
ar
X

iv
:0

70
4.

38
90

v1
 [

cs
.D

C
]

 3
0

A
pr

 2
00

7

An Algorithm for Clock Synchronization with the

Gradient Property in Sensor Networks

Rodolfo M. Pussente

Valmir C. Barbosa∗

Universidade Federal do Rio de Janeiro

Programa de Engenharia de Sistemas e Computação, COPPE

Caixa Postal 68511

21941-972 Rio de Janeiro - RJ, Brazil

Abstract

We introduce a distributed algorithm for clock synchronization in sen-
sor networks. Our algorithm assumes that nodes in the network only
know their immediate neighborhoods and an upper bound on the net-
work’s diameter. Clock-synchronization messages are only sent as part of
the communication, assumed reasonably frequent, that already takes place
among nodes. The algorithm has the gradient property of [2], achieving
an O(1) worst-case skew between the logical clocks of neighbors. As in
the case of [3, 8], the algorithm’s actions are such that no constant lower
bound exists on the rate at which logical clocks progress in time, and for
this reason the lower bound of [2, 5] that forbids constant skew between
neighbors does not apply.

Keywords: Distributed computing, Sensor networks, Clock synchroniza-
tion, Gradient property in clock synchronization.

1 Introduction

We consider a network of sensors and assume it may be represented by a con-
nected undirected graph G = (N,E) whose nodes stand for sensors and undi-
rected edges for bidirectional communication channels. We also assume that
channels are fully reliable and deliver messages with delays bounded by a con-
stant. We let n = |N |, use Ni ⊂ N to denote the set of node i’s neighbors, and
t ≥ 0 to denote real time.

No node has access to the value of t but rather relies on a hardware clock to
estimate it. For node i, the hardware clock at time t is denoted by Hi(t) ≥ 0.

∗Corresponding author (valmir@cos.ufrj.br).

1

http://arxiv.org/abs/0704.3890v1

Ideally, Hi(t) should evolve in “lockstep” with t, but we assume instead that
its progress occurs at a positive rate that may drift as t elapses. We assume an
additive drift, which at time t is denoted by ρi(t) ∈ [−ρ̂, ρ̂] for some constant
ρ̂ ∈ [0, 1). The rate at which Hi(t) progresses is then 1 + ρ(t) at time t, and it
follows that

Hi(t) =

∫ t

r=0

[1 + ρ(r)] dr. (1)

Because the instantaneous drifts may be different throughout G for any
given t, nodes may only acquire a common estimate of real time by resorting to
clock synchronization. At node i, this amounts to maintaining a logical clock
Li(t) ≥ 0 that normally progresses at a rate proportional to that of the node’s
hardware clock but can be updated as i learns about the logical clocks of other
nodes in G.

We assume that Li(t) is never allowed to run backwards (i.e., Li(t
′) ≥ Li(t)

for all t′ > t), and note that this is sometimes made more stringent by requiring
a constant lower bound b ∈ (0, 1] on the rate of progress of every node’s logical
clock.1 When the latter is the case, enforcing the requirement is easy if ρ̂ is
known to the nodes: it suffices to set dLi(t)/dHi(t) ≥ b/(1− ρ̂), since

dLi(t)

dt
=

dLi(t)

dHi(t)

dHi(t)

dt
≥ b

1− ρ̂
(1− ρ̂) = b. (2)

The goal of a distributed algorithm for clock synchronization is to minimize
the skew |Li(t) − Lj(t)| for all pairs i, j of distinct nodes and all t. While
significant progress was achieved in the past (cf., e.g., [3, 7, 8, 1]), with a single
exception to be discussed shortly it seems that all algorithms to date admit a
worst-case skew of O(D), where D is the diameter of G, even between neighbors
in the graph. The problem with this in the context of sensor networks is that,
for tasks as fundamental as that of data fusion [6], for example, nearby nodes
must synchronize their clocks much more strictly than this, while for distant
nodes the larger skew is not a problem.

This observation has motivated the introduction in [2] of a new property of
clock skews, the so-called gradient property. For f a positive, nondecreasing
real function of distances in G, and dij the distance between nodes i and j, the
gradient property requires

|Li(t)− Lj(t)| ≤ f(dij) (3)

for all pairs i, j of distinct nodes and all t. To our knowledge, the only algorithm
to date that guarantees clock skews for which the gradient property holds is the
one of [4]. In this algorithm, we have that

f(dij) is

{

O(dij
√
D), if dij ≤

√
D + 1;

O(D), otherwise,
(4)

so in the worst case the clock skew between neighbors in G is O(
√
D).

1As in [7, 1], but not in [3, 8], for example.

2

Achieving this, however, requires a relatively strong assumption on what
is known to the nodes and also that nodes communicate frequently with their
neighbors. The assumption is that both D, the graph’s diameter, and ρ̂, the
maximum drift of hardware-clock rates, are known to all nodes. As for commu-
nicating with neighbors, a node is required to do so whenever its logical clock
reaches a new integer value or is updated in the wake of the reception of a
message.

While for some sensor networks the assumption may be regarded as rea-
sonable, since it may be possible to bound both D and ρ̂ from above in the
environment in question, we find the need for frequent communication with
neighbors to be generally incompatible with the power-consumption constraints
normally associated with sensor networks. So we maintain the assumption, in
part, but strive to reduce communication requirements as much as possible.

2 A new algorithm

Unlike the algorithm of [4], the algorithm we introduce in this paper targets
sensor networks directly. For this reason, we adopt the same two assumptions
as [5] regarding the communication among sensors:

(i) Messages sent between neighbors in G are delivered instantaneously;

(ii) If t and t′ are instants at which two neighbors communicate in one of
the two directions without any intervening communication in the same
direction between them in the meantime, then |t− t′| ≤ d for some d > 0.

We aim at synchronizing clocks without any messages sent exclusively for this
purpose, that is, by attaching clock-synchronization messages to whatever com-
munication is already guaranteed to take place by assumption (ii).

We assume that nodes know their local neighborhoods (i.e., the neighbor set
Ni for node i) and, like [4], that the diameter D (or an upper bound on it) is
also known to them. We assume further that no node has access to the value
of ρ̂ or d, and that clock synchronization is started concurrently at any number
of nodes, from which it propagates. If i is one of these nodes, then we assume
Li(t) = 0 for t the time at which clock synchronization is started at node i; if
not, then we assume Li(t) = 0 for t the time at which i is first reached by a
clock-synchronization message.

For j ∈ Ni, node i maintains a variable Lj
i to store its current view of the

logical clock of j. If t is the instant at which Lj(t) is communicated by j to

i, and if Lj
i results from this communication, then assumption (i) implies that

Lj
i = Lj(t). For all i ∈ N and all j ∈ Ni, we assume Lj

i = 0 before the reception
at i of the first clock-synchronization message from j.

Now let αi be the number by which the current rate of progress of Li(t) is
proportional to that of Hi(t); that is, let αi = dLi(t)/dHi(t). Our algorithm
uses αi as the minimum of multiple αj

i ’s, one for each of node i’s neighbors,

3

that is,
αi = min

j∈Ni

αj
i . (5)

We assume that, initially, αj
i = 1 for all i ∈ N and all j ∈ Ni. Our algorithm is

based on lowering αi as needed whenever node i detects, upon receiving a clock-
synchronization message, that its logical clock is ahead of that of the message’s
sender by a certain amount c or more.

Other than this manipulation of αi, our algorithm strives at node i to ad-
vance Li(t), if appropriate, toward the greatest Lj

i , so long as this does not

leave the least Lj
i behind by the same c as above or more. We now describe

our algorithm in terms of how node i responds to the reception of 〈L〉 in a
clock-synchronization message from node j ∈ Ni at time t. Notice that, by
assumption (i), L = Lj(t). Node i’s response to the message from j comprises
the following two steps, whose processing is also assumed instantaneous.

Step 1. Lj
i := L.

Step 2. With L− = minj∈Ni
Lj
i and L+ = maxj∈Ni

Lj
i :

(a) If Li(t) ≥ Lj
i + c, then αj

i := 1/D, otherwise αj
i := 1.

(b) Li(t) := max{Li(t),min{L− + c, L+}}.

Step 1 is devoted simply to updating node i’s view of node j’s logical clock.
Step 2 attempts to reduce αj

i to 1/D, in case Li(t) ≥ Lj
i + c (and thus Li(t) ≥

L− + c); or to restore αj
i to 1, in case Li(t) < Lj

i + c; or yet to advance Li(t),
in case both Li(t) < L− + c and Li(t) < L+.

The value of Li(t) that results from Steps 1 and 2 continues to evolve before
it gets sent in a clock-synchronization message to some of i’s neighbors. If such
a message is sent at some time t′ before i receives the next clock-synchronization
message, then 〈Li(t

′)〉 gets sent along with it such that Li(t
′) ≤ Li(t)+αi(1+ρ̂)d.

3 Worst-case clock skews

Step 2(b), with c = (1 + ρ̂)
√
D + 1, is the essence of the algorithm in [4]. The

reason why that algorithm guarantees a maximum skew of O(
√
D) between the

logical clocks of neighbors in G is intimately related to this particular choice for
c and to how this choice relates to the worst-case skew between any two nodes,
which is always less than (1 + ρ̂)D + 1. There are other factors involved, but
this one is crucial and a closer examination of [4] reveals that choosing c to be
O(1), for example, disrupts the clocks’ gradient property.

Considered within the assumptions of our model, the problem with letting
c be O(1) in Step 2(b) is that a length-O(D) wait chain may occur in G in
which each node finds out that its logical clock is ahead of the next node’s by
at least c. In this chain, the node whose logical clock is ahead of all others’ may
dart still farther ahead unchecked for an O(D) amount of time, which will then

4

be the worst-case skew between neighbors. So, in order to accommodate the
possibility of a constant value for c along with the gradient property for some f ,
a mechanism is needed to slow down the progress of logical clocks that are ahead
of others by c or more. This is what Step 2(a) does, provided c ≤ (1 + ρ̂)d, as
we assume henceforth. As we demonstrate shortly, an f is achieved that implies
constant skew between the logical clocks of neighbors.

Let us now examine the worst-case skews that logical clocks may have under
Steps 1 and 2. We start with the skew between any two nodes, in which case
it suffices that we consider a chain of D+ 1 nodes and the algorithm’s start-up
process. After the algorithm is initiated by one of the nodes (this gives us the
worst case as far as the number of initiators is concerned), it may take as long
as Dd time units for all others to have started their logical clocks, during which
time the initiator may advance its logical clock from 0 to at most (1 + ρ̂)Dd.
This is then the largest skew between any two logical clocks.

We now turn to the worst-case skew between the logical clocks of neighbors
in G. As we indicated above, Step 2(a) has a crucial role to play in ensuring
that this skew remains bounded within the desired limits of O(1). In order to
see that this is really the case, first recall that, in the absence of Step 2(a),
Step 2 would be ineffectual at time t if we had Li(t) ≥ Lj(t)+ c. The following,
then, is fundamentally dependent on Step 2(a).

Let us consider the same (D + 1)-node chain as above and look at the sit-
uation in which Li(t) = Lj(t) + c, Lj(t) = Lk(t) + c for some k 6= i, and so
on through the chain. Clearly, this scenario can only involve so many edges of
the chain. If we let ℓ be this number of edges, then our previous result on the
maximum skew between any two nodes, together with the fact that c ≤ (1+ ρ̂)d,
implies that

ℓ = min

{

D,
(1 + ρ̂)Dd

c

}

= D. (6)

By time t+ d, each of the first ℓ nodes in the chain (i, j, and so on) has found
out that it is waiting for its neighbor down the chain to catch up with it, and
consequently has reduced its rate to 1/D. The ℓ+1st node has caught up with
its predecessor, but j will not be able to catch up with i for another (ℓ − 1)d
time units, every d of which sees a new node ready to raise its rate back to 1
and catch up with its own predecessor.

During the first d time units past time t, node i’s logical clock may increase by
as much as αi(1+ ρ̂)d ≤ (1+ ρ̂)d, node j’s by as little as αj(1− ρ̂)d ≥ (1− ρ̂)d/D,
thus causing the logical clocks of i and j to undergo a further separation of at
most

(1 + ρ̂)d− (1− ρ̂)d

D
≤ (1 + ρ̂)d. (7)

During the remaining (ℓ−1)d time units, the logical clock of node i may increase
by as much as

αi(1 + ρ̂)(ℓ− 1)d =
(1 + ρ̂)(ℓ − 1)d

D
. (8)

5

The logical clock of node j, in turn, may during this time increase by as little
as

αj(1− ρ̂)(ℓ − 1)d =
(1− ρ̂)(ℓ − 1)d

D
. (9)

At time t+ ℓd, then, the greatest possible skew between the logical clocks of the
neighboring nodes i and j is

c+ (1 + ρ̂)d+
2ρ̂(ℓ− 1)d

D
≤ c+ (1 + 3ρ̂)d, (10)

since ℓ = D. Our algorithm is then seen to achieve the gradient property in
such a way that

f(dij) is O(dij) (11)

for all dij ∈ [1, D], so the worst-case clock skew between neighbors is O(1).

4 Discussion

In [2], and also in [5] for the specific case of assumptions (i) and (ii), it is
proven that f(dij) is Ω(dij + logD/ log logD). This is proven for all clock-
synchronization algorithms that have the gradient property and for which the
constant lower bound b mentioned earlier on the rate of progress of all logical
clocks exists. Such a property would be seriously at odds with our claim of an
O(1) worst-case skew between neighbors, so in this section we discuss its relation
to our algorithm. Specifically, we demonstrate that our approach admits no
constant lower bound on dLi(t)/dt that holds for all i and all t, so the lower
bound on f(dij) does not hold.

We first discuss the definability of dLi(t)/dt. For fixed t, let t1 < t and
t2 > t be such that the value of αi does not change in the time interval [t1, t)
or in the interval (t, t2]. Then dLi(t)/dt is in principle definable indistinctly as

lim
t1→t

Li(t)− Li(t1)

t− t1
= αi lim

t1→t

Hi(t)−Hi(t1)

t− t1
= αi

dHi(t)

dt
(12)

or

lim
t2→t

Li(t2)− Li(t)

t2 − t
= αi lim

t2→t

Hi(t2)−Hi(t)

t2 − t
= αi

dHi(t)

dt
. (13)

However, if t is precisely the time at which node i changes the value of αi through
Step 2(a) (by reducing some αj

i from 1 to 1/D while all others remain equal to

1, or by raising the single αj
i whose value is 1/D back to 1), then the two limits

above are inconsistent with each other and dLi(t)/dt remains undefined.
But the values of t for which dLi(t)/dt is undefined are only finitely many,

so one naturally wonders about the other, infinitely many instants at which the
derivatives are defined. For these other instants, notice that Step 2(a) never
causes αi to be reduced below 1/D, so one might still consider, for all i ∈ N ,
the existence of the lower bound b on dLi(t)/dt, provided

b ≤ (1 − ρ̂)

D
. (14)

Such a bound, however, would not be a constant, as it would depend on G.

6

5 Concluding remarks

Our algorithm’s Step 2 embodies two competing trends in its two parts (a) and
(b). The aim of part (a) is to slow down nodes whose logical clocks are ahead
of any of their neighbors’ by c or more. Part (b), on the other hand, forces
a node’s logical clock to move ahead toward its neighbors’ whenever possible.
Both trends are fundamental to the algorithm’s proper operation. Without
Step 2(a), the O(1) worst-case skew between neighbors would be unachievable;
without Step 2(b), the presence of a single slow-moving hardware clock would
slow down all nodes’ logical clocks, turning them into poor approximations of
real time.

One relevant open question at this point is how the two trends balance each
other, both in theory and in practice. Our algorithm relies strongly on the
possibility of altering, in Step 2(a), the rates at which nodes’ logical clocks
follow their hardware clocks. Even though there is a clear provision for such
rates to return to their original value of 1 whenever safe, further investigation
is needed to clarify their most important properties. One of these concerns the
duration of the periods during which the rates get reduced. Another is related
to how rate reduction affects the logical clocks’ main purpose, which is to track
the progress of real time in as synchronized a way as possible.

Acknowledgments

The authors acknowledge partial support from CNPq, CAPES, and a FAPERJ
BBP grant.

References

[1] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization
using reference broadcasts. Operating Systems Review, 36:147–163, 2002.

[2] R. Fan and N. Lynch. Gradient clock synchronization. Distributed Comput-

ing, 18:255–266, 2006.

[3] L. Lamport and P. M. Melliar-Smith. Synchonizing clocks in the presence
of faults. Journal of the ACM, 32:52–78, 1985.

[4] T. Locher and R. Wattenhofer. Oblivious gradient clock synchronization. In
Proceedings of the Twentieth International Symposium on Distributed Com-

puting, volume 4167 of Lecture Notes in Computer Science, pages 520–533,
Berlin, Germany, 2006. Springer-Verlag.

[5] L. Meier and L. Thiele. Brief announcement: gradient clock synchroniza-
tion in sensor networks. In Proceedings of the Twenty-Fourth Annual ACM

Symposium on Principles of Distributed Computing, page 238, 2005.

7

[6] H. Qi, X. Wang, S. S. Iyengar, and K. Chakrabarty. Multisensor data fusion
in distributed sensor networks using mobile agents. In Proceedings of the

International Conference on Information Fusion, pages 11–16, 2001.

[7] T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the
ACM, 34:626–645, 1987.

[8] J. L. Welch and N. Lynch. A new fault-tolerant algorithm for clock synchro-
nization. Information and Computation, 77:1–36, 1988.

8

	Introduction
	A new algorithm
	Worst-case clock skews
	Discussion
	Concluding remarks

