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A B S T R A C T 

We show a method for parallelizing top down dynamic programs in a straightforward way by a careful 
choice of a lock-free shared hash table implementation and randomization of the order in which the 
dynamic program computes its subproblems. This generic approach is applied to dynamic programs 
for knapsack, shortest paths, and RNA structure alignment, as well as to a state-of-the-art solution for 
minimizing the máximum number of open stacks. Experimental results are provided on three different 
modern multicore architectures which show that this parallelization is effective and reasonably scalable. 
In particular, we obtain over 10 times speedup for 32 threads on the open stacks problem. 

1. Introduction 

Dynamic programming [2] is a powerful technique for solving 
any optimization problem for which an optimal solution can be 
efficiently computed from optimal solutions to its subproblems. 
The idea is to avoid recomputing the optimal solution to these 
subproblems by reusing previously computed valúes. Thus, for 
dynamic programming to be useful, the same subproblems must 
be encountered often enough while solving the original problem. 

Dynamic programming can be easily implemented using either 
a "bottom-up" or "top-down" approach. In the "bottom-up" 
approach, the solution to every single subproblem is computed 
and stored in the dynamic programming matrix, starting from 
the smallest subproblems until the solution to the entire problem 
is finally computed. This approach is particularly simple to 
implement; it requires no recursion and no data structure 
more sophisticated than an array. It is also efficient if (a) the 
problem is small enough for the entire matrix to be stored in 
memory, and (b) the computation of unnecessary cells does not 
introduce too much overhead. The classic bioinformatics sequence 

alignment algorithms of Needleman and Wunsch [22] and Smith 
and Waterman [30] are generally implemented in this way, for 
example. 

In contrast, the "top-down" approach starts from the function 
cali to compute the solution to the original problem, and uses 
recursion to only compute the solution to those subproblems 
that are actually encountered when solving the original problem. 
Previously computed valúes are reused by applying a technique 
called memoization. In this technique each computed valué is 
stored in an associative array (implemented, for example, by a 
hash table). Then, the recursive function tests if the valué it is 
called for has been previously computed (and therefore exists in 
the associative array) and, if so, simply reuses the valué rather 
than recomputing it. This approach to implementing dynamic 
programming avoids the computation of unnecessary valúes and 
is particularly effective when combined with branch-and-bound 
techniques to further reduce unnecessary computations [24]. 

Previous efforts at parallelizing dynamic programming have fo-
cused on the "bottom-up" style dynamic programming matrix, by 
computing in parallel cells known to have no data dependencies. 
For example, the Smith-Waterman algorithm has been acceler-
ated by the parallel computation of cells in the matrix that can 
be computed independently by the use of SIMD vector instruc-
tions [36,25,6], special-purpose hardware [23], general-purpose 
graphics processing units (CPCPUs) [14,16], or other parallel pro-
cessors such as the Cell Broadband Engine [35]. More generally,Tan 



et al. [31] describe a parallel pipelined algorithm to exploit fine-
grained parallelism in dynamic programs, and apply it to Zuker's 
algorithm [40,15] for predicting RNA secondary structure. Subse-
quently, Xia et al. [37] implemented their own specific paralleliza-
tion of the Zuker algorithm on FPGA hardware. Chowdhury and 
Ramachandran [5] describe tiling sequences (recursive decompo-
sitions) for several classes of dynamic programs for cache-efficient 
implementation on multicore architectures. 

All these techniques require careful analysis of each particular 
algorithm to find the data dependencies in the dynamic program-
ming matrix, resulting in a parallelization that is specific to each 
individual problem. Furthermore, they only work on the "bottom-
up" approach and, therefore, can only be applied to problems for 
which computing every cell is feasible. 

In this paper we describe a general technique for parallelizing 
dynamic programs in modern multicore processor architectures 
with shared memory. The contributions of our paper are: 

• a generic approach to parallelizing "top-down" dynamic 
programming approach by using 
- a lock-free hash table for the memoization, where each thread 

computes the entire problem but shares results through the 
hash table; 

- the randomization of the order in which the dynamic 
program computes its subproblems to encourage divergence 
of the thread computations, so that fewer subproblems are 
computed by more than one thread simultaneously; 

• an effective algorithm for a lock-free hash table supporting only 
insertions and lookups; and 

• experimental results showing that this approach can produce 
substantial speedups on a variety of dynamic programs. 

The remainder of the paper is organized as follows. In the next 
section we describe our approach to the parallelization of top-
down dynamic programs. In Section 3 we define our hash table 
implementations, and show their effectiveness in the case where 
the ratio of inserts to lookups is quite high. In Section 4 we give 
the results of experiments on four different dynamic programs on 
three different architectures, illustrating the effectiveness of the 
parallelization. Finally, in Section 5 we conclude. 

2. Parallelizing top down dynamic programs 

Our approach to parallelizing top-down dynamic programs 
is simple. Each thread solves the entire dynamic program 
independently except that whenever it determines a result to a 
subproblem it places it in a shared hash table, and whenever it 
begins to compute the answer of a subproblem it checks whether 
the result already exists in the shared hash table. When one thread 
has found the solution to the entire dynamic program, we have the 
answer and simply termínate all other threads. 

As previously mentioned, an advantage of the "top-down" 
versus the simpler "bottom-up" dynamic programming approach, 
is that the former might not need to compute a valué for every 
subproblem. This opens up the question of the order in which 
to compute the subproblems, since this order can make a large 
difference to the number of cells computed [8,24]. 

In a serial (single-threaded) implementation, we are con-
strained to choosing a single order in which to compute the sub­
problems. However, now that we have múltiple threads available 
and the means to safely share valúes between them, we can par-
allelize the dynamic program by simply starting several threads 
at the function cali with a randomized ordering choice. That is, 
each thread runs exactly the same function, starting at the same 
point, but the randomization of the choice of subproblems results 
in the threads diverging to compute different subproblems, while 
still reusing any valué that has already been computed by a thread. 

f(s) 
v <— lookup(x) 
if v ji KEYJMOT JOUND 

returnw 
if b(x) then v <— g(x) 
else 

for i e l..n 
v[i]«- f(íi) 

v<-F(v[Í\,...,v[n]) 
insert(x,«) 
returm 

m 
v <- parJookupix) 
if v 5Í KEYJMOTJOUND 

returnt) 
if b(x) then y <— g{x) 
else 

for i 6 í..n in rondom order 
V[i] <- f(Xi) 

«<-F( i ; [ l ] v[n]) 
paunsei%x,v) 
return?; 

Fig. 1. Generic top-down dynamic programming code on the left, and the 
parallelized versión on the right. 

In this way we take advantage of whatever parallel computing 
power is available to us to compute different subproblems simul­
taneously. 

Throughout this paper we will use the 0/1 knapsack problem, 
a classic problem for dynamic programming, as an example to 
demónstrate our technique. In this problem, we are given the 
total weight (or capacity) W of the knapsack, and a set of n Ítems 
{ 1 , . . . , n}, where each item i has been assigned a weight w¡ and 
a profit p¡. The problem is to choose the subset of Ítems / c 
{ 1 , . . . , n} such that ^ ¡ e / w¡ < W and profit ^ ¡ e / p¡ is maximized. 
The dynamic programming formulation computes the optimal 
profit k(i, w) using only Ítems in 1 , . . . , i with a weight limit w as: 

fO i f i = 0 
k(i, w) = \ k(i — 1, w) if w < Wj 

lmax{/<(¡ — 1, w), k(i — 1, w — w¡) + p¡} otherwise. 

The above dynamic program is presented as a recurrence 
relation, where the order of computation of the two subproblems 
in the last case is not defined. However, an implementation using 
the "top-down" approach and memoization needs to determine 
an order. In the simple dynamic programming formulation of the 
0/1 knapsack problem presented above, our technique randomly 
chooses, with equal probability, one ofk(¡ — 1, w) andk(¡ — 1, w — 
Wi) + p¡ to compute first. 

In general, consider a dynamic program/ defined as follows: 

f(x) = ifb(x)theng(x) 
elseFtf ( x O , . . . , / & , ) ) 

where b(x) holds for the base cases (which do not require 
considering subproblems), g(x) is the result for base cases, and 
F is a function combining the optimal answers to a number of 
sub-problems X\,..., xn. The pseudo-code to implement / as a 
recursive top-down dynamic program is shown on the left of Fig. 1, 
where insert (x, v) and lookup(x) respectively insert a valué v for 
key x in a hash table and look up the stored valué. 

The key insight of this paper is that we can run / in 
parallel simply by (a) using a shared parallel hash table and (b) 
randomizing the order in which we compute the subproblems. The 
resulting pseudo-code is shown on the right of Fig. 1 with (the very 
few) changes shown in italics. Each of the parallel threads executes 
this versión of/. 

Instead of this simple randomization technique, it could be 
possible to map particular subproblems to particular threads in 
advance, in order to ensure the divergence of paths through the 
subproblems from the beginning. For the knapsack problem, this 
is not particularly difficult, since there are exactly two choices of 
subproblem at each level, so we can simply fix the ordering for 
the first log2(n) levéis for each of n threads. However, this requires 
analysis of each particular dynamic program, including how many 
subproblems exist at each level and perhaps even which are likely 
to be easy and which hard. For more complex dynamic programs 
(such as the open stacks problem and RNA structural alignment, 
both considered in this paper), not only is there a variable number 
of subproblems at each level, but also a potentially large number 



of subproblems (and henee a very large number of orderings). This 
not only makes it more complicated to try to fix the orderings in 
advance, but the large number of orderings means that it is very 
likely that simple randomization ensures divergence anyway. The 
simple randomization approach avoids all this complexity. 

Another possible enhancement is, if some heuristic is available 
to choose a "good" order in which to compute subproblems, to use 
this heuristic to determine the order of computation in one thread, 
and only randomize the others. In this way, the non-randomized 
thread will use the heuristic ordering just as in the sequential 
case, but will be assisted by having available the results of any 
subproblems it requires that may have been computed by the other 
(randomized) threads. 

3. Lock-free concurrent hash tables 

The hash table needed to implement a top-down dynamic 
programming approach only requires two operations: insert a (key, 
valué) pair, and look up a valué given a key. Once a (key, valué) 
pair has been inserted, any further insertions of the same key 
must have the same valué (since any computed optimal valué for 
a subproblem is the optimal valué, and does not change). Henee, 
updates and deletions are not required. 

Furthermore, to implement efficiently the dynamic program­
ming approach previously described, we require a concurrent hash 
table that scales well in the number of threads inserting into and 
reading from it. Thus, the use of critical sections is undesirable, 
given they require access controlled by locks (mutexes). Also, we 
would like our hash table to be not only non-blocking, that is, 
an arbitrary delay of one thread cannot halt progress of others 
(thereby excluding the use of mutual exclusión), but also meet the 
stronger condition of being lock-free. Although lock-freedom has 
had several historical definitions, we use the definition of [ 10], that 
"[a] method is lock-free if it guarantees that infinitely often some 
method cali finishes in a finite number of steps". [10, p. 60]. That 
is, there must be guaranteed system-wide progress. 

Various implementations of hash tables are possible, including 
sepárate chaining (open hashing) and open addressing (closed 
hashing). In a sepárate chaining hash table, each entry contains 
the head of a linked list of elements with the same hash valué; 
collisions are handled by adding elements to the linked list. 
An open addressing hash table stores elements directly in the 
table entries, resolving collisions by putting elements in some 
other free slot in the table. It was not clear a priori which 
implementation would work better for the associative array we 
require for parallel dynamic programming. Thus, we experimented 
with several implementations in three different processors: AMD 
Opteron (Intel IA-64), IBM PowerPC, and UltraSPARC TI. 

3.1. Our implementations 

In order to implement lock-free data structures and algorithms 
efficiently, hardware support in the form of atomic instructions is 
required. We only consider here the compare-and-swap (or CAS) 
operation, which we will denote as CompareAndSwap, with the 
semantics detailed in Fig. 2. 

Support for the CompareAndSwap operation dates back to the 
IBM S/370 and it is still available on many modern processors 
including Intel IA-64 (x86) and Sun SPARC. Processors, like the IBM 
PowerPC, that do not support CompareAndSwap, often directly 
support Load-Linked and Store-Conditional (LL/SC) instead. Since 
CompareAndSwap can be implemented using LL/SC [19], it is 
sufficient to focus on CompareAndSwap. Use of CompareAndSwap 
can result in the ABA problem, whereby the valué at an address 
is changed from a to b and then back to a after another thread, 
P has already read a from it. Then thread P can succeed in using 

CompareAndSwap(adí¿reíí, expectedval, newval) 
atomically: 

load véiasjaHiaddress) into oldval 
if oldval = expectedval then 

store newval at address 
return oldval 

Fig. 2. Semantics of the CompareAndSwap operation. The new valué newval is only 
stored at address if it contained the expected valué expectedval. The valué that was 
at address is returned, allowingthe callerto detect failure of the operation, when 
expectedval is not returned. 

CompareAndSwap on the same address with an expected valué of 
a, as if the valué at the address had never changed. This can result 
in incorrect semantics if, for example, the valúes are addresses, 
and the second use of a is due to reuse of a deleted node in a 
list. As we will show later, the ABA problem does not arise in our 
implementations. 

As we require only insert and lookup, our implementations of 
the sepárate chaining and open addressing hash tables are quite 
simple. 

Sepárate chaining: The lookup operation consists of simply 
hashing the key, and comparing the key with each element in the 
linked list anchored at the entry for that hash valué. The insert 
operation requires the use of the CompareAndSwap operation to 
insert the newly allocated element at the head of the list anchored 
at the hash valué for the new key; if the head of the list has changed 
during the insertion, we must retry it. 

This is essentially a simplified versión of the lock-free hash 
table described by Michael [20]. As we do not implement the 
delete operation, the ABA problem does not arise. To allocate new 
cells, our implementation uses the Streamflow scalable locality-
conscious multithreaded allocator [27]. As Streamflow was not 
available for SPARC, on this platform we used a simple cellpool 
allocator, in which we allocated a large amount of memory at 
initialization time, and allocated cells in a lock-free manner by 
using the CompareAndSwap operation to advance the "next cell" 
pointer for each request. 

Since the CompareAndSwap operation is used only on pointers 
(rather than the actual key), there is no limit on key size imposed 
by the máximum size ofthe operand for this instruction. Functions 
to compare keys and to copy keys and valúes can be provided as 
callback functions, allowing any data type to be used for keys and 
valúes. 

If the allocator is lock-free then this hash table is lock-free. 
The only operation that could cause it not to be is the insert 
operation, which must be retried only if the CompareAndSwap 
operation fails (i.e., when another entry with the same hash valué 
for the key has been inserted during the operation). But since the 
CompareAndSwap operation can only fail because it has succeeded 
in another thread, there is global progress and therefore the 
algorithm is lock-free. 

Open addressing: We made the further simplifying assumption 
that the hash table does not need to be resized and simply 
allocate a very large (226 entries) hash table at initialization. Henee, 
this implementation requires no thread-safe memory allocator 
and memory allocation is not required at all during its use, 
both simplifying its implementation and removing a possible 
impediment to scalability in the number of threads. Each entry 
in the hash table is a 64-bit key and a 64-bit valué (thus, a key 
is always immediately followed in memory by its valué). We use 
linear probing to resolve hash collisions. As with sepárate chaining, 
the lookup operation requires no special instructions, but the 
insert operation uses the CompareAndSwap operation to ensure 
the slot for the key it is about to insert did not have another key 
inserted during its operation. The algorithms for the parjnsert and 
parjookup operations in the open addressing hash table are shown 
in Fig. 3. The essential invariant in this concurrent data structure 



parJnsert(fcy,va;«e) 
ent <- geLentry(tey) 
if ent = NULL then 

error-exit("hash table full") 
if ent.key = NO-KEY then 

if CompareAndSwap(enr.fey, NO-KEY, key) 
^ NO-KEY then 

return par_insert(fey, value) 
ent.value •*— value 
return TRUE 

par_lookup(fary) 
ent <- get_entry(fary) 
if ent ^ NULL A ent.value ^ NO-VALUE then 

return ent.value 
else 

return KEY_NOT_FOUND 

getentry(fory) 
h <- hash(fey) 
ent <— hashtable[/i] 
probes <— 0 
while probes < TABLE-SIZE - 1 A ent.key # key 

A ent.key # NOLKEY do 
probes *— probes + 1 
h «- (h + 1) mod TABLE-SIZE 
ent <— hashtable[/i] 

if probes > TABLE-SIZE - 1 then 
return NULL 

else 
return ent 

Fig. 3. Algorithms forthe parjnsert and parjookup operations on the concurrent 
lock-free open addressing hash table. 

is that once an entry has changed from the initial empty state 
(marked with the NO_KEY constant), to containing a key, the key 
field never changes: the entry is forever occupied by that key. The 
CompareAndSwap operation ensures that if another thread has 
taken the entry during the parjnsert, then this attempt to use it 
is abandoned, and we restart the insertion operation. Because the 
key value can only change from NO_KEY to some other value, and 
never back again, the ABA problem cannot occur with this use of 
CompareAndSwap. Note also that (as is typically the case in hash 
tables) there can be no duplicate keys in the table; once an entry 
has been taken by a key, not only will it never again be empty, but 
any insertion of the same key will find that same entry. 

Note that the key and the value fields are operated on 
separately. This allows a thread to look up a key while another 
thread is in the process of inserting that key and, hence, read the 
value field before it has been set by the parjnsert function. This 
simply results in the parjookup operation finding the NCLVALUE 
constant if the key did not previously exist in the table, since all 
entries are initialized to have NCLKEY and NCLVALUE in the key 
and value fields respectively. This is interpreted as the key not 
being found in the table, just as if the parjookup operation had 
been serialized to occur prior to the parjnsert operation that is in 
progress. 

This algorithm is clearly non-blocking; an arbitrary delay of any 
thread will not halt the progress of any other threads. We claim 
that this open addressing hash table is also lock-free. To see that 
this is the case, we need only consider the parjnsert operation, 
since parjookup can clearly not be delayed by any other thread. 
Consider the case that two threads are simultaneously trying to 
insert the same key in an empty entry. Only one of them will 
execute CompareAndSwap successfully, as the other will find that 
the entry is no longer empty and fail. When this thread retries (the 
recursive call), it will find the entry no longer empty and complete. 
In general, we need to show that it is not possible for two (or 
more) threads to continually delay each other and cause livelock. 
To see that this cannot occur, observe that the CompareAndSwap 
operation only fails in one thread if it succeeds in another (because 
the contentious entry has been changed from NCLKEY to some 

key value). Hence, at least one thread has completed its operation 
(since if the CompareAndSwap succeeds, that parjnsert operation 
will succeed), and the algorithm is lock-free. 

Various optimizations are possible when implementing this 
algorithm. For example, we do not need to recursively call 
parjnsert on failure of the CompareAndSwap operation, but could 
instead use a loop and not recompute the hash value for the 
key. In the interests of simplicity and clarity we do not show 
here or implement such optimizations, but use a straightforward 
implementation of the algorithm as shown. 

3.2. Evaluation of the time performance of hash tables 

We built and tested our two hash tables (separate chaining 
and open addressing) on three different processors: AMD Opteron 
(Intel IA-64) and IBM PowerPC processors running Linux, and on 
the UltraSPARC Tl processor running Solaris. These hash table 
implementations used the gcc (version 4.1.2) compiler builtins for 
atomic operations, except on Solaris where we used the Sun Studio 
12 C compiler and the Solaris (version 5.10) atomic operation 
library functions. 

For the AMD Opteron processor, we also compared our hash 
tables to a publicly available C implementation of a Java non-
blocking data structure library called nbds [21 ], and the concurrent 
hash map with scalable allocator from the Intel Threading Building 
Blocks 2.1 (TBB) for Open Source [32]. The latter is unlike all other 
implementations in that it is not lock-free, and is in C++ rather 
than C. Note that TBB and nbds only work on Intel compatible 
processors. 

In order to evaluate the time performance of each hash table, we 
used a test program that, for 107 uniformly distributed random 64-
bit integer keys, first performs a lookup operation, then, if the key 
is not already in the table, performs a lookup on a new random key 
(also a 64-bit integer chosen uniformly at random), then inserts the 
original key, thereby generating on average twice as many lookup 
as insert operations. If the key is already in the table it simply 
asserts that the value is the correct one for the key (the values 
are inserted as the same as the key to make this correctness test 
straightforward). We use this ratio of inserts and lookups in order 
to model the dynamic programming usage we have observed in 
practice of twice as many lookups as inserts. Note that this ratio 
is quite different from those generally cited as typical for hash 
tables, such as 90% lookup, 9% insert, 1% delete [10, p. 300]. Thus, 
we require a hash table that is efficient for much more frequent 
insertions than typical usages (and which does not need to support 
a delete operation at all). 

On the UltraSPARC Tl platform, Fig. 4 shows that the open 
addressing hash table scales quite well in the number of threads, 
up to a peak speedup of 32 times for 30 threads (note this is relative 
to the baseline sequential implementation of separate chaining, 
and even with 1 thread is faster). The separate chaining hash table, 
however, scales very poorly, with a peak speedup of less than 4 
times, and no significant increase after 8 threads. This result was 
achieved with our own trivial cell pool allocator, as described in 
Section 3.1, as the Streamflow allocator [27] was not available for 
SPARC. We also experimented with the standard m a l l o c O and 
the umem_cache_*() object cache allocator [3,4] but found that 
the trivial cell pool allocator was faster for this purpose (data not 
shown). 

On the PowerPC platform, Fig. 5 shows that the separate 
chaining and open addressing hash tables achieve similarly good 
(linear) speedup. Note that the speedup actually appears to 
be superlinear; this is because the baseline uses the standard 
library m a l l o c O for the memory allocator, while the lock-free 
implementation uses the Streamflow [27] allocator, which gives 
better performance for even a single thread on this platform. 



open addressing 
- o- separate chaining 

Fig. 4. Speedup for lock-free open addressing and separate chaining hash tables on 
UltraSPARC Tl (SunFire T2000, 1 GHz, 8 cores, 32 total concurrent threads, 16 GB 
RAM), 2/3 lookup and 1/3 insert. The baseline (0 threads value) is the separate 
chaining hash table implemented with no atomic instructions and compiled and 
linked with no threading support, and the standard library malloc () Each test 
was repeated 10 times and the average value used to compute the speedup; error 
bars show the 95% confidence interval, where this is large enough to show on the 
graph scale. 

open addressing 
separate chaining 

Fig. 5. Speedup for lock-free open addressing and separate chaining hash tables 
on PowerPC 64-bit (IBM eServer pSeries 650, 1.45 GHz, 8 cores, 16 GB RAM), 2/3 
lookup and 1/3 insert. The baseline (0 threads value) is the separate chaining hash 
table implemented with no atomic instructions and compiled and linked with no 
threading support, and the standard library malloc (). Each test was repeated 10 
times and the average value used to compute the speedup; error bars show the 95% 
confidence interval, where this is large enough to show on the graph scale. 

open addressing 
separate chaining 
nbds 
Intel TBB concurrent_hash_map 

0 2 4 6 8 
threads 

Fig. 6. Speedup of different concurrent hash table implementations on AMD 
Quad Core Opteron (2.3 GHz, 2 processors, total 8 cores, 32 GB RAM), 2/3 lookup 
and 1/3 insert. The baseline (0 threads value) is a simple separate chaining hash 
table implemented with no atomic instructions and compiled and linked with no 
threading support, and the standard library malloc (). Each test was repeated 10 
times and the average value used to compute the speedup; error bars show the 95% 
confidence interval, where this is large enough to show on the graph scale. 

Hence, even the multithreaded implementation with only one 
thread is faster than the baseline. 

On the AMD Opteron platform, Fig. 6 shows the speedup of 
several concurrent hash table implementations. Speedup for the 
existing publicly available implementations is disappointing, with 
both the Intel TBB library (which uses locks) and nbds achieving 
no significant speedup with our high-insertion workload. Both the 
separate chaining and open addressing hash tables achieve quite 

good speedup on this platform, the former having a peak speedup 
of 5.7 times and the latter 6.4 times. 

The results detailed in this section lead us to choose the lock-
free open addressing hash table for implementing the parallel 
dynamic programming algorithm, since the same, quite simple, 
code achieves good scalable speedup on the three systems 
tested, and does not require the added complication of a 
scalable multithreaded allocator. The separate chaining hash table 
performs slightly better than the open addressing hash table on 
the PowerPC, but significantly worse on the other two platforms, 
although if Streamflow were available on the SPARC platform it 
may well change the results on that platform significantly. We 
note that the UltraSPARC Tl is particularly suitable for running 
scalable multithreading applications as it was designed specifically 
for scalable multithreaded performance rather than for optimal 
performance for single threads [29]. 

4. Experiments for parallelizing DP 

We now show the results of using our method to parallelize the 
dynamic programming solutions to four very different problems. 
These dynamic programs were implemented in C with the same 
compilers described in Section 3.2. We note, however, that in 
testing the hash table implementation, as described in Section 3.2, 
we used uniformly randomly distributed keys. It is well known 
(see, e.g., Askitis [ 1 ] and citations therein) that uniform distribution 
of hash values is important in the performance of hash tables, in 
order to prevent too-frequent collisions. For the tests described 
in Section 3.2, the hash function was unimportant, since the keys 
were generated from a uniform random distribution. However, 
in implementing dynamic programs, this is certainly not the 
case. To obtain a reasonably uniform distribution of hash values, 
we have used a hash function that combines bit shifts and 
multiplication [13]. 

Table 1 shows the total elapsed times of the baseline (no 
threading) implementation for all of the problems on each of the 
platforms tested, in order to give some idea of the problem sizes 
and relative speed of the platforms for single core execution. These 
times are the sums of the times for each of the individual problem 
instances (as detailed for each problem in the following sections). 
The speedup calculations are relative to the baseline consisting 
of the mean of all the individual problem instances. Because our 
algorithm makes use of randomization, it is possible that there 
could be significant variation in the execution times over different 
runs of the same problem instance. Therefore, as well as averaging 
over the problem instances, we ran some of the tests with 10 
iterations of each of the sets of problem instances, and found the 
standard deviation to be small enough to justify presenting the 
speedup figures to two decimal places. 

4.1. Knapsack 

We implemented in C the knapsack dynamic program formu­
lation given in Section 2 using the top-down recursive approach. 
We then parallelized this program using randomization and ran it 
using our lock-free open addressing hash table described in Sec­
tion 3.1. We used the test generator gen2.c used in Martello 
et al. [17] and available from http://www.diku.dk/~pisinger/gen2x 
to create 100 instances each of uncorrelated, weakly corre­
lated, strongly correlated, inverse strongly correlated and almost 
strongly correlated knapsack problems, each with 500 items and 
weights in the interval [1, 500]. 

On the UltraSPARC Tl platform, Fig. 7 and Table 2 show that 
randomizing the subproblem ordering provides a speedup of 8.97 
times (for 31 threads) for the knapsack dynamic program. Fig. 10 
sheds some light on why this does not achieve the speedup of up 
to 19 times achieved in Fig. 4 for simple insertions and lookups: 

http://www.diku.dk/~pisinger/gen2x


Table 1 
Total elapsed times forthe baseline for each of the problems on each of the platforms tested. 

UltraSPARC PowerPC Opteron 

Knapsack 
Shortest paths 
RNA struct, alignminent 
Open stacks 

4 h 12 min 25 s 
11 h37 min 46 s 
1 h 12 min 34 s 
Oh53 min45s 

2 h 08 min 43 s 
9 h 42 min 37 s 
Oh30 min 22s 
Oh 24 min01s 

0 h44 min 32 s 
2 h 12 min 44 s 
Oh 10 min 04 s 
Oh07 min47s 

-•— knapsack 
- 0- knapsack (no rand) 
-•- shortest paths 

-<&• - shortest paths (no rand) 
RNA struct, alignment 
RNA struct, alignment (no rand) 

- • - open stacks (tiebreak) 
- a - open stacks (lull) 
-B- - open stacks (no rand 

10 15 20 
threads 

25 30 

Fig. 7. Speedup for parallelized dynamic programs using the lock-free open 
addressing hash table on UltraSPARC Tl. The baseline (0 threads value) for open 
stacks is the implementation described in Garcia de la Banda and Stuckey [8], 
and for the other problems are the same implementations as the parallelized 
versions, but without randomization of subproblem orderings and using a simple 
(not lock-free) hash table implementation. All baseline implementations use no 
atomic instructions and are compiled and linked with no threading support, and 
the standard library m a l l o c ( ) . Implementations labelled with "(no rand)" refer 
to implementations where no randomization is used, so all threads solve the same 
subproblems in the same order. 

•— knapsack 
a- knapsack (no rand) 
3- shortest paths 
&•- shortest paths (no rand) 

RNA struct alignment 
RNA struct alignment (no rand) 
open stacks (tiebreak) 

a- open stacks (lull) 
a- open stacks (no rand) 
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threads 

Fig. 8. Speedup for parallelized dynamic programs using the lock-free open 
addressing hash table on IBM PowerPC (8 cores). The baseline (0 threads value) for 
open stacks is the implementation described in Garcia de la Banda and Stuckey [8], 
and for the other problems are the same implementations as the parallelized 
versions, but without randomization of subproblem orderings and using a simple 
(not lock-free) hash table implementation. All baseline implementations use no 
atomic instructions and are compiled and linked with no threading support, and 
the standard library m a l l o c O . 

Table 2 
Maximum speedup for parallelized dynamic programs using randomization and the 
lock-free open addressing hash table on UltraSPARC Tl. 

Problem 

Knapsack 
Shortest paths 
RNA struct, alignment 
Open stacks (tiebreak) 
Open stacks (full) 

Speedup 

8.97 
9.88 
9.17 
6.96 

10.83 

Threads 

31 
32 
31 
27 
32 

The total number of computations increases in approximately a 
straight line from 1.03 x 1010 for a single thread to 1.56 x 1010 

for 32 threads. Thus, at 32 threads, 5.305 x 109 more subproblems 
are computed in total, a 51% increase in total computations. 

This shows that we cannot achieve indefinite linear scalability 
with our technique, even if we had a perfectly linearly scalable 

- knapsack 
knapsack (no rand) 
shortest paths 
shortest paths (no rand) 
RNA struct, alignment 
RNA struct, alignment (no rand) 
open stacks (tiebreak) 
open stacks (lull) 
open stacks (no rand) 

0 2 4 6 8 
threads 

Fig. 9. Speedup for parallelized dynamic programs using the lock-free open ad­
dressing hash table on AMD Quad Core Opteron (2.3 GHz, 2 processors, total 8 cores, 
32 GB RAM), The baseline (0 threads value) for open stacks is the implementation 
described in [8], and forthe other problems are the same implementations as the 
parallelized versions, but without randomization of subproblem orderings and us­
ing a simple (not lock-free) hash table implementation. All baseline implementa­
tions use no atomic instructions and are compiled and linked with no threading 
support, and the standard library m a l l o c ( ) . 

Table 3 
Maximum speedup for parallelized dynamic programs using randomization and the 
lock-free open addressing hash table on IBM PowerPC (8 cores). 

Problem 

Knapsack 
Shortest paths 
RNA struct, alignment 
Open stacks (tiebreak) 
Open stacks (full) 

Speedup 

3.11 
7.68 
5.64 
3.81 
5.57 

Threads 

8 
8 
8 
6 
8 

Table 4 
Maximum speedup for parallelized dynamic programs using randomization and 
the lock-free open addressing hash table on AMD Quad Core Opteron (2.3 GHz, 
2 processors, total 8 cores, 32 GB RAM). 

Problem 

Knapsack 
Shortest paths 
RNA struct, alignment 
Open stacks (tiebreak) 
Open stacks (full) 

Speedup 

3.21 
4.81 
4.40 
3.95 
4.34 

Threads 

8 
8 
8 
8 
8 

lock-free concurrent hash table. As we increase the number of 
threads, we inevitably recompute some subproblems, when two 
or more threads compute the same subproblem simultaneously. 
Hence, although we have more threads exploring the solution 
space, we also have in aggregate more computations than we 
would have with fewer threads. 

On the PowerPC platform, Fig. 8 and Table 3 show that a 
speedup of 3.1 times is achieved for 8 threads, and for the AMD 
Opteron platform, Fig. 9 and Table 4 show a speedup of 3.2 times for 
8 threads (as opposed to 4.2 times for 8 threads in the UltraSPARC 
Tl). We note that the speedup appears to be nearly perfectly linear 
in Fig. 8, since the test system only has 8 cores. However, as seen 
for the UltraSPARC Tl platform (Fig. 7), and to a lesser extent (for 
the last data point only, for 8 threads) in Fig. 9, it is likely that 
the speedup will level out; its rate of increase will decline after 8 
threads. 

We also implemented the technique, mentioned in Section 2, 
of fixing the subproblem orderings so that each of n threads is 



Fig. 10. Total computations (number of times the parjnsert function is called, h) 
for the knapsack dynamic program using the lock-free open addressing hash table 
on UltraSPARC Tl. 

knapsack (with randomization) 
shortest paths (with randomization) 
RNA structural alignment (with randomization) 
open stacks (tiebreak randomization) 
open stacks (lull randomization) 

10 15 20 
threads 

Fig. 11. Increase in total computations (number of times the parjnsert function 
is called, h) relative to the number for a single thread (i.e., h/h-[) for the dynamic 
programs using the lock-free open addressing hash table on UltraSPARC Tl. Straight 
lines were fitted to the data points by linear least squares regression with the lm 
function in R. 

guaranteed to take a different path for the first log2(n) levels, but 
found that it did not improve the results (data not shown). 

4.2. Shortest paths 

The shortest path between two nodes i and j in a directed graph 
can be found with the dynamic programming Floyd-Warshall 
algorithm [7,33]. This algorithm is based on the function s(i,j, k), 
which returns the length of the shortest path from node i to node j 
using only 1 , . . . , k as intermediate nodes. This function is defined 
using dynamic programming as follows: 

s(i,j,k) 

where dy is the weight (distance) of the directed edge from i to j . 
Once k reaches the total number of nodes in the graph, say n, the 
value returned by s(i,j, n) represents the optimal solution to the 
initial problem. 

As before, we implemented this dynamic program in C using 
the recursive top-down approach, parallelized it using random­
ization, and ran it using our lock-free open addressing hash table. 
To randomize we randomly choose, with equal probability, one of 
the 3! = 6 possible orderings of the three subproblems in the re­
currence relation just described. We derived the test data for this 
example from the 9th DIMACS Implementation Challenge — Short­
est Paths data from http://www.dis.uniromal.it/~challenge9/. We 
chose three 500 node slices ofthe New York City dataset, with 100 
queries per instance. 

Figs. 7-9 and Tables 2-4 show that the resulting program 
achieves a speedup of 9.88 times with 32 threads on the Ultra­
SPARC Tl platform, 7.68 times with 8 threads on the IBM PowerPC 

o, 
da, 
min{s(i, j , k — 1), 

s(i,k, k - 1) +s(k,j, k --1)} 

if i = j 
if fe = 0 

otherwise 

platform, and 4.81 times with 8 threads on the AMD Opteron plat­
form. 

4.3. RNA base pairing probability matrix alignment 

Finding an alignment of two RNA sequences that takes into ac­
count both the sequences and the secondary structures into which 
they fold, is another problem with a dynamic programming solu­
tion [26]. If we are given the base pairing probability matrices [18] 
for two RNA sequences, then S(i,j, k, I), the best score of match­
ing subsequences i..j in sequence A and k..l in sequence B can be 
computed by the following dynamic program [11]: 

S(i,j, k, I) = max 

S(i + \,j,k,l) + y, 
S(i,j,k + \,l) + y, 
S(i + 1,j,k+1,l)+cr(A,,Bk), 
max S 

h<j,tj<l 
(i,h,k,q)+S(h + \,j,q + \,l) 

SM(i,j, k, I) = S(i + 1, j - 1, k + 1, I - 1) 
+ Vv

A + Vk
B, + T(Ai,Aj,Bk,Bl). 

In the above, S(i,j, k, I) is the best score of matching 
subsequences i..j in sequenced and k..l in sequence B, y < 0 is the 
gap penalty, a and x are score functions for unpaired bases and 
base pairs, respectively, and WA and WB are the base pairing log 
probability matrices for sequence A and sequence B, respectively. 

LocARNA [34] is a recent implementation of this algorithm 
that significantly improves efficiency by carefully rearranging the 
dynamic programing equations, and by providing an efficient 
bottom-up implementation of the dynamic program. Its time 
complexity is effectively quadratic due to the filtering out of base 
pairs with probability less than a threshold. The sparseness ofthe 
probability matrices makes the number of remaining nonzero base 
pair probabilities effectively linear [34]. 

As before, we implemented the above dynamic program in C 
using the recursive top-down approach, parallelized it using ran­
domization, and ran it using our lock-free open addressing hash 
table. To randomize we ordered the subproblem computations ac­
cording to a random permutation ofthe entire list of subproblems 
intheS(-) andSM(-) computation. 

We used the probability threshold as described by Will 
et al. [34] to reduce the computational complexity ofthe problem, 
and, as does LocARNA [34], normalized the base pairing log 
probabilities and converted them to integers in order to avoid 
floating point computations. This is particularly important on the 
UltraSPARC Tl processor, since it has a single floating point unit per 
chip, shared by all cores [29], which limits scalability of programs 
using floating point operations. 

We run the parallelized program with the BRAliBase II [9] 
pairwise RNA structural alignment benchmark data set, which 
consists of 118 pairs of RNA sequences (from a total of 78 individual 
sequences) to be aligned. We used the RNAfold program in 
the Vienna RNA Package [40,12] to generate the base pairing 
probability matrix for each sequence, which is then processed by a 
script into a form used as input to our program. 

Figs. 7-9 and Tables 2-4 show that the top-down implemen­
tation with the concurrent lock-free open addressing hash table 
achieves a speedup of 9.17 times with 31 threads on the Ultra­
SPARC Tl platform, 5.64 times with 8 threads on the IBM PowerPC 
platform, and 4.40 times with 8 threads on the AMD Opteron plat­
form for this implementation. 

We note that this problem is different from the ones previously 
shown, in that it is perfectly feasible to compute and store 
every possible subproblem (i.e., use the bottom-up technique) for 
realistic problem instances. Hence, a hash table is not necessary. 
Furthermore, a careful arrangement of the computation order 
and efficient implementation ofthe bottom-up technique, such as 

http://www.dis.uniromal.it/~challenge9/
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Fig. 12. Speedup for parallelized RNA base pairing matrix alignment using an array 
to store computed values on the UltraSPARC Tl (32 cores). The baseline (0 threads 
value) is a top-down implementation of the dynamic program using an array to 
store computed values, with no randomization, and compiled and linked with no 
threading support. The dashed horizontal line represents the speedup relative to the 
same baseline of a bottom-up implementation of the dynamic program, showing 
that our parallelized implementation is faster than the bottom-up implementation 
on this platform when 3 or more threads are used. 
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Fig. 13. Speedup for parallelized RNA base pairing matrix alignment using an array 
to store computed values on the IBM PowerPC (8 cores). The baseline (0 threads 
value) is a top-down implementation of the dynamic program using an array to 
store computed values, with no randomization, and compiled and linked with no 
threading support. The dashed horizontal line represents the speedup relative to the 
same baseline of a bottom-up implementation of the dynamic program, showing 
that our parallelized implementation is faster than the bottom-up implementation 
on this platform when 5 or more threads are used. 

LocARNA [34], is considerably faster than the top-down technique 
(certainly for a single thread). Therefore, we also implemented a 
bottom-up version of the algorithm, as well as a top-down version 
that uses an array rather than the concurrent hash table to store 
results. Fig. 12 shows that the top-down parallelization using an 
array rather than a hash table achieves a maximum speedup of 
6.50 times on the UltraSPARC Tl processor and is faster than the 
bottom-up implementation for 3 or more threads. Figs. 13 and 14 
show that the corresponding results on the PowerPC and AMD 
Opteron processors respectively are a maximum speedup of 3.31 
times and 2.78 times, and that on the IBM PowerPC and AMD 
Opteron, 5 and 4 or more threads.respectively, are required in 
order to be faster than the bottom-up implementation. 

This example demonstrates that our technique can be used to 
accelerate any top-down implementation of a dynamic program 
(whether storing the results in a hash table or an array), 
without having to find an efficient ordering of the (bottom-up) 
computation. 

4.4. Minimization of Open Stacks 

The Minimization of Open Stacks Problem [38,39] aims at 
finding a sequence in which to manufacture a set of products so 
that the maximum number of active customers is minimized. A 
client c is said to be active from the time the first product ordered 
by c starts to be manufactured, until the last product ordered by c 

0 2 4 6 8 
threads 

Fig. 14. Speedup for parallelized RNA base pairing matrix alignment using an array 
to store computed values on the AMD Opteron (8 cores). The baseline (0 threads 
value) is a top-down implementation of the dynamic program using an array to 
store computed values, with no randomization, and compiled and linked with no 
threading support. The dashed horizontal line represents the speedup relative to the 
same baseline of a bottom-up implementation of the dynamic program, showing 
that our parallelized implementation is faster than the bottom-up implementation 
on this platform when 4 or more threads are used. 

is manufactured. Traditionally, the already manufactured products 
ordered by a client are stored in a stack, until the order was 
completed and the stack was closed. Thus, the number of active 
customers corresponds to the number of open stacks (thus the 
name). 

A highly effective dynamic programming solution to this 
problem is described by Garcia de la Banda and Stuckey [8] in terms 
of a set P of products, a set C of customers, a function c(p) that 
returns the set of customers who have ordered product p e P, and 
its extension c(S) = UpeS c(p) which returns the set of customers 
ordering products from the set S c P. If A c P is the set of all 
products scheduled to be manufactured after product p, then the 
set of active customers at the time p is manufactured is 

a(p,A) = c(p) U (c(A) nc(P-A- {p})) 

that is, those who ordered p, plus those whose orders include some 
products scheduled after p and some scheduled before p. Let S c 
P denote the set of products that still need to be manufactured 
and let stacl<sP(S) be the minimum number of stacks required 
to schedule the products in S. Then, the dynamic programming 
recurrence relation to compute stacl<sP(S) is: 

minmax{a(p, S — {p}), stacl<sP(S — {p})} 
pes 

which computes, for each product p, the maximum number of open 
stacks needed if p was scheduled first, and then takes the minimum 
of this over all products. 

In the dynamic programming formulation of the open stacks 
problem described by Garcia de la Banda and Stuckey [8], the 
order in which the products are tried significantly affects the 
amount of work performed, and a heuristic is used which selects 
the product with the least number of active customers (its pseudo 
code is given in Fig. 15). We demonstrate two different approaches 
to randomization. Our first approach, stacks_tiebreak, retains the 
heuristic and only introduces randomization for breaking ties. This 
is achieved by changing the third line of the while loop in Fig. 15 
to 

p <r- RandomElementOf(Q). 

Our second approach, stacks_full, discards the heuristic and 
randomly selects any product that has the same or fewer number of 
active customers than the currently known minimum. In addition 
to the change above, the 2nd line in the while loop is replaced by 

Q <-{p | p € 7\ a(p, S - {p}) <min}. 

We used the same C code described in Garcia de la Banda 
and Stuckey [8], adding the randomization techniques just 



stacks^, L,!7) 
if 5 = 0 then 

return 0 
min <- lookup(S) 
if min j£ KEYJMOT-FOUND then 

return min 
min<-U + l 

if 3p S S.c(j>) C c(P - 5) n c(S) then 
return stacks(S - {p}, L, U) 

while min > L A T ^ 0 do 
minjiow <— min{a(p, 5 — {p}) | p G T} 
Q «— {p | p 6 T, a(p, S — {p}) =minjiow } 
p <- FirstElementOf(Q) 
T^T-{p} 
if a(p, S — {p}) > min then 

break 
sp <- max{o(p, S - {p}), Stacks^ - {p}, L, U)} 
if sp < min then 

min <— sp 
insert(S',min) 
return min 

Fig. 15. The A* dynamic programming algorithm forthe open stacks problem [8]. 
stacks(S, I, U) returns the minimal number of open stacks required for scheduling 
the set of products S given a lower bound on the number of stacks I and an upper 
bound U. A heuristic choice of the order in which to try products is made by selecting 
a product p which results in the least number of active customers if scheduled 
immediately. 

described, and replacing the simple separate chaining hash table 
of Garcia de la Banda and Stuckey [8] with our lock-free open 
addressing hash table described in Section 3.1. We use the same 
problem instances from the Constraint Modelling Challenge 2005 
(http://www.dcs.st-and.ac.uk/~ipg/challenge), omitting the two 
instances that exceeded the search limit in Garcia de la Banda and 
Stuckey [8], as well as a single instance that requires a set of more 
than 64 products after preprocessing (since their implementation 
represents the product set as a bit set, and is currently restricted to 
a single (64 bit) machine word as the hash table key). 

Figs. 7-9 and Tables 2-4 show that the tiebreak randomization 
achieves a speedup of up to 6.96 times (for 27 threads) on the Ultra­
SPARC Tl platform, 3.81 times (for 6 threads) on the PowerPC plat­
form, and 3.95 (for 8 threads) on the AMD Opteron platform. For 
the full randomization (stacks_full) the corresponding speedups 
are 10.83,5.57, and 4.34 times for 32,8 and 8 threads, respectively. 

Note that, for comparison, not randomizing the choice so that 
each thread performs the same computation results in no speedup 
and, in fact, the addition of more threads causes a slight slowdown. 

Just as for the knapsack problem, we can see from Fig. 11 that 
increasing the number of threads also linearly increases the total 
number of subproblems computed. At the maximum value of 32 
threads, this is a 51% increase for knapsack and a 43% increase 
for open stacks with the tiebreak randomization, but only a 3.7% 
increase for open stacks with the full randomization. 

The difference in speedup between stacks_tiebreak and 
stacks_full illustrates the importance of ensuring that the path 
threads take through the set of subproblems diverges as much as 
possible. In the extreme case of no randomization (so that each 
thread computes exactly the same subproblems in exactly the 
same order), we clearly obtain no speedup. In general, the more 
divergent between threads that the path through the set of pos­
sible subproblems of a particular dynamic program becomes, the 
better the speedup will be. This is because more divergent paths 
cause a slower growth (lesser slope of the h/h\ lines as plotted 
in Fig. 11) in the number of duplicated computations (when two 
more more threads compute the same subproblem). In the case of 
the open stacks problem, this reduction in duplicated computation 
more than makes up for the loss of the heuristic which selects the 
product with the least number of open stacks if selected first. We 
also implemented the technique, mentioned in Section 2, of having 

one thread always use the heuristic ordering rather than randomiz­
ing, but the results are not significantly improved in this case (data 
not shown). 

5. Conclusions 

We have described a technique for parallelizing dynamic 
programs on shared memory multiprocessors, and demonstrated 
its application to dynamic programming formulations of the well-
known knapsack and shortest paths problems, as well as the 
bioinformatics problem of RNA structural alignment, and the 
problem of minimizing the maximum number of open stacks. Our 
technique is applicable to any dynamic program, since it operates 
on the top-down (i.e., recursive) implementation of the dynamic 
program, which is a direct implementation of the recurrence 
relation (Bellman equation) expression of the problem. This is 
in contrast to previous work on parallelizing dynamic programs, 
which focuses on vectorizing the operations in filling in the 
dynamic programming matrix in the bottom-up technique. 

Much greater speedups (orders of magnitude) can be achieved 
for specific dynamic programming problems by careful analysis 
of the problem structure and properties of optimal solutions, in 
order to apply, for example, bounding techniques. Although the 
parallelization technique we have described results in much more 
modest speedups, it can be applied immediately to any dynamic 
program, without the need for further analysis. 

For dynamic programs that are too large to implement in the 
bottom-up manner (filling in every entry of a dynamic program­
ming matrix), such as open stacks, vectorization approaches are 
inapplicable and a method, such as the one presented here, that is 
applicable to the top-down implementation is required. We have 
shown a speedup greater than 10 times (for 32 threads) by applying 
this method to a state of the art dynamic programming algorithm 
for the minimization of the maximum number of open stacks prob­
lem. 

For problems that can be practically implemented with the 
bottom-up technique, such as sequence alignment and RNA 
structure prediction and alignment, vectorization techniques 
have been successful. However, these techniques require careful 
analysis of the data dependencies in the particular problem 
being parallelized and result in increased complexity of the 
implementation. Our method, in contrast, can be applied directly 
to a simple implementation of the recurrence relation defining 
the problem as a recursive function, without any analysis of the 
particular problem. In these cases an array can be used to store 
results, without even the need for a lock-free hash table. 

In order to simplify our algorithm and implementation we 
made the assumption that dynamic resizing of the hash table 
is unnecessary, and simply allocated a very large hash table at 
initialization. This is clearly wasteful for dynamic programming 
problem instances that do not require a large number of entries. 
A more sophisticated implementation would use a dynamically 
resizable lock-free hash table, such as that provided by split-
ordered lists [28]. Further experiments would have to be carried 
out to determine if the increase in complexity and use of 
indirection (resulting in reduced cache efficiency) is a winning 
trade-off for the advantage of not allocating unnecessarily large 
amounts of memory. 

Acknowledgments 

This research made use of the Victorian Partnership for 
Advanced Computing HPC facility and support services. The first 
author is funded by an Australian Postgraduate Award. NICTA 
is funded by the Australian Government as represented by 
the Department of Broadband, Communications and the Digital 
Economy and the Australian Research Council through the ICT 

http://www.dcs.st-and.ac.uk/~ipg/challenge


848 

Centre of Excellence Program. The fourth author is funded in part 
by Spanish Ministry of Science project TIN-2008-05624 DOVES and 
CM project S-0505/TIC/0407 PROMESAS. IMDEA is funded by the 
Madrid Regional Government (CM). 

References 

N. Askitis, Fast and compact hash tables for integer keys, in: Proceedings 
of the Thirty-Second Australasian Computer Science Conference, ACSC 2009, 
Australian Computer Society, 2009, pp. 101-110. 
R. Bellman, Dynamic Programming, Princeton University Press, Princeton, New 
Jersey, 1957. 
J. Bonwick, The slab allocator: An object-caching kernel memory allocator, in: 
Proceedings of the Summer 1994 USENIX Conference, 1994, pp. 87-98. 
J. Bonwick, Magazines and Vmem: Extendingthe slab allocator tomany CPUs 
and arbitrary resources, in: Proceedings of the 2001 USENIX Annual Technical 
Conference, 2001, pp. 15-34. 
R.A. Chowdhury, V. Ramachandran, Cache-efficient dynamic programming al-
gorithms for multicores, in: Proceedings of the Twentieth Annual ACM Sym-
posium on Parallel Algorithms and Architectures, ACM, 2008, pp. 207-216. 
M. Farrar, Striped Smith-Waterman speeds datábase searches six times over 
otherSIMD implementations, Bioinformatics 23 (2) (2007) 156-161. 
R.W. Floyd, Algorithm 97: Shortest path, Communications of the ACM 5 (6) 
(1962)345. 
M. Garcia de la Banda, P.J. Stuckey, Dynamic programming to minimize the 
máximum number of open stacks, INFORMS Journal on Computing 19 (4) 
(2007)606-617. 
P.P. Gardner, A. Wilm, S. Washietl, A benchmark of múltiple sequence 
alignment programs upon structural RNAs, Nucleic Acids Research 33 (8) 
(2005)2433-2439. 
M. Herlihy, N. Shavit, The Art of Multiprocessor Programming, Morgan 
Kaufmann, Burlington MA, USA, 2008. 
I.L. Hofacker, S.H.F. Bernhart, P.F. Stadler, Alignment of RNA base pairing 
probability matrices, Bioinformatics 20 (14) (2004) 2222-2227. 
I.L. Hofacker, W. Fontana, P.F. Stadler, LS. Bonhoeffer, M. Tacker, P. Schuster, 
Fast folding and comparison of RNA secondary structures, Monatshefte für 
Chemie 125 (1994) 167-188. 
http://www.concentric.net/~Ttwang/tech/inthash.htm, 2007. 
W. Liu, B. Schmidt, G. Voss, W. Müller-Wittig, Streaming algorithms for 
biological sequence alignment on GPUs, IEEE Transactions on Parallel and 
Distributed Systems 18 (9) (2007) 1270-1281. 
R.B. Lyngso, M. Zuker, C.N.S. Pedersen, Fast evaluation of internal loops in RNA 
secondary structure prediction, Bioinformatics 15 (6) (1999) 440-445. 
S.A. Manavski, G. Valle, CUDA compatible GPU cards as efficient hardware 
accelerators for Smith-Waterman sequence alignment, BMC Bioinformatics 9 
(Suppl2)(2008)S10. 
S. Martello, D. Pisinger, P. Toth, Dynamic programming and strong bounds for 
the 0-1 knapsack problem, Management Science 45 (3) (1999) 414-424. 
J.S. McCaskill, The equilibrium partition function and base pair binding 
probabilities for RNA secondary structure, Biopolymers 29 (1990) 1105-1119. 
M.M. Michael, Scalable lock-free dynamic memory allocation, in: Proceedings 
of the ACM SIGPLAN 2004 Conference on Programming Language Design and 
Implementation, ACM, 2004, pp. 35-46. 
M.M. Michael, High performance dynamic lock-free hash tables and list-based 
sets, in: Proceedings of the Fourteenth Annual ACM Symposium on Parallel 
Algorithms and Architectures, ACM, 2002, pp. 73-82. 
http ://code.goog!e.com/p/nbds/, 2009. 
S.B. Needleman, C.D. Wunsch, A general method applicable to the search for 
similarities in the amino acid sequence oftwo proteins, J. Mol. Biol. 48 (1970) 
443-453. 
T.F. Oliver, B. Schmidt, D.L. Maskell, Reconfigurable Architectures for Bio-
Sequence Datábase Scanning on FPGAs, IEEE Transactions on Circuits and 
Systems II 52(12) (2005) 851-855. 
J. Puchinger, P.J. Stuckey, Automating branch-and-bound for dynamic 
programs, in: Proceedings of the 2008 ACM SIGPLAN Symposium on 
Partial Evaluation and Semantics-Based Program Manipulation, ACM, 2008, 
pp. 81-89. 
T. Rognes, E. Seeberg, Six-fold speed-up of Smith-Waterman sequence 
datábase searches using parallel processing on common microprocessors, 
Bioinformatics 16 (8) (2000) 699-706. 
D. Sankoff, Simultaneous solution of the RNA folding, alignment and 
protosequence problems, SIAM Journal on Applied Mathematics 45 (5) (1985) 
810-825. 
S. Schneider, C.D. Antonopoulos, D.S. Nikolopoulos, Scalable locality-conscious 
multithreaded memory allocation, in: Proceedings of the 5th International 
Symposium on Memory Management, ISMM '06, ACM, Ottawa, Canadá, 2006, 
pp. 84-94. 
O. Shalev, N. Shavit, Split-ordered lists: Lock-free extensible hash tables, 
Journal of the Association of Computing Machinery 53 (3) (2006) 379-405. 
D. Sheahan, Developing and Tuning Applications on UltraSPARC TI chip 
Multithreading Systems, 1.2 ed., Sun Microsystems, 2007, 
http://www.sun.com/blueprints/1205/819-5144.pdf. 
T.F. Smith, M.S. Waterman, Identification of Common Molecular Subse-
quences.J. Mol. Biol. 147 (1981) 195-197. 

[31] G. Tan, N. Sun, G.R. Gao, A parallel dynamic programming algorithm on a multi-
core architecture, in: Proceedings of the Nineteenth Annual ACM Symposium 
on Parallel Algorithms and Architectures, ACM, 2007, pp. 135-144. 

[32] http://www.threadingbuiIdingblocks.org/, 2009. 
[33] S. Warshall, A theorem on boolean matrices, Journal of the Association of 

Computing Machinery 9 (1) (1962) 11-12. 
[34] S Will, K. Reiche, I.L. Hofacker, P.F. Stadler, R. Backofen, Inferring noncoding 

RNA families and classes by means of genome-scale structure-based 
clustering, PLoS Computational Biology 3 (4) (2007) e65. 

[35] A. Wirawan, C.K. Kwoh, N.T. Hieu, B. Schmidt, CBESW: Sequence alignment on 
the PlayStation 3, BMC Bioinformatics 9 (2008) 377. 

[36] A. Wozniak, Using video-oriented instructions to speed up sequence 
comparison, CABIOS 13 (2) (1997) 145-150. 

[37] F. Xia, Y. Dou, X. Zhou, X. Yang, J. Xu, Y. Zhang, Fine-grained parallel 
RNAalifoId algorithm for RNA secondary structure prediction on FPGA, BMC 
Bioinformatics 10 (Suppl. 1) (2009) S37. 

[38] B.J. Yuen, Heuristics for sequencing cutting patterns, European Journal of 
Operational Research 55 (1991) 183-190. 

[39] B.J. Yuen, ICV. Richardson, Establishingthe optimality of sequencing heuristics 
for cutting stock problems, European Journal of Operational Research 84 
(1995)590-598. 

[40] M. Zuker, P. Stiegler, Optimal computer folding of large RNA sequences using 
thermodynamics and auxilliary information, Nucleic Acids Research 9 (1) 
(1981) 133-148. 

http://www.concentric.net/~Ttwang/tech/inthash.htm
http://www.sun.com/blueprints/1205/819-5144.pdf
http://www.threadingbuiIdingblocks.org/

