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Abstract

Multiple Sequences Alignment (MSA) of biological sequences is a fundamental problem
in computational biology due to its critical significance inwide ranging applications includ-
ing haplotype reconstruction, sequence homology, phylogenetic analysis, and prediction of
evolutionary origins. The MSA problem is considered NP-hard and known heuristics for the
problem do not scale well with increasing number of sequences. On the other hand, with the
advent of new breed of fast sequencing techniques it is now possible to generate thousands
of sequences very quickly. For rapid sequence analysis, it is therefore desirable to develop
fast MSA algorithms that scale well with the increase in the dataset size. In this paper, we
present a novel domain decomposition based technique to solve the MSA problem on multipro-
cessing platforms. The domain decomposition based technique, in addition to yielding better
quality, gives enormous advantage in terms of execution time and memory requirements. The
proposed strategy allows to decrease the time complexity ofany known heuristic ofO(N)x

complexity by a factor ofO(1/p)x, whereN is the number of sequences,x depends on the
underlying heuristic approach, andp is the number of processing nodes. In particular, we
propose a highly scalable algorithm, Sample-Align-D, for aligning biological sequences using
Muscle system as the underlying heuristic. The proposed algorithm has been implemented on
a cluster of workstations using MPI library. Experimental results for different problem sizes
are analyzed in terms of quality of alignment, execution time and speed-up.
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1 Introduction

Multiple Sequences Alignment (MSA) in computational biology provides vital information related

to the evolutionary relationships, identifies conserved motifs, and improves secondary and tertiary

structure prediction for RNA and proteins. In theory, alignment of multiple sequences can be

achieved using pair-wise alignment, each pair getting alignment score and then maximizing the

sum of all the pair-wise alignment scores. Optimizing this score, however, is NP-complete [1]

and dynamic programming based solutions have complexity ofO(LN), whereN is the number

of sequences andL is the average length of a sequence. Such accurate optimizations are not

practical for even small number of sequences, thus making heuristic algorithms a feasible option.

The literature on these heuristics is vast and includes widely used works, including Notredame et

al. [2], Edgar [3], Thompson et al. [4], Do et al. [5], Lassmann et al. [6], Sze et al. [7], Schwartz et

al. [8] and Morgenstern et al. [9]. These heuristics are complex combination of ad-hoc procedures

with some flavor of dynamic programming. Despite the usefulness of these widely used heuristics,

they scale very poorly with increasing number of sequences.

The high computational costs and poor scalability of existing MSA algorithms make the design

of multiprocessor solutions highly desirable. Also, recent advances in the sequencing techniques

such as pyrosequencing [10] are enabling fast generation oflarge amount of sequence data. For ex-

ample, at the time of writing this paper, UniProtKB/Swiss-Prot contains 366226 sequence entries,

comprising 132054191 amino acids representing 11342 species. Comparing this with less than

50k sequences in 1995, gives a glimpse of exponential growthin biological data. If useful research

has to proceed, the performance of multiple alignment systems has to scale up accordingly with

the enormous amount of data being generated.

The main goal of the work presented in this paper is to investigate domain decomposition strate-

gies for biological data computations. For the multiple sequence alignment problem discussed in

this paper, we use k-mer rank, a metric that depicts similarity of a sequence compared to another

sequence, to partition the input data set into load balancedsubsets. Subsequently, we show how

these decomposed subsets of sequences can be aligned on multiple processors in a distributed fash-
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ion, and glued together to get a highly accurate alignment ofmultiple sequences. Our approach is

capable of aligning a large number of sequences (of the orderof 20000 sequences [11]), with time

complexity scaled down by a factor ofO(1/p)4,wherep is the number of processors, achieving

super-linear speedups on multiprocessors without compromising quality of the alignment.

The rest of the paper is organized as follows. We start with a brief problem statement and

background information relevant to our discussions in Section 2. Also, we discuss existing par-

allel approaches to the MSA problem and identify their limitations. In Section 3, we discuss the

proposed domain decomposition based MSA algorithm for aligning protein sequences. This is

followed by a rigorous analysis of the computation and communication costs. Section 4 presents

the experimental results and analyzes these results in terms of alignment quality, execution time,

memory usage, and speedup. Section 5 presents the conclusions and outlines future research.

2 Problem Statement and Background Information

We first define the Multiple Sequences Alignment (MSA) problem in simplest form, without in-

dulging with the issues such as scoring functions, which arebeyond the scope of this work. LetN

sequences be presented as a setS = {S1, S2, S3, · · · , SN} and letS
′

= {S
′

1, S
′

2, S
′

3, · · · , S
′

N} be the

aligned sequence set, such that all the sequences inS
′

are of equal length, have maximum overlap,

and the total alignment score is maximized according to somescoring mechanism suitable for the

application.

The method followed in most of the existing multiple alignment systems is that a quick pair-

wise alignment of the sequences is performed, giving a similarity matrix. This similarity matrix is

then used to build a guide tree, which is then used to perform aprogressive profile-profile align-

ment. Note that profile-profile alignments are used to re-align two or more existing alignments.

Profile-profile alignment is a useful method as it can be used to gradually add new sequences to

already aligned set of sequences, also referred to as progressive alignment. It can also be used to

maintain one fixed high quality profile and keep on adding sequences aligned to that fixed pro-
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file [4]. These are the basic steps that are followed by almostall distance based multiple sequence

alignment methods [12]. Fig.?? shows a generic MSA scheme, which is also used in Clustalw [4].

The first stage is a pair-wise comparison of the sequences under consideration. The second stage

corresponds to the construction of guiding tree, which is later on used in stage three to perform

final profile-profile alignments. To improve the alignment score, various iterative methods have

been introduced in the later stages, as in the Muscle System [3].

2.1 Related Research

There have been numerous attempts to parallelize existing sequential multiple sequences align-

ment systems. Clustalw [4] is by far the most parallelized multiple sequence alignment system.

James et. al. in [13] parallelized Clustalw for PC clusters and distributed shared memory parallel

machines. HT Clustal is a parallel solution for heterogeneous multiple sequence alignment and

MultiClustal is a parallel version of an optimized Clustalw[14] Zola et al. [15] provided the first

parallel implementation of T-Coffee based on MPI. Different modules of the Muscle system have

also been parallelized [16]. Other parallelization efforts include parallel multiple sequence align-

ment with phylogeny search by simulated annealing by Zola etal. [17], Multithreading Clustalw

for multiple sequence alignment by Chaichoompu et al. [18] and Schmollinger et al. parallel ver-

sion of Dialign [19].

Although there seems to be a considerable amount of effort toimprove the running times for

aligning large number of sequences using parallel computing, it must be noted that all the exist-

ing solutions have been aimed at parallelizing different modules of a known sequential system.

Therefore the parallelism achieved has been limited to the usage of the function being parallelized.

None of the existing parallel alignment approaches has beenable to exploit the data parallelism,

simply because of the lack of a domain decomposition strategy. A few attempts [20] [21] have

also been made to cut each sequence into pieces and compute a piecewise alignment over all the

sequences to achieve multiple sequences alignment. In [21], each sequence is ’broken’ in half, and

halves are assigned to different processors. The Smith-Waterman [20] algorithm is applied to these
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divided sequences. The sequences are aligned using dynamicprogramming technique, and then

combined using Combine and Extend techniques [20]. The Combine and Extend methods follow

certain models defined to achieve alignment of the combination of sequences. These methods pay

little or no attention to the quality of the results obtained. The end results have considerable loss of

sensitivity. The constraints in these methods are solely defined by the models used, thus limiting

the scope of the methods for wide variety of sequences.

Domain decomposition has been pursued for a large number of application in numerous fields,

including elliptic partial differential equations, imageprocessing, graphics simulations, fluid dy-

namics, astronomical and atmospheric calculations [22]. Most of these applications, take advan-

tage of parallel processing by decomposing the data domains, and using data parallel techniques

to achieve high performance.

In this paper, we investigate a data parallel approach to align multiple protein sequences, conse-

quentlydecreasingcomputational effort in terms of time and memory whileimprovingor obtaining

quality comparable to other multiple alignment systems.

3 Proposed Distributed MSA Algorithm: Sample-Align-D

In this section, we present details of the domain decomposition strategy and the alignment al-

gorithm, referred to as Sample-Align-D. We also analyze thecomputation and communication

complexities of the proposed algorithm.

The proposed domain decomposition strategy draws its motivation from the Sample-Sort ap-

proach [23] that has been introduced to sort a very large set of numbers on distributed platforms.

The sorting and MSA problems share a common characteristic,i.e., any correct solution requires

implicit comparison of each pair of data items. In Sample-Sort, a small sample (≪ N) represent-

ing the entire data set is chosen over distributed partitions using some sampling technique such as

Regular Sampling [24]. Then each item can be independently compared and ranked against this

sample. If the sample is a true representative of the underlying data set, it eliminates the need
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for explicit comparison of every item with the entire set. This way anN size sorting problem is

reduced to solvingp independent sorting problems of sizeN/p. We use a similar sampling ap-

proach to the domain decomposition of sequences over all theprocessors. In the case of sorting

of integer numbers, numerical values of the numbers are compared to compute the rank of each

number. In the case of multiple sequence alignment problem,we need to identify a unique feature

of the sequence that could be used to compute the rank of each sequence, in terms of degree of

similarity with other sequences in the set. This rank information can then be used to partition the

smaller input subsets based on similarity and align smallersubsets of similar sequences indepen-

dently. We propose to use k-mer distance [25] as a metric to determine the similarity of a sequence

with any other sequence. Intuitively, the k-mer distance between any two sequences is based on

the relative frequency of repetitive substrings of sizek in the sequences. Edgar in [25] showed that

k-tuple similarities correlate well with fractional identity, and the small values ofk between 4 and

6 work well for biological sequences. For the sake of completeness, in the following, we provide

the formal definition of k-mer distance.

k-mer Rank: Let’s assume that a biological sequence is represented by a stringX of n characters

taken from an alphabet̊A that containsc different characters(a1, · · · , ac). For the words of length

k (hence named k-mers), there areǫ = ck such different words. We represent the set of k-mers

in X by vectorcX = (cX1 , · · · , c
X
ǫ ). The distance between stringX and any arbitrary stringY ,

of lengthm, is calculated usingcXi andcYi , the count of k-mer occurrences inX andY . Now let

CXY
i = min(cXi , c

Y
j ) denote the common k-mer count.

F (X, Y ) =
ǫ∑

i=1

CXY
i

[min(n,m) − k + 1]
(1)

dF (X,Y ) = −log(∆ + F (X, Y )) (2)

whereF is the fraction of common k-mers betweenX andY , anddF transforms this into a dis-

tance.∆, is a small constant added to prevent logarithm of zero. Based on k-mer distance, we

definek-mer rankas follows:
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Ri =
1

N

N∑

j=1

dF (i,j) (3)

An intuitive outline of the proposed distributed multiple sequence alignment solution, referred

to as Sample-Align-D, is given in Algorithm 1.

Algorithm 1 Sample-Align-D Intuitive Description
Require: p processor for computation
Require: N sequences of amino acidsS1, S2, · · · , SN :
Ensure: Multiple alignment ofN sequences

1. In parallel, calculate the global k-mer rank for each sequence in each processor

2. Redistribute the sequences using the k-mer ranks such that sequences with similar k-mer
ranks are accumulated on the same processor.

3. In parallel, align the sequences on each processor using any sequential multiple sequence
alignment (MSA) system

4. Calculate the global ancestor using local ancestors produced by the local alignments at
each processor in the previous step.

5. In parallel, fine tune the alignment on each processor using the global ancestor

3.1 k-mer Rank based Decomposing Domain

Our aim is to decompose the data set into subsets such that thesequences within a subset are more

similar to each other than the sequences in other subsets. Ideally, this can be accomplished by

partitioning the phylogenetic tree in a load balanced fashion such that the partitions also mini-

mize communication across processors. The partitioning ofa problem graph can be performed by

making a virtual grid over the graph structure [26]. This works well only if the problem graph

is uniform. In MSA, the phylogentic trees are rarely uniform. Thus partitioning with naive tech-

niques will lead to non-uniform loads. However, most of the existing partitioning techniques for

non-uniform problem graphs [27–31] cannot be used in this case due to progressive alignment de-

pendencies in MSA, as discussed extensively in [15]. In the following, we outline a novel domain

decomposition strategy that is based on k-mer rank similarities.
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There are three main parameters that may contribute to the computation load in the MSA prob-

lem. These include: the number of sequences, the length of the sequences, and the similarity rank

(that we call k-mer rank as discussed in the previous sections). However, as our analysis will re-

veal in the later sections, the lengths of the sequences do not contribute much computationally.

Hence we can safely neglect the length of the sequences for load-balanced partitioning, and con-

sider the k-mer rank and the number of sequences for partitioning and mapping. We will use a

novel sampling based strategy to computeglobalk-mer ranks.

3.1.1 Globalised k-mer Rank

For a highly divergent set of sequences, k-mer rank computedfor each sequence locally on each

processor using onlyN/p sequences would be different from the k-mer rank computed using all

theN sequences. In order to address this problem, we samplek sequences from each processor

such that the k-mer ranks of thesek samples represent the ranks of the corresponding set ofN/p

sequences, yielding a total ofk × p samples. Collectively, it is safe to assume that thesek × p

samples represent the entire set ofN sequences. The k-mer rank based ordering of thesek × p

sequences yields a phylogenetic tree of the samples, which in turn represent all the sequences.

Each processor re-computes the k-mer ranks of its sequencesusing this global sample. Subse-

quently, redistribution based on this new k-mer rank also ensures that sequences accumulated in

each processor are ’similar’ to each other.

In Fig. 1, we plot the k-mer ranks computed using samples (referred to as globalized ranks) and

using all the sequences collectively (referred to as centralized ranks). As depicted in this figure, the

curves have high degree of similarity. The statistics of thetwo approaches for 500 sequences are

presented in Table. 1. As can be seen that the standard deviation for the two sets of ranks is very

low ( 0.58). This shows that the k-mer ranks forN sequences computed using a global sample is

statistically indistinguishable from the k-mer ranks computed using all theN sequences.
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Figure 1:Globalized ranks and Centralised Ranks

Table 1: Comparison of the k-mer ranks computed using global sample (globalized) and using the entire
set of sequences (centralized).

(Maximum, Minimum) Central (1.44827, 0.0)
Average Centralized 0.722962
(Maximum, Minimum) Globalized (1.46207,0.0)
Average Globalized 1.11302
Variance w.r.t. Centralized 0.33190
Standard Dev. w.r.t Centralized 0.576377

3.1.2 Redistribution Based on Globalized k-mer Rank

Each processor computes the k-mer ranks of itsw = N/p sequences locally using all theN/p

sequences, and sorts the sequences based on this local k-merrank. HereN is the number of

sequences in the input andp is the number of processors. From each of thep locally sorted lists,

k = (p− 1) evenly spaced samples are chosen. The k-mer ranks of these(p− 1) samples (pivots)

divide the local set intop ordered subsets. The k-mer ranks of thesep − 1 samples from each

processor are gathered at the root processor, yielding a setY of sizep(p− 1) ranks.

This regular-sampled setY is sorted to compute the ordered listY1, Y2, Y3, · · · , Yp(p−1) deter-

mining the range of k-mer ranks over all the processors. ThenranksYp/2, Yp+p/2, · · · , Y(p−2)p+p/2
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are chosen as pivots (p in total) dividing the k-mer rank range intop buckets. These pivots are

then broadcast to all the processors. Each processor sends the sequences having k-mer ranks in the

range of bucketi to processori. For the bound on the size of the dataset in each processor after

redistribution, we refer to the analysis in Section 3.2.

3.1.3 The Alignment

Next, a sequential MSA program is executed on each processor. Since our ultimate goal is to

have a global alignment of all theN sequences, a procedure has to be devised to concatenate

these ’chunks’ oflocally (herelocally is defined as the chunk of sequences that are aligned on a

single processor) aligned sequences so that theglobalalignment of multiple sequences is achieved.

Edgar in [32] has observed that multiple sequences alignment for homologous sequences can be

obtained by aligning each sequence to theroot profile. This approach is similar to the one used

in the PSI-BLAST, where aknownprofile is used to align any query sequence with the sequences

that have generated the profile. This technique may also be categorized astemplatebased method,

as observed by Notredame in his recent work [12]. We use a similar concept along with domain

decomposition of the sequences. We extract the local ancestor from each processor afterlocally

aligning each subset in parallel. All of these local ancestors are collected at the root processor and

are aligned using a sequential multiple sequence alignmentalgorithm. The ancestor of all the local

ancestors, referred to as the global ancestor, is then broadcast to all the processors. Subsequently,

the global ancestor is used to perform a profile-profile alignment. That is, each set of the locally

aligned sequences (referred to as profile) in each processoris aligned with the global ancestor

profile.

In order to apply pair-wise alignment functions to profiles,a Profile Sum of Pairs (PSP) scoring

function must be defined. We use the same PSP score as defined in[33] and [32]:

PSP xy =
∑

i

∑

j

fx
i f

y
j log(pij/pipj) (4)

Herex andy are the profiles being aligned,i andj are the amino acid in profiles,pi is the
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background probability ofi, pij is the joint probability ofi andj aligned to each other,fx
i is the

observed frequency ofi in columnx of the first profile, andxG is the observed frequency of gaps

in that column. The same attributes are assumed for the profile y. For our purposes, we will

take advantage of PSP functions based on the 200 PAM matrix [34] and the 240 PAM VTML

matrix [35]. Some multiple alignment methods implement different scoring functions such as Log

expectation (LE) functions, but for our purposes PSP scoring suffices. Of course, future work on

decomposition strategies might investigate such functions in this context.

This fine tuning step based on ancestor profile is depicted in Fig. 2. For a highly divergent

sequences set, we propose an additional step, in which profiles can be added to the root processor

with respect to their similarity rank. This does not change the computation or communication

costs, but gives the effect of ’profile-progressive’ sort ofgluing in the root processor.

Figure 2:Profile aligning with the ancestor and combining sequence subsets.

The summary of different steps in the Sample-Align-D Algorithm is shown in Fig. 3, and a

detailed algorithmic description is given in the Appendix as Algorithm 2.
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Figure 3:Summary of Sample-Align-D procedure

3.2 Analysis of Computation and Communication Costs

For the computation and communication analysis we use a coarse grained computing model such

asC3-model [36] and [37]. Also, for analysis purposes, we assumethat the Muscle System [3] is

being used at each processor as the underlying sequential multiple sequence alignment system. It

must be noted that the computation complexity of the alignment step will vary depending on the

sequential MSA system used for alignment within each processor.

In the following analysis we assume that each processor hasw = N/p sequences, whereN is

the total number of sequences to be aligned, andp is the number of processors. The average length
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Table 2:Computation Costs:
STEP O(Time) O(Space)
k-mer rank computation on (w = N/p) sequences w2L w + L

Sorting ofN/p sequences based on k-mer rank w logw logw

Samplek = p− 1 sequences w p

k-mer rank computation of(k × p) sequences in root processor p4L p2 + L

Sorting ofk × p sample k-mer ranks (k × p) log(k × p) log(k × p)

k-mer rank computation of each of (w = N
p

) sequences againstk × p samples w[(k × p+ 1)2L] w(k × p+ L)

Muscle executed on (w = N
p

) sequences in parallel w4 +wL2 w2+L2

Ancestor extraction from each of thep processors + export to the root processor p2 p2

Muscle executed on local ancestors (p elements) (p)4+(p)L2 (p) 2 + L2

Profile alignment with all combined aligned sequences on each of the processor wL2 w

TOTAL Computation Cost (forw = N
p ) O((Np )

4 + (Np )L
2) O((Np )

2 +L2 )

of a sequence isL. In Table 2, we outline the computation cost of each step of the algorithm and

its memory requirement.

3.3 Communication Cost

The communication overhead is an important factor that dictates the performance of a distributed

message passing parallel system. If the communication overhead is much higher than the com-

putation cost, the performance of the system is limited. Fortunately, the communication cost of

our system is much less than the cost of the alignment. Essentially, the proposed Sample-Align-D

algorithm has two rounds of communication. In the first round, a small set of samples is collected

at the root processor and a set of pivots is broadcast from theroot processor. In the second round,

sequences are redistributed to achieve better alignments and balanced load distribution. For the

analysis of the communication costs we have adopted the coarse grained computation model [36]

and [22]. However, we ignore the message start up costs and assume unit time to transmit each

data byte.

We have assumed the Regular Sampling strategy [24] because of its suitability to our problem

domain. Some of the reasons are :

1. The strategy is independent of the distribution of original data, compared to some other
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strategies such as Huang and Chow [23].

2. It helps in partitioning of data into ordered subsets of approx. equal size. This presents an

efficient strategy for load balancing as unequal number of sequences on different proces-

sors would mean unequal computation load, leading to poor performance. In the presence

of data skew, regular sampling guarantees that no processorcomputes more than(2N
p
) se-

quences [24].

3. It has been shown in [24] that regular sampling yields optimal partitioning results as long as

N > p3, i.e., the number of data itemsN is much larger than the number of processorsp,

which would be a normal case in the MSA application.

3.3.1 First Communication Round

Assumingk = p− 1, i.e., each processor choosesp− 1 samples, the complexity of the first phase

is O(p2L)+ O(p log p) + O(k × p log p), whereO(p2L) is the time to collectp(p − 1) samples

of average lengthL at the root processor,O(p log p) is the time required to broadcastp− 1 pivots

to all the processor and(k × p log p) is the time required to broadcastk × p sequences to all the

processors.

3.3.2 Second Communication Round

In the second round each processor sends the sequences having k-mer rank in the range of bucket

i to processori. Each processor partitions its block intop sub-blocks, one for each processor,

using pivots as bucket boundaries. Each processor then sends the sub-blocks to the appropriate

processor. The sizes of these sub-blocks can vary from 0 toN
p

sequences depending on the initial

data distribution. Taking the average case where the elements in the processor are distributed uni-

formly, each sub-block will haveN
p2

sequences. Thus this step would requireO(N
p
) time assuming

an all-to-all personalized broadcast communication primitive [37]. However, in the following we

show that based on regular sampling no processor will receive more than2N
p

elements in total in
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the worst case. Therefore still the overall communication cost will beO( N
pL
).

Let’s denote the pivots chosen in the first phase by the array:y1, y2, y3, · · · , yp−1. Consider any

processorsi, where1 < i < p. All the sequences to be processed by processori must have k-mer

rank> yi−1 and≤ yi. There are(i − 2)p + p
2

sequences of the regular sample which are≤ yi−1,

implying that there are at leastlb = ((i− 2)p + p
2
)N
p2

sequences in the entire data that have k-mer

rank≤ yi−1. On the other hand, there are(p − i)p − p
2

sequences in the regular sample that have

k-mer rank> yi. Thus, there areub = ((p− i)p− p
2
)N
p2

sequences ofN which are> yi. Since the

total number of sequences isN , at mostN − ub − lb sequences will get assigned to processori.

It is easy to show that this expression is upper bounded by2N
p

. The cases fori = 1 andi = p are

special because the pivot interval for these two processorsis p
2
. The load for these processors will

always be less than2N
p

. Due to page limitations, we refer to [24] for further details of the analysis.

The collection ofp local ancestors at the root processor and broadcast of the global ancestor

costsO(L log p) communication overhead each. Therefore the communicationcost is:O(p2L) +

O(p log p) +O( N
pL
) +O(L log p).

The total asymptotic time complexityT of the algorithm would be:

ComputationCosts = O(
N

p
)4 +O(

N

p
)L2 (5)

CommunicationCosts = O(p2L) +O(p log p) +O(
N

pL
) +O(L log p) +O(k × p log p) (6)

T ≈ O((
N

p
)4 + (

N

p
)L2) + (p2L) + (

N

pL
) (7)

Next we briefly comment on the scalability of the Sample-Align-D algorithm. We will use the

isoefficiencymetric [22] to show that Sample-Align-D is highly scalable.For this we first define

two important terms: problem size defined as the number of basic computation steps to solve a

problem on a single processor using the best sequential algorithm; overhead function is defined as

the cost, that is not incurred by the fastest known sequential algorithm. We denote problem size

with W , and overhead function withTo(W, p).
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W =
E

E − 1
× To(W, p) (8)

whereE denotes the efficiency and letK = E
E−1

. The overhead function of Sample-Align-D:

To(W, p) ≈ (
N

p
)× L+ p2 × L (9)

It is easy to show that asymptotically the iso-efficiency of Sample-Align-D isΘ(p2), i.e., the

number of sequences shall increase by a factor ofp2 to maintain the efficiency with increasing

number of processors.

4 Performance Evaluation

The performance evaluation process has been divided into two parts: the first part deals with

the quality assessment, and the second part deals with traditional HPC metrics such as execution

time, scalability, memory requirements, etc. The performance evaluation of the Sample-Align-D

algorithm is carried out on a Beowulf Cluster consisting of 16 Intel Xeon processors, each running

at 2.40GHz, with 512KB cache and 1GB DRAM memory. As for the interconnection network, the

system uses Intel Gigabit network interface cards on each cluster node. The operating system on

each node is Fedora Core 7(kernel level:2.6.18-1.2798.fc6xen).

4.1 Quality Assessment

The quality assessment in our case posed a considerable challenge because most of the existing

benchmarks such as BaliBase [38] and Prefab [3] used in the literature are of very small sizes.

Therefore they are not effective in evaluating anysamplingbased approach or domain decomposi-

tion based distributed approach. Also, other parallel approaches to multiple alignment do not have

any decomposition strategy, making the quality of the parallel version similar to the sequential

version. Hence, a quality assessment criterion for data parallel multiple alignment methods was
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not available. In addition to assessing quality using thesetraditional benchmarks, we have also for-

mulated a method that can be used to access the quality of the alignment produced by distributed

or data parallel MSA approaches.

4.1.1 Quality Assessment using Traditional Benchmarks

Traditional benchmarks such as BaliBase and Prefab are quite comprehensive in terms of types of

sequences contained in these benchmarks. BaliBase, for example, has five basic categories and

covers most of the scenarios when making multiple sequence alignments [2]. For the evaluation of

multiple sequence alignment programs, Balibase is dividedinto 5 hierarchical reference sets:

• Ref1 for equi-distant sequences with various levels of conservation,

• Ref2 for families aligned with a highly divergent ”orphan” sequence,

• Ref3 for subgroups with< 25% residue identity between groups,

• Ref4 for sequences with N/C-terminal extensions, and

• Ref5 for internal insertions.

Tables 3, 4 and 5 compare the quality of Sample-Align-D with different sequential algorithms

in terms of quality metrics, Q-Score, and TC-Score, used in Balibase and Prefab benchmarks,

respectively. The score for the sequential algorithms havebeen derived from [3]. The Sample-

Align-D was executed on a 4-processor system, therefore corresponds to a 4 factor domain decom-

position.

In all the tests for quality assessment using benchmarks, itcan be seen that Sample-Align-D

preformed very close to the Muscle system. This is because Sample-Align-D was implemented

with Muscle System as the underlying sequential MSA algorithm at each processor. Therefore, the

quality obtained is limited by the quality of the underlyingalignment system.
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Table 3:BaliBase Scores
Method Q TC

Muscle 0.896 0.747
T-Coffee 0.882 0.731
NWNSI(MAFFT) 0.881 0.722
Clustalw 0.860 0.690
Sample-Align-D 0.858 0.720
FFTNSI(MAFFT) 0.844 0.646

Table 4:Prefab Q-Scores
Method Q-Score(All)

Muscle 0.645
Sample-Align-D 0.623
T-Coffee 0.615
NWNSI(MAFFT) 0.615
FFTNSI(MAFFT) 0.591
Clustalw 0.563

Table 5:BaliBase Q-Scores on subsets
Method Ref1 Ref2 Ref3 Ref4 Ref 5

Sample-Align-D 0.882 0.932 0.800 0.872 0.804
Muscle 0.887 0.935 0.823 0.876 0.968
T-Coffee 0.866 0.934 0.787 0.917 0.957
NWNSI 0.867 0.923 0.787 0.904 0.963
Clustalw 0.861 0.932 0.751 0.823 0.859
FFTNSI 0.838 0.908 0.708 0.793 0.947
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4.1.2 Quality Assessment with Increasing Degree of Decomposition

While the quality of alignment produced by the Sample-Align-D algorithm for benchmark data

sets is comparable to the other systems, due to the small sizes of these benchmarks, we could not

evaluate the quality against several desired parameters that are typical of a distributed environment

such as sample size, number of partitions, average length ofsequences, etc. In the following, we

first outline the assessment procedure that allows us to evaluate the quality while changing different

parameters, and then present performance results. In this subsection, we compare only with the

Muscle System.

Figure 4:Quality comparison, with varying average length of the sequences.

Using the Rose sequences generator [39] we have generated 23sets of sequences, with their

corresponding ’true’ alignment, while changing the following three parameters: the length of the

sequences, the number of sequences, and the phylogenetic distance of the sequences. The length

of the sequences in our tests varied from 100 to 2000, the number of sequences varied from 100

to 20000 and the average phylogenetic distance varied from 100 to 1000. These values are typical

of biological sequences in existing databases. Each of the set was aligned using Sample-Align-D

with different number of processors, and ’true’ alignment obtained from the Rose system was used

as a benchmark. The metrics used for the the assessment are Q-Score [3], TC-Score [38], Modeler

score [40], Cline (Shift) score [41], and Sum of Pairs (SP) score. The quality scores obtained by
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the Sample-Align-D Algorithm are compared with the Muscle System scores (only Q-scores are

reported in this paper).

The experiments were conducted with different data sets while keeping two of the parameters

held constants1. These parameters include number of sequences, phylogenetic distance, and av-

erage sequence length. The experiments were also conductedon different machine sizes to study

scalability and the effect of degree of domain decomposition on quality of alignment.

Fig. 4 depicts performance in terms of Q-score with increasing number of processors, while

increasing average length of sequences from 200 to 2000. It can be seen that the increase in the

number of processors to 16 didn’t effect the Q-scores. The Q-scores correlated very well with that

of the Muscle System. The scores remained above 0.97 for average length of 2000. There was

virtually no difference observed in the SP scores computed for the Muscle system and Sample-

Align-D for respective pair of length and number of processors used, as shown in Fig. 5.

Figure 5:Sum of Pairs (SP) score, with varying average length of the sequences.

The quality with respect to the phylogentic distance is probably the most important criterion.

Theoretically, MSA systems should be able to give good multiple alignments for increasing pair-

wise sequence distance. After all, the relationship between distance species would reveal the phy-

logenetics of the species. As pointed out in [42], all automatic multiple alignment systems perform

1Constants held for the experiments are: Length =200, Numberof sequence=200 and phylogenetic distance =100
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poorly with increasing pair wise distance between the sequences. Different quality metrics calcu-

lated while increasing the phylogentic distance from 100 to1000 are shown in Fig. 6 and Fig. 7

for Q-Scores and TC-Scores, respectively. As can be seen from these figures, the quality in fact

decreased with increasing pairwise distance. Our investigation for this criteria, however, was not

to rectify the quality issues with increasing pairwise distance, but to see the correlation between

the underlying MSA system and the effects of the domain decomposition strategy.

Figure 6:Q-score, with varying average pairwise distance of sequences.

Figure 7:TC-score, with varying average pairwise distance of sequences.

As can be seen from Fig. 6, the Q-scores correlated extremelywell with the Q-scores of the
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Figure 8:SP Score, with varying average pairwise distance of sequences.

Muscle System. The TC-scores of the Sample-Align-D depicted in Fig. 7 show slightincreasein

the quality when compared with TC scores of the Muscle System. The increase can be attributed

to the decomposition strategy which is more inclined towards conserving columns in the multiple

alignment, owing to profile alignments. The decrease in the alignment scores in general with

increasing phylogenetic distance, is due to the decrease ofthe alignment quality obtained from the

underlying MSA system. Without loss of generality, the quality of a decomposition based MSA

can be expected to correlate well with the underlying sequential multiple alignment system that

may perform well in terms of quality. Fig. 8 shows the qualityperformance in terms of SP score.

The assessment of the quality of alignment with increasing number of sequences is also impor-

tant. As before, we are interested in the relative quality ofalignment obtained after decomposition.

Fig. 9 shows the quality in terms of Q-Scores for different sizes of the sequences set. The qual-

ity of the Sample-Align-D Algorithm based alignments strongly correlates with the quality of the

alignments obtained by the Muscle system. It must be noted that we are reporting quality for up to

8000 sequences, because the sequential Muscle System was unable to process larger datasets.
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Figure 9:Quality of alignment, with increasing number of sequences.

4.1.3 Example of Application to Serine/Threonine Kinases

The purpose of a multiple sequence alignment system is to observe and study the conservation of

domain and motifs. To illustrate this, we present here an example Fig.?? that illustrates the use-

fulness of our system, in terms of conservation of motifs. Weillustrate here the functional features

of kinases, also present in the BaliBase as well as used for illustration by Notredame [2]. Each se-

quence is identified by its SwissProt/UniProt identifier. Some of the identifications have changed,

and are illustrated as is viewed in SwissProt at the time of this publication. In the example, there

are 3 motifs identified. These motifs are the core blocks identified by BaliBase, and are conserved

by Sample-Align-D, marked as red, orange and blue. The motifs are in greater order of difficulty,

with red as the least difficult. The blue labeled motif is the most difficult to conserve in the example

set, because of the long indel in KIN3-Yeast. As can be seen, Sample-Align-D is able to conserve

this most difficult motif, for decomposition factor of 4 as done for benchmarks.

4.2 Performance in Terms of HPC Parameters

In this section we analyze performance in terms of executiontime, scalability, and memory. The

objective of the evaluation is to determine the advantages of the proposed domain decomposition

based technique in terms of speedup and reduction in memory requirements. In this section we
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also compare Sample-Align-D with the known parallel approaches reported in the literature.

4.2.1 Execution Time and Memory

For the sake of coherence in our presentation we generated sequences with same parameters that

were used for the quality assessment. We report results for up to 20000 sequences. To the best of

authors’ knowledge, there are no published reports of aligning this large number of sequences in

the literature.

Figure 10:Scalability of the execution time w.r.t. the number of processors.

As shown in Fig. 10, in the case of Sample-Align-D the execution time decreases sharply with

the increase in the number of processors. We are able to align8000 sequences in just 3.9 minutes,

compared to 2100 minutes on a sequential Muscle System. The timing for 12000, 16000 and 20000

sequences are also shown for Sample-Align-D. The timing forone node with Muscle is not shown

because Muscle Systems was not able to handle this large number of sequences and the resources

requirement in terms of memory and time, grew exponentiallyfor these sets of sequences.

As shown in Fig. 11, Sample-Align-D Algorithm exhibits super linear speed-ups (of the order
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Figure 11:Super-linear speed-ups for Sample-Align-D with increasing number of processors.

of 600) on a 16 processor system. This is primarily because the computation complexity decreases

by O(p4) with the increase in the number of processor, as suggested inour algorithmic analysis

section.

The low memory requirements, as predicted by our analysis inSection 3.2, are also evident

in our experimental results. The memory requirements whileincreasing the length of sequences,

phylogenetic distance, and number of sequences, are shown in Fig. 12 Fig 13 and Fig. 14 respec-

tively. The most interesting figure is the one that depicts the memory requirements with increasing

number of sequences. As can be seen in Fig. 14, with the increase in the number of sequences,

the memory requirements for Muscle System is increasing exponentially with 1200 MB required

for 8000 sequences. However, the maximum memory required for Sample-Align-D even for 8000

sequences is not greater than 100 MB.
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Figure 12:Memory usage, with varying average length of the sequences.

Figure 13:Memory usage, with varying average pairwise distance of sequences.

4.2.2 Comparison with Existing Parallel MSA Systems

There have been significant efforts towards parallelizing MSA techniques, as discussed in Section

3. We have selected Parallel Clustalw and Parallel T-Coffee, two of the most widely used parallel

MSA systems, to compare the performance of the proposed Sample-Align-D Algorithm. The

limitation of this aspect of evaluation was also the selection of the common sequence set. This

is due to the fact that most of the existing parallel systems are unable to handle large number of

sequences because of one or two explicit sequential stages in these solutions.
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Figure 14:Memory usage, with varying number of sequences.

We chose the data sets that Zola et al. [15] used for the evaluation of Parallel T-Coffee, named

PF00500, consisting of 1048 sequences with maximal length of 523 characters. The execution

times of different parallel algorithms for the data sets areplotted in Fig. 15. The execution time of

Parallel T-Coffee is significantly higher than that of the Sample-Align-D algorithm. For example,

on a 16 processor system, it took around 9.1 hours for Parallel T-Coffee, 4.3 minutes for Parallel

Clustalw, and only 8.1 seconds for Sample-Align-D. Our experiments show that the performance of

Parallel Clustalw degrades significantly compared to Sample-Align-D as the number of sequences

in the set increases.

5 Conclusion and Discussions

We have described a domain decomposition (data parallel) strategy for multiple sequence align-

ment of biological sequences. To our knowledge, this is the first attempt to investigate domain de-

composition for the multiple sequences alignment problem.This domain decomposition allowed

us to devise a highly scalable multiple alignment system. A detailed algorithmic technique based

on a novel decomposition strategy was described and rigorous time and space complexity analy-

ses were presented. The proposed strategy decreased the time complexity of any MSA heuristic
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Figure 15:Comparison of execution times of parallel T-Coffee, parallel Clustalw and Sample-Align-D

O(N)x by a factor ofO(1/p)x. Consequently, super-linear speed-ups were achieved and tremen-

dous decrease in memory requirements were observed, as predicted by the complexity analysis.

A rigorous quality analysis of the decomposition techniquewas also introduced, and the effect of

decomposition on the quality of the alignment was investigated. The quality analysis allowed us to

determine the quality of the alignment relative to that of the underlying sequential MSA system.

A number of research problems remain open and the techniquesintroduced in this manuscript

suggest new directions of research that can be pursued. The open research problems in computa-

tional biology and parallel processing that arise from the research presented in this manuscript are

as follows:

1. We have presented the decomposition strategy as a parallel computing solution. However,

the super-linear speed-ups on multiple processors suggestthat the use of the sampling based

decomposition strategy on single processor systems would also be able to deliver significant
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time and space advantages as evident in [43]. The decomposition strategy in any of the exist-

ing multiple alignment systems with some form of iterative quality ’patch-up’ strategy would

be useful. Also, multi-core processors can take enormous advantage of the decomposition

strategy for improved efficiency.

2. In our partitioning strategy, the load balancing scheme is based on the k-mer rank and the

number of sequences. It would be interesting to develop a more elaborated load balancing

scheme considering additional factors such as the length ofthe sequences and the type of

sequences being considered.

3. The domain decomposition based strategy has been investigated for distance based multiple

sequences alignment methods such as Muscle and Clustalw. Itwould be interesting to in-

vestigate the same or similar partitioning strategy for other type of consistency and profile

based methods such as T-Coffee, ProbCons, Mafft, DbClustal, MUMMALS etc.

4. We have considered a subset of alignment parameters, for example, PSP scores, 200 PAM

matrix and the 240 PAM VTML matrix. It would be insightful to consider different mutation

matrix and other parameters, and investigate the effects ofdecomposition on quality.

5. Phylogenetic trees are the crux of research on evolutionary biology. However, building phy-

logenetic trees for large number of species is considerablycompute intensive. It would

be useful to apply decomposition to build distance based phylogenetic trees for multiple

genomes.

6. As the sizes of the biological sequence archives and structural data are increasing at an expo-

nential rate, the pattern and motifs searching is getting increasingly more time consuming.

The application of decomposition strategy could allow to search these keys motifs in such

databases. The strategy can also find its applications in target and lead identification in drug

discovery.
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7. The strategy can be used to obtain computational analysiswithout having the need to actu-

ally ’import’ the sequences locally e.g. multiple sequences alignment can be performed on

distant databases, without transferring the entire set of sequences, which some times might

be desirable due to proprietary data issues etc.
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APPENDIX

Algorithm 2 Sample-Align-D (sequencesN)
Require: p processors for computation andN sequences of amino acidsS1, S2, · · · , SN :
Ensure: Gaps are inserted in each sequence such that:

• All sequences have the same length and the Score of the globalmap is maximized according to the chosen scoring function

1. AssumeN/p sequences on each of thep processors

2. Locally compute k-mer rank of all the sequences in each processor

3. Sort the sequences locally in each processor based on k-mer rank

4. Choose a sample set ofk sequences in each processor, wherek ≪ N/p

5. Send thek samples from each processor to all the processors.

6. Compute the k-mer rank of each sequence against thek × p samples.

7. Sort the sequences locally in each processor based on the new k-mer rank.

8. Using regular sampling, choosep − 1 sequences from each processor and send only their ranks to a root
processor.

9. Sort all thep× (p− 1) ranks at the root processors and divide the range of ranks into p buckets.

10. Send the bucket boundaries to all the processors.

11. Redistributed sequences among processors such that sequences with k-mer rank in the range of bucketi are
accumulated at processori, where0 > i < p+ 1.

12. Align sequences in each processor using any sequential multiple alignment system

13. Broadcast the Local Ancestor to the root processor

14. Determine Global Ancestor GA at the root processor by aligning local ancestors received from all the
processors

15. Broadcast GA to all the processors

16. Realign each of the sequences inp processors based on ancestor GA using profile-profile alignment i.e.
Each of the profiles of aligned sequences are tweaked using the ancestor profile, with constraints.

17. Glue all the aligned sequences at the root processor.
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