCH): Since both ¢, and ¢, commit in e, from the validation test, they were both

executed at s the primary in epoch e. Since the primary uses a local 2PL scheduler, it

p(e)s
follows that t, and t; have been serialized in e. O

Property 1 (RDB-1) For any execution £ of the Pronto protocol, there exists a serial execu-

tion Es involving the committed transactions in &, such that C(E) is equivalent to C(E;).

PROOF (SKETCH): By Lemma 1, for all e > 1 and every two servers s; and s; that execute e
to completion, C'(&F) = C (5’;) From Lemma 2, we have that for every execution & produced
by s; at epoch e, there is some sequential execution 5 such that C(&f) is equivalent to C'(EY).
We claim that U.—1C(Ef) is equivalent to C'(&s). The proof follows from the fact that for all
e > 1, the Pronto protocol ensures that executions £¢ and £¢7! are executed sequentially. That
is, every transaction that executes in epoch e + 1 starts after all transactions that commit in
epoch e have been committed. We conclude that for any execution &, there exists an execution

&s, such that C(€) is equivalent to C(&;). O

Property 2 (RDB-2) If a client ¢ executes submit(j) and does not crash, then ¢ eventually

executes response(result).

PROOF (SKETCH): We show that client ¢ eventually contacts a primary that executes and
commits a transaction t, generated by j,. The argument is that, firstly, no client blocks forever
in the wait statements at lines 10 and 18. In both cases, if the primary crashes, the client
suspects it, and tries to execute the job in another server. If the primary does not crash, it
will send a response to the client: in the wait statement at line 10, the client has requested a
begin(—) operation, and a database is always able to execute it; in the wait statement at line
18, if the request cannot be processed by the primary (e.g., the transaction is deadlocked), the
primary aborts the transaction and replies to the client.

Thus, a client could not execute job j if (a) it cannot find the primary, or (b) it finds

the primary and starts executing the job in the primary but before terminating the job, the

35

epoch changes and another server becomes primary (i.e., the transaction generated by the job is
aborted due to an epoch change), or (c¢) the primary does not change but keeps aborting valid
transactions generated by j,. Cases (a) and (b) never happen because there is a time when some
server s, that does not crash is not suspected by any other process to have crashed. s, eventually
becomes primary and remains primary forever. So, the client will eventually contact s, start a
transaction on s,, and never suspect s,. Finally, alternative (c) contradicts database property
DB-2: since s, does not crash, ¢ does not suspect it and keeps sending transactions generated
by executions of j,. So, eventually, one transaction terminates and j, is successfully executed.
We conclude that ¢ eventually contacts a primary that executes and commits a transaction

generated by j,. O

Biographies

Fernando Pedone received his MS degree in computer science from Universidade Federal do Rio
Grande do Sul (UFRGS), Brazil, in 1995, and his Ph.D. degree in computer science from the
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, in 1999. He worked as a re-
searcher at the Hewlett-Packard Laboratories in Palo Alto, California, and as a senior researcher
at EPFL. He is currently an Associate Professor at the Universita della Svizzera italiana (USI),
Switzerland. His professional interests include the theory and practice of distributed systems

and distributed data management systems.

Svend Frglund received his MS degree in computer science from Arhus University in Denmark
in 1990, and his Ph.D. degree in computer science from the University of Illinois at Urbana-
Champaign in 1994. He worked as a researcher, and as a senior researcher, at the Hewlett-
Packard Laboratories in Palo Alto, California, for ten years, and currently works as a senior
software architect at Gatehouse A/S in Denmark. His professional interests include object-

oriented programming, distributed systems, and software architecture.

36

