

CLUSTERING THE WIRELESS AD-HOC NETWORKS:
A DISTRIBUTED LEARNING AUTOMATA APPROACH

Javad Akbari Torkestani
Department of Computer Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran

j-akbari@iau-arak.ac.ir

Mohammd Reza Meybodi
Department of Computer Engineering and IT, Amirkabir University of Technology, Tehran, Iran

Institute for Studies in Theoretical Physics and Mathematics (IPM), School of Computer Science, Tehran, Iran
mmeybodi@aut.ac.ir

ABSTRACT
In Ad-Hoc networks, the performance is significantly degraded as the size of the network grows. The
network clustering by which the nodes are hierarchically organized on the basis of the proximity relieves
this performance degradation. Finding the weakly connected dominating set (WCDS) is a promising
approach for clustering the wireless Ad-Hoc networks. Finding the minimum WCDS in the unit disk graph
is an NP-Hard problem, and a host of approximation algorithms have been proposed. In this paper, we first
proposed a centralized approximation algorithm called DLA-CC based on distributed learning automata
(DLA) for finding a near optimal solution to the minimum WCDS problem. Then, we propose a DLA-
based clustering algorithm called DLA-DC for clustering the wireless Ad-Hoc networks. The proposed
cluster formation algorithm is a distributed implementation of DLA-CC, in which the dominator nodes and
their closed neighbors assume the role of the cluster-heads and cluster members, respectively. In this paper,
we compute the worst case running time and message complexity of the clustering algorithm for finding a
near optimal cluster-head set. We argue that by a proper choice of the learning rate of the clustering
algorithm, a trade-off between the running time and message complexity of algorithm with the cluster-head
set size (clustering optimality) can be made. The simulation results show the superiority of the proposed
algorithms over the existing methods.

KEYWORDS Wireless Ad-Hoc networks, clustering, weakly connected dominating set, distributed
learning automata

1 INTRODUCTION

A wireless Ad-Hoc network is a multi hop wireless communication network supporting a collection
of mobile hosts. There is no fixed infrastructure and no central administration and the mobile hosts can
form a temporary network infrastructure in an Ad-Hoc fashion. Two hosts can directly communicate when
they are within transmission range of each other, and indirectly through relaying by the intermediate hosts.
In an Ad-Hoc network, each host assumes the role of a router and relays the packets toward the final destinations, if a
source can not directly send the packets to a final destination due to the limitation of the radio transmission
range. Since the wireless Ad-Hoc networks exhibit severe resource constraints such as the bandwidth and
power limitations, network topology changes, and the lack of the fixed infrastructures and consequently,

J. AKBARI TORKESTANI & M. R. MEYBODI 2

centralized administrations, to achieve good performance in Ad-Hoc networks, the load on the hosts should
be kept as low as possible[3, 22].

The network performance is significantly degraded as the network becomes larger, and the theoretical
analyses [2] show that even under the optimal circumstances, the throughput of each host rapidly declines
towards zero as the network size increases. Among the solutions proposed for solving the scalability
problem in ah doc networks, the cluster formation approach has attracted a lot of attention. The main idea
behind the clustering approach is to group together the network hosts that are in physical proximity, to
achieve scalability and efficiency. The clusters provide a hierarchical structure to abstract the large scale
networks which can be simply and locally organized [4, 7]. A clustering algorithm is a method of dividing
the network into clusters so that every cluster includes a cluster-head and the hosts that can directly
communicate with the cluster-head. Unpredictable topology changes due to the mobility of hosts, and
resource limitations (e.g., bandwidth and power limitations) are important features of the wireless Ad-Hoc
networks. Due to the limitations of the Ad-Hoc networks, having a small number of the cluster-heads and
also minimizing the modifications of the cluster-heads are desired. The most basic clustering methods that
have been studied in the context of Ad-Hoc networks are based on the dominating sets. Finding the
minimum WCDS of the network graph is one of the most investigated methods for cluster formation in
which a dominator node assumes the role of a cluster-head and its one-hop neighbors are assumed to be
cluster members. The structure of the network graph can be simplified using WCDS and made more
succinct for routing in Ad-Hoc networks [12, 14].

Clustering the Ad-Hoc networks based on the weakly connected dominating sets was first proposed
by Chen and Listman [7, 32]. The distributed approximation clustering algorithm proposed by Chen and
Listman is also inspired by Guha and Khuller’s [11] centralized approximation algorithm for finding small
connected dominating sets (CDS). Guha and Khuller [11] proposed two centralized greedy heuristic
algorithms with bounded performance guarantees for connected dominating set formation. In the first
algorithm, the connected dominating set is grown from one node outward, and in the second algorithm, a
WCDS is constructed, and then the intermediate nodes are selected to create a CDS. Chen and Listman also
proposed a zonal algorithm [1, 8], in which the graph is divided into regions, a WCDS is constructed for
each region, and adjustments are made along the borders of the regions to produce a WCDS for the whole
graph. Their algorithm for the partitioning phase is partly based on a Minimum Spanning Tree (MST)
algorithm of Gallager et al. [10]. Han and Jia [3] also proposed an area-based distributed algorithm for
WCDS construction in Ad-Hoc networks with constant approximation ratio, linear time and message
complexity. While it has a lower message complexity than the zonal algorithm proposed by Chen and
Listman, it outperforms the mentioned algorithm. Alzoubi et al. [9] presented two distributed algorithms for
finding a WCDS in Ad-Hoc networks. The first algorithm was implemented by first electing a leader
among the nodes, which was going to be the root of a spanning tree. The spanning tree is then traversed and
the dominator nodes are selected. But the distributed leader election is extremely expensive in practice, and
exhibits a very low degree of parallelism. The second algorithm first constructs a maximum independent
set (MIS) by an iterative labeling strategy, and then modifies the MIS by selecting one intermediate node
between each pair of dominators separated by exactly three hops.

In this paper, we first propose a DLA-based centralized approximation algorithm called DLA-CC for
solving the minimum WCDS problem in a unit disk graph. Finding the weakly connected dominating set is
a well-known approach for cluster formation in wireless Ad-Hoc networks. In Ad-Hoc networks, there is
neither a fixed infrastructure nor a central administration, and so the centralized algorithms (like DLA-CC)
are not applicable in such environments. Therefore, in the second part of this paper, we propose a
distributed version of DLA-CC called DLA-DC for clustering the wireless Ad-Hoc networks. The proposed
clustering algorithm aims at finding a near optimal solution to the minimum WCDS in a distributed
fashion. This domination set is called the cluster-head set. In this method, the dominator nodes play the role
of the cluster-heads and their one-hop neighbors assume the role of the cluster members. Each of the
proposed algorithms consists of a number of stages, and at each stage, a WCDS is constructed by randomly
activating a number of automata in a DLA. As the proposed algorithms approach to the end, the learning
automata tend to an action selection policy that determines the minimum size cluster-head set (or WCDS)
with the highest probability. In this paper, we estimate an upper bound on the running time (the number of
iterations) and the message complexity of the proposed clustering algorithm for finding a)1(1 ε− optimal
cluster-head set. We also show that by a proper choice of the learning rate of the clustering algorithm, a
trade-off between the running time and message complexity of algorithm with the cluster-head set size
(clustering optimality) is made. To show the efficiency of DLA-CC, it is compared with

 JOURNAL OF PARALLEL & DISTRIBUTED COMPUTING3

Guha I[11], Guha II[11], and WCDS-CTR [7]. The simulation experiments show the superiority of
DLA-CC over the others in terms of the cardinality of the WCDS (i.e., the number of dominators). We also
compare the proposed clustering algorithm (DLA-DC) with Min ID[3], Max Degree[3], WCDS-DST[7],
and AWF[9] in terms of the cluster-head set size and the message overhead of algorithm. The obtained
results show that DLA-DC outperforms the best existing WCDS-based clustering algorithms.

The rest of the paper is organized as follows. In the next section, the WCDS problem formulation,
learning automata and some preliminaries are presented. In section 3, a centralized DLA-based
approximation algorithm is proposed to solve the minimum WCDS problem in a unit disk graph. In section
4, a DLA-based distributed algorithm is proposed for clustering the wireless Ad-Hoc networks. The worst
case running time and message complexity of the proposed clustering algorithm is computed in section 5.
In section 6, the performance of the proposed algorithms is evaluated through the simulation experiments,
and section 7 concludes the paper.

2 PRELIMINARIES

In this section, some preliminaries on dominating sets and weakly connected dominating set problem,
learning automata and some of its variations are presented.

2.1 DOMINATING SETS

A wireless Ad-Hoc network can be modeled as a unit disk graph),(EVG = , where the hosts
represent the individual hosts and an edge connects two hosts if the corresponding hosts are within
transmission range of each other. The closed neighborhood][vN consists of the hosts adjacent to v and

host v itself. The closed neighborhood][SN of the set S is the unionU Sv
vN

∈
][. A dominating set (DS)

of a graph),(EVG = is a host subset VS ⊆ , such that every host Vv ⊆ is either in S or adjacent to a
host of S . A host of S is said to dominate itself and all adjacent hosts. A minimum DS (MDS) is a DS
with the minimum cardinality. A dominating set is also an independent dominating set, if no two hosts in
the set are adjacent. A connected dominating set (CDS) S of a given graph G is a dominating set whose
induced sub graph, denoted >< S , is connected, and a minimum CDS (MCDS) is a CDS with the
minimum cardinality. A MCDS forms a virtual backbone in the graph by which the routing overhead can
be significantly reduced, where the number of hosts responsible for routing can be reduced to the number
of hosts in the backbone. The MDS and MCDS problems are known as NP-Hard problems [5, 6], and even
for a unit disk graph, the problem of finding a MCDS is also NP-Hard [6].

A dominating set S is a weakly connected dominating set (WCDS) of a graphG , if the
graph))][(],[(SSNESNS W ×∩=>< is a connected sub graph ofG . In other words, the weakly

induced sub graph WS >< contains the hosts of S , their neighbors, and all edges with at least one endpoint

in S . A sample UDG and one of its WCDS are shown in Figures 1.A and 1.B, respectively. The dominator
nodes assume the role of the cluster-heads and they have been colored black.

FIGURE 1.B. THE WEAKLY CONNECTED DOMINATING

SET
FIGURE 1.A. A SAMPLE UNIT DISK GRAPH

J. AKBARI TORKESTANI & M. R. MEYBODI 4

It is assumed that, the Ad-Hoc network comprises a group of wireless hosts communicating through a
common broadcast channel using omnidirectional antennas and all hosts have the same transmission range.
That is, the corresponding topology graph is a unit disk graph. Scheduling of transmissions is the
responsibility of the MAC layer, and like many existing approaches, we are not concerned with the issues
of using a shared wireless channel to send the messages avoiding the collisions and contentions. Each host
has a unique ID number (e.g., IP address) and also needs to know the ID number of all other hosts.

Each node of a WCDS is said to be a dominator node and its corresponding host in an Ad-Hoc
network a cluster-head. Two hosts vu, are connected by a link),(vu and are said to be neighbors, if there
exists a direct bidirectional communication channel connecting u and v , and so the network graph is
assumed to be undirected.

2.2 LEARNING AUTOMATA, DISTRIBUTED LEARNING AUTOMATA AND VARIABLE

ACTION-SET LEARNING AUTOMATA
2.2.1. LEARNING AUTOMATA

A learning automaton [15-21] is an adaptive decision-making unit that improves its performance by
learning how to choose the optimal action from a finite set of allowed actions through repeated interactions
with a random environment. The action is chosen at random based on a probability distribution kept over
the action-set and at each instant the given action is served as the input to the random environment. The
environment responds the taken action in turn with a reinforcement signal. The action probability vector is
updated based on the reinforcement feedback from the environment. The objective of a learning automaton
is to find the optimal action from the action-set so that the average penalty received from the environment
is minimized [15].

The environment can be described by a triple },,{ cE βα≡ , where },...,,{ 21 rαααα ≡ represents
the finite set of the inputs, },...,,{ 21 mββββ ≡ denotes the set of the values can be taken by the

reinforcement signal, and },...,,{ 21 rcccc ≡ denotes the set of the penalty probabilities, where the

element ic is associated with the given action iα . If the penalty probabilities are constant, the random
environment is said to be a stationary random environment, and if they vary with time, the environment is
called a non stationary environment. The environments depending on the nature of the reinforcement signal
β can be classified into P -model, Q -model and S -model. The environments in which the reinforcement

signal can only take two binary values 0 and 1 are referred to as P -model environments. Another class of
the environment allows a finite number of the values in the interval [0, 1] can be taken by the reinforcement
signal. Such an environment is referred to as Q -model environment. In S -model environments, the
reinforcement signal lies in the interval],[ba .

 Learning automata can be classified into two main families [15-20]: fixed structure learning
automata and variable structure learning automata. Variable structure learning automata are represented by
a triple >< T,,αβ , where β is the set of inputs, α is the set of actions, and T is learning algorithm.
The learning algorithm is a recurrence relation which is used to modify the action probability vector. Let

)(kα and)(kp denote the action chosen at instant k and the action probability vector on which the chosen
action is based, respectively. The recurrence equation shown by (1) and (2) is a linear learning algorithm by
which the action probability vector p is updated. Let)(kiα be the action chosen by the automaton at

instant k .

⎪⎩

⎪
⎨
⎧

≠∀−

=−+
=+

ijjnpa
ijnpanp

np
j

jj
j)()1(

)](1[)(
)1((1)

when the taken action is rewarded by the environment (i.e. 0)(=nβ) and

⎪⎩

⎪
⎨
⎧

≠∀−+
−

=−
=+

ijjnpb
r

b

ijnpb
np

j

j

j)()1()
1

(

)()1(
)1((2)

 JOURNAL OF PARALLEL & DISTRIBUTED COMPUTING5

When the taken action is penalized by the environment (i.e. 1)(=nβ). r is the number of actions
can be chosen by the automaton,)(ka and)(kb denote the reward and penalty parameters and determine
the amount of increases and decreases of the action probabilities, respectively. If)()(kbka = , the

recurrence equations (1) and (2) are called linear reward-penalty (PRL −) algorithm, if)()(kbka >> the

given equations are called linear reward-ε penalty (PRL ε−), and finally if 0)(=kb they are called linear

reward-Inaction (IRL −). In the latter case, the action probability vectors remain unchanged when the taken
action is penalized by the environment.

Learning automata is proved to perform well in the dynamic environments of wireless, Ad-Hoc and
sensor networks. Haleem and Chandramouli [23] used learning automata to address a cross-layer design for
joint user scheduling and adaptive rate control for downlink wireless transmission. The proposed method
tends to ensure that user defined rate requests are satisfied by the right combination of transmission
schedules and rate selections. Nicopolitidis et al. [24] proposed a bit rate control mechanism based on
learning automata for broadcasting data items in wireless networks. A learning automaton is used in the
server which learns the demand of wireless clients for each data item. As a result of this learning, the server
is able to transmit more demanded data items by the network more frequently. The same authors [25]
proposed a learning automata based polling protocol for wireless LANs in which the access point uses a
learning automaton to assign to each station a portion of the bandwidth proportional to the station's need. A
decentralized approach of the above method is also given [26, 27]. Ravana and Morthy [28] proposed
Learning-TCP, a novel learning automata based reliable transport protocol for wireless networks, which
efficiently adjusts the congestion window size and thus reduces the packet losses. Learning automata is also
used in cellular radio networks to dynamically adjusting the number of guard channels [29, 30, 31].

2.2.2. DISTRIBUTED LEARNING AUTOMATA

A Distributed learning automata (DLA) [21] is a network of the learning automata which collectively
cooperate to solve a particular problem. Formally, a DLA can be defined by a quadruple >< 0,,, ATEA ,

where },...,{ 1 nAAA = is the set of learning automata, AAE ×⊂ is the set of the edges in which edge

),(jie corresponds to the action ijα of the automaton iA , T is the set of learning schemes with which the

learning automata update their action probability vectors, and 0A is the root automaton of DLA from which
the automaton activation is started .

The operation of a DLA can be described as follows: At first, the root automaton randomly chooses
one of its outgoing edges (actions) according to its action probabilities and activates the learning automaton
at the other end of the selected edge. The activated automaton also randomly selects an action which results
in activation of another automaton. The process of choosing the actions and activating the automata is
continued until a leaf automaton (an automaton which interacts to the environment) is reached. The chosen
actions, along the path induced by the activated automata between the root and leaf, are applied to the
random environment. The environment evaluates the applied actions and emits a reinforcement signal to
the DLA. The activated learning automata along the chosen path update their action probability vectors on
the basis of the reinforcement signal by using the learning schemes. The paths from the unique root
automaton to one of the leaf automata are selected until the probability with which one of the paths is
chosen is close enough to unity. Each DLA has exactly one root automaton which is always activated, and
at least one leaf automaton which is activated probabilistically.

2.2.3. VARIABLE ACTION-SET LEARNING AUTOMATA

A variable action-set learning automaton is an automaton in which the number of actions available at
each instant changes with time. It has been shown in [17] that a learning automaton with a changing number
of actions is absolutely expedient and alsoε -optimal, when the reinforcement scheme is IRL − . Such an

automaton has a finite set of n actions, },...,,{ 21 nαααα = . },...,,{ 21 mAAAA = denotes the set of

action subsets and α⊆)(kA is the subset of all the actions can be chosen by the learning automaton, at
each instant k . The selection of the particular action subsets is randomly made by an external agency

J. AKBARI TORKESTANI & M. R. MEYBODI 6

according to the probability distribution)}(),...,(),({)(21 kkkk mψψψψ = defined over the possible

subsets of the actions, where]121,|)([)(−≤≤∈== n
iii iAAAkAprobkψ .

[])(),(|)()(ˆ kAkAkprobkp iii ∈== ααα is the probability of choosing action iα , conditioned on

the event that the action subset)(kA has already been selected and also)(kAi ∈α . The scaled

probability)(ˆ kpi is defined as

)(/)()(ˆ kKkpkp ii = (3)

where ∑
∈

=
)(

)()(
kA

i
i

kpkK
α

 is the sum of the probabilities of the actions in subset)(kA ,and

[]ii kprobkp αα ==)()(.
The procedure of choosing an action and updating the action probabilities in a variable action-set

learning automaton can be described as follows. Let)(kA be the action subset selected at instant k .
Before choosing an action, the probabilities of all the actions in the selected subset are scaled as defined in
equation (3). The automaton then randomly selects one of its possible actions according to the scaled action
probability vector)(ˆ kp . Depending on the response received from the environment, the learning
automaton updates its scaled action probability vector. Note that the probability of the available actions is
only updated. Finally, the probability vector of the actions of the chosen subset is rescaled
as)()1(ˆ)1(kKkpkp ii ⋅+=+ , for all)(kAi ∈α . The absolute expediency and −ε optimality of the
method described above have been proved in [17].

3 DLA-BASED WCDS FORMATION ALGORITHM (DLA-CC)

In this section, a DLA-based centralized approximation algorithm called DLA-CC is proposed for
finding a near optimal solution to the minimum WCDS problem described in subsection 2.1. In this
algorithm, a network of learning automata isomorphic to the input unit disk graph),(EVG is initially

formed by assigning to each vertex (e.g., iv) of the graph a learning automaton (e.g., iA). The resulting

network of the learning automata can be described by a duple >< α,A , where },...,,{ 21 nAAAA =
denotes the set of learning automata corresponding to the vertex-set, n is the cardinality of the vertex-set
V , and },...,,{ 21 nαααα = denotes the set of action-sets. };),(|{ , VvEvv jjijii ∈∀∉= αα

denotes the set of actions that can be taken by the learning automata. In other words, the action-set of
automaton iA includes all the vertices of the graph which are not adjacent with vertex iv .

Action ji,α means that vertex iv chooses vertex jv as a dominator. Due to such an action-set formation
method, some learning automata will have the same actions. The drawback of these common actions is to
choose the redundant dominators (i.e., the dominators by which no more dominatee nodes can be spanned)
and the same dominators by different automata. To solve these problems, the proposed algorithm deals with
the learning automaton with changing number of actions [17]. In this algorithm, each activated learning
automaton is allowed to prune its action-set by disabling the actions corresponding to the selected
dominators and their neighbors. This reduction in number of actions increases the convergence speed, and
consequently, decreases the running time of the proposed algorithm.

In this algorithm, each vertex (or learning automaton) can be in one of two states active and passive,
and is initially set to the passive state. The proposed algorithm consists of a number of stages, and at each
stage, a WCDS is constructed by randomly activating a number of automata in a DLA (Step 1). The action
probability vector of the activated learning automata is updated on the basis of the optimality of the
selected WCDS (Steps 2 and 3). The iterative process of constructing the WCDSs continues until a near
optimal solution to the minimum WCDS problem is found (Step 4). The proposed algorithm has been given
in more detail in Figure 2.

 JOURNAL OF PARALLEL & DISTRIBUTED COMPUTING7

ALGORITHM DLA-CC
1:Input: Unit Disk Graph),(EVG , Threshold K , P
2:Output: The minimum size WCDS
3:Assumptions:
4: Assign learning automaton iA to vertex iv and initially set it in a passive state

5: Let iα denotes the action-set of automaton iA

6: Begin Algorithm
7: Let dynamic threshold kT denotes the cardinality of the smallest WCDS constructed until stage k ,
 and initially set to n
8: Let k denotes the stage number and is initially set to 0
9: Let 0A be the initial learning automaton whose action-set is vertex-set V
10: Repeat
11: Let kδ be the set of dominators selected at stage k and initially set to null

12: Let kd denotes the set of dominatees, selected at stage k and is initially set to null

13: Automaton 0A randomly chooses one of its actions, activates it, denotes it iv and adds it to kδ

14: While ndk < do

15: Add the neighbors of dominator iv to kd

16: Update the action probability vector of iA by disabling the actions corresponding to the

 vertices in kd

17: Automaton iA randomly chooses one of its actions, activates it, denotes it iv and adds it to kδ
18: End while
19: If kk T≤δ Then
20: Reward the actions chosen by the activated learning automata
21: kkT δ←
22: Else
23: Penalize the actions chosen by the activated learning automata
24: End if
25: Enable all the actions disabled during the current iteration
26: Increment stage number k
27: Until (The probability of choosing the WCDS is greater than P or the
 stage number k is greater than threshold K)
28:End Algorithm

 FIGURE 2. ALGORITHM DLA-CC

As shown in Figure 2, graph G , and thresholds K and P are the input parameters, and the smallest

WCDS of the input graph is the output of DLA-CC. The k th iteration of DLA-CC can be described as
follows. The first dominator is selected by automaton 0A . The selected dominator (vertex iv) and its
neighbors are added to the dominatee set (i.e., kd). The automaton corresponding to the selected dominator

(i.e., automaton iA) is activated and updates its action-set by disabling the actions corresponding to the
dominated vertices. Then, this automaton randomly chooses the next dominator. The process of dominator
selection (Lines 14-18) continues until the number of dominated vertices is equal to the network size (i.e.,

ndk =). Then, the cardinality of the selected WCDS is compared with dynamic threshold kT .

J. AKBARI TORKESTANI & M. R. MEYBODI 8

Threshold kT is the cardinality of the smallest WCDS found until stage k . The selected WCDS (i.e., kδ) is

penalized if its cardinality is greater than the dynamic threshold kT and rewarded otherwise. At each stage,
the dynamic threshold is set to the smallest WCDS. As shown in Line 26, at the end of each stage the
disabled actions must be enabled as described in Section 2.2.3 on variable action-set learning automata.
Here, the k th iteration of DLA-CC is over.

As the algorithms proceeds, the automata learn how to choose the dominators so that all the vertices
are dominated with the minimum number of dominators. The proposed algorithm terminates, if the
probability of choosing the WCDS is greater than P or the number of stages exceeds pre-specified
threshold K . It should be noted that the probability of choosing a WCDS is defined as the product of the
probabilities with which the dominators of WCDS are selected. The WCDS which is formed before the
algorithm stops is the WCDS with the minimum cardinality among all WCDSs of the graph.

4 THE PROPOSED CLUSTERING ALGORITHM (DLA-DC)

Since in wireless Ad-Hoc networks, there is neither a fixed infrastructure nor a central administration,
the centralized algorithms are not feasible in such environments. Moreover, to gather all the required
information in a certain host, for executing the algorithm, consumes a large number of messages and
considerably more energy which is a very scarce resource in wireless Ad-Hoc networks [3]. Therefore, in
this section, a distributed approximation algorithm based on distributed learning automata, called DLA-DC,
is proposed for clustering the wireless Ad-Hoc networks by finding a near optimal solution to the WCDS
problem. In fact, the proposed clustering algorithm is a generalization of DLA-CC, in which the minimum
size cluster-head set (or minimum WCDS of the UDG induced by the network topology) is determined in a
fully distributed fashion. In this clustering method, the dominator nodes assume the role of the cluster-
heads and their one-hop neighbors (dominatee nodes) the role of the cluster members. At each iteration of
the clustering algorithm, the network graph is clustered by randomly choosing the dominator nodes as the
cluster-heads. The learning automata, in an iterative greedy strategy, find a policy that determines the
minimum size cluster-head set of the network graph.

In this algorithm, like DLA-CC, a network of the learning automata, isomorphic to the UDG induced
by the network topology, is first formed by assigning a learning automaton (e.g., iA) to each host (e.g.,

iH) of the network. Each host has a unique ID number and knows its neighbors' ID. In this algorithm, to

form the action-set of learning automaton iA , its corresponding host (i.e., host iH) sends a message
locally to its one-hop neighbors. The hosts which are within the transmission range of the sender host, upon
receiving the message, reply it. The sender forms its action-set on the basis of the received replies. Each
host by which the message is replied is associated with an action. Let jjii H|{ ,αα = is a neighbor of

}iH denotes the action-set of learning automaton iA . Action ji,α corresponds to the selection of host jH

as a cluster-head by host iH . Each host requires the following data structures to participate in the cluster
formation process:
max_iteration, a stopping condition for the algorithm as a maximum number of iterations.
pchs, a threshold required for termination the cluster formation process as the probability of choosing the
cluster-head set.
cluster_head_set, a set of the chosen cluster-heads at each iteration.
cluster_list, a set of hosts in which each member is a one-hop neighbor of at least one host in the
cluster_head_set.
prob_vector, a vector of the probability of choosing the members of cluster_head_set.
min_size, a dynamic threshold contains the cardinality of the smallest cluster_head_set which has been
selected yet.
iteration_num, a counter which keeps the number of constructed cluster_head_set.

The proposed clustering algorithm consists of two phases. Cluster formation (initial clustering) and
cluster maintenance (or re-clustering). The cluster formation phase is performed when the network starts
operating, and the cluster maintenance when a cluster-head decides to leave the network or a host can not
communicate with its cluster-head. The cluster maintenance procedure will be described in Section 4.1. At

 JOURNAL OF PARALLEL & DISTRIBUTED COMPUTING9

the end of the initial clustering phase a fully clustered network is created. Since the proposed DLA-based
clustering algorithm is fully distributed, cluster formation and cluster maintenance procedures can be
initiated by each of the hosts. During the cluster formation or cluster maintenance procedures, each host
may receive from or send to the other hosts the following messages: activation, rewarding, penalizing and
clustering message. When a host (e.g., host iH) decides to initiate each of the above mentioned

procedures, it activates its corresponding automaton (i.e., automaton iA) and chooses one of its actions.

The probability with which learning automaton iA chooses this action is added to the prob_vector.

Host iH then sends an activation message to the host (new cluster-head) corresponding to the chosen
action.

An activation message includes cluster_list, cluster_head_set, min_size, prob_vector, and
iteration_num. The state of a given host changes to the active state when it receives an activation message.
When a given host iH receives an activation message, it inserts its ID number as a new cluster-head into
the cluster_head_set, if at least one of its one-hop neighbors is not in the cluster_list. This prevents the
redundant cluster-heads to be chosen. To update the cluster_list it adds its one-hop neighbors' ID to this list.
The action-set of learning automaton iA is updated by disabling the actions associated with the cluster-
heads selected so far. As described earlier, this avoids choosing the same cluster-heads by different
automata, and so improves the convergence speed of algorithm. In this case, if there exist more actions that
can be taken by learning automaton iA and the cluster_list does not include all the hosts, currently active

automaton iA chooses one of its actions as a new cluster-head, updates prob_vector by adding the choice
probability of this action, and sends an activation message to the chosen cluster-head. Otherwise, if the size
of the cluster_list equals to the network size and the size of the cluster_head_set is less than or equal to
dynamic threshold min_size, the dynamic threshold is set to the cardinality of the selected cluster_head_set
and all the chosen actions of the activated automata are rewarded by sending back a rewarding message,
otherwise they (i.e., the chosen actions of the activated automata) are penalized by sending back a
penalizing message.

At the end of each iteration, after rewarding or penalizing the activated automata, the stopping
condition of the cluster formation (or cluster maintenance) process must be verified. The stopping condition
is met if the choice probability of the cluster_head_set is less than the certain threshold pchs or
iteration_num exceeds the per-specified threshold max_iteration. The choice probability of the
cluster_head_set is calculated as the product of the choice probabilities of the selected cluster-heads based
on the information contained in prob_vector. If the stopping condition is true, currently active automaton

iA initiates a new iteration, randomly chooses a new cluster-head, and sends an activation message to it.
Otherwise, it generates a clustering message including the last selected cluster_head_set and broadcasts it
within the network.

A clustering message includes the cluster_head_set selected during the last iteration. When host iH

receives a clustering message, it assumes the role of a cluster-head if it finds its ID number in the
cluster_head_set. It assumes the role of a cluster-member otherwise.

When activated host iH receives a rewarding message, it updates its action probability vector by
rewarding chosen action ji,α as

)](1[)()1(,,, npanpnp jijiji −+=+ , (4)

where jip , is the probability with which host iH chooses host jH as a cluster-head, and penalizing the
other actions ki,α , for all jk ≠ , as

jkknpanp kiki ≠∀−=+)()1()1(,, . (5)
After rewarding the chosen action, the scaled action probability vector must be updated once again (or

rescaled) by enabling all the disabled actions according to the rescaling method described in Section 2.2.3
on the variable action-set learning automata.

J. AKBARI TORKESTANI & M. R. MEYBODI 10

Since the reinforcement scheme by which the learning automata update their action probability
vectors is IRL − , the action probabilities of the activated learning automata remain unchanged when they
receive a penalizing message. In this case, the disabled actions of each activated learning automaton are
enabled again.

4.1 CLUSTER MAINTENANCE

In wireless Ad-Hoc networks, the major resources of the network topology dynamics are the node
mobility and node failure. In such networks, a host can move freely and randomly anywhere, and so it may
leave its cluster and join the other at any time. For this reason, in Ad-Hoc networks, the cluster membership
is highly dynamic and hard to predict due to the frequent network topology changes. Therefore, the cluster
maintenance (re-clustering) is required to recover the failed clusters.

In our proposed clustering algorithm, when a host joins the network, it initially sends a JREQ (i.e.,
join request) message to its neighboring hosts and then waits for a certain period of time. Each cluster-head
replies the received JREQ message by sending back a JREP (i.e., join reply) message. In this method, the
following cases might occur for a newly joining host.
• If the newly joining host receives a JREP message, it chooses the sender of the JREP message as its

cluster-head.
• If it receives more than one JREP message, it chooses the sender host with the highest ID number as its

cluster-head.
• If the newly joining host receives no JREP messages (can not connect to any cluster-heads), it initiates a

re-clustering process.
When a cluster-head decides to leave the network, it initiates a re-clustering process. It is clear that no

re-clustering process is required when a cluster member decides to leave the network. The re-clustering
process is similar to the initial clustering.

One of the most important advantages of the proposed clustering scheme is that during the re-
clustering phase, the proposed algorithm (due to using the learning automata) quickly converges to the new
optimal cluster-head set. That is, the overhead of the re-clustering phase is significantly smaller as
compared with the initial clustering phase. This is due to the fact that during the initial clustering, the
choice probability of each cluster-head set candidate grows proportional to its optimality among the other
candidates. Therefore, in the absence of the optimal cluster-head set, the second optimal cluster-head set
has the highest probability. Comparing with the initial clustering phase, re-clustering phase requires a
significantly smaller number of iterations for finding the new optimal cluster-head set. In Ad-Hoc networks
where the node mobility and node failure frequently change the network topology, the network re-
clustering process is expected to be more frequently used. Therefore, the proposed clustering algorithm
significantly reduces the cluster maintenance overhead which is an important result in Ad-Hoc networks.

5 COMPLEXITY ANALYSIS OF THE CLUSTERING ALGORITHM

In this section, to analyze the costs of the proposed clustering method, we compute the worst case
running time (Theorem 1) and message complexity (Theorem 2) of algorithm DLA-DC to find a)1(1 ε−
optimal cluster-head set for clustering the network graph.

THEOREM 1. Let OPT denotes the size of the smallest cluster-head set for clustering network graphG ,
and)}(,),({)(1 kqkqkq rK= is updated according to the proposed clustering algorithm (DLA-DC). The

time required for finding a |OPT|
1

1
⋅

−ε
 (for 10 << ε) size cluster-head set (e.g., iω) in DLA-DC is not

longer than

r
q

m g
iq

m

g
i

a +⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−

−−

−
1

11

1log
1

2
ε

ε

 JOURNAL OF PARALLEL & DISTRIBUTED COMPUTING11

where)(kqi denotes the probability of choosing cluster-head set iω at stage k ,)1,0(∈ε is the error
rate of algorithm denoted as pchs−1 in DLA-DC, a denotes the learning rate of algorithm, n is the
number of hosts in the network graph, and r is the number of cluster-head sets.

PROOF. Let iq be the initial probability of choosing cluster-head set iω , and jp be the initial probability

of choosing host jH as a cluster-head. The worst case occurs when all the other cluster-head sets to be

chosen before the smallest cluster-head set iω . In this case, the learning process can be divided into two
distinct phases. In the first phase, called shrinking phase, it is assumed that all the other cluster-head sets to
be chosen, from the largest to the smallest, and so rewarded before iω . Such an ordered (cluster-head set)

selection procedure decreases the probability of choosing iω no more than that given in inequality (6). The

second phase called growing phase is started when the cluster-head set iω is chosen for the first time.

According to the proposed algorithm, during the growing phase, the probability of penalizing iω , and
rewarding the other cluster-head sets is zero. Furthermore, since the reinforcement scheme by which the
proposed algorithm updates the probability vectors is IRL − , the conditional expectation of)(kqi (i.e., the

probability of choosing cluster-head set iω at stage k), remains unchanged when the other cluster-head

sets are penalized, and it increases only when iω is rewarded. In other words, during the growing phase,

the changes in the conditional expectation of)(kqi is always non-negative and given in equation (7). As
described in the proposed algorithm, the growing phase is continued until the probability of choosing
cluster-head set iω is greater than or equal to ε−1 . Let s

iq denotes the probability of choosing cluster-head

set iω at the beginning of the shrinking phase (i.e., the initial value of iq), and a denotes the learning rate
of the proposed algorithm. Therefore, during the shrinking phase, the probability of choosing cluster-head
set iω changes as

() () ()ms
i

s
i arqrq −⋅−≥ 11 (6)

where r is the number of all possible cluster-head sets, and m denotes the average size of the cluster-head
sets. Substituting recurrence function)1(−rqs

i in inequality above, we have

() () () ms
i

s
i arqrq 212 −⋅−≥

By repeatedly applying inequality (6))1(−r times, we obtain

() () mrs
i

s
i aqrq ⋅−−⋅≥−)1(11

where ()1−rqs
i denotes the probability of choosing cluster-head set iω at the end of the shrinking phase.

For the sake of simplicity in notation, ()1−rqs
i is substituted by g

iq , where ∏
∈

−−=
ijH

r
j

g
i apq

ω

)1()1(is

the probability of choosing iω at the beginning of the growing phase, and)1()1(−− r
j ap is substituted

by jρ . As mentioned earlier, in the growing period, g
iq increases, if iω is rewarded, and remains

unchanged otherwise. Thus, during this phase, the probability of choosing cluster-head set iω increases as

() ()

() () ()

M

∏∏

∏

∈∈

∈

+−⋅=−⋅+=

−⋅+=

ijij

ij

H
j

H
jj

g
i

H
jj

g
i

aaaq

aq

ωω

ω

ρρρ

ρρ

1)1()1(1)1(2

11

J. AKBARI TORKESTANI & M. R. MEYBODI 12

() () ()

() () ()∏∏

∏∏

∈∈

∈∈

+−⋅−=−−⋅+−=

+−⋅−=−−⋅+−=−

ijij

ijij

H
j

H
jj

g
i

H
j

H
jj

g
i

aakkakkq

aakkakkq

ωω

ωω

ρρρ

ρρρ

1)1()1(1)1(

1)2()2(1)2(1
 (7)

where jρ denotes the probability of choosing host jH as a cluster-head at the beginning of the growing

phase, and ()kq g
i denotes the probability with which cluster-head set iω is chosen at the end of the

growing phase, which according to the theorem, it is assumed to ε−1 . After some algebraic simplification,
we have

() ()

()[]() () ()

()[]() () ()

() ()

() () ()

() () ()∏

∏

∏∏

∏∏

∏

∈

−

∈

−−

∈∈

∈∈

∈

+−⋅++−⋅+−⋅=

+−⋅++−⋅+−⋅=

+−⋅+−⋅+

−⋅−=+−⋅+−+−⋅−=

+−⋅+−⋅−=+−+−⋅−=

+−⋅−=

ij

ij

ijij

ijij

ij

H

kk
j

H

kk
j

H
j

H
j

H
j

H
j

H
j

g
i

aaaaaa

aaaaaa

aaaaa

akaaaaaak

aaaakaaaak

aakkq

ω

ω

ωω

ωω

ω

ρ

ρ

ρρ

ρρ

ρ

111

111)1(

11

1)3(111)3(

11)2(11)2(

1)1(

1

21

2

32

2

L

L

M

Hence, we have
() () () ()∏

∈

− +−⋅++−⋅+−⋅=
ijH

kk
j

g
i aaaaaakq

ω

ρ 111 1
L (8)

Substituting jρ by)1()1(−− r
j ap , we have

() () () ()∏
∈

−−+ +−⋅++−⋅+−⋅≥
ijH

krk
j

g
i aaaaaapkq

ω

111 11
L (9)

where k denotes the number of times cluster-head set iω must be selected until

() ε−=1kq g
i (10)

From inequality (9), it follows that, the running time (the number of iteration) of the proposed
algorithm is computed, if we find a value of k (for a given learning rate a) under which the condition
given in equation (10) to be satisfied. From equation (8) we have

() () () () ()()∏
∈

−−++−+−+⋅+−⋅=
ijH

kk
j

g
i aaaaakq

ω

ρ 12 11111 L (11)

and so

() () ()∏ ∑
∈

−

=
−⋅+−⋅=

ijH

k

i
ik

j
g
i aaakq

ω

ρ 1

0
11 (12)

The second term on the right hand side of equation (12) is a geometric series that sums up to
() ()()aaa k −−−−⋅ 1111 , where 11 <− a . Therefore, we have

() () ()
()∏

∈ −−
−−

⋅+−⋅=
ijH

k
k

j
g
i a

aaakq
ω

ρ
11
111 (13)

From equation (10) and (13) we have

 JOURNAL OF PARALLEL & DISTRIBUTED COMPUTING13

() ()
() ερ

ω

−=
−−
−−

⋅+−⋅∏
∈

1
11
111

ijH

k
k

j a
aaa

Since ∏
∈

=
ijH

j
g
iq

ω

ρ and)1()1(−−= r
jj apρ (for all ijH ω∈), after some algebraic simplification,

we have

() () mm g
i

k qa ε−=+−⋅− 1111

Hence, we have

()
m g

i

m
k

q
a

−

−−
=−

1
111 ε

 (14)

Taking a−1log of both sides of equation (14), we derive

() m g
i

m

q
a

ka
a

−

−−

−
−
− = 1

11

1
1

1 loglog
ε

and thus the number of times iω is rewarded in the growing phase, apart from penalizing the other cluster-
head sets, is obtained as

m g
i

m

q
ak −

−−

−= 1

11

1log
ε

(15)

Since during the growing phase, g
iq remains unchanged when the other cluster-head sets are

penalized, k does not include the number of times the other cluster-head sets are chosen and this should be
separately calculated based on k . Let g

iq be the probability of choosing cluster-head set iω at the

beginning of the growing phase, and reaches 1 ε− (or PCHS in DLA-DC) after k iterations. On the
other hand, the probability of choosing the other cluster-head sets is initially g

iq−1 , and reachesε after the
same number of iterations. Thus, the number of times the other cluster-head sets are chosen (before
satisfying the condition given in equation (10)) is obtained as

k
q
q

g
i

g
i ⋅

+−
−+

ε
ε

1
1

After some algebraic manipulations, the total number of iterations required in the growing phase of
the proposed algorithm (i.e.,Κ) to satisfy the condition given in equation (10) is obtained as

k
qg

i

⋅
+−

=Κ
ε1
2

By substituting k from equation (15) and we have

m g
iq

m

g
i

aq
−

−−

−⋅
+−

=Κ 1

11

1log
1

2
ε

ε
 (16)

From equation (16), the running time of the growing phase can be estimated. Since the worst case of
the algorithm occurs when (in the shrinking phase) all the other cluster-head sets to be chosen before iω ,
the running time of the shrinking phase is always less than r . Therefore, we have

r
q

T
m g

iq

m

g
i

a +⋅
+−

≤Κ
−

−−

−
1

11

1log
1

2)(

ε

ε
 (17)

which completes the proof of this theorem. ■

J. AKBARI TORKESTANI & M. R. MEYBODI 14

THEOREM 2. The message complexity of the proposed clustering algorithm for finding a |OPT|
1

1
⋅

−ε

(for 10 << ε) size cluster-head set is at most

)log
1

2(1

11

1 r
q

m
m g

iq

m

g
i

a +⋅
+−

−

−−

−

ε

ε

where OPT denotes the size of the minimum cluster-head set (optimal solution to the WCDS problem),
)(kqi denotes the probability of choosing cluster-head set iω at stage k ,)1,0(∈ε is the error rate of

algorithm, a denotes the learning rate of algorithm, n is the number of hosts in the network graph, and
r is the number of cluster-head sets.

PROOF. As proved in Theorem 1, the running time (number of iterations) of the proposed clustering

algorithm to find a |OPT|
1

1
⋅

−ε
 size cluster-head set for the network graph is at most

r
q

m g
iq

m

g
i

a +⋅
+−

−

−−

−
1

11

1log
1

2
ε

ε

Furthermore, as described in section 5, at each iteration of the clustering algorithm, the number of
messages needs to be sent to form a cluster-head set is equal to the number of hosts in the selected cluster-
head set. Hence, the message complexity of the clustering algorithm is smaller than

)log
1

2(1

11

1 r
q

m
m g

iq

m

g
i

a +⋅
+−

−

−−

−

ε

ε

where m is the average size of the cluster-head set, and hence the proof of the theorem is completed. ■

The immediate conclusion of Theorem 1 and Theorem 2 is that a trade-off between the running time

and message complexity of the proposed clustering algorithm with the cluster-head set size (clustering
optimality) can be made by a proper choice of the learning rate of algorithm. This is a worthwhile
superiority of the proposed algorithm over the other clustering methods. That is, choosing a proper learning
rate for the proposed clustering algorithm results in finding a near optimal cluster-head set in a reasonable
running time and message complexity, regarding the constraints of the Ad-Hoc networks.

6 EXPERIMENTAL RESULTS

In this section, we have conducted several simulation experiments in two groups to study the
performance of the proposed algorithms. In the first group of our experiments (Experiment I), we
investigate the effectiveness of the DLA-CC in terms of the dominating set size (i.e., size of the WCDS) as
compared with centralized algorithms. In the second group (Experiment II, III), we measure the
performance of the proposed clustering algorithm (DLA-DC) in terms of the cluster-head set size and
message overhead, and compare the obtained results with those of the best WCDS-based clustering
algorithms.

In our simulation experiments, each host is modeled as an infinite-buffer, store-and forward queuing
station. The IEEE 802.11 DCF (Distributed Coordination Function) with CSMA/CA (Carrier Sense
Multiple Access/Collision Avoidance) is used as the medium access control protocol, and two ray ground
as the propagation model. The wireless hosts communicate through a common broadcast channel of
capacity 2(Mb/s) using omnidirectional antennas. We first randomly distribute the hosts in the simulation
square area. After distributing the hosts, we will check whether they form a connected graph. We only
construct the WCDS (cluster-head set) on the connected graphs. The results presented in this paper are
averaged over 100 independent runs on the connected graphs. In all simulations, the learning parameter is
fixed at 0.2, and each algorithm is terminated when the probability of choosing the weakly connected
dominating set becomes greater than 0.90. That is P in DLA-CC and pchs in DLA-DC are set to 0.9.

 JOURNAL OF PARALLEL & DISTRIBUTED COMPUTING15

6.1 EXPERIMENT I

This experiment is conducted to study the performance of DLA-CC in terms of the dominating set
size. The results of DLA-CC are compared with those of Guha I [11], Guha II [11] and WCDS-CTR [7].
To generate the random graphs, a number of vertices are uniformly distributed in a two-dimensional
simulation area of size 100100× at random. We assume that a link is established between every two
vertices, if the distance between them is not longer than R . In this experiment, we first set distance R to
15, and change the number of nodes from 60 to 200 with increment step of 20. The obtained results are
shown in Figure 3.

From the results shown in Figure 3, it is clear that Guha I always constructs the largest WCDSs, and
so is ranked lower the other algorithms. The size of the WCDSs generated by Guha II is only slightly
smaller than Guha I, but considerably larger than WCDS-CTR. The results also show that the size of the
weakly connected dominating set constructed by DLA-CC is significantly smaller than that of WCDS-
CTR. Therefore, DLA-CC outperforms the other algorithms. The results show that the number of
dominators increases as the number of nodes increases.

0

10

20

30

40

50

60

60 80 100 120 140 160 180 200
Number of Nodes

Av
er

ag
e

Si
ze

 o
f t

he
 W

C
D

S

0

10

20

30

40

50

60

70
60 80 100 120 140 160 180 200

Guha I

WCDS-CTR

DLA-CC

Guha II

FIGURE 3. THE AVERAGE SIZE OF THE WCDS CONSTRUCTED BY THE CENTRALIZED ALGORITHMS, WHEN

DISTANCE R IS 15

Then, we change distance R to 30 and repeat the same experiments. The results are shown in Figure

4. Like Figure 3, the results shown in Figure 4 show that the proposed centralized algorithm (i.e., DLA-CC)
considerably outperforms the other algorithms, WCDS-CTR is ranked below DLA-CC, and Guah I and
Guha II lag far behind. Comparing the results shown in Figure 4 with Figure 3, we observe that for all
algorithms the average size of the WCDS becomes smaller when R increases. The reason for this reduction
is that the number of neighbors of a dominator increases when distance R increases. Therefore, the graph
nodes can be thoroughly dominated by a less number of the dominators. From Figures 3 and 4, it can be
seen that the gap between the curves for our proposed algorithm and the curves for the other centralized
algorithms becomes significant as the number of nodes increases.

J. AKBARI TORKESTANI & M. R. MEYBODI 16

0

5

10

15

20

25

30

35

60 80 100 120 140 160 180 200
Number of Nodes

Av
er

ag
e

Si
ze

 o
f t

he
 W

C
D

S

0

5

10

15

20

25

30

35
60 80 100 120 140 160 180 200

Guha I

WCDS-CTR

DLA-CC

Guha II

FIGURE 4. THE AVERAGE SIZE OF THE WCDS AS A FUNCTION OF NUMBER OF NODES WHEN DISTANCE R IS 30

6.2 EXPERIMENT II

This experiment is conducted to study the performance of DLA-DC in terms of the cluster-head set
size. The network size, simulation square area size, and the radio transmission range are three correlated
parameters that affect the number of clusters. In this experiment, we investigate the impact of the above
mentioned parameters on the proposed clustering algorithm. The results of DLA-DC are compared with
those of Min ID[3], Max Degree[3], WCDS-DST[7], and AWF[9] which are the best WCDS-based
clustering algorithms.

In Experiment II, the radio transmission range is initially set to 15 and the number of hosts changes
from 60 to 200 with increment step of 20. The simulation square area size is fixed at 100100× . The
obtained results are shown in Figure 5. Then, we change the radio transmission range to 30 and repeat the
same experiment. The results are shown in Figure 6.

0

10

20

30

40

50

60

70

80

60 80 100 120 140 160 180 200
Number of Hosts

C
lu

st
er

-H
ea

d
Se

t S
iz

e

0

10

20

30

40

50

60

70

80
60 80 100 120 140 160 180 200

Min ID AWF
WCDS-DST DLA-DC
Max Degree

FIGURE 5. THE AVERAGE CLUSTER-HEAD SET SIZE AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO

TRANSMISSION RANGE IS 15

From Figures 5 and 6, it is clear that among the previous clustering algorithms, WCDS-DC and AWF

construct the smallest and largest cluster-head sets respectively. The results show that the size of the
cluster-head set constructed by WCDS-DC is nearly four times larger than that constructed by our proposed
algorithm, DLA-DC. For instance, the size of the cluster-head set constructed by DLA-DC is 6.76, when
the number of hosts is 100 and the radio transmission range is 15, while that of WCDS-DC is 21.9, which is
3.2 times larger than our obtained result. Therefore, we conclude that our proposed algorithm significantly
outperforms the other algorithms in terms of the cluster-head set size. From the results shown in these
figures, we also see that the average size of the cluster-head sets constructed by Max Degree is slightly

 JOURNAL OF PARALLEL & DISTRIBUTED COMPUTING17

smaller than that of Min ID, especially as the number of hosts increases. So, Max Degree is ranked lower
than WCDS-DC.

Comparing the results shown in Figure 5 with figure 6, we find that the size of the cluster-head set
decreases as the number of hosts increases. As mentioned in Experiment I, this is because a cluster-head
with a larger radio transmission range is capable of covering more hosts and so the whole network can be
covered by a smaller cluster-head set (or by a less number of cluster-heads). When the size of the
simulation square area grows, the hosts are distributed in a larger area. This causes a smaller number of
hosts can be covered by each cluster-head. Therefore, it is expected that the size of the cluster-head set
increases as the simulation square area increases.

0

5

10

15

20

25

30

60 80 100 120 140 160 180 200
Number of Hosts

C
lu

st
er

-H
ea

d
Se

t S
iz

e

0

5

10

15

20

25

30
60 80 100 120 140 160 180 200

Min ID AWF
WCDS-DST DLA-DC
Max Degree

FIGURE 6. THE AVERAGE CLUSTER-HEAD SET SIZE AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO

TRANSMISSION RANGE IS 30

To study the scalability of the clustering algorithms, they are tested on the dense network graphs. In

this part of Experiment II, the number of hosts ranges from 200 to 1000 with increment step of 100, and the
radio transmission range is set to 15 and 30, respectively. The simulation results are depicted in Figures 7
and 10. Comparing the average size of the cluster-head set constructed by DLA-DC with that of the other
clustering algorithms, we observe that the proposed clustering algorithm significantly outperforms the other
algorithms. It can be seen that the ranking given for the clustering algorithms with the sparse network
graphs remains unchanged, and DLA-DC is ranked above the other algorithms and AWF below them. As
expected, comparing the results shown in Figures 7 and 8, we observe that the size of the cluster-head set
reduces as the radio transmission range increases.

0

20

40

60

80

100

120

140

200 300 400 500 600 700 800 900 1000
Number of Hosts

C
lu

st
er

-H
ea

d
Se

t S
iz

e

0

20

40

60

80

100

120

140
200 300 400 500 600 700 800 900 1000

Min ID AWF
WCDS-DST DLA-DC

Max Degree

FIGURE 7. THE AVERAGE CLUSTER-HEAD SET SIZE AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO

TRANSMISSION RANGE IS 15

J. AKBARI TORKESTANI & M. R. MEYBODI 18

0

5

10

15

20

25

30

35

40

200 300 400 500 600 700 800 900 1000
Number of Hosts

C
lu

st
er

-H
ea

d
Se

t S
iz

e

0

5

10

15

20

25

30

35

40
200 300 400 500 600 700 800 900 1000

Min ID AWF

WCDS-DST DLA-DC

Max Degree

FIGURE 8. THE AVERAGE CLUSTER-HEAD SET SIZE AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO

TRANSMISSION RANGE IS 30

6.3 EXPERIMENT III

In Ad-Hoc networks, the hosts suffer from the strict resource limitations (e.g., power and bandwidth
resources). Therefore, message overhead is one of the key issues in designing the Ad-Hoc protocols that
must be kept as low as possible. This experiment is conducted to study the message overhead of DLA-DC
in comparison with Min ID, Max Degree, and AWF. Figures 9 and 10 show the message overhead (in
bytes) as a function of the number of hosts when the radio transmission range is set to 15 and 30,
respectively. As shown in Figures 9 and 10, for all clustering algorithms the message overhead increases as
the number of hosts (network size) increases. From the results shown in Figure 9, it can be seen that Min
ID outperforms AWF and Max degree. The results show that Min ID also performs better than DLA-DC,
when the number of hosts is less than 600. However, the message overhead of DLA-DC becomes smaller
than that of Min ID as the number of hosts exceeds 600. Comparing the results shown in Figures 9 and 10
for different radio transmission ranges, we observe that the message overhead of all algorithms decreases as
the radio transmission range increases. As shown in Figure 10, in most cases DLA-DC outperforms the
other algorithms, Min ID and Max Degree are ranked below it, and AWF has the highest message
overhead. It can be also seen that the gap between the curves for DLA-DC and Max Degree (or Min ID)
becomes significant as the number of hosts increases.

0

10

20

30

40

200 300 400 500 600 700 800 900 1000
Number of Hosts

M
es

sa
ge

 O
ve

rh
ea

d
(X

10
00

 b
yt

es
)

0

10

20

30

40
200 300 400 500 600 700 800 900 1000

Min ID AWF
DLA-DC Max Degree

FIGURE 9. THE MESSAGE OVERHEAD AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO TRANSMISSION

RANGE IS 15

 JOURNAL OF PARALLEL & DISTRIBUTED COMPUTING19

0

10

20

30

40

200 300 400 500 600 700 800 900 1000
Number of Hosts

M
es

sa
ge

 O
ve

rh
ea

d
(X

10
00

 b
yt

es
)

0

10

20

30

40
200 300 400 500 600 700 800 900 1000

Min ID AWF
DLA-DC Max Degree

FIGURE 10. THE MESSAGE OVERHEAD AS A FUNCTION OF THE NETWORK SIZE WHEN THE RADIO TRANSMISSION

RANGE IS 30

7 CONCLUSION
The network clustering is a method by which the hosts are hierarchically organized on the basis of the

proximity, and the hierarchical structure thus formed abstracts the large scale networks so that the hosts can
be simply and locally organized. In this paper, we first proposed a DLA-based centralized algorithm (DLA-
CC) for solving the minimum WCDS problem. Since finding the weakly connected dominating set is a
well-known approach for clustering the wireless Ad-Hoc networks, we also proposed an approximation
algorithm (DLA-DC) for clustering the wireless Ad-Hoc networks. The proposed clustering algorithm is a
distributed implementation of DLA-CC in which the dominators assume the role of the cluster-heads and
their one-hop neighbors play the role of the cluster members. In this paper, we also found an upper bound
on the running time and message complexity of the proposed clustering algorithm for finding a near
optimal size cluster-head set. It was shown that by a proper choice of the learning rate of the clustering
algorithm, a trade-off between the running time and message complexity of algorithm with the cluster-head
set size (clustering optimality) can be made. The simulation results showed the superiority of the proposed
algorithms over the previous methods.

REFERENCES

[1] Y. P. Chen, A. L. Liestman, “Maintaining Weakly-Connected Dominating Sets for Clustering Ad-
Hoc Networks,” Ad-Hoc Networks, Vol. 3, pp. 629–642, 2005.

[2] P. Gupta, P.R. Kumar, “The Capacity of Wireless Networks,” IEEE Transaction on Information

Theory, Vol. 46, No. 2, pp. 388–404, 2000.

[3] B. Han, W. Jia, “Clustering Wireless Ad-Hoc Networks with Weakly Connected Dominating Set,”
Journal of Parallel and Distributed Computing, Vol. 67, pp. 727 – 737, 2007.

[4] R. Rajaraman, “Topology Control and Routing in Ad-Hoc Networks: A Survey,” SIGACT News,

Vol. 33, No. 2, pp. 60–73, 2002.

[5] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit Disk Graphs,” Discrete Mathematics, Vol.
86, pp. 165-177, 1990.

[6] M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, D.J. Rosenkrantz, “Simple Heuristics for Unit

Disk Graphs,” Networks Vol. 25, pp. 59–68, 1995.

[7] Y.Z. Chen, A.L. Listman, “Approximating Minimum Size Weakly Connected Dominating Sets for

Clustering Mobile Ad-Hoc Networks,” Proceedings of the Third ACM International Symposium
on Mobile Ad-Hoc Networking and Computing (MobiHoc’2002), pp. 157–164, 2002.

J. AKBARI TORKESTANI & M. R. MEYBODI 20

[8] Y.P. Chen, A.L. Liestman, “A Zonal Algorithm for Clustering Ad-Hoc Networks,” International
Journal of Foundations of Computer Science, Vol. 14, No. 2, pp. 305–322, 2003.

[9] K.M. Alzoubi, P. J. Wan, O. Frieder, “Maximal Independent Set, Weakly Connected Dominating

Set, and Induced Spanners for Mobile Ad-Hoc Networks“, International Journal of Foundations
of Computer Science, Vol. 14, No. 2, pp. 287-303, 2003.

[10] R.G. Gallager, P.A. Humblet and P.M. Spira, “A Distributed Algorithm for Minimum Weight

Spanning Trees,” ACM Transaction on Programming Languages and Systems, Vol. 5, pp. 66-77,
1983.

[11] S. Guha and S. Khuller, “Approximation algorithms for Connected Dominating Sets,”

Algorithmica, Vol. 20, No. 4, pp. 374-387, 1998.

[12] O. Dousse, F. Baccelli, and P. Thiran, “Impact of Interferences on Connectivity in Ad-Hoc
Networks,” IEEE/ACM Transactions on Networking, Vol. 13, No. 2, pp. 425-436, 2005.

[13] S. Basagni, M. Mastrogiovanni, C. Petrioli, “A Performance Comparison of Protocols for

Clustering and Backbone Formation in Large Scale Ad-Hoc Network,” Proceedings of the First
IEEE International Conference on Mobile Ad-Hoc and Sensor Systems (MASS’2004), pp. 70–79,
2004.

[14] B. Das, and V. Bharghavan, “Routing in Ad-Hoc networks using minimum connected dominating

sets,” IEEE International Conference on Communications (ICC'97), 1997.

[15] K. S. Narendra and K. S. Thathachar, “Learning Automata: An Introduction“, New York, Printice-
Hall, 1989.

[16] M. A. L. Thathachar, P. S. Sastry, “A Hierarchical System of Learning Automata That Can Learn

the Globally Optimal Path,” Information Science, Vol. 42, pp.743-766, 1997.

[17] M. A. L. Thathachar and B. R. Harita, “Learning Automata with Changing Number of Actions,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMG17, pp. 1095-1100, 1987.

[18] M. A. L. Thathachar, V.V.Phansalkar, “Convergence of Teams and Hierarchies of Learning

Automata in Connectionist Systems,” IEEE Transactions on Systems, Man and Cybernetics, Vol.
24, pp. 1459-1469, 1995.

[19] S. Lakshmivarahan and M. A. L. Thathachar, “Bounds on the Convergence Probabilities of

Learning Automata,” IEEE Transactions on Systems, Man, and Cybernetics, 1976, Vol. SMC-6,
pp. 756-763, 1976.

[20] K. S. Narendra, and M. A. L. Thathachar, “On the Behavior of a Learning Automaton in a

Changing Environment with Application to Telephone Traffic Routing,” IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-l0, No. 5, pp. 262-269, 1980.

[21] H. Beigy, M. R. Meybodi, “Utilizing Distributed Learning Automata to Solve Stochastic Shortest

Path Problems,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
Vol. 14, pp. 591-615, 2006.

[22] R. Ghosh, and S. Basagni, “Mitigating the Impact of Node Mobility on Ad-Hoc Clustering,”

Journal of Wireless Communications and Mobile Computing, Vol. 8, pp. 295-308, 2008.

[23] M. Haleem and R. Chandramouli, “Adaptive Downlink Scheduling and Rate Selection: A Cross
Layer Design,” Special issue on Mobile Computing and Networking, IEEE Journal on Selected
Areas in Communications, Vol. 23, No. 6, 2005.

 JOURNAL OF PARALLEL & DISTRIBUTED COMPUTING21

[24] P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “Exploiting Locality of Demand to

Improve the Performance of Wireless Data Broadcasting,” IEEE Transactions on Vehicular
Technology, Vol. 55, No. 4, pp. 1347-1361, 2006.

[25] P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “Learning-Automata-Based Polling

Protocols for Wireless LANs,” IEEE Transactions on Communications, Vol. 51, No. 3, pp. 453-
463, March 2003.

[26] P. Nicopolitidis, G. I. Papadimitriou, M. S. Obaidat and A. S. Pomportsis, “Carrier-sense-assisted
Adaptive Learning MAC Protocol for Distributed Wireless LANs,” International Journal of
Communication Systems, Wiley, Vol. 18, No. 7, pp. 657-669, 2005.

[27] P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “Distributed Protocols for Ad-Hoc

Wireless LANs: A Learning-Automata-Based Approach,” Ad-Hoc Networks, Vol. 2, No. 4, pp.
419-431, 2004.

[28] B. V. Ramana and C. S. R. Murthy, “Learning-TCP: A Novel Learning Automata Based

Congestion Window Updating Mechanism for Ad-Hoc Wireless Networks,” 12th IEEE
International Conference on High 13 Performance Computing, pp. 454-464, 2005.

[29] H. Beigy, and M. R. Meybodi, “A Learning Automata-based Dynamic Guard Channel Scheme,”

Lecture Notes on Information and Communication Technology, Vol. 2510 Springer Verlag, pp.
643-650, 2002.

[30] H. Beigy and M. R. Meybodi, “An Adaptive Uniform Guard Channel Algorithm: A learning

Automata Approach,” Lecture Notes in Intelligent Data Engineering and Automated Learning,
Springer Verlag, LANCES 2690, Germany, pp. 405-409, 2003.

[31] H. Beigy and M. R. Meybodi, “Learning Automata-based Dynamic Guard Channel Algorithms,”

Journal of High Speed Networks, 2008, to appear.

[32] Y. P. Chen, A. L. Liestman, “Maintaining Weakly Connected Dominating Sets for Clustering Ad-
Hoc Networks,” Ad-Hoc Networks, Vol. 3, 2005, pp. 629–642.

 Javad Akbari Torkestani received the B.S. and M.S. degrees in Computer
Engineering in 2001 and 2004, respectively. He is currently pursuing the Ph.D.
degree in Computer Engineering at Science and Research University, Tehran, Iran.
He joined the faculty of Computer Engineering Department at Arak Azad University,
Arak, Iran, in 2004. His research interests include wireless networks, mobile ad hoc
networks, fault tolerant systems, learning systems, parallel algorithms, and soft
computing.

 Mohammad Reza Meybodi received the B.S. and M.S. degrees in Economics from
Shahid Beheshti University in Iran, in 1973 and 1977, respectively. He also received
the M.S. and Ph.D. degree from Oklahoma University, USA, in 1980 and 1983,
respectively in Computer Science. Currently, he is a full professor in Computer
Engineering Department, Amirkabir University of Technology, Tehran, Iran. Prior to
current position, he worked from 1983 to 1985 as an assistant professor at Western
Michigan University, and from 1985 to 1991 as an associate professor at Ohio
University, USA. His research interests include wireless networks, fault tolerant
systems, learning systems, parallel algorithms, soft computing and software
development.

