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ABSTRACT 
In Ad-Hoc networks, the performance is significantly degraded as the size of the network grows. The 
network clustering by which the nodes are hierarchically organized on the basis of the proximity relieves 
this performance degradation. Finding the weakly connected dominating set (WCDS) is a promising 
approach for clustering the wireless Ad-Hoc networks. Finding the minimum WCDS in the unit disk graph 
is an NP-Hard problem, and a host of approximation algorithms have been proposed. In this paper, we first 
proposed a centralized approximation algorithm called DLA-CC based on distributed learning automata 
(DLA) for finding a near optimal solution to the minimum WCDS problem. Then, we propose a DLA-
based clustering algorithm called DLA-DC for clustering the wireless Ad-Hoc networks. The proposed 
cluster formation algorithm is a distributed implementation of DLA-CC, in which the dominator nodes and 
their closed neighbors assume the role of the cluster-heads and cluster members, respectively. In this paper, 
we compute the worst case running time and message complexity of the clustering algorithm for finding a 
near optimal cluster-head set. We argue that by a proper choice of the learning rate of the clustering 
algorithm, a trade-off between the running time and message complexity of algorithm with the cluster-head 
set size (clustering optimality) can be made. The simulation results show the superiority of the proposed 
algorithms over the existing methods. 
 
KEYWORDS Wireless Ad-Hoc networks, clustering, weakly connected dominating set, distributed 
learning automata 
 
1 INTRODUCTION 

A wireless Ad-Hoc network is a multi hop wireless communication network supporting a collection 
of mobile hosts. There is no fixed infrastructure and no central administration and the mobile hosts can 
form a temporary network infrastructure in an Ad-Hoc fashion. Two hosts can directly communicate when 
they are within transmission range of each other, and indirectly through relaying by the intermediate hosts. 
In an Ad-Hoc network, each host assumes the role of a router and relays the packets toward the final destinations, if a 
source can not directly send the packets to a final destination due to the limitation of the radio transmission 
range. Since the wireless Ad-Hoc networks exhibit severe resource constraints such as the bandwidth and 
power limitations, network topology changes, and the lack of the fixed infrastructures and consequently, 
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centralized administrations, to achieve good performance in Ad-Hoc networks, the load on the hosts should 
be kept as low as possible[3, 22]. 

The network performance is significantly degraded as the network becomes larger, and the theoretical 
analyses [2] show that even under the optimal circumstances, the throughput of each host rapidly declines 
towards zero as the network size increases. Among the solutions proposed for solving the scalability 
problem in ah doc networks, the cluster formation approach has attracted a lot of attention. The main idea 
behind the clustering approach is to group together the network hosts that are in physical proximity, to 
achieve scalability and efficiency. The clusters provide a hierarchical structure to abstract the large scale 
networks which can be simply and locally organized [4, 7]. A clustering algorithm is a method of dividing 
the network into clusters so that every cluster includes a cluster-head and the hosts that can directly 
communicate with the cluster-head. Unpredictable topology changes due to the mobility of hosts, and 
resource limitations (e.g., bandwidth and power limitations) are important features of the wireless Ad-Hoc 
networks. Due to the limitations of the Ad-Hoc networks, having a small number of the cluster-heads and 
also minimizing the modifications of the cluster-heads are desired. The most basic clustering methods that 
have been studied in the context of Ad-Hoc networks are based on the dominating sets. Finding the 
minimum WCDS of the network graph is one of the most investigated methods for cluster formation in 
which a dominator node assumes the role of a cluster-head and its one-hop neighbors are assumed to be 
cluster members. The structure of the network graph can be simplified using WCDS and made more 
succinct for routing in Ad-Hoc networks [12, 14]. 

Clustering the Ad-Hoc networks based on the weakly connected dominating sets was first proposed 
by Chen and Listman [7, 32]. The distributed approximation clustering algorithm proposed by Chen and 
Listman is also inspired by Guha and Khuller’s [11] centralized approximation algorithm for finding small 
connected dominating sets (CDS). Guha and Khuller [11] proposed two centralized greedy heuristic 
algorithms with bounded performance guarantees for connected dominating set formation. In the first 
algorithm, the connected dominating set is grown from one node outward, and in the second algorithm, a 
WCDS is constructed, and then the intermediate nodes are selected to create a CDS. Chen and Listman also 
proposed a zonal algorithm [1, 8], in which the graph is divided into regions, a WCDS is constructed for 
each region, and adjustments are made along the borders of the regions to produce a WCDS for the whole 
graph. Their algorithm for the partitioning phase is partly based on a Minimum Spanning Tree (MST) 
algorithm of Gallager et al. [10]. Han and Jia [3] also proposed an area-based distributed algorithm for 
WCDS construction in Ad-Hoc networks with constant approximation ratio, linear time and message 
complexity. While it has a lower message complexity than the zonal algorithm proposed by Chen and 
Listman, it outperforms the mentioned algorithm. Alzoubi et al. [9] presented two distributed algorithms for 
finding a WCDS in Ad-Hoc networks. The first algorithm was implemented by first electing a leader 
among the nodes, which was going to be the root of a spanning tree. The spanning tree is then traversed and 
the dominator nodes are selected. But the distributed leader election is extremely expensive in practice, and 
exhibits a very low degree of parallelism. The second algorithm first constructs a maximum independent 
set (MIS) by an iterative labeling strategy, and then modifies the MIS by selecting one intermediate node 
between each pair of dominators separated by exactly three hops.  

In this paper, we first propose a DLA-based centralized approximation algorithm called DLA-CC for 
solving the minimum WCDS problem in a unit disk graph. Finding the weakly connected dominating set is 
a well-known approach for cluster formation in wireless Ad-Hoc networks. In Ad-Hoc networks, there is 
neither a fixed infrastructure nor a central administration, and so the centralized algorithms (like DLA-CC) 
are not applicable in such environments. Therefore, in the second part of this paper, we propose a 
distributed version of DLA-CC called DLA-DC for clustering the wireless Ad-Hoc networks. The proposed 
clustering algorithm aims at finding a near optimal solution to the minimum WCDS in a distributed 
fashion. This domination set is called the cluster-head set. In this method, the dominator nodes play the role 
of the cluster-heads and their one-hop neighbors assume the role of the cluster members. Each of the 
proposed algorithms consists of a number of stages, and at each stage, a WCDS is constructed by randomly 
activating a number of automata in a DLA. As the proposed algorithms approach to the end, the learning 
automata tend to an action selection policy that determines the minimum size cluster-head set (or WCDS) 
with the highest probability. In this paper, we estimate an upper bound on the running time (the number of 
iterations) and the message complexity of the proposed clustering algorithm for finding a )1(1 ε− optimal 
cluster-head set. We also show that by a proper choice of the learning rate of the clustering algorithm, a 
trade-off between the running time and message complexity of algorithm with the cluster-head set size 
(clustering optimality) is made. To show the efficiency of DLA-CC, it is compared with  
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Guha I[11], Guha II[11], and WCDS-CTR [7]. The simulation experiments show the superiority of 
DLA-CC over the others in terms of the cardinality of the WCDS (i.e., the number of dominators). We also 
compare the proposed clustering algorithm (DLA-DC) with Min ID[3], Max Degree[3], WCDS-DST[7], 
and AWF[9] in terms of the cluster-head set size and the message overhead of algorithm. The obtained 
results show that DLA-DC outperforms the best existing WCDS-based clustering algorithms.  

The rest of the paper is organized as follows. In the next section, the WCDS problem formulation, 
learning automata and some preliminaries are presented. In section 3, a centralized DLA-based 
approximation algorithm is proposed to solve the minimum WCDS problem in a unit disk graph. In section 
4, a DLA-based distributed algorithm is proposed for clustering the wireless Ad-Hoc networks. The worst 
case running time and message complexity of the proposed clustering algorithm is computed in section 5. 
In section 6, the performance of the proposed algorithms is evaluated through the simulation experiments, 
and section 7 concludes the paper. 

 
2 PRELIMINARIES   

In this section, some preliminaries on dominating sets and weakly connected dominating set problem, 
learning automata and some of its variations are presented.  

 
2.1 DOMINATING SETS 

A wireless Ad-Hoc network can be modeled as a unit disk graph ),( EVG = , where the hosts 
represent the individual hosts and an edge connects two hosts if the corresponding hosts are within 
transmission range of each other. The closed neighborhood ][vN consists of the hosts adjacent to v  and 

host v  itself. The closed neighborhood ][SN of the set S  is the unionU Sv
vN

∈
][ . A dominating set (DS) 

of a graph ),( EVG = is a host subset VS ⊆ , such that every host Vv ⊆ is either in S  or adjacent to a 
host of S . A host of S is said to dominate itself and all adjacent hosts. A minimum DS (MDS) is a DS 
with the minimum cardinality. A dominating set is also an independent dominating set, if no two hosts in 
the set are adjacent. A connected dominating set (CDS) S  of a given graph G is a dominating set whose 
induced sub graph, denoted >< S , is connected, and a minimum CDS (MCDS) is a CDS with the 
minimum cardinality. A MCDS forms a virtual backbone in the graph by which the routing overhead can 
be significantly reduced, where the number of hosts responsible for routing can be reduced to the number 
of hosts in the backbone. The MDS and MCDS problems are known as NP-Hard problems [5, 6], and even 
for a unit disk graph, the problem of finding a MCDS is also NP-Hard [6]. 

A dominating set S is a weakly connected dominating set (WCDS) of a graphG , if the 
graph ))][(],[( SSNESNS W ×∩=>< is a connected sub graph ofG . In other words, the weakly 

induced sub graph WS >< contains the hosts of S , their neighbors, and all edges with at least one endpoint 

in S . A sample UDG and one of its WCDS are shown in Figures 1.A and 1.B, respectively. The dominator 
nodes assume the role of the cluster-heads and they have been colored black. 

 
FIGURE 1.B. THE WEAKLY CONNECTED DOMINATING 

SET 
FIGURE 1.A. A SAMPLE UNIT DISK GRAPH  
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It is assumed that, the Ad-Hoc network comprises a group of wireless hosts communicating through a 
common broadcast channel using omnidirectional antennas and all hosts have the same transmission range. 
That is, the corresponding topology graph is a unit disk graph. Scheduling of transmissions is the 
responsibility of the MAC layer, and like many existing approaches, we are not concerned with the issues 
of using a shared wireless channel to send the messages avoiding the collisions and contentions. Each host 
has a unique ID number (e.g., IP address) and also needs to know the ID number of all other hosts.  

Each node of a WCDS is said to be a dominator node and its corresponding host in an Ad-Hoc 
network a cluster-head. Two hosts vu,  are connected by a link ),( vu and are said to be neighbors, if there 
exists a direct bidirectional communication channel connecting u and v , and so the network graph is 
assumed to be undirected.   

 
2.2 LEARNING AUTOMATA, DISTRIBUTED LEARNING AUTOMATA AND VARIABLE 

ACTION-SET LEARNING AUTOMATA  
2.2.1. LEARNING AUTOMATA 

A learning automaton [15-21] is an adaptive decision-making unit that improves its performance by 
learning how to choose the optimal action from a finite set of allowed actions through repeated interactions 
with a random environment. The action is chosen at random based on a probability distribution kept over 
the action-set and at each instant the given action is served as the input to the random environment. The 
environment responds the taken action in turn with a reinforcement signal. The action probability vector is 
updated based on the reinforcement feedback from the environment. The objective of a learning automaton 
is to find the optimal action from the action-set so that the average penalty received from the environment 
is minimized [15]. 

The environment can be described by a triple },,{ cE βα≡ , where },...,,{ 21 rαααα ≡ represents 
the finite set of the inputs, },...,,{ 21 mββββ ≡ denotes the set of the values can be taken by the 

reinforcement signal, and },...,,{ 21 rcccc ≡ denotes the set of the penalty probabilities, where the 

element ic is associated with the given action iα . If the penalty probabilities are constant, the random 
environment is said to be a stationary random environment, and if they vary with time, the environment is 
called a non stationary environment. The environments depending on the nature of the reinforcement signal 
β can be classified into P -model, Q -model and S -model. The environments in which the reinforcement 

signal can only take two binary values 0 and 1 are referred to as P -model environments. Another class of 
the environment allows a finite number of the values in the interval [0, 1] can be taken by the reinforcement 
signal. Such an environment is referred to as Q -model environment. In S -model environments, the 
reinforcement signal lies in the interval ],[ ba .  

  Learning automata can be classified into two main families [15-20]: fixed structure learning 
automata and variable structure learning automata. Variable structure learning automata are represented by 
a triple >< T,,αβ , where β is the set of inputs, α is the set of actions, and T  is learning algorithm. 
The learning algorithm is a recurrence relation which is used to modify the action probability vector. Let 

)(kα and )(kp denote the action chosen at instant k and the action probability vector on which the chosen 
action is based, respectively. The recurrence equation shown by (1) and (2) is a linear learning algorithm by 
which the action probability vector p is updated. Let )(kiα  be the action chosen by the automaton at 

instant k . 

⎪⎩

⎪
⎨
⎧

≠∀−

=−+
=+

ijjnpa
ijnpanp

np
j

jj
j )()1(

)](1[)(
)1(  (1) 

when the taken action is rewarded by the environment (i.e. 0)( =nβ ) and 

⎪⎩
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When the taken action is penalized by the environment (i.e. 1)( =nβ ). r is the number of actions 
can be chosen by the automaton, )(ka and )(kb  denote the reward and penalty parameters and determine 
the amount of increases and decreases of the action probabilities, respectively. If )()( kbka = , the 

recurrence equations (1) and (2) are called linear reward-penalty ( PRL − ) algorithm, if )()( kbka >> the 

given equations are called linear reward-ε penalty ( PRL ε− ), and finally if 0)( =kb  they are called linear 

reward-Inaction ( IRL − ). In the latter case, the action probability vectors remain unchanged when the taken 
action is penalized by the environment. 

Learning automata is proved to perform well in the dynamic environments of wireless, Ad-Hoc and 
sensor networks. Haleem and Chandramouli [23] used learning automata to address a cross-layer design for 
joint user scheduling and adaptive rate control for downlink wireless transmission. The proposed method 
tends to ensure that user defined rate requests are satisfied by the right combination of transmission 
schedules and rate selections. Nicopolitidis et al. [24] proposed a bit rate control mechanism based on 
learning automata for broadcasting data items in wireless networks. A learning automaton is used in the 
server which learns the demand of wireless clients for each data item. As a result of this learning, the server 
is able to transmit more demanded data items by the network more frequently. The same authors [25] 
proposed a learning automata based polling protocol for wireless LANs in which the access point uses a 
learning automaton to assign to each station a portion of the bandwidth proportional to the station's need. A 
decentralized approach of the above method is also given [26, 27]. Ravana and Morthy [28] proposed 
Learning-TCP, a novel learning automata based reliable transport protocol for wireless networks, which 
efficiently adjusts the congestion window size and thus reduces the packet losses. Learning automata is also 
used in cellular radio networks to dynamically adjusting the number of guard channels [29, 30, 31]. 

 
2.2.2. DISTRIBUTED LEARNING AUTOMATA 

A Distributed learning automata (DLA) [21] is a network of the learning automata which collectively 
cooperate to solve a particular problem. Formally, a DLA can be defined by a quadruple >< 0,,, ATEA , 

where },...,{ 1 nAAA = is the set of learning automata, AAE ×⊂  is the set of the edges in which edge 

),( jie corresponds to the action ijα  of the automaton iA , T is the set of learning schemes with which the 

learning automata update their action probability vectors, and 0A is the root automaton of DLA from which 
the automaton activation is started .  

The operation of a DLA can be described as follows: At first, the root automaton randomly chooses 
one of its outgoing edges (actions) according to its action probabilities and activates the learning automaton 
at the other end of the selected edge. The activated automaton also randomly selects an action which results 
in activation of another automaton. The process of choosing the actions and activating the automata is 
continued until a leaf automaton (an automaton which interacts to the environment) is reached. The chosen 
actions, along the path induced by the activated automata between the root and leaf, are applied to the 
random environment. The environment evaluates the applied actions and emits a reinforcement signal to 
the DLA. The activated learning automata along the chosen path update their action probability vectors on 
the basis of the reinforcement signal by using the learning schemes. The paths from the unique root 
automaton to one of the leaf automata are selected until the probability with which one of the paths is 
chosen is close enough to unity. Each DLA has exactly one root automaton which is always activated, and 
at least one leaf automaton which is activated probabilistically. 
 
2.2.3. VARIABLE ACTION-SET LEARNING AUTOMATA 

A variable action-set learning automaton is an automaton in which the number of actions available at 
each instant changes with time. It has been shown in [17] that a learning automaton with a changing number 
of actions is absolutely expedient and alsoε -optimal, when the reinforcement scheme is IRL − . Such an 

automaton has a finite set of n  actions, },...,,{ 21 nαααα = . },...,,{ 21 mAAAA = denotes the set of 

action subsets and α⊆)(kA  is the subset of all the actions can be chosen by the learning automaton, at 
each instant k . The selection of the particular action subsets is randomly made by an external agency 
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according to the probability distribution )}(),...,(),({)( 21 kkkk mψψψψ =  defined over the possible 

subsets of the actions, where ]121,|)([)( −≤≤∈== n
iii iAAAkAprobkψ . 

[ ])(),(|)()(ˆ kAkAkprobkp iii ∈== ααα  is the probability of choosing action iα , conditioned on 

the event that the action subset )(kA  has already been selected and also )(kAi ∈α . The scaled 

probability )(ˆ kpi is defined as 

)(/)()(ˆ kKkpkp ii =  (3)

where ∑
∈

=
)(

)()(
kA

i
i

kpkK
α

 is the sum of the probabilities of the actions in subset )(kA ,and 

[ ]ii kprobkp αα == )()( . 
The procedure of choosing an action and updating the action probabilities in a variable action-set 

learning automaton can be described as follows. Let )(kA be the action subset selected at instant k . 
Before choosing an action, the probabilities of all the actions in the selected subset are scaled as defined in 
equation (3). The automaton then randomly selects one of its possible actions according to the scaled action 
probability vector )(ˆ kp . Depending on the response received from the environment, the learning 
automaton updates its scaled action probability vector. Note that the probability of the available actions is 
only updated.  Finally, the probability vector of the actions of the chosen subset is rescaled 
as )()1(ˆ)1( kKkpkp ii ⋅+=+ , for all )(kAi ∈α . The absolute expediency and −ε optimality of the 
method described above have been proved in [17]. 

 
3 DLA-BASED WCDS FORMATION ALGORITHM (DLA-CC) 

In this section, a DLA-based centralized approximation algorithm called DLA-CC is proposed for 
finding a near optimal solution to the minimum WCDS problem described in subsection 2.1. In this 
algorithm, a network of learning automata isomorphic to the input unit disk graph ),( EVG  is initially 

formed by assigning to each vertex (e.g., iv ) of the graph a learning automaton (e.g., iA ). The resulting 

network of the learning automata can be described by a duple >< α,A , where },...,,{ 21 nAAAA =  
denotes the set of learning automata corresponding to the vertex-set, n  is the cardinality of the vertex-set 
V , and },...,,{ 21 nαααα = denotes the set of action-sets. };),(|{ , VvEvv jjijii ∈∀∉= αα  

denotes the set of actions that can be taken by the learning automata. In other words, the action-set of 
automaton iA includes all the vertices of the graph which are not adjacent with vertex iv . 

Action ji,α means that vertex iv chooses vertex jv as a dominator. Due to such an action-set formation 
method, some learning automata will have the same actions. The drawback of these common actions is to 
choose the redundant dominators (i.e., the dominators by which no more dominatee nodes can be spanned) 
and the same dominators by different automata. To solve these problems, the proposed algorithm deals with 
the learning automaton with changing number of actions [17]. In this algorithm, each activated learning 
automaton is allowed to prune its action-set by disabling the actions corresponding to the selected 
dominators and their neighbors. This reduction in number of actions increases the convergence speed, and 
consequently, decreases the running time of the proposed algorithm.   

In this algorithm, each vertex (or learning automaton) can be in one of two states active and passive, 
and is initially set to the passive state. The proposed algorithm consists of a number of stages, and at each 
stage, a WCDS is constructed by randomly activating a number of automata in a DLA (Step 1). The action 
probability vector of the activated learning automata is updated on the basis of the optimality of the 
selected WCDS (Steps 2 and 3). The iterative process of constructing the WCDSs continues until a near 
optimal solution to the minimum WCDS problem is found (Step 4). The proposed algorithm has been given 
in more detail in Figure 2. 
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ALGORITHM DLA-CC 
1:Input: Unit Disk Graph ),( EVG , Threshold K , P   
2:Output: The minimum size WCDS 
3:Assumptions: 
4: Assign learning automaton iA  to vertex iv and initially set it in a passive state 

5:  Let iα denotes the action-set of automaton iA  

6: Begin Algorithm 
7:  Let dynamic threshold kT  denotes the cardinality of the smallest WCDS constructed until stage k , 
           and initially set to n      
8:  Let  k  denotes the stage number and is initially set to 0 
9:  Let 0A  be the initial learning automaton whose action-set is vertex-set V  
10:  Repeat 
11:   Let kδ be the set of dominators selected at stage k and initially set to null 

12:   Let kd denotes the set of dominatees, selected at stage k and is initially set to null 

13:   Automaton 0A randomly chooses one of its actions, activates it, denotes it iv and adds it to kδ  

14:   While   ndk <    do 

15:    Add the neighbors of dominator iv to kd  

16:    Update the action probability vector of iA by disabling the actions corresponding to the 

                        vertices in kd  

17:    Automaton iA  randomly chooses one of its actions, activates it, denotes it iv and adds it to kδ  
18:   End while 
19:   If   kk T≤δ   Then 
20:    Reward the actions chosen by the activated learning automata  
21:    kkT δ←             
22:   Else  
23:    Penalize the actions chosen by the activated learning automata  
24:   End if 
25:   Enable all the actions disabled during the current iteration 
26:   Increment stage number k  
27:  Until (The probability of choosing the WCDS is greater than P or the 
            stage number k is greater than threshold K ) 
28:End Algorithm 

 FIGURE 2. ALGORITHM DLA-CC 
 
As shown in Figure 2, graph G , and thresholds K  and P are the input parameters, and the smallest 

WCDS of the input graph is the output of DLA-CC. The k th iteration of DLA-CC can be described as 
follows. The first dominator is selected by automaton 0A . The selected dominator (vertex iv ) and its 
neighbors are added to the dominatee set (i.e., kd ). The automaton corresponding to the selected dominator 

(i.e., automaton iA ) is activated and updates its action-set by disabling the actions corresponding to the 
dominated vertices. Then, this automaton randomly chooses the next dominator. The process of dominator 
selection (Lines 14-18) continues until the number of dominated vertices is equal to the network size (i.e., 

ndk = ). Then, the cardinality of the selected WCDS is compared with dynamic threshold kT . 
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Threshold kT is the cardinality of the smallest WCDS found until stage k . The selected WCDS (i.e., kδ ) is 

penalized if its cardinality is greater than the dynamic threshold kT and rewarded otherwise. At each stage, 
the dynamic threshold is set to the smallest WCDS. As shown in Line 26, at the end of each stage the 
disabled actions must be enabled as described in Section 2.2.3 on variable action-set learning automata. 
Here, the k th iteration of DLA-CC is over.   

As the algorithms proceeds, the automata learn how to choose the dominators so that all the vertices 
are dominated with the minimum number of dominators. The proposed algorithm terminates, if the 
probability of choosing the WCDS is greater than P or the number of stages exceeds pre-specified 
threshold K . It should be noted that the probability of choosing a WCDS is defined as the product of the 
probabilities with which the dominators of WCDS are selected. The WCDS which is formed before the 
algorithm stops is the WCDS with the minimum cardinality among all WCDSs of the graph.       

  
4 THE PROPOSED CLUSTERING ALGORITHM (DLA-DC) 

Since in wireless Ad-Hoc networks, there is neither a fixed infrastructure nor a central administration, 
the centralized algorithms are not feasible in such environments. Moreover, to gather all the required 
information in a certain host, for executing the algorithm, consumes a large number of messages and 
considerably more energy which is a very scarce resource in wireless Ad-Hoc networks [3]. Therefore, in 
this section, a distributed approximation algorithm based on distributed learning automata, called DLA-DC, 
is proposed for clustering the wireless Ad-Hoc networks by finding a near optimal solution to the WCDS 
problem. In fact, the proposed clustering algorithm is a generalization of DLA-CC, in which the minimum 
size cluster-head set (or minimum WCDS of the UDG induced by the network topology) is determined in a 
fully distributed fashion. In this clustering method, the dominator nodes assume the role of the cluster-
heads and their one-hop neighbors (dominatee nodes) the role of the cluster members. At each iteration of 
the clustering algorithm, the network graph is clustered by randomly choosing the dominator nodes as the 
cluster-heads. The learning automata, in an iterative greedy strategy, find a policy that determines the 
minimum size cluster-head set of the network graph. 

In this algorithm, like DLA-CC, a network of the learning automata, isomorphic to the UDG induced 
by the network topology, is first formed by assigning a learning automaton (e.g., iA ) to each host (e.g., 

iH ) of the network. Each host has a unique ID number and knows its neighbors' ID. In this algorithm, to 

form the action-set of learning automaton iA , its corresponding host (i.e., host iH ) sends a message 
locally to its one-hop neighbors. The hosts which are within the transmission range of the sender host, upon 
receiving the message, reply it. The sender forms its action-set on the basis of the received replies. Each 
host by which the message is replied is associated with an action. Let jjii H|{ ,αα = is a neighbor of 

}iH denotes the action-set of learning automaton iA . Action ji,α corresponds to the selection of host jH  

as a cluster-head by host iH . Each host requires the following data structures to participate in the cluster 
formation process: 
max_iteration, a stopping condition for the algorithm as a maximum number of iterations. 
pchs, a threshold required for termination the cluster formation process as the probability of choosing the 
cluster-head set. 
cluster_head_set, a set of the chosen cluster-heads at each iteration. 
cluster_list, a set of hosts in which each member is a one-hop neighbor of at least one host in the 
cluster_head_set. 
prob_vector, a vector of the probability of choosing the members of cluster_head_set. 
min_size, a dynamic threshold contains the cardinality of the smallest cluster_head_set which has been 
selected yet. 
iteration_num, a counter which keeps the number of constructed cluster_head_set. 

The proposed clustering algorithm consists of two phases. Cluster formation (initial clustering) and 
cluster maintenance (or re-clustering). The cluster formation phase is performed when the network starts 
operating, and the cluster maintenance when a cluster-head decides to leave the network or a host can not 
communicate with its cluster-head. The cluster maintenance procedure will be described in Section 4.1. At 
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the end of the initial clustering phase a fully clustered network is created. Since the proposed DLA-based 
clustering algorithm is fully distributed, cluster formation and cluster maintenance procedures can be 
initiated by each of the hosts. During the cluster formation or cluster maintenance procedures, each host 
may receive from or send to the other hosts the following messages: activation, rewarding, penalizing and 
clustering message. When a host (e.g., host iH ) decides to initiate each of the above mentioned 

procedures, it activates its corresponding automaton (i.e., automaton iA ) and chooses one of its actions. 

The probability with which learning automaton iA chooses this action is added to the prob_vector. 

Host iH then sends an activation message to the host (new cluster-head) corresponding to the chosen 
action. 

An activation message includes cluster_list, cluster_head_set, min_size, prob_vector, and 
iteration_num. The state of a given host changes to the active state when it receives an activation message. 
When a given host iH  receives an activation message, it inserts its ID number as a new cluster-head into 
the cluster_head_set, if at least one of its one-hop neighbors is not in the cluster_list. This prevents the 
redundant cluster-heads to be chosen. To update the cluster_list it adds its one-hop neighbors' ID to this list. 
The action-set of learning automaton iA is updated by disabling the actions associated with the cluster-
heads selected so far. As described earlier, this avoids choosing the same cluster-heads by different 
automata, and so improves the convergence speed of algorithm. In this case, if there exist more actions that 
can be taken by learning automaton iA and the cluster_list does not include all the hosts, currently active 

automaton iA chooses one of its actions as a new cluster-head, updates prob_vector by adding the choice 
probability of this action, and sends an activation message to the chosen cluster-head. Otherwise, if the size 
of the cluster_list equals to the network size and the size of the cluster_head_set is less than or equal to 
dynamic threshold min_size, the dynamic threshold is set to the cardinality of the selected cluster_head_set 
and all the chosen actions of the activated automata are rewarded by sending back a rewarding message, 
otherwise they (i.e., the chosen actions of the activated automata) are penalized by sending back a 
penalizing message. 

At the end of each iteration, after rewarding or penalizing the activated automata, the stopping 
condition of the cluster formation (or cluster maintenance) process must be verified. The stopping condition 
is met if the choice probability of the cluster_head_set is less than the certain threshold pchs or 
iteration_num exceeds the per-specified threshold max_iteration. The choice probability of the 
cluster_head_set is calculated as the product of the choice probabilities of the selected cluster-heads based 
on the information contained in prob_vector. If the stopping condition is true, currently active automaton 

iA  initiates a new iteration, randomly chooses a new cluster-head, and sends an activation message to it. 
Otherwise, it generates a clustering message including the last selected cluster_head_set and broadcasts it 
within the network.       

A clustering message includes the cluster_head_set selected during the last iteration. When host iH  

receives a clustering message, it assumes the role of a cluster-head if it finds its ID number in the 
cluster_head_set. It assumes the role of a cluster-member otherwise. 

When activated host iH  receives a rewarding message, it updates its action probability vector by 
rewarding chosen action ji,α  as 

)](1[)()1( ,,, npanpnp jijiji −+=+ , (4) 

where jip , is the probability with which host iH  chooses host jH as a cluster-head, and penalizing the 
other actions ki,α  , for all jk ≠ , as       

jkknpanp kiki ≠∀−=+ )()1()1( ,, . (5) 
After rewarding the chosen action, the scaled action probability vector must be updated once again (or 

rescaled) by enabling all the disabled actions according to the rescaling method described in Section 2.2.3 
on the variable action-set learning automata. 
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Since the reinforcement scheme by which the learning automata update their action probability 
vectors is IRL − , the action probabilities of the activated learning automata remain unchanged when they 
receive a penalizing message. In this case, the disabled actions of each activated learning automaton are 
enabled again.  

 
4.1 CLUSTER MAINTENANCE 

In wireless Ad-Hoc networks, the major resources of the network topology dynamics are the node 
mobility and node failure. In such networks, a host can move freely and randomly anywhere, and so it may 
leave its cluster and join the other at any time. For this reason, in Ad-Hoc networks, the cluster membership 
is highly dynamic and hard to predict due to the frequent network topology changes. Therefore, the cluster 
maintenance (re-clustering) is required to recover the failed clusters.  

In our proposed clustering algorithm, when a host joins the network, it initially sends a JREQ (i.e., 
join request) message to its neighboring hosts and then waits for a certain period of time. Each cluster-head 
replies the received JREQ message by sending back a JREP (i.e., join reply) message. In this method, the 
following cases might occur for a newly joining host. 
• If the newly joining host receives a JREP message, it chooses the sender of the JREP message as its 

cluster-head. 
• If it receives more than one JREP message, it chooses the sender host with the highest ID number as its 

cluster-head. 
• If the newly joining host receives no JREP messages (can not connect to any cluster-heads), it initiates a 

re-clustering process.  
When a cluster-head decides to leave the network, it initiates a re-clustering process. It is clear that no 

re-clustering process is required when a cluster member decides to leave the network. The re-clustering 
process is similar to the initial clustering. 

One of the most important advantages of the proposed clustering scheme is that during the re-
clustering phase, the proposed algorithm (due to using the learning automata) quickly converges to the new 
optimal cluster-head set. That is, the overhead of the re-clustering phase is significantly smaller as 
compared with the initial clustering phase. This is due to the fact that during the initial clustering, the 
choice probability of each cluster-head set candidate grows proportional to its optimality among the other 
candidates. Therefore, in the absence of the optimal cluster-head set, the second optimal cluster-head set 
has the highest probability. Comparing with the initial clustering phase, re-clustering phase requires a 
significantly smaller number of iterations for finding the new optimal cluster-head set. In Ad-Hoc networks 
where the node mobility and node failure frequently change the network topology, the network re-
clustering process is expected to be more frequently used. Therefore, the proposed clustering algorithm 
significantly reduces the cluster maintenance overhead which is an important result in Ad-Hoc networks. 

 
5 COMPLEXITY ANALYSIS OF THE CLUSTERING ALGORITHM 

In this section, to analyze the costs of the proposed clustering method, we compute the worst case 
running time (Theorem 1) and message complexity (Theorem 2) of algorithm DLA-DC to find a )1(1 ε−  
optimal cluster-head set for clustering the network graph. 

  
THEOREM 1. Let OPT denotes the size of the smallest cluster-head set for clustering network graphG , 
and )}(,),({)( 1 kqkqkq rK= is updated according to the proposed clustering algorithm (DLA-DC). The 

time required for finding a |OPT|
1

1
⋅

−ε
 (for 10 << ε ) size cluster-head set (e.g., iω ) in DLA-DC is not 

longer than   
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where )(kqi  denotes the probability of choosing cluster-head set iω at stage k , )1,0(∈ε is the error 
rate of algorithm denoted as pchs−1  in DLA-DC, a denotes the learning rate of algorithm, n  is the 
number of hosts in the network graph, and r is the number of  cluster-head sets. 
 
PROOF.  Let iq be the initial probability of choosing cluster-head set iω , and jp be the initial probability 

of choosing host jH  as a cluster-head. The worst case occurs when all the other cluster-head sets to be 

chosen before the smallest cluster-head set iω . In this case, the learning process can be divided into two 
distinct phases. In the first phase, called shrinking phase, it is assumed that all the other cluster-head sets to 
be chosen, from the largest to the smallest, and so rewarded before iω . Such an ordered (cluster-head set) 

selection procedure decreases the probability of choosing iω  no more than that given in inequality (6). The 

second phase called growing phase is started when the cluster-head set iω is chosen for the first time. 

According to the proposed algorithm, during the growing phase, the probability of penalizing iω , and 
rewarding the other cluster-head sets is zero. Furthermore, since the reinforcement scheme by which the 
proposed algorithm updates the probability vectors is IRL − , the conditional expectation of )(kqi (i.e., the 

probability of choosing cluster-head set iω at stage k ),  remains unchanged when the other cluster-head 

sets are penalized, and it increases only when iω  is rewarded. In other words, during the growing phase, 

the changes in the conditional expectation of )(kqi  is always non-negative and given in equation (7). As 
described in the proposed algorithm, the growing phase is continued until the probability of choosing 
cluster-head set iω is greater than or equal to ε−1 . Let s

iq  denotes the probability of choosing cluster-head 

set iω at the beginning of the shrinking phase (i.e., the initial value of iq ), and a denotes the learning rate 
of the proposed algorithm. Therefore, during the shrinking phase, the probability of choosing cluster-head 
set iω changes as 

( ) ( ) ( )ms
i

s
i arqrq −⋅−≥ 11  (6) 

where r is the number of all possible cluster-head sets, and m  denotes the average size of the cluster-head 
sets. Substituting recurrence function )1( −rqs

i in inequality above, we have 

( ) ( ) ( ) ms
i

s
i arqrq 212 −⋅−≥   

By repeatedly applying inequality (6) )1( −r times, we obtain  

( ) ( ) mrs
i

s
i aqrq ⋅−−⋅≥− )1(11   

where ( )1−rqs
i denotes the probability of choosing cluster-head set iω at the end of the shrinking phase. 

For the sake of simplicity in notation, ( )1−rqs
i  is substituted by g

iq , where ∏
∈

−−=
ijH

r
j

g
i apq

ω

)1()1( is 

the probability of choosing iω  at the beginning of the growing phase, and )1()1( −− r
j ap  is substituted 

by jρ . As mentioned earlier, in the growing period, g
iq  increases, if iω is rewarded, and remains 

unchanged otherwise. Thus, during this phase, the probability of choosing cluster-head set iω increases as 
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where jρ denotes the probability of choosing host jH  as a cluster-head at the beginning of the growing 

phase, and ( )kq g
i denotes the probability with which cluster-head set iω  is chosen at the end of the 

growing phase, which according to the theorem, it is assumed to ε−1 . After some algebraic simplification, 
we have  
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Hence, we have 
( ) ( ) ( ) ( )∏

∈
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g
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Substituting jρ  by )1()1( −− r
j ap , we have 

( ) ( ) ( ) ( )∏
∈

−−+ +−⋅++−⋅+−⋅≥
ijH
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j

g
i aaaaaapkq

ω

111 11
L  (9) 

where k denotes the number of times cluster-head set iω must be selected until 

( ) ε−=1kq g
i  (10) 

From inequality (9), it follows that, the running time (the number of iteration) of the proposed 
algorithm is computed, if we find a value of k  (for a given learning rate a ) under which the condition 
given in equation (10) to be satisfied. From equation (8) we have 
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The second term on the right hand side of equation (12) is a geometric series that sums up to 
( ) ( )( )aaa k −−−−⋅ 1111 , where 11 <− a . Therefore, we have 
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From equation (10) and (13) we have 
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we have 
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Taking a−1log of both sides of equation (14), we derive 
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and thus the number of times iω is rewarded in the growing phase, apart from penalizing the other cluster-
head sets, is obtained as 
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Since during the growing phase, g
iq  remains unchanged when the other cluster-head sets are 

penalized, k does not include the number of times the other cluster-head sets are chosen and this should be 
separately calculated based on k . Let g

iq  be the probability of choosing cluster-head set iω at the 

beginning of the growing phase, and reaches 1 ε−  (or PCHS  in DLA-DC) after k  iterations. On the 
other hand, the probability of choosing the other cluster-head sets is initially g

iq−1 , and reachesε after the 
same number of iterations. Thus, the number of times the other cluster-head sets are chosen (before 
satisfying the condition given in equation (10)) is obtained as  
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After some algebraic manipulations, the total number of iterations required in the growing phase of 
the proposed algorithm (i.e.,Κ ) to satisfy the condition given in equation (10) is obtained as  
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By substituting k  from equation (15) and we have 
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From equation (16), the running time of the growing phase can be estimated. Since the worst case of 
the algorithm occurs when (in the shrinking phase) all the other cluster-head sets to be chosen before iω , 
the running time of the shrinking phase is always less than r . Therefore, we have   
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which completes the proof of this theorem.                                                                                                     ■ 
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THEOREM 2. The message complexity of the proposed clustering algorithm for finding a |OPT|
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where OPT denotes the size of the minimum cluster-head set (optimal solution to the WCDS problem), 
)(kqi  denotes the probability of choosing cluster-head set iω at stage k , )1,0(∈ε is the error rate of 

algorithm, a denotes the learning rate of algorithm, n  is the number of hosts in the network graph, and 
r is the number of  cluster-head sets. 
 
PROOF. As proved in Theorem 1, the running time (number of iterations) of the proposed clustering 

algorithm to find a |OPT|
1
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Furthermore, as described in section 5, at each iteration of the clustering algorithm, the number of 
messages needs to be sent to form a cluster-head set is equal to the number of hosts in the selected cluster-
head set. Hence, the message complexity of the clustering algorithm is smaller than 
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where m  is the average size of the cluster-head set, and hence the proof of the theorem is completed.       ■ 
 
The immediate conclusion of Theorem 1 and Theorem 2 is that a trade-off between the running time 

and message complexity of the proposed clustering algorithm with the cluster-head set size (clustering 
optimality) can be made by a proper choice of the learning rate of algorithm. This is a worthwhile 
superiority of the proposed algorithm over the other clustering methods. That is, choosing a proper learning 
rate for the proposed clustering algorithm results in finding a near optimal cluster-head set in a reasonable 
running time and message complexity, regarding the constraints of the Ad-Hoc networks. 

 
6 EXPERIMENTAL RESULTS 

In this section, we have conducted several simulation experiments in two groups to study the 
performance of the proposed algorithms. In the first group of our experiments (Experiment I), we 
investigate the effectiveness of the DLA-CC in terms of the dominating set size (i.e., size of the WCDS) as 
compared with centralized algorithms. In the second group (Experiment II, III), we measure the 
performance of the proposed clustering algorithm (DLA-DC) in terms of the cluster-head set size and 
message overhead, and compare the obtained results with those of the best WCDS-based clustering 
algorithms. 

In our simulation experiments, each host is modeled as an infinite-buffer, store-and forward queuing 
station. The IEEE 802.11 DCF (Distributed Coordination Function) with CSMA/CA (Carrier Sense 
Multiple Access/Collision Avoidance) is used as the medium access control protocol, and two ray ground 
as the propagation model. The wireless hosts communicate through a common broadcast channel of 
capacity 2(Mb/s) using omnidirectional antennas. We first randomly distribute the hosts in the simulation 
square area. After distributing the hosts, we will check whether they form a connected graph. We only 
construct the WCDS (cluster-head set) on the connected graphs. The results presented in this paper are 
averaged over 100 independent runs on the connected graphs. In all simulations, the learning parameter is 
fixed at 0.2, and each algorithm is terminated when the probability of choosing the weakly connected 
dominating set becomes greater than 0.90. That is P in DLA-CC and pchs in DLA-DC are set to 0.9. 
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6.1 EXPERIMENT I 

This experiment is conducted to study the performance of DLA-CC in terms of the dominating set 
size. The results of DLA-CC are compared with those of Guha I [11], Guha II [11] and WCDS-CTR [7]. 
To generate the random graphs, a number of vertices are uniformly distributed in a two-dimensional 
simulation area of size 100100×  at random. We assume that a link is established between every two 
vertices, if the distance between them is not longer than R . In this experiment, we first set distance R  to 
15, and change the number of nodes from 60 to 200 with increment step of 20. The obtained results are 
shown in Figure 3. 

From the results shown in Figure 3, it is clear that Guha I always constructs the largest WCDSs, and 
so is ranked lower the other algorithms. The size of the WCDSs generated by Guha II is only slightly 
smaller than Guha I, but considerably larger than WCDS-CTR. The results also show that the size of the 
weakly connected dominating set constructed by DLA-CC is significantly smaller than that of WCDS-
CTR. Therefore, DLA-CC outperforms the other algorithms. The results show that the number of 
dominators increases as the number of nodes increases.  
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FIGURE 3. THE AVERAGE SIZE OF THE WCDS CONSTRUCTED BY THE CENTRALIZED ALGORITHMS, WHEN 

DISTANCE R  IS 15
 
Then, we change distance R  to 30 and repeat the same experiments. The results are shown in Figure 

4. Like Figure 3, the results shown in Figure 4 show that the proposed centralized algorithm (i.e., DLA-CC) 
considerably outperforms the other algorithms, WCDS-CTR is ranked below DLA-CC, and Guah I and 
Guha II lag far behind. Comparing the results shown in Figure 4 with Figure 3, we observe that for all 
algorithms the average size of the WCDS becomes smaller when R  increases. The reason for this reduction 
is that the number of neighbors of a dominator increases when distance R  increases. Therefore, the graph 
nodes can be thoroughly dominated by a less number of the dominators. From Figures 3 and 4, it can be 
seen that the gap between the curves for our proposed algorithm and the curves for the other centralized 
algorithms becomes significant as the number of nodes increases.  
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FIGURE 4. THE AVERAGE SIZE OF THE WCDS AS A FUNCTION OF NUMBER OF NODES WHEN DISTANCE R  IS 30

   
6.2 EXPERIMENT II 

This experiment is conducted to study the performance of DLA-DC in terms of the cluster-head set 
size. The network size, simulation square area size, and the radio transmission range are three correlated 
parameters that affect the number of clusters. In this experiment, we investigate the impact of the above 
mentioned parameters on the proposed clustering algorithm. The results of DLA-DC are compared with 
those of Min ID[3], Max Degree[3], WCDS-DST[7], and AWF[9] which are the best WCDS-based 
clustering algorithms. 

In Experiment II, the radio transmission range is initially set to 15 and the number of hosts changes 
from 60 to 200 with increment step of 20. The simulation square area size is fixed at 100100× . The 
obtained results are shown in Figure 5. Then, we change the radio transmission range to 30 and repeat the 
same experiment. The results are shown in Figure 6.   

0

10

20

30

40

50

60

70

80

60 80 100 120 140 160 180 200
Number of Hosts

C
lu

st
er

-H
ea

d 
Se

t S
iz

e

0

10

20

30

40

50

60

70

80
60 80 100 120 140 160 180 200

Min ID AWF
WCDS-DST DLA-DC
Max Degree

 
FIGURE 5. THE AVERAGE CLUSTER-HEAD SET SIZE AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO 

TRANSMISSION RANGE IS 15
 
From Figures 5 and 6, it is clear that among the previous clustering algorithms, WCDS-DC and AWF 

construct the smallest and largest cluster-head sets respectively. The results show that the size of the 
cluster-head set constructed by WCDS-DC is nearly four times larger than that constructed by our proposed 
algorithm, DLA-DC. For instance, the size of the cluster-head set constructed by DLA-DC is 6.76, when 
the number of hosts is 100 and the radio transmission range is 15, while that of WCDS-DC is 21.9, which is 
3.2 times larger than our obtained result. Therefore, we conclude that our proposed algorithm significantly 
outperforms the other algorithms in terms of the cluster-head set size. From the results shown in these 
figures, we also see that the average size of the cluster-head sets constructed by Max Degree is slightly 
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smaller than that of Min ID, especially as the number of hosts increases. So, Max Degree is ranked lower 
than WCDS-DC. 

Comparing the results shown in Figure 5 with figure 6, we find that the size of the cluster-head set 
decreases as the number of hosts increases. As mentioned in Experiment I, this is because a cluster-head 
with a larger radio transmission range is capable of covering more hosts and so the whole network can be 
covered by a smaller cluster-head set (or by a less number of cluster-heads). When the size of the 
simulation square area grows, the hosts are distributed in a larger area. This causes a smaller number of 
hosts can be covered by each cluster-head. Therefore, it is expected that the size of the cluster-head set 
increases as the simulation square area increases. 
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FIGURE 6. THE AVERAGE CLUSTER-HEAD SET SIZE AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO 

TRANSMISSION RANGE IS 30
 
To study the scalability of the clustering algorithms, they are tested on the dense network graphs. In 

this part of Experiment II, the number of hosts ranges from 200 to 1000 with increment step of 100, and the 
radio transmission range is set to 15 and 30, respectively. The simulation results are depicted in Figures 7 
and 10. Comparing the average size of the cluster-head set constructed by DLA-DC with that of the other 
clustering algorithms, we observe that the proposed clustering algorithm significantly outperforms the other 
algorithms. It can be seen that the ranking given for the clustering algorithms with the sparse network 
graphs remains unchanged, and DLA-DC is ranked above the other algorithms and AWF below them. As 
expected, comparing the results shown in Figures 7 and 8, we observe that the size of the cluster-head set 
reduces as the radio transmission range increases.  
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FIGURE 7. THE AVERAGE CLUSTER-HEAD SET SIZE AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO 

TRANSMISSION RANGE IS 15
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FIGURE 8. THE AVERAGE CLUSTER-HEAD SET SIZE AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO 

TRANSMISSION RANGE IS 30 
 
6.3 EXPERIMENT III 

In Ad-Hoc networks, the hosts suffer from the strict resource limitations (e.g., power and bandwidth 
resources). Therefore, message overhead is one of the key issues in designing the Ad-Hoc protocols that 
must be kept as low as possible. This experiment is conducted to study the message overhead of DLA-DC 
in comparison with Min ID, Max Degree, and AWF. Figures 9 and 10 show the message overhead (in 
bytes) as a function of the number of hosts when the radio transmission range is set to 15 and 30, 
respectively. As shown in Figures 9 and 10, for all clustering algorithms the message overhead increases as 
the number of hosts (network size) increases. From the results shown in Figure 9, it can be seen that Min 
ID outperforms AWF and Max degree. The results show that Min ID also performs better than DLA-DC, 
when the number of hosts is less than 600. However, the message overhead of DLA-DC becomes smaller 
than that of Min ID as the number of hosts exceeds 600. Comparing the results shown in Figures 9 and 10 
for different radio transmission ranges, we observe that the message overhead of all algorithms decreases as 
the radio transmission range increases. As shown in Figure 10, in most cases DLA-DC outperforms the 
other algorithms, Min ID and Max Degree are ranked below it, and AWF has the highest message 
overhead. It can be also seen that the gap between the curves for DLA-DC and Max Degree (or Min ID) 
becomes significant as the number of hosts increases.        
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FIGURE 9. THE MESSAGE OVERHEAD AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO TRANSMISSION 

RANGE IS 15 
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FIGURE 10. THE MESSAGE OVERHEAD AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO TRANSMISSION 

RANGE IS 30 

7 CONCLUSION 
The network clustering is a method by which the hosts are hierarchically organized on the basis of the 

proximity, and the hierarchical structure thus formed abstracts the large scale networks so that the hosts can 
be simply and locally organized. In this paper, we first proposed a DLA-based centralized algorithm (DLA-
CC) for solving the minimum WCDS problem. Since finding the weakly connected dominating set is a 
well-known approach for clustering the wireless Ad-Hoc networks, we also proposed an approximation 
algorithm (DLA-DC) for clustering the wireless Ad-Hoc networks. The proposed clustering algorithm is a 
distributed implementation of DLA-CC in which the dominators assume the role of the cluster-heads and 
their one-hop neighbors play the role of the cluster members. In this paper, we also found an upper bound 
on the running time and message complexity of the proposed clustering algorithm for finding a near 
optimal size cluster-head set. It was shown that by a proper choice of the learning rate of the clustering 
algorithm, a trade-off between the running time and message complexity of algorithm with the cluster-head 
set size (clustering optimality) can be made. The simulation results showed the superiority of the proposed 
algorithms over the previous methods. 
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