Analyzing the Performance of a Cluster-Based
Architecture for Immersive Visualization
Systems

P. Morillo?, A. Bierbaum®, P. Hartling®, M. Fernandez ?,
C. Cruz-Neira®

aInstituto de Robdtica. Universidad de Valencia
Poligono de la Coma, S/N
46980 Paterna (Valencia) - Spain
Phone Number: +34-963543673
Fax Number: +34-963543550
Contact Address: pedro.morillo@Quuv.es

b Infiscape
2901 South Loop Drive
50010 Ames (Iowa) - USA
Phone Number: +1-5152963787
Fax Number: +1-5152969910
Contact Address: aronb@infiscape.com

CLITE. University of Louisiana at Lafayette
537 Cajundome Boulevard
70506 Lafayette (Louisiana) - USA
Phone Number: +1-3377355483
Fax Number: +1-8377351346

Contact Address: carolina@lite3d.com

Abstract

Cluster computing has become an essential issue for designing immersive visual-
ization systems. This paradigm employs scalable clusters of commodity computers
with much lower costs than would be possible with the high-end, shared memory
computers that have been traditionally used for virtual reality purposes. This change
in the design of virtual reality systems has caused some development environments
oriented towards shared memory computing to require modifications to their in-
ternal architectures in order to support cluster computing. This is the case of VR
Juggler, which is considered one of the most important virtual reality application
development frameworks based on open source code.

This paper not only describes in detail the mechanisms based on cluster comput-
ing included in the internal design of VR Juggler, but also proposes a new global
performance evaluation methodology. The goal of this methodology is to test the

Preprint submitted to Elsevier Science 10 October 2007

graphical performance of immersive visualization systems based on clusters of com-
puters in terms of both network latency and number of nodes in the cluster. In this
sense, a performance evaluation of VR Juggler, both in an overall and a modular
approach, is presented. The obtained results show that VR Juggler can be consid-
ered as an efficient tool to support immersive visualization systems on a cluster of
computers.

Key words: Cluster computing, Performance Evaluation, Immersive Visualization,
Distributed Systems

1 Introduction

Immersive visualization environments are virtual reality (VR) systems where
users can view, navigate and /or modify three dimensional models with a first-
person perspective. The type of immersion achieved in these graphical systems
let users behave in the 3D virtual scene in the same way they would behave in
a real environment. Immersive visualization (IV) systems are currently used in
different applications such as scientific data visualization (metabolic networks
[13], fluid dynamics [40], information flows [25]), e-learning [17], collaborative
design [15,27] or computer games [24].

Traditionally, IV systems have been designed on dedicated, high-end, shared
memory computers to generate interactive virtual environments. These sys-
tems typically handle multiple graphics outputs (monitors, projectors, flat
panels,; etc) at the same time, and this type of multi-screen system must
not be confused with distributed virtual environment (DVE) systems, where
many users remotely connected from different computers (typically connected
through the Internet) share the same 3D virtual scene [36]. Depending on how
the set of screens is organized, a wide variety of IV devices offer different sense
of presence, presence and interaction capabilities in the 3D virtual environ-
ment. Examples of IV devices are CAVEs [12], VR workbenches, flat-screen
walls, curved-screen theaters and concave-screen domes [41]. IV systems usu-
ally require one or two video outputs for each projection surface, and they often
use many input devices simultaneously. In recent years, the almost exclusive
use of high-end computers for these purposes has shifted to commodity hard-
ware, since it has become a low-cost alternative [2,23,37]. Continuous, rapid
improvements in commodity hardware have allowed designers of immersive
visualization systems to employ high-quality graphics hardware, high-speed
processors, and significant amounts of memory with much lower costs than

* Supported by the Spanish MEC under grants CSD2006-00046, TIN2006-15516-
C04-04 and PR2006-0526

would be possible with high-end, shared memory computers. However, in or-
der to handle multi-screen IV systems using a set of commodity computers
it is necessary to add a middleware layer to the system. This software layer,
included within the software suite for the development and execution of IV
applications, must be in charge of mimicking the behavior of a single, shared
memory computer and showing the system to the application developer as a
single unit. This transparency of the VR system can be accomplished through
the use of a tightly synchronized cluster.

Figure 1 shows the schematic diagram of a typical IV system based on a clus-
ter of commodity computers. These systems are also called graphics clusters
[23,33]. In this case, the system is composed of three computers (connected
through a Fast Ethernet switch) where each of them contributes to compose
a section of the final 3D virtual scene. This figure shows how outputs of the
three graphics cards are configured to be horizontally concatenated providing a
side-by-side display. Since each single computer of the cluster has a maximum
graphics resolution (for instance 1024x768 pixels), they only draw a section
of the scene and their graphics outputs are synchronized in order to recre-
ate a virtual monitor with an improved resolution. This feature is also shown
in Figure 1 where the high-definition representation of a Romanic Temple is
achieved in a 3072x768 seamless virtual monitor by means of three computers
executing ClusterJuggler. Since most of the development tools of IV systems
are multi-platform, the cluster nodes can be equipped with different operat-
ing systems, or they can even be designed for different hardware architectures.
These type of systems are called heterogeneous clusters [7,32,37].

Although graphics clusters seem a typical example of tightly synchronized
clusters, these systems are not always composed of a set of computers in-
terconnected by a high-performance switched network (Gigabit Ethernet, In-
finiband, Myrinet, etc [6]). Not all the computers of the cluster are directly
connected to the inputs of the visualization device in many configurations of
IV systems. The reason for this design is because many 3D virtual environ-
ments contain physical models representing exactly the behavior of complex
elements of the scene (traffic models for driving simulators, fluid-mechanic
models for the simulation of deformable objects and surfaces, pendulum mod-
els for the simulation of cranes and sloshing, etc). Since these models generate
a high computational workload, their computation is isolated in some nodes
of the cluster. Depending on the nature of the simulated process (fast-paced,
slow-paced, etc), these nodes send the output of the physical models to the
rest of the nodes of the cluster either in each frame or upon request [28].
In both cases, the bandwidth required by the application (generated by the
update of few attributes of the elements in the simulation) is minimal. The
possibility of decoupling simulation and visualization allows running IV ap-
plications on graphics clusters where their nodes are connected remotely. In
these cases, the middleware must not perform poorly with the increment of

Fig. 1. Schematic diagram of an IV system based on an heterogeneous cluster

the communication network delay.

Several techniques based on cluster computing have been used to parallelize
complex computations in high-performance computing (HPC) for many years
[7,37]. Despite the fact that clusters offer an alternative to expensive super-
computers and can be used to drive multi-screen visualization systems, the
existing parallelization techniques used for general purpose clusters (cluster-
ing techniques [23,32]) cannot be applied directly to graphics clusters. In this
sense, graphics clusters add some constraints to virtual reality software. One
of the most important constraints is the performance drop caused by the node
synchronization mechanism. Since in IV systems the throughput is considered
as the effective number of frames per second (denoted as FPS) drawn [37],
the time spent for synchronization purposes decreases the system throughput
as the number of nodes in the cluster grows. While these constraints are all
solved by the hardware of shared memory computers, they must be solved by
the software level in a graphics cluster [4]. This is the case of VR Juggler [3,5].
VR Juggler is a well-known open source suite of software tools that provides
a multi-platform framework for the development and execution of VR appli-
cations [13,25,27]. Following other approaches [2,26,23,29,33,34,37], the kernel
architecture of VR Juggler was modified in order to add clustering support [4]

to the features of the development environment.

Although some VR products based on cluster computing are currently avail-
able, to our knowledge no detailed proposal has yet been made about perfor-
mance evaluation in immersive visualization systems. In this sense, existing
contributions either lack of performance evaluation or show some results very
far of the basic performance standards [37].

In this paper, we first describe the most important subsystem (for cluster com-
puting) of VR Juggler’s software architecture. This subsystem, called Cluster-
Juggler [4], enables the use of distributed and clustered computers for recre-
ating immersive virtual environments. The main goals of ClusterJuggler are
first, to adapt the cluster software to the particular hardware configuration
of the virtual reality systems; second, to provide application portability and
scalability from high-end shared memory systems to commodity clusters by
hiding the clustering techniques from developers; and third, to allow users
to customize their own software methods (based on cluster computing) being
used to best meet their specific needs. Next, we present a global performance
evaluation methodology for immersive visualization systems. Following basic
and well-known performance standards [18,32], our methodology proposes the
evaluation of system throughput with respect to both the network delay and
the number of nodes in the cluster. This evaluation is performed by means of
a reduced set of real IV applications that can be considered as graphics bench-
marks in our methodology. The benchmarks are used in order to emulate the
wide variety of levels of graphics and computational workloads generated by
immersive visualization applications.

The rest of the paper is organized as follows: Section 2 describes the most
important approaches to simulate multi-screen immersive visualization sys-
tems on a cluster of computers. Section 3 shows the modular architecture of
ClusterJuggler (based on layers) and how can be extended the features of
this platform oriented to support 3D real-time environments using a cluster of
computers. Next, Section 4 presents the performance evaluation methodology
designed for IV systems and Section 5 shows the performance results when
this methodology is executed on VR Juggler. Finally, Section 6 presents some
concluding remarks.

2 Motivation and Related Work

This section presents the current approaches used by cluster computing for
supporting immersive visualization systems and how the performance evalua-
tion has been conducted in order to evaluate them. Although several software
libraries generate immersive environments by utilizing clusters of commodity

computers, it is possible to establish a classification of IV systems depending
on how this issue is addressed: input data [2,16,34], remote shared memory
[26], scene graph change lists [33,34], or graphics primitives [23,29,37].

In order for users to become fully immersed in a virtual environment, they
must interact with it using one or more physical input devices such as a
position trackers, 3D stereo glasses or gloves (see Figure 1). Since the objective
is to provide the users with a sense of immersion, these devices obtain all
the input needed to determine the changes in the state of the application.
Solutions based on cluster computing use a software mechanism called input
data sharing in order to start a distinct complete copy of the application
on each node in the cluster. All input data are then synchronized across the
cluster at the beginning of each frame loop. Thus, the application state remains
consistent as long as it solely depends on input events. Despite the fact that
input data sharing does not require any changes in the application relative to
the memory management of computers based on shared memory architectures
(since the application still has access to the same input data and rendering
targets), mechanisms such as random number generation, consistent frame
deltas, and start barriers are not addressed [23,32,5]. Examples of multi-screen
immersive visualization systems based on cluster architectures are Net Juggler
2] and Syzygy [34]. While Net Juggler [2] uses message passing via the Message
Passing Interface (MPI) [16] in its implementation, frameworks such as VR
Juggler [5] and Syzygy [34] use the TCP/IP suite directly.

Remote shared memory approach offers another way to ensure that each node
has an identical snapshot of that state for rendering each frame. Implementa-
tions of remote shared memory often require that the application programmer
take special steps to use it. Special storage areas must be created, and in some
cases, access to the shared memory must be controlled so that there may be
multiple readers but only one writer. Different designs put more or less of the
burden on the application programmer for understanding and managing these
details. Implementations such as DIVERSE [26] are based on a shared mem-
ory architecture where a general inter-process communication programming
tool guarantees identical copies among the nodes of the cluster.

Since most graphics applications are based on the manipulation of scene graphs
[38], if one node keeps track of all changes made to the scene each frame,
that node can send the changes to each of the other nodes to be reapplied
to the local memory copy of the scene graph. Therefore, each node always
has the information it needs to render an accurate version of the scene. This
approach, called scene graph change lists, takes advantage of the fact that
visual consistency and coherency is the critical aspect of all graphics clusters.
OpenSG [33] and Syzygy [34] implement this method.

At the lowest level, all immersive applications generate a stream of graphics

commands that are delivered to the graphics hardware for rendering. This is
accomplished by making calls to a low level graphics application programming
interface (API) such as OpenGL. Software libraries such as Chromium [23] and
DGL [29] are designed to intercept the graphics primitives for the rendering
of each frame and to distribute them over a network in order to divide the
rendering task among multiple nodes. This approach tends to require more
bandwidth than any of the previously mentioned methods [37].

Despite all of these software libraries offering a wide range of solutions for
developing immersive visualization applications, most of the contributions on
this topic lack a rigorous study of the performance of the proposed approaches
[18]. In some papers, authors just describe the architecture of the presented
approach for IV systems based on cluster computing detailing a list of fea-
tures of the presented product [26,29,33,34]. In these contributions any type
of performance evaluation is neither considered nor presented. In other cases,
authors show some graphical information about results of the execution of a
VR application using the presented product [2,23]. In particular, the perfor-
mance evaluation of Net Juggler is obtained using an interactive simulation
(called NJFluid) based on a fluid flow model [2]. This simulation is an ex-
ample of intensive pre-rendering computation and allows authors to show the
performance drop of the IV system as the number of nodes in the cluster
grows. A different type of immersive visualization application is shown in the
performance evaluation of Chromium [23]. In this case, a volume rendering
application uses 3D textures to store volumes and renders them with view-
aligned slicing polygons, composited from back to front. Despite the fact that
this framework for the development and execution of IV systems is tested
using this highly graphics intensive application, the performance evaluation
of Chromium shown in [23] is reduced to some execution snapshots of this
testbed. Finally, a survey of performance evaluation results obtained from
some software platforms for interactive cluster-based multi-screen rendering
is presented in [37]. These performance evaluation results show the system
throughput (in FPS) when a set of simple and well-known 3D models (Skele-
ton, Stanford Bunny and Dragon) are rendered on a two-by-two tiled display
wall using a stand-alone computer and a graphics cluster composed of four
nodes. Although these experiments show some network requirements of ba-
sic IV applications (in terms of average number of kilobytes sent per frame),
obtained results are not correlated with any parameter of the cluster system
such us number of nodes or network latency.

3 A new Cluster-Based Architecture for VR Juggler

Since the techniques presented in Section 2 have their own unique benefits and
drawbacks, we present a modular and extensible architecture, called Cluster-

Juggler, that combines the advantages of all of them. ClusterJuggler’s design
contributes several key features not found in other architectures based on
cluster computing for supporting IV systems: a layered architecture, run-time
reconfiguration, and an extensible, component-based system.

The architecture of ClusterJuggler separates the aspects related to cluster
computing for virtual reality into several layers. Each layer builds on the
functionality of those below to provide additional features. This modular de-
sign allows us to implement and test each layer independently, and changes
made to one can happen transparently to the layers above. ClusterJuggler
uses the same advanced configuration scheme as VR Juggler [3,5]. In this con-
figuration scheme, information arrives in the form of configuration elements.
Basically, these elements are XML files and they are the fundamental units
of configuration in VR Juggler [20]. Handlers of configuration elements are
registered with an entity known as the Configuration Manager, and newly re-
ceived configuration elements are delivered to the appropriate handlers. New
configuration elements may arrive at any time during the lifetime of an appli-
cation, thus allowing run-time reconfiguration of the software. Since Cluster
Juggler is based on the VR Juggler architecture, it takes advantage of this fea-
ture [5]. ClusterJuggler allows nodes, displays, and input devices to be added,
removed, or reconfigured as needed at run time. We have followed the tra-
ditional component-based approach for developing this architecture [39]. The
code that uses the components is then responsible for loading implementations
at run time based on some specification. Each component, called a plug-in,
is a standalone module loaded at run time based on the user-specified clus-
ter configuration. The plug-ins extend the ClusterJuggler core with specialized
functionality based on cluster computing. Users can choose any of the plug-ins
needed for their applications and their specific cluster configuration.

3.1 A Software Architecture Based on Layers

As Figure 2-a and Figure 2-b show, the architecture of ClusterJuggler has been
designed as a set of components that are arranged into layers. At the lowest
level, the Cluster Network provides a messaging interface for communicating
with the entire cluster. The Cluster Plug-ins are built on top of the Cluster
Network and provide the application developer with a set of components to
construct the best solution for their applications needs. The top layer is the
Cluster Manager, which acts as an interface to ClusterJuggler. Higher level
code utilizes the Cluster Manager to control ClusterJuggler.

Cluster Manager ClusterManager | , n..-:} Cluster Plug-in
Cluster Plug-ins
Remote Applicati 1
pplication
Input P Start Barrier, Swap Lock 1
| Data (TCP)
Manager Manager Cluster Hetwork Ciater oda
Cluster Hetwork 1 0.0

Fig. 2. The architecture of ClusterJuggler: (a) A layered view, b) a simplified UML
class diagram

3.1.1 Cluster Manager Layer

This is the main layer in ClusterJuggler. This layer is responsible for han-
dling the cluster configuration and for synchronizing the calls to each plug-in.
Once all nodes of the cluster load the application code into memory, an entry
point function is called to create an instance for each plug-in located in the
Cluster Manager. At this time, each plug-in (selected by the user) becomes
a mechanism which allows and defines the communication among the nodes
of the cluster. In this sense, a cluster can incorporate a master/slave or a
P2P network protocol depending upon the selected plug-ins. Since plug-ins
can generate data inconsistency problems in the cluster, the Cluster Manager
is responsible for making sure that all plug-ins have their run-time informa-
tion dependencies satisfied during the simulation. In order to accommodate
all possible needs, each plug-in has a well-defined interface and a contract
that specifies the invocation timing. In order to guarantee a full compatibil-
ity between VR Juggler [5] and ClusterJuggler a micro-kernel architecture is
adopted. In this case, at each step of the “kernel loop” the state of inputs and
the graphics contexts are guaranteed by the Cluster Manager. The Cluster
Manager can in turn invoke the methods of the plug-ins at well-defined times
during the kernel loop.

3.1.2 Cluster Network Layer

This layer maintains an abstract representation of the system of interconnected
nodes that comprise the cluster. This abstraction provides ClusterJuggler with
a messaging interface for communicating with the entire cluster. Internally, it
maintains a list of the nodes in the cluster along with the current network
connections used to communicate with them.

3.1.3 Cluster Plug-ins

Cluster Plug-ins represent the point of extension for ClusterJuggler. This as-
pect of the design allows the addition of new plug-ins to address cluster-specific
application issues not handled by the standard set of Cluster Plug-ins. By de-
fault ClusterJuggler incorporates the following plug-ins: the Remote Input
Manager (RIM) plug-in, Application Data Manager (ADM), the Swap Lock
(SL) plug-ins, and the Start Barrier (SB) plug-in.

RIM plug-in is responsible for distributing synchronized device data across
the cluster. In order to ensure that all nodes in the cluster have a consistent
snapshot of all input data, (regardless of the location of the physical hardware)
RIM emulates each node of the cluster as a “device server”. The device data is
shared over the network using the platform-independent protocol provided by
the Cluster Network layer. Users of the device server can take advantage of this
idea and they can use input devices that might not otherwise be usable due
to hardware or software limitations. This device location transparency allows
not only the construction of a cluster from any combination of the platforms
supported by VR Juggler [5], but also to balance the workload generated by
a large number of VR devices by connecting them to separate computers.

ADM plug-in provides application developers with a method for sharing ar-
bitrary application states across the cluster. This capability extends the fun-
damental input data sharing and demonstrates that the ClusterJuggler de-
sign allows multiple techniques based con cluster computing to be utilized
in a single application. Sharing of application-specific data structures works
by providing the application developers with a base class that they extend
with their own type. The base class defines an interface for serializing and
de-serializing the data structure. Application developers must implement this
interface with serialization code that is specific to their data type. In order to
ensure data consistency across the cluster, ADM not only maintains a different
GUID (128-bit Globally Unique Identifiers) for each application specific data
type [19], but it does not allow distinct nodes to have different copies of the
same data. All the serialization function calls are performed in the same node
of the cluster (which is configured by the user) called the “host node”.

SL plug-in is used with the RIM Plug-in to ensure that all the applications
running on the cluster nodes begin their execution on the same frame. SL plug-
in creates a software barrier by sending signals between the cluster nodes. The
plug-in uses a master/slave paradigm where each slave sends a signal to the
master immediately before swapping the frame buffers. The master is identi-
fied through a configuration specific to the plug-in, and the remaining nodes
are then identified as slaves. All the slaves then suspend their execution, wait-
ing for the master to send a response signal. The master sends its response
immediately before invoking the frame buffer swap operation. Upon receiv-

10

ing the response from the master, the slaves perform the frame buffer swap.
Depending on how the interconnection nodes are configured, ClusterJuggler
incorporates three different versions of SL plug-in: TCP swap lock, the parallel
port swap lock, and the hybrid TCP /serial port swap lock [1].

Since each node in the cluster runs a distinct and complete copy of the VR
Juggler application, ClusterJuggler needs a mechanism to guarantee that all
nodes begin their execution on the same frame. This feature is provided by
the SB plug-in using a master /slave paradigm similar to the SL plug-in. One
node in the cluster is identified to be the master with a configuration specific
to this plug-in type. The remaining nodes are therefore slaves. When each
slave is ready to begin its frame loop, it sends a message to the master and
waits for a response. When the master has received the messages from alle
the slaves, it sends the responses to them. At that point, all nodes may begin
their frame loop, thereby guaranteeing the goal of the SB plug-in.

4 Performance Evaluation of IV Systems

In computer graphics applications, the images are generated in real-time as
they are being displayed to the user [9]. This is made possible due to the per-
sistence of vision effect where images projected on the eye persist for about
40-50 ms. A sequence of still images depicting progressive stages of motion,
when projected on the human eye at a rate closed to 30 frames per second
(FPS), produces the perception of a continuous moving image. FPS is consid-
ered as the throughput in IV systems [37] and as this output value decreases
below 30 units a smooth and steady 3D simulation becomes more jerky and
jumpy. Basically, the generation of each new frame consists of two stages: a
first stage where both the location of the geometries and the camera within
the 3D virtual scene are updated, and a second stage where the rendered im-
age is taken and placed into a display device [10]. While all the computation
workload performed in the first stage is executed by the main processor in
the system, most or all computations performed in the second stage are done
by the graphics processor using its onboard memory. Since both stages can
become a bottleneck depending on the requirements of the applications and,
therefore, limit the performance, the throughput of a graphics application
depends on the performance and capabilities of both the main and graphics
processors. When bottlenecks arise the throughput decreases significatively
below 30 FPS (even for an IV composed of a single node) and the system is
said to be saturated.

Taking into account these considerations, an IV system based on cluster com-
puting should be considered as an efficient tool when as the number of nodes
increases the throughput must not go down under 30 FPS, even if the nodes

11

are connected remotely [22,28]. Additionally, if the IV system enters the satu-
ration point, the performance drop in the system throughput should be as tiny
as possible in order to restrain the jerky effects of obtained frames. Therefore,
a performance evaluation should be conducted in order to ensure the effi-
ciency of a given IV system. Unlike other types of systems based on clusters
of interconnected computers [18], the evaluation methodology for immersive
visualization systems is not standardized.

In this section, we propose a new performance evaluation methodology for
immersive visualization systems. This methodology consists of investigating
the performance drop in the system throughput by analyzing the effects of
varying both network latency and the number of nodes in the cluster. More-
over, this methodology includes the use of a benchmark specification in order
to implement VR testbeds ranging from highly graphics intensive to highly
computational intensive applications.

4.1 A New Performance Fvaluation Methodology for IV Systems

In order to show the performance of ClusterJuggler, we present a candidate for
a standard performance evaluation methodology for immersive visualization
systems. Without trying to establish a full performance evaluation model, and
since to our knowledge no relevant proposal have been done in this topic, this
methodology evaluates the throughput of IV systems as a particular type of
distributed system. In this case, the distributed system is composed of different
computers that can be operated simultaneously to generate a seamless 3D
virtual scene.

The proposed evaluation methodology consists in measuring the obtained
throughput by the IV systems (in terms of FPS) as both the number of
nodes (maximum graphics resolution) and the network delay increase. Un-
like other proposals [2,23,37], these correlation studies are obtained by means
of a set of applications that try to cover the spectrum of graphics-intensive
and computational-intensive workloads. The aim of this methodology consists
in analyzing the behavior of a given IV system in function of the two workload
parameters which limits the maximum throughput of the system. The advan-
tage of this methodology is that it allows us to collect actual information about
the performance of a given IV system in order to either compare the global
performance of different IV systems, or select the most proper cluster com-
puting environment (such as VRJuggler, Syzygy, Chromium, etc) to execute
a given IV application on a system. Since this selection is based on a workload
criterion, the methodology includes a benchmark specification which addresses
the issue of evaluating the throughput in IV systems. The benchmark specifi-
cation recommends to obtain the correlation studies by means of four different

12

Table 1
Description of the benchmark specification proposed as a part of the methodology

Computational Workload Graphics Workload

APP1 LOW LOW
APP?2 LOW HIGH
APPS3 HIGH LOW
APP/ HIGH HIGH

applications according to different levels of generated workload. This specifica-
tion is composed of four types of applications (denoted from APP1 to APP4)
that recommend to execute the different combination of graphics-intensive and
computational-intensive workloads. The Table 1 shows the proposed relation-
ship between the computational and graphics workload for the four type of
applications included within the methodology.

Because of the heterogeneity involving the IV systems based on cluster com-
puting (described in Section 1), the proposed methodology does not focus
on a certain type of platform or architecture in order to be considered as a
good candidate for a standard performance evaluation methodology for IV
systems. Moreover, the included benchmark specification tries to be clear,
self-contained, and as short as possible [35], avoiding any particular imple-
mentation or programming technique.

5 The Performance Evaluation in ClusterJuggler

In order to show the performance of ClusterJuggler and the flexibility of the
proposed evaluation methodology in cluster systems, we present the evaluation
results following two different approaches. Although both approaches follow
the proposed evaluation methodology for IV systems, each of them focuses on
different aspects related to the level of abstraction at which the performance
evaluation for this type of system can be considered. In this sense, an overall
approach shows how the performance drop appears (in terms of FPS) when
some parameters in the cluster system are varied. On the other hand, and
since this performance drop is caused by the synchronization mechanisms of
cluster nodes, we have divided the kernel of ClusterJuggler attending to the
type of performed operations. Once the code division has been accomplished,
a module approach shows the way in which the synchronization time measured
by the overall approach is consumed by the different kernel operations. It is

13

worth mention that while an overall approach can be applied to any type of
IV system regardless of its software architecture, a module approach requires
not only to monitor the graphics and network operations executed by the user
application, but also the operations performed by the kernel of the IV system.
Since not all the frameworks for the development and execution of IV systems
are released as open source software (as VR Juggler is), if the access to the
source code of their kernel software is not possible [23,26,29], then it is disabled
to perform a performance evaluation following a module approach.

Since the goal of performance studies in this kind of distributed systems is
to predict the effects that the cluster parameters have upon the rendering
time of immersive visualization applications, we have selected a group of rep-
resentative immersive visualization applications as the graphics benchmark.
This set of application tries to cover the spectrum of graphics-intensive and
computational-intensive workloads of IV applications and follows the recom-
mendation of our benchmark specification (proposed as a part of our method-
ology) described in Table 1. Although the graphics benchmarks could be im-
plemented from the scratch, most of the frameworks for the development and
execution of IV systems include several demonstration application that could
fit the proposed benchmark specification. Concretely, in the case of VR Jug-
gler, we have chosen four applications based on the proposed criteria: “cubes”,
“agua”, “hindu” and “mpapp”. These actual applications follow the recom-
mendations described in APP1, APP2, APP3 and APP4, respectively.

“Cubes” is an extremely simple application where 1000 cubes are drawn float-
ing in the space. This simplicity allows the “cubes” application to generate low
levels of workload in terms of both graphics and computation requirements.
The next application, “agua”, takes advantage of special hardware techniques,
such as vertex shading [14], in order to recreate a real-time travel around a
complete deep sea reef. Despite the fact that the computational workload gen-
erated by “agua” is very low, the huge use of the graphical card capabilities
allows this application to be considered as highly graphics-intensive. The third
application, “hindu”, is a virtual walkthrough which allows users to explore
the Radharaman Temple (Vrindavan, India). This application uses a set of an-
imated virtual characters in order to perform a traditional religious ceremony
inside of the temple. “Hindu” is not only graphically intensive as it contains
large amounts of polygons and textures (for both temple and characters), but
also it is computationally intensive due to the time it takes to generate the
movements and shadows for all the characters in each frame of the simulation.
Finally, on the opposite extreme of the application spectrum, “mpapp” per-
forms a real-time simulation of a square piece of cloth which has been modelled
as a simple mesh surface. Since this mesh is generated by means of a complex
3D polynomial equation, “mpapp” requires a minimal graphical workload but
it is highly computational intensive. Figure 3 depicts different snapshots of
the four proposed VR applications taken when they are executed in a stand-

14

alone configuration on VR Juggler. All the applications use OpenGL (with
any type of graphics optimization or advanced tool to speed-up rendering) as
an average programmer would use it.

&) ®) S - ©)

Fig. 3. Snapshots obtained from VR Juggler for: (a) Cubes (b) Agua (c¢) Hindu and
d) Mpapp

Although an important issue when analyzing the performance of cluster sys-
tems is how network bandwith/latency and system throughput are related
[18,31,32], this concept is not taken into account when virtual reality cluster
systems are analyzed [26,29,33,34]. For this reason, we propose the perfor-
mance evaluation of immersive visualization systems based on cluster archi-
tectures as a study of the relationship between the system throughput and
both network latency and the number of nodes in the cluster.

5.1 Characterization Setup

VR Juggler includes a portable runtime library (called VPR) designed to pro-
vide a cross-platform, object-oriented abstraction layer to common operating
system services [3,5]. Among other features, VPR includes the ability to ac-
quire performance statistics in order to analyze the performance (in terms of
execution time) of the different parts of virtual reality applications developed
on VR Juggler. Basically, in a first step, this tool (called VPR_PROFILE)
allows programmers to add some special tags in the source code. Once this
monitorized code has been compiled and executed, VPR generates an output
report containing the average time taken to execute the C++ functions (in
milliseconds) where the tags were inserted.

Since VR Juggler is open source software, we have performed not only the
decomposition and monitorization of the VR applications included in the pro-
posed graphics benchmark, but also of the VR Juggler kernel. Following the
presented performance evaluation methodology, this double decomposition
and monitorization has been necessary to measure the impact of the varia-
tion of network latency and number of cluster nodes. The basic idea of this
monitorization consists in measuring not only the system throughput, but also
analyzing and isolating the delay generated by the synchronization mechanism
located in the kernel of the IV systems.

15

Figure 4 shows an example of this decomposition for “hindu” application. A
similar decomposition has been accomplished for the rest of the applications
contained in the proposed graphics benchmark. This figure shows how the
time that application needs to perform a frame cycle has been divided in two
different steps. These steps have been implemented in two different functions
called “Draw()” and “App()”. From the user’s point of view, Draw() func-
tion is used to do all the drawing of the 3D scene. In this case, the scene
of this VR application is composed of a temple (function RenderTemple()),
a set of characters (function RenderAvatars()) and their respective shadows
(function RenderShadows()). In App() function the application obtains the
position and status of VR devices such as position trackers, 3D stereo glasses
or gloves. These data are necessary to update the current user’s point of view,
prevent collisions and animate the characters located in the scene (function
PreFrame()). As it is described above, the data acquisition process is trans-
parent to the application developer and is performed by ClusterJuggler in the
kernel of VR Juggler (function KernelJuggler()). Moreover, this kernel sub-
system should synchronize the Draw() process in the next frame for all cluster
nodes. In order to detect how the variation of the parameters defined in the
proposed evaluation methodology affects to the delay generated by KernelJug-
gler() for these type of tasks, the kernel of VR Juggler has been broken down
into eleven monitorized subfunctions.

— KernelUpdateMNetwork()
— KernelPreFrameReal()
- KernelPreFrameYield()
— KernelPreDraw()
' = KernelDrawReal()
s ¢ — KernelDrawYield()
— Frame Period— Draw() + App() —» KernelUpdateTrackers()
—pp- KernelUpdateClusterManager()
¢ —pp- KernelUpdateProxies()
RenderTemple() KernelJuggler() —# KernelUpdateProjections()
v ——» UpdateFrameData()
RenderAvatars()
* PreFrame() - UpdateFromTrackers() =B AnimateAvatars()
DrawShadows()

Fig. 4. Example of decomposition performed in “hindu” application

In order to analyze in detail the parameters included in the proposed evalua-
tion methodology, we have taken advantage of a recent tool called Netem [21].
Netem (Network Emulator) is a multi-connection flow-level network emulator
(derived from NIST-Net [8]) that can be used to emulate bandlimited links
with fixed individual or total link capacity and/or transport latency. This
general-purpose tool is based on a kernel module extension of Linux and has
been used in order to study the effects of latency limitations on system per-
formance and user interaction [30]. By operating at the IP level, Netem can
emulate the critical end-to-end performance characteristics imposed by vari-

16

ous wide area network situations (e.g., congestion loss) or by various under-
lying subnetwork technologies (e.g., Ethernet, Fast Ethernet, cable modems).
Basically, Netem allows each node of the cluster to ensure a non-uniform
RTT (Round Trip Time) value for the transmitted TCP packets according to
the specifications of the subnetwork technology. Since the correlation between
RTT delay and the type of the physical network connection has been widely
described in the literature of cluster computing [7,8], Netem becomes an ex-
cellent tool for emulating communication link delay in our test-environment
hardware.

In all our experiments, the test-environment is composed by 8 Linux-PCs, each
running RedHat 8.0 with a NVIDIA GeForce3 Ti200 (128 MBytes) graphics
card, a 2GHz Intel Pentium IV Processor, 1 GByte of RAM, and 512 Kbytes of
cache memory. The machines are connected to a Cisco Catalyst 3750 Gigabit
Ethernet switch.

5.2 Performance Evaluation Results

This section presents the performance evaluation results of ClusterJuggler
based on the proposed evaluation methodology. The goal of this performance
evaluation is to identify and analyze the overhead introduced by cluster sys-
tems when virtual reality applications are executed in immersive visualization
environments. This section does not discuss a detailed comparison of Cluster-
Juggler with other Virtual Reality software based on cluster computing for
two reasons, mainly. Firstly, existing software packages differ in very dramatic
ways. As Section 2 describes, immersive visualization clusters can synchronize
on four different levels. The first level called “input data sharing” (at which
VR Juggler operates) shares all input data among the nodes of the cluster
and synchronizes them across the cluster at the beginning of each frame loop.
At the time of writing, no other software packages is totally based on this
approach (Syzygy [34] features a hybrid architecture based on “input data
sharing” and “scene graph change list”) to run immersive visualization ap-
plications on a cluster of commodity PCs. This total divergence of internal
architectures makes impossible a comparison in depth of ClusterJuggler with
other VR products based on cluster computing. Secondly, although [37] al-
ready seems to address this need, it compares many popular VR products
based on cluster computing (including OpenSG [33], Syzergy, Chromium [23]
and VR Juggler [3,5]) from the point of view of basic metrics for performance
evaluation. This paper not only concludes that VR Juggler produces the fastest
frame rates on all tests by keeping network traffic to a minimum, but also sug-
gests that a performance evaluation comparing in detail several VR products
from the application developer’s point of view cannot be obtained as a whole.

17

Table 2
Performance drop for a C6 system in ClusterJuggler

Stand-Alone Cluster (C6)

Cubes 120.01 fps 67.12 fps
Aqua 76.83 fps 43.41 fps
Hindu 19.79 fps 18.69 fps
Mpapp 24.51 fps 20.73 fps

Table 2 shows this common performance drop (in terms of system throughput
or FPS) when the same set of graphics benchmarks described in section 5.2 is
executed on both a single computer and a cluster system by using ClusterJug-
gler. In this case, the cluster system has a classical configuration (called C6)
composed of six nodes. This cluster configuration is usually associated with
the most representative immersive visualization system, called CAVE, where
users are closed into a six projection walls [3,20,23,24]. The results shown
in this table indicate a significant difference, in terms of system throughput,
when the same immersive visualization application is executed in different
configurations.

Unlike in other approaches, the performance decrease shown in Table 2 de-
pends on the type of application characteristics [2]. Therefore, the next sections
show the variation of system throughput when each application is considered.

5.2.1 An Qwerall Performance Fvaluation

The goal of our overall evaluation is to determine the influence of the most
common parameters for the design of IV system on the global performance of
ClusterJuggler. Since the system throughput in immersive systems is consid-
ered as the number of frames per second processed by the visualization system
[37], we have measured this parameter following our performance evaluation
methodology.

First of all, we have evaluated how the system performance varies for differ-
ent cluster configurations. The results of these variations are shown in Figure
5. The Y-axis of this figure shows FPS values for the simulations performed
with each system configuration. Each point in this plot represents the average
value of the FPS obtained in each node after 25 executions of the same graph-
ics benchmark. The standard deviation for any of the points shown in the plot
was not higher than 4 FPS in any case. Figure 5 shows the values of FPS
reached by ClusterJuggler depending on the number of nodes in the cluster.

18

This figure shows on the X-axis the number of nodes ranging from a C1 to a
C8 configuration. While C1 runs the applications on a classical VR Juggler
configuration composed of a single stand-alone node [5], ClusterJuggler exe-
cutes the considered benchmark applications by means of eight synchronized
computers in a C8 configuration. An example of C8 configurations are the
curved-screen theaters composed of eight different projection walls that have
become very popular in the real-time 3D simulators installed in many theme
parks. Following the same parameters described in Section 1 for Figure 1, a
C8 configuration achieves a 8192x768 seamless virtual monitor.

In this type of systems, the best performance (in terms of FPS) is achieved
when the cluster is composed of a single node (called C1 configuration). In
this case, the stand-alone computer does not have to spend time waiting for
the synchronization with the rest of the cluster nodes (the performance drop is
non-existent). Therefore, as more nodes are added to the cluster, the achieved
resolution (graphics quality) of the immersive visualization environment is
greater, but the overall FPS rate is lowered. This is the reason why the design
of these systems is used to be considered as a threshold between throughput
and graphics quality (in terms of achieved final resolution). Figure 5 shows
that, for all the considered benchmark applications, FPS is almost linearly
reduced as more nodes are added to the cluster. Moreover, the slope of the
plot decreases with the workload generated by the application. In this sense,
applications such as “hindu” or “mpapp” only have an average reduction of
nine and seven, FPS, respectively when they are ported from a stand-alone
system (C1) to a C8 configuration. The reason of this behavior is related to the
linear network overhead added as new nodes are joined to the cluster system.
This linear overhead is caused by the master/slave configuration of the SL
plug-in described in Section 3.1.

Figure 6 shows the performance evaluation results obtained by ClusterJuggler
when different values of RTT are considered in a C6 configuration. The first
value on the X-axis (0.13 ms.) corresponds to the case in which no delay was
added to the packets going out of the local Ethernet. This case shows the
effective (and minimum) RTT value obtained in this configuration composed
of six nodes and based on a Gigabit Ethernet backbone. In order to decrease
the network throughput of the system, the rest of values located on X-axis
correspond to the situations where Netem is used. Although the main goal of
our study was to determine the performance of ClusterJuggler in LAN con-
figurations, a wide range of delays is considered. This figure shows how FPS
linearly decreases as communication link delay increases for all the considered
benchmark applications. Unlike the above case, the FPS values tend to con-
verge towards a similar threshold level when high latencies are emulated for all
the benchmark applications. In this situations, ClusterJuggler spends most of
rendering period waiting for the synchronization from both SL and SB plug-
ins. In a situation that is closer to WAN environments, Figure 6 shows that

19

140

120 \

—— Cubes —®—Agua —&— Hindu —< MP&pp

100

o0 | \\-
0 \\\\
) \\\'.imx_

Frames per Second

AT
20 — = " - - ; -
0 T r r r T r r
1 2 3 4 =] G 7 8

Number of Nodes in the Cluster

Fig. 5. Variation of system throughput with the number of cluster nodes

ClusterJuggler provides a very low reduction of performance levels, in terms
of FPS, when VR Juggler immersive stand-alone applications are launched on
commodity LAN clusters.

&0

\ | ——Cubes —®—Agua —&—Hindu —« MPApp
a0
RN

o.13 3,00 6,00 .00 12,00 15,00 18,00 21,00
RTT value in each Node of the Cluster

Frames Per Second

Fig. 6. Variation of system throughput with the network latency

Since values of RTT in these systems are not higher than a couple of mil-
liseconds [7,11] and taking into account the definition of efficient IV system
introduced in Section 4, these results show that ClusterJuggler can be con-
sidered as an efficient tool to simulate multi-screen immersive visualization

20

systems on a cluster of commodity computers.

5.2.2 A Module Performance Evaluation

Although obtained results in the overall approach show that ClusterJuggler is
able to support cluster computing, this evaluation has been performed from
the application developer’s point of view. Because of this reason, we propose
an additional performance evaluation following a modular approach. The goal
of this new evaluation is not to show the characterization of performance drop
in ClusterJuggler, but to analyze the behavior of the mechanisms inserted into
the VR Juggler kernel by this software architecture based on cluster computing

(RIM, ADM, SL, etc).

Following the kernel decomposition shown in Figure 4, we have monitorized
the subfunctions in which the new kernel of VR Juggler has been divided. This
monitorization was performed using VPR. As a result of this monitorization
we have observed that only three of the eleven subfunctions of VR Juggler
kernel (detailed in Figure 4) were responsible of the different obtained results
when several configuration of IV systems on VR Juggler were examined. These
subfunctions corresponds to KernelUpdateNetwork(), KernelUpdateProxies()
and KernelPreDraw(). The remaining eight subfunctions of the VR Juggler
kernel exhibited constant or very few variable execution times when the same
graphics benchmark where executed on different system configurations. These
configurations were based on the proposed evaluation methodology.

The code included in subfunction KernelUpdateNetwork() or KUN imple-
ments the features provided by ADM plug-in in ClusterJuggler. When KUN
is executed, kernel access to the network in order to perform the serialization
and de-serialization of data structures requested in this frame. Figures 7 and
8 show the variation of the executing time measured in this function as the
values of the parameters presented in the proposed evaluation methodology
(number of nodes and network delay) increase. The Y-axis of both figures
shows the average value of the execution time of KUN function obtained after
the same graphics benchmark drew 25.000 frames. Figure 7 shows the different
values of execution times when different numbers of nodes were considered.
It shows that for all the considered graphics benchmarks the time spent by
ClusterJuggler in data serialization process increases linearly with the number
of cluster nodes. The same behavior is shown for KUN function in Figure 8
when different levels of network delay have been recreated using Netem. In
both figures, the slope of the execution time plot not only keeps more or less
constant, but also is the same for both highly graphics intensive and highly
computational intensive applications.

The operations associated with the RIM plug-in have been encapsulated in the

21

4,0

—&— Cubes —m— Afgua —a&— Hindu —e—MPApp |
> ﬁ
25

20

y / R
05 / //

1 2 3 4 5 g 7]
NMumber of Nodes in the Cluster

Average Execution Time (ms.)

Fig. 7. Variation of average execution time in KernelUpdateNetwork() operation
with the number of cluster nodes

g0

] —e—Cubes —m—Agua —&—Hindu —<—MPApp |
70 /ﬁy‘
B0 /
40 /r/-
" /»K_X:_’:;
20 M

Average Execution Time {(ms.)

013 3,00 6.00 2.00 12.00 15,00 18,00 21,00
RTT value in each Node of the Cluster

Fig. 8. Variation of average execution time in KernelUpdateNetwork() operation
with the network latency

function denoted as KernelUpdateProxies() or KUP. In this function, nodes
access to the rest of device servers in order to obtain data about the status of
VR devices connected to the cluster system. Figures 9 and 10 show the average
execution time reached by the KUP function when varying respectively the
number of nodes in the cluster and the levels of network latency. Figure 9
shows the average time spent by ClusterJuggler kernel in KUP function as
the number of nodes increases. Despite the fact that this figure shows a low
impact in the values of execution time caused by the access of ClusterJuggler to

22

remote VR devices, this time increases significantly when the number of nodes
is higher than six (C6). The reason for this behavior is due to the master/slave
mechanism implemented in the RIM plug-in. When the number of nodes is
high, the master node has to resolve an important number of requests from all
slave nodes. Since the master node begins the software barrier process, slaves
cannot render the current frame until all requests are processed and thereby
the global system throughput is reduced. In the case of Figure 10, it shows
a linear ratio between the relationship of the average time measured in KUP
function and the network latency. Since Figures 9 and 10 show average values
lower than those shown in the case of the KUN function (Figures 7 and 8) and
taking into account the results described in Section 5.2.1, these results show
that ClusterJuggler distributes VR devices among the nodes of the cluster
with a low overhead in system performance.

14,0

[——Cubes —m—Agua —a—Hindi —<—MPApp |
120 *

10,0 A

BID . /,//'/'/
5:|:| /_‘/.:-/r

4,0 /’_"’ %
20 / / t‘/

1 2 3 4 5] 7 8
Mumber of Nodes in the Cluster

Average Execution Time (ms.)

Fig. 9. Variation of average execution time in KernelUpdateProxies() operation with
the number of cluster nodes

KernelPreDraw() or KPD implements the operations described in the SL plug-
in in order to create a software barrier which ensures that all nodes draw
simultaneously their segment of the 3D virtual scene in the next frame. In
order to communicate the master node with the slave nodes, KPD follows a
protocol based on a positive acknowledgment method. In this communication
method, the master node sends a barrier message to the slaves which, in
turn, reply it by means of an acknowledgment message. Figures 11 and 12
show the different values reached by the average execution time in the KPD
code when the proposed graphics benchmarks have been executed on VR
Juggler. Concretely, Figure 11 shows a non-linear dependence (approximately
logarithmic) of the average execution time on the number of nodes in the
cluster for all the considered benchmarks. This dependence is related to the
way in which ClusterJuggler has implemented the protocol of message passing

23

20

18 | —4—Cubes —#—Agua —k—Hindu —<—MPApp |

16 /
14 V‘/Jf/

12

10 s
0 .,/‘/;ff"._ﬂ-/" I
0B

02

0,13 3,00 B,00 200 12,00 15,00 13,00 2100
RTT value in each Node of the Cluster

Average Execution Time (ms.)

Fig. 10. Variation of average execution time in KernelUpdateProxies() operation
with the network latency

that is used for starting and synchronizing the rendering of each new frame.
Following the protocol described in Section 3.1, ClusterJuggler implements
the response signals exchanged among the slave and the master nodes (barrier
and acknowledgement) as simple messages of 1-byte length. In the case of the
master node, the execution time taken by KPD corresponds from the instant
the current frame is available within the frame-buffer memory of this computer
(at the end of the function KernelPreFrameYield(), as it is described in Figure
4) to the instant when all the acknowledgement messages are received from the
slave nodes. On the contrary, the execution time taken by KPD in a slave node
is the time between the arrival of the barrier message (from the master node)
and the transmission of the corresponding acknowledgement message. Due to
the different volume of tasks performed by master and slaves nodes during the
execution of this function, the execution time of the KPD function taken in the
master node is significantly higher than the obtained values from the rest of
nodes in the system. This is the reason why, unlike data serialization process
implemented in the KUP function, the average execution time of the KPD
function is not linearly related to the number of cluster nodes for the performed
experiments. Figure 12 shows the values reached by the average execution time
in the KPD when different values of network latency are generated. In this
case, the execution time needed by ClusterJuggler for handling the software
barrier depends linearly on the latency of the interconnection network.

24

50
| —e—Cubes —m—Agua —a—Hindu —¢MPApp |
45 W
40 pa—
3.5 /
3.0 *
25 /i /'
“ / M_
1,5 .n_,_,—o—'—"‘.
1,D //X’/— /‘/’
05 /_/‘,—/—"'/
N

1 2 3 4 5 5 7 g8
Mumber of Nodes in the Cluster

Average Execution Time (ms.)

Fig. 11. Variation of average execution time in KernelPreDraw() operation with the
number of cluster nodes

6,0

|+Cuhes ——Agua —k—Hindu —:-<—h-'1F'App|

5,0

4,0 —

30

P —

1.0

Average Execution Time (ms.)

0,13 300 E.00 900 1200 16,00 18,00 21,00
RTT value in each Node of the Cluster

Fig. 12. Variation of average execution time in KernelPreDraw() operation with the
network latency

6 Conclusions

In this paper, we have described the architecture and the performance evalu-
ation of ClusterJuggler, an evolution of VR Juggler that allows one to design
immersive visualization systems on cluster systems composed of commodity
computers.

25

The open architecture of ClusterJuggler has been specifically designed to com-
bine various existing techniques based on cluster computing. These techniques,
offered at the hardware level or at the software level, allow developers of im-
mersive visualization applications to meet their own specific needs. Since to
our knowledge there are no standardized protocols for the evaluation of im-
mersive visualization systems, we have proposed a new performance evaluation
methodology for this type of distributed systems. This methodology proposes
to evaluate the system throughput of immersive visualization systems, based
on clusters of computers, with respect to both the network delay and the num-
ber of nodes in the cluster. Moreover, it proposes a benchmark specification in
order to model the wide variety of levels of graphics and computational work-
loads generated by the most common immersive visualization applications.

The proposed evaluation methodology has been used in the performance eval-
uation of ClusterJuggler. The results of this evaluation show ClusterJuggler
keeps the system throughput above 30 FPS as more nodes are added to the
system independently of the LAN features. Furthermore, if the system en-
ters saturation and is unable to fulfill this critical frame rate, ClusterJuggler
minimizes the performance drop when the number of nodes increases in or-
der to avoid jerky and jumpy 3D simulations. Taking into account all these
properties, VR Juggler can be considered as an efficient software suite for the
development and execution of IV applications.

In our case, ClusterJuggler has allowed us to migrate existing applications
(designed initially for high-end shared memory computers) to cluster-based
configurations while keeping high levels of frame-rate and without changes
required to the application code.

References

[1] J. Allard, V. Gouranton, G. Lamarque, E. Melin, and B. Raffin. Softgenlock:
Active Stereo and GenLock for PC Cluster. In Proceedings of the Joint
IPT/EGVE’03 Workshop, Zurich, Switzerland, May 2003.

[2] J. Allard, V. Gouranton, E. Melin, and B. Raffin. Parallelizing Pre-rendering
Computations on a Net Juggler PC Cluster. In IPT (Intl. Workshop on

Immersive Projection) 2002 Proceedings, Orlando, Florida, United States,
March 2002.

[3] A. Bierbaum and C. Cruz-Neira. Run-Time Reconfiguration of VR Juggler.
In Proceedings of IPT (Intl. Workshop on Immersive Projection) 2000, Ames,
Towa, United States, June 2000.

[4] A. Bierbaum, P. Hartling, P. Morillo, and C. Cruz-Neira. Immersive Clustering
with VR Juggler. In International Conference in Computational Science

26

and Its Applications (ICCSA-2005), number 3482 in LNCS, pages 1109-1118,
Singapore, May 2005. Springer.

[5] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-Neira.
VR Juggler: A Virtual Platform for Virtual Reality Application Development.
In IEEE Virtual Reality, pages 89-96, Yokohama, Japan, March 2001.

[6] B. Bode, J.J. Hill, and T.R. Bejergerdes. Cluster Interconnect Overview. In
proceedings of USENIX 2004, pages 217-223, Boston, USA, June 2004.

[7] R. C. Booth. A System Area Network Characterization In A Commercial
Cluster. Master’s thesis, Deptartment of Electrical and Computer Engineering,
University of Minnesota, 1998.

[8] M. Carson and D. Santay. Nist Net: a Linux-based Network Emulation Tool.
ACM SIGCOMM Computer Communication Review, 33(3):111-126, 2003.

[9] N. Chapman and J. Chapman. Digital Multimedia, Edition 2nd. Wiley, April
2004.

[10] K. Cok and T. True. Developing Efficient Graphics Software: The Yin and Yang
of Graphics. In Proceedings of ACM SIGGRAPH, Los Angeles, USA, August
2001. ACM Press.

[11] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems, concepts and
design, Edition 4th. Addison-Wesley, Pearson Education, June 2005.

[12] C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-Screen Projection-
Based Virtual Reality: The Design and Implementation of the CAVE. In
Proceedings of 20th ACM SIGGRAPH, pages 135-142, California, USA, August
1993. ACM Press.

[13] J.A Dickerson, Y. Yang, K. Blom, A. Reinot, J.Lie, C. Cruz-Neira, and E.S.
Waurtele. Using Virtual Reality to Understand Complex Metabolic Networks. In
Proceedings of the Atlantic Symposium on Computational Biology and Genomic
Information Systems and Technology, pages 950-953, September 2003.

[14] W. Engel. Programming Vertex and Pizel Shaders. Programming Series. Charles
River Media, 2004.

[15] Z. Fan, M.M. Oliveira, C. Ma, and A. Kaufman. A Sketch-Based Interface
for Collaborative Design Sketch-Based Interfaces and Modeling. In Proceedings
Eurographics Symposium 2004, volume VI, pages 1-5, Grenoble, France, August
30-31 2004.

[16] Message Passing Interface Forum. MPI: A Message-Passing Interface standard.
International Journal of Supercomputer Applications and High Performance
Computing, 8(3/4):165-414, Fall/Winter 1994.

[17] W.A. Gallus, C. Cervato, C. Cruz-Neira, G. Faidley, and R. Heer. A Virtual
Tornadic Thunderstorm Enabling Students to Construct Knowledge about
Storm Dynamics Through Data Collection and Analysis. In 13th Symposium
on Education, Seattle, USA, January 11-15 2004.

27

[18] E. Gelenbe. System Performance Evaluation: Methodologies and Applications.
CRC Press, 2000.

[19] The Open Group. DCE 1.1: Remote Procedure Call. The Open Group, August
1997.

[20] P. Hartling, A. Bierbaum, and C. Cruz-Neira. Tweek: Merging 2D and 3D
Interaction in Immersive Environments. In Nagib Callaos, Alexander Pisarchik,
and Mitsuyoshi Ueda, editors, Proceedings of the 6th World Multiconference
on Systemics, Cybernetics and Informatics, volume VI, pages 1-5, Orlando,
Florida, United States, July 2002.

[21] S. Hemminger. Network Emulation with NetEm. In Proceedings of Australia’s
National Linux Conference (LCA), Canberra, Australia, April 2005.

[22] M. Houston. Designing Graphics clusters. In Proceedings of IEEE Visualization
Conference - Parallel Rendering Workshop, Austin, Texas, United States,
October 2004.

[23] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and
J. T. Klosowski. Chromium: A Stream Processing Framework for Interactive
Graphics on Clusters. In ACM SIGGRAPH 2002 Sketches and Applications,
Texas, United States, July 2002. ACM Press.

[24] J. Jacobson and M. Lewis. Game Engine Virtual Reality with CaveUT. IEEFE
Computer, 38(4):79-82, 2005.

[25] B. Karthikeyan, K. M. Bryden, and D. A. Ashlock. Visualizing Information
Flow in Evolving Graph-Based Population. In Proceedings of International
Conference in Smart Engineering Design (ANNIE-2003), St. Louis, United
States, November 2003.

[26] J. Kelso, L. Arsenault, S. Satterfield, and R. Kriz. Diverse: A Framework
for Building Extensible and Reconfigurable Device Independent Virtual
Environments. In Proceedings IEEE Virtual Reality 2002, pages 183-190,
Orlando, Florida, United States, March 2002.

[27] C. Kim and J.M. Vance. Collision detection and part interaction modeling to
facilitate immersive virtual assembly methods. ASME Journal of Computing
and Information Sciences in Engineering, 4(1):83-90, June 2004.

[28] G. Kim. Designing Virtual Reality Systems: The Structured Approach. Springer,
August 2005.

[29] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook, S. Damianakis, G. Essl,
A. Finkelstein, T. Funkhouser, A. Klein, Z. Liu, E. Praun, R. Samanta,
B. Shedd, J. P. Singh, G. Tzanetakis, and J. Zheng. Early Experiences and
Challenges in Building and Using a Scalable Display Wall System. I[FEFE
Computer Graphics and Applications, 20(4):671-680, 2000.

[30] J. Marsh, M. Glencross, S. Pettifer, and R. Hubbold. A Network Architecture
Supporting Consistent Rich Behavior in Collaborative Interactive Applications.

28

IEEE Transactions on Visualization and Computer Graphics, 12(3):405-416,
May-June 2006.

[31] A. Plaat, H. Bal, and R. Hofman. Sensitivity of Parallel Applications to
Large Differences in Bandwidth and Latency in Two-Layer Interconnects.
In Proceedings 5th IEEE HPCA99, pages 244-253, Orlando, Florida, United
States, January 1999.

[32] X. Qin and J.L. Baer. A performance evaluation of cluster architectures.
In Proceedings of the 1997 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages 237-247, Seattle, USA,
1997. ACM Press.

[33] M. Roth, G. Vof, and D. Reiners. Multi-threading and Clustering for Scene
Graph Systems. Computers & Graphics, 28(1):63-66, February 2004.

[34] B. Schaeffer and C. Goudeseune. Syzygy: Native PC Cluster VR. In Proceedings
of IEEE Virtual Reality 2003, pages 1522, Los Angeles, California, United
States, March 2003.

[35] S. E. Sim, S. Easterbrook, and R. C. Hol. Using Benchmarking to Advance
Research: A Challenge to Software Engineering. In Proceedings of the 25th

International Conference on Software Engineering, Porland, USA, May 2003.
IEEE/ACM Press.

[36] S. Singhal and M. Zyda. Networked Virtual Environments: Design and
Implementation. Addison-Wesley, 1999.

[37] O. G. Staadt, J. Walker, C. Nuber, and B. Hamann. A Survey and Performance
Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen
Rendering. In Proceedings of the Workshop on Virtual Environments 2003,
pages 261-270, Zurich, Switzerland, 2003. ACM Press.

[38] P. Strauss and R. Carey. An object-oriented 3d graphics toolkit. In Proceedings
of 19th ACM SIGGRAPH, pages 341-349, Chicago, USA, August 1992. ACM
Press.

[39] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond
Object Oriented Programming. Component Software Series. Addison-Wesley
Publishing Company, New York, NY, second edition, 2002.

[40] T.M. Wasfy and A.K. Noor. Visualization of CFD results in Immersive Virtual
Environments. Advances in Engineering Software, 32:717-730, 2001.

[41] D. Wright. Survey of projection-based immersive displays. In Proceedings of
SPIE, volume 3957, pages 482-492, California, USA, May 2000. Electrohome
Editorial.

29

