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Abstract

Despite years of study on failure prediction, it remains an open problem, especially
in large-scale systems composed of vast amount of components. In this paper, we
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the benefits of multiple predictive techniques. The other is a dynamic approach to
dynamically obtain failure patterns from a changing training set and to dynamically
extract effective rules by actively monitoring prediction accuracy at runtime. We
demonstrate the effectiveness and practical use of this framework by means of real
system logs collected from the production Blue Gene/L systems at Argonne National
Laboratory and San Diego Supercomputer Center. Our case studies indicate that
the proposed mechanism can provide reasonable prediction accuracy by forecasting
up to 82% of the failures, with a runtime overhead less than 1.0 minute.
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1 Introduction

1.1 Motivations

To meet the insatiable demand in science and engineering, supercomputers
continue to grow in size. Production systems with tens to hundreds of thou-
sands of computing nodes are being designed and deployed [30]. Such a scale,
combined with the ever-growing system complexity, is introducing a key chal-
lenge — reliability — in the field of high performance computing (HPC).
Despite great efforts on the design of ultra-reliable components, the increase
of system size and complexity has outpaced the improvement of component re-
liability. Recent studies have pointed out that the mean-time-between-failure
(MTBF) of teraflop and soon-to-be-deployed petaflop machines are only on
the order of 10 - 100 hours [4,41,22].

To address the reliability problem, considerable research has been done to
improve fault resilience of computer systems and their applications through
various technologies. Representative works include failure-aware resource man-
agement and scheduling [10,15,20], checkpointing [6,18,24,38], proactive or
adaptive runtime resilience support [14,29]. The advance of these technolo-
gies, however, greatly depends on whether we can predict the occurrence of
failure, i.e., failure prediction. For example, proactive fault tolerant methods,
such as preemptive process migration, require failure forecasting to enable
cost-effective failure avoidance. For reactive methods such as checkpointing,
an efficient failure prediction could substantially reduce their operational cost
by telling when and where to perform checkpoints, rather than blindly invok-
ing actions periodically with an unwisely chosen frequency.

Despite years of study on failure prediction, it remains an unsolved problem,
especially in large-scale systems composed of substantial amount of compo-
nents. We summarize its key challenges from two aspects. First is predic-
tion accuracy. Existing studies mainly concentrate on exploring one specific
method to capture and discover failure patterns. As a matter of fact, in a
large-scale system the sources of failures are numerous and complex, thus it
is improper to expect a single method to capture all of failures alone. For
example, many rule-based classifiers emphasize on discovering correlation re-
lationships between warning messages and fatal events for failure prediction
[39,23]. As we will show in our experiments, they are limited by the amount of
fatal events occurring without any precursor warnings. Hence, relying on these
methods alone is insufficient to provide an effective failure forecasting. Further,
hardware and software upgrades are common at supercomputing centers, and
system workloads tend to vary during system operation. These changes can
drastically alter system behaviors [41]. As a result, static analysis that uses
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a fixed set of historic data to learn failure patterns cannot adapt to system
changes at runtime, thereby being incapable of providing accurate forecasting.

The next is with respect to practical use. While many predictive models have
been presented so far, most of them merely focus on the algorithm-level im-
provement and are too complicated to be of practical use for online failure
prediction [17,40]. In addition, to obtain sufficient failure patterns, many pre-
dictive methods require a long training phase (e.g., one or more years), thereby
being unable to provide prediction service for a long period of time [8]. Given
that most systems at supercomputing centers only have a couple of years in
production, this requirement must be removed.

1.2 Main Contributions

In this study, we present a dynamic meta-learning framework for online failure
prediction in large-scale systems. It intends to provide reasonable prediction
accuracy, as well as be of practical use in realistic environments. Our frame-
work consists of two parts to process and analyze system events: one is to
preprocess system events by means of event categorization and filtering (i.e.,
data preprocessing), and the other is to examine the cleaned events for gen-
erating failure patterns and triggering failure warnings through continuous
runtime event analysis (i.e., failure prediction). These two parts, along with
their main components, are illustrated in Figure 1. The details of the main
components will be described in Section 3 - 4.

Our method employs two key techniques to address the challenges listed above.
First, meta-learning is explored to boost prediction accuracy by combining the
benefits of multiple predictive methods. It enables us to discover a variety of
failure patterns in large-scale systems, without constructing complex models of
the underlying system. In this study, we integrate three widely-used predictive
methods, namely association rule based learner [23,28], statistical rule based
learner [16], and probability distribution [4], in the framework by applying a
simple yet efficient ensemble learning method. Next, a dynamic mechanism is
adopted to trigger relearning periodically and to adaptively extract effective
rules of failure patterns by actively tracing prediction accuracy.

To demonstrate the effectiveness and practical use of our framework, we eval-
uate it with the real RAS (Reliability, Availability and Serviceability) logs
collected from the production Blue Gene/L systems at Argonne National
Laboratory (ANL) and San Diego Supercomputer Center (SDSC). The use
of multiple RAS logs is to ensure our framework is not bias to any specific log
and thus produces representative results expected in other systems as well.
To comprehensively assess our framework, our experiments are structured to
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Fig. 1. Overview of our dynamic meta-learning framework for failure prediction
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answer the following questions:

Q1: How much improvement is achieved by the meta-learning?
Q2: How much improvement is achieved by the dynamic approach?
Q3: How sensitive is prediction accuracy to prediction window size?
Q4: How much runtime overhead is introduced?

Our experiments demonstrate that meta-learning can effectively improve pre-
diction accuracy by up to three times, and the dynamic approach is capable
of adapting to system changes, even after a major system reconfiguration.
For both systems, our method can provide reasonable prediction accuracy
by predicting up to 82% of failures, with a runtime overhead less than 1.0
minute. Furthermore, prediction accuracy depends on how far away we are
interested in forecasting failures. In general, the larger the window is, the
higher the prediction coverage is, along with a higher false alarm rate. The
rules of failure patterns change dramatically during system operation, which
further proves that the dynamic approach is indispensable for better predic-
tion. Finally, runtime overhead increases with the growing size of the training
set. Overall speaking, we find that for both systems, the use of recent six-
month training set can well balance between prediction accuracy and runtime
overhead.

We note that three predictive methods, namely association rule based learn-
ing, statistical learning, and probability distribution, have been tested in our
experiments. Rather than focusing on which predictive method is better, this
study focuses on providing a general framework to dynamically combine mul-
tiple predictive methods for better failure prediction. We believe that other
predictive methods like [17,37] can be easily integrated into our framework.

1.3 Paper Organization

The rest of the paper is organized as follows. Section 2 gives the background
information of Blue Gene systems and system logs. Section 3 describes the
details of data preprocessing, followed by a detailed description of our dynamic
meta-learning method in Section 4. The case studies with real failure logs are
presented in Section 5. Section 6 discusses the related work and points out
the key differences between this work and existing studies. Finally, Section 7
summarizes the paper.

5



Fig. 2. Blue Gene/L System Overview

2 Background

2.1 Overview of Blue Gene/L

In this paper, we use RAS (Reliability, Availability and Serviceability) logs
collected from the Blue Gene/L systems for case studies, thus in the below we
give an overview of the systems and their RAS logging facilities. The proposed
dynamic meta-learning framework can be easily extended for failure prediction
of other large-scale systems.

System packaging is an integral aspect of Blue Gene/L systems (see Figure
2). As shown in the figure, the basic building block is called computer chip.
Each computer chip consists of two PPC 440 cores, with a 32KB L1 cache and
a 2KB L2 cache. The cores share a 4MB EDRAM L3 cache. A compute card
contains two computer chips, a node card contains 16 compute cards, and a
midplane holds 16 node cards with a total of 1,024 processors. In addition to
compute nodes, a midplane is also populated with several I/O nodes which are
configured to handle file I/O and host communication. Each midplane also has
one service card that performs system management services like monitoring
node heartbeat and checking errors. More details of the system architecture
can be found in the literature [3].

In Blue Gene, the Cluster Monitoring and Control System (CMCS) service is
implemented on the service nodes for the purpose of system monitoring and
error checking. The service node, which is available in each midplane, acquires
specific device information, such as RAS events, directly through the control
network. Runtime information is collected from computer and I/O nodes by a
polling agent, reported to the CMCS service, and finally stored in a centralized
DB2 repository. This system event logging mechanism works in a granularity
of less than 1 millisecond.

The entries in the RAS log include hard errors, soft errors, machine checks,

6



Table 1
Attributes of RAS Events in Blue Gene

Attribute Description

Record ID An integer denoting event sequence number

Event Type The mechanism through which the event is recorded

Event Time Timestamp associated with the reported event

Job ID Job that detects the event

Location Place of the event (e.g., chip/node card/service card/link card)

Entry Data A short description of the event

Facility The service/hardware component experiencing the event

Severity The level of severity of the reported event

and software problems. Information about scheduled maintenance, reboot, and
repair is not included. Each record has eight attributes which are described in
Table 1.

The SEVERITY attribute can be one of the following levels — INFO, WARN-
ING, SEVERE, ERROR, FATAL, or FAILURE — which also denotes the
increasing order of severity. INFO events are for the purpose of general in-
formation to administrators about the reliability of various hardware/services
components in the system. WARNING events report unusual events in node
cards, link cards, service cards or related services. SEVERE events provide
more information about the reasons causing problems in node cards or ser-
vice cards etc. ERROR events indicate problems that require further attention
of administrators. An event with any of the above SEVERITY attributes is
either informative in nature, or is related more to the initial configuration
errors, and is thus relatively transparent to the applications/runtime envi-
ronment. However, FATAL or FAILURE events (such as “uncorrectable torus
error”, “communication failure socket closed”, “uncorrectable error detected
in edram bank”, etc.) are more severe, and usually lead to system/application
crashes. Our primary focus in this study is to predict FATAL and FAILURE
events (denoted as fatal events 1 , while other events are denoted as non-fatal
events). In [41], Oliner et al. have pointed out that some of the fatal events
provided by the RAS log are not true fatal events. We have consulted with ex-
perienced system administrators at both ANL and SDSC, and removed these
“fake” fatal events from the failure list.

1 In the paper we use “failure” and “fatal event” interchangeably.
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Table 2
Log Description

Log Period Weeks Event No. Log Size

ANL BGL Jan. 21, 2005 - Jun. 19,2007 112 5,887,771 2.27 GB

SDSC BGL Dec. 6, 2004 - Jun. 11, 2007 132 517,247 463 MB

2.2 Test Logs

Two production Blue Gene/L systems are used in our experiments. One is
at SDSC, which consists of three racks with 3,072 dual-core compute nodes
and 384 I/O nodes. The configuration is chosen to support data-intensive
computing. Each node consists of two PowerPC processors that run at 700
MHz and share 512 MB of memory, giving an aggregate peak speed of 17.2
teraflops and a total memory of 1.5 TB [31]. The other is at ANL, which
has one rack with 1,024 dual-core compute nodes and 32 I/O nodes [32]. The
aggregate peak performance is of 5.7 teraflops, with a total memory of 500
gigabytes. Both systems are mainly used for scientific computing. Table 2
summarizes the RAS logs used in our experiments.

The log from ANL has much more number of records, although the system
has only one rack of nodes. This is due to a large quantity of error checking
messages produced at the ANL site. For example, during the 50th week of the
ANL’s log (between January 6 and January 13, 2006), there were over 1.15
million of machine checking information messages generated. System admin-
istrators at ANL ran diagnostics more frequently to cull out bad hardware
faster, without applications seeing it.

3 Data Preprocessing

Raw logs generally contain many repeated or redundant information. This is
because each computer chip runs a polling agent to collect the errors reported
by the chip. As each job is assigned to multiple computer chips, any failure of
the job will get reported multiple places — once from each of the assigned com-
puter chips. Thus multiple components may report the same failure. Also, the
logging mechanism records the events at a very fine granularity (e.g., in mil-
lisecond), but the recorded event time is generally in seconds or minutes, thus
leading to multiple entries of an event with the same time stamp. Therefore,
before a RAS log can be used for failure prediction, it needs to be processed
to identify unique RAS events.

As shown in Figure 1, data preprocessing mainly consists of two components:
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one is event categorizer, and the other is event filter. The categorizer aims at
providing a precise list of RAS types, and the filter removes redundant data by
conducting temporal compression at a single location and spatial compression
across multiple locations. The goal of data preprocessing is to provide a list
of unique events for failure prediction.

3.1 Categorizer

Event categorization is a time consuming process. It requires a deep under-
standing of system events, thus close collaboration with system administrators
is essential for obtaining a list of meaningful event categories. Fortunately, for
a specific system, the process only needs to be performed once. Once a stan-
dard categorizing of system events is constructed, we can use it for a long
period of time, unless a drastic change occurs in the system (e.g., system
reconfiguration). In case of minor changes during system operation, existing
categorization technologies such as the one presented in [5] can be applied for
dynamic tuning of event classifications.

We adopt a hierarchical approach for event categorization. We first divide
system events into several high-level classifications, and then further group
events into a number of subcategories based on their attributes. For the Blue
Gene/L systems, ten high-level event categories are identified based on the
Facility field, which are further divided into 219 low-level event types based
on the Severity and Entry Data fields. Further, it is also necessary to distin-
guish these event categories into fatal or non-fatal groups for the purpose of
data training. Non-fatal events indicate system warnings or information mes-
sages, while fatal events refer to those critical events that lead to system or
application crashes. Although RAS logs from Blue Gene/L provide severity
level for each event, it is not accurate since some fatal or failure events are
not truly fatal at all [41]. By working with system administrators, we have
identified and removed some of these events from the fatal list. Totally, there
are 69 fatal events for the Blue Gene/L systems. Examples are shown in Table
3.

3.2 Filter

Event filtering is required to remove duplicated or unnecessary entries in the
log. Common cleaning steps include removing duplicated entries, removing
unnecessary entry attributes, correcting inaccurate attributes, preparing out-
put files for corresponding learning methods, etc. In this study, we apply both
temporal compression and spatial compression to remove duplicate entries by
applying threshold based techniques. With temporal compression at a single
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Table 3
Event Categories in Blue Gene/L

Main Examples No. of Fatal No. of Non-Fatal

Category Categories Categories

APP Load Program failure 10 7

function call failure

BGLMASTER segmentation failure 2 2

BGLMaster restart info

CMCS CMCS command info 0 4

CMCS exit info

DISCOVERY nodecard communication warning 0 24

servicecard read error

HARDWARE midplane service warning 1 12

KERNEL broadcast failure 46 90

cache failure

cpu failure

node map file error

LINKCARD linkcard failure 1 0

MMCS control network MMCS error 0 5

MONITOR node card temperature error 9 5

SERV NET system operation error 0 1

TOTAL 69 150

location, events from the same location with identical values in the Job ID and
Location fields are coalesced into a single entry, if reported within a predefined
time duration. With spatial compression across multiple locations, we remove
those entries that are close to each other within a predefined time duration,
with the same Entry Date and Job ID, but from different locations.

How to decide an optimal threshold for filtering is still an open question. In this
study, we adopt an iterative approach [42,43]. We first set the threshold to a
very small number, and then gradually increase the number. The search stops
when there is no significant change with respect to compression rate. Table 4
presents the numbers of events after applying different thresholds, where we
separate the numbers according to the high-level event categories. The column
where threshold is set to zero denotes the raw logs before any compression.
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Table 4
Number of Events with Different Filtering Thresholds (in seconds)

Log 0s 10s 60s 120s 200s 300s 400s

APP
ANL 6758 1942 1827 1684 1566 1453 1378

SDSC 26358 754 741 675 615 579 556

BGLMASTE
ANL 123 123 120 115 115 109 107

SDSC 119 119 114 105 99 93 90

CMCS
ANL 302 295 292 286 284 283 280

SDSC 437 433 421 404 384 362 356

DISCOVERY
ANL 18054 1727 1429 937 676 578 497

SDSC 60748 3621 3356 1352 750 565 556

HARDWARE
ANL 1840 668 633 601 593 539 468

SDSC 1648 422 349 316 296 283 278

KERNEL
ANL 5819166 59784 47998 40777 33847 26754 23823

SDSC 426816 4238 4056 3940 3747 3595 3379

LINKCARD
ANL 64 30 18 15 13 11 10

SDSC 188 120 107 95 92 88 82

MMCS
ANL 954 561 521 484 467 444 437

SDSC 929 654 630 590 563 523 501

MONITOR
ANL 40509 19774 16120 15969 15834 15689 15421

SDSC 0 0 0 0 0 0 0

SERV NET
ANL 1 1 1 1 1 1 1

SDSC 4 4 4 4 4 4 4

For both logs, the amount of compression of events achieved is not significant
when the threshold greater than 300 seconds is used. Additionally, as RAS
events are logged at a sub-second frequency, taking a higher threshold value
will increase the chances of different events being clustered together. Hence, we
choose 300 seconds as the threshold to coalesce events, which achieves above
98% compression rate for the logs.
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Fig. 3. Key Terms in Failure Prediction

4 Prediction Methodology

Our prediction method consists of three major components: the meta-learner,
the reviser, and the predictor (see Figure 1). The meta-learner examines sys-
tem events to discover various fault patterns by applying multiple predictive
methods. The generated failure patterns or rules will be stored in a knowledge
repository which encompasses all of the relevant information of failure pat-
terns. It contains all the learned rules of failure patterns and corresponding
ensemble rules for meta-learning. These rules of failure patterns are subjected
to modifications made by the reviser at runtime. The reviser monitors predic-
tion accuracy by comparing the predicted results and the actual failures, and
then modifies the knowledge base. The training set used by the meta-learner
and the reviser is periodically changed during system operation. The predic-
tor actively examines system events. In case that the occurrence of an event
triggers a matching pattern in the knowledge base, it will trigger a warning.

Distinguishing from existing studies like [23,16,17,12,37], our framework has
two novel features. One is to exploit meta-learning(i.e., ensemble learning) to
boost failure prediction, and the other is to dynamically learn failure patterns
from a changing training set during system operation.

Before we go to the details of these components, we first present the main
terms used in our framework (see Figure 3). The training set, which may
be dynamically adjusted every WR weeks (denoted as retraining window), is
part of the log from which the meta-learner and the reviser use to generate
the rules of failure patterns. In other words, the meta-learner and the reviser
will be invoked every WR weeks. The rules are generated with a fixed time
window, generally in the order of a couple of minutes to hours (denoted as
rule generation window WP ). The rules learned will be stored in the knowledge
repository, which will be used by the predictor for failure prediction before the
next retraining. The predictor actively monitors the events occurring during
prediction window, whose size is the same as the rule generation window WP ,
and in case of a matching rule, it will trigger a warning.
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4.1 Meta-learner

The meta-learner focuses on revealing and learning the cause-and-effect rela-
tions of system events by applying data mining techniques. Data mining, or
knowledge discovery, is a computer-assisted process of searching and analyz-
ing data sets for hidden patterns [11]. Meta-learning, also known as ensemble-
learning, can be loosely defined as learning from learned knowledge [21]. It
emphasizes on combining different individual models (denoted as base learn-
ers) to boost overall predictive effectiveness.

In this study, we choose three widely-used predictive methods, namely as-
sociation rule based method [28,23], statistical rule based method [16], and
probability distribution based method [4], as our base learners. The meta-
learner intends to identify a preferable combination of these base learners. In
the following, we first describe the base learners, followed by presenting our
meta-learning method. Note that other base methods can be easily incorpo-
rated.

Base Learners. The first base learner is based on association rules. It ex-
amines causal correlations between non-fatal and fatal events by building
association rules. In general, an association rule is in the form X → Y , where
the rule body X and Y are subsets of an event set. It states that a transaction
that contains the items in X are likely to contain the items in Y . Association
rules are characterized by two measures: support which measures the percent-
age of transactions that contain both items X and Y , and confidence which
measures the percentage of item sets containing the items X that also contain
the items Y . The problem of mining association rules consists of generating all
the association rules from a set of items that have both support and confidence
greater than the user-defined thresholds. Given that failure is rare event, low
values of support and confidence are set for the purpose of capturing infrequent
events.

On the training set, for each fatal event, we identify the set of non-fatal events
preceding it within the rule generation window WP . The set, including the fatal
event and their precursor nonfatal events, is called an event set. We then apply
the standard association rule algorithm to build rule models for event sets that
are above the minimum support and confidence. The association rules will be
in the form of {e1, e2, · · · , ek} → f, confidence, where ei and ej (1 ≤ i, j ≤ k)
are non-fatal events, f is a fatal event. For instance, two examples from the
SDSC log are listed below:

networkWarningInterrupt, networkError → socketReadFailure: 1.0
idoStartInfo, bglStartInfo → fsFailure: 0.79

Our second base learner emphasizes on discovering statistical characteristics,

13



Fig. 4. Temporal Correlations Among Fatal Events.
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Fig. 5. Cumulative Distribution Functions (CDFs) of Fatal Events. The thin curves
represent the actual fatal events, while the thick curves model the Weibull distri-
butions of the events.

i.e., how often and with what probability will the occurrence of one failure
influence subsequent failures, among fatal events and then using the obtained
statistical rules for failure prediction. It is denoted as statistical based method.
Studies have shown that temporal correlations among fatal events are common
in large-scale systems [4,16,37]. Figure 4 plots fatal events per day occurred at
ANL and SDSC. We can observe that a significant number of failures happen
in close proximity, and our further analysis indicates that network and I/O
stream related failures form a majority of such failures.

Specifically, on the training set, we calculate the probability of k failures oc-
curred within the rule generation window WP . If the probability is larger than
a user-defined threshold, then a statistic rule is generated, along with its prob-
ability value. As an example, we have discovered that for both logs, if four
failures occur within 300 seconds, then the probability of another failure is
99%.

The third base learner is called probability based method. It generates probabil-
ity distribution of fatal events and stores it for failure prediction. Different from
the above two methods which attempt to discover short-term (e.g., in the or-
der of minutes) correlations among events for failure prediction, this method
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Fig. 6. Meta-learning Method

recognizes that some failure events may not have any short-term precursor
events and intends to utilize long-term failure behavior for failure prediction.
Here, the long-term means the probability distribution of failure events, which
is generally in the order of hours or even days.

Specifically, the method calculates inter-arrival times between adjacent fatal
events and uses maximum likelihood estimation to fit a mathematical model
to these data. Distributions like Weibull, exponential, and log-normal are ex-
amined for generating the cumulative distribution function (CDF) of fatal
events. Figure 5 plots the CDFs of fatal events occurred at ANL and SDSC.
By calculating the probability of possible failure based on the derived CDF
function, this base method will trigger a warning if the probability is larger
than a user-defined threshold, or equally saying, when the elapsed time since
the last failure is longer than some threshold. For instance, on a training set
from the SDSC log, the Weibull distribution of F (t) = 1− e−(t/19984.8)0.507936

is
determined to be the best CDF to describe inter-arrival times between adja-
cent fatal events. Hence, if the threshold is set to 0.60, when the elapsed time
since the last failure is 20000 seconds, a warning will be triggered because
F (20000)(= 0.63) is larger than the threshold.

Ensemble Learning. There are many ways to combine base models, among
which bagging, boosting, and stacking are well-known ensemble methods. In
our study, we choose the mixture-of-experts model, which is a variation of
stacking method [8,21]. Figure 6 illustrates our meta-learning process. The
basic idea is simple: base learners are experts in some portion of the feature
space, and the combination rule selects the most appropriate classifier for
each instance. Based on verification on the training data, the meta-learner
determines the ordering of rules used for prediction.

In our case studies, the order is association rule, followed by statistical rule,
and finally probability distribution. Specifically, when an event occurs, if it
is a non-fatal event, the meta-learner first checks whether it will trigger a
matching of an association rule; if it is a fatal event, the meta-learner will
check whether it will trigger a matching of a statistical rule. If no matching is
found, the meta-learner will check the elapsed time since the last failure and
apply the derived probability distribution of failures for failure forecasting.
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4.2 Reviser

The reviser is responsible for modifying the candidate rules generated by the
meta-learner via monitoring the actual observations and the predicted results.
This is to ensure the effectiveness of the learned rules in the knowledge repos-
itory. As mentioned earlier, in order to capture infrequent items, the param-
eters used in the base learners may be adopted without much consideration
regarding their effectiveness, thereby probably resulting in some bad rules.
Thus, the reviser checks each rule in the knowledge repository by applying
the ROC (Receiver Operating Characteristic) analysis [11]. It enables us to
select optimal models and discard suboptimal ones independently from the
class distribution. The reviser will examine each rule and only keep the rules
which can provide satisfactory accuracy [9]. The detailed method is shown in
Algorithm 1.

Algorithm 1 The Reviser

For each rule r generated by the meta-learner:
(1) Count its true positives TP , false positives FP , and false negatives FN

on the training data;
(2) Calculate two metrics m1(r) and m2(r):

m1(r) =
TP

TP + FP

,m2(r) =
TP

TP + FN

;

(3) Calculate ROC(r):

ROC(r) =
√

m1(r)2 + m2(r)2;

(4) Keep the rule if its ROC value is larger than a predefined threshold
MinROC; otherwise, discard the rule.

4.3 Predictor

The predictor actively monitors system events and triggers a warning when
a rule is observed within the prediction window WP . In order to be used for
online forecasting, an event-driven method is adopted for its design [9]. That
is, the predictor triggers a warning on the occurrence of events.

The detailed method is presented in Algorithm 2. The predictor maintains
three event lists. One is called F − List which records a list of triggering
events for each failure event. The second is called E − List which tracks a
list of failure events that may be triggered by each event (fatal or non-fatal).
The third is to keep the most recent events occurred within WP . Upon an
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occurrence of an event e, the predictor appends the event into the third list
(Step 1), and then goes through its E − List to find out all possible failures
that may be triggered by its occurrence (Step 2). For each possible failure
f i, the predictor checks its F − list to see whether a cause-and-effect rule is
matched in the knowledge repository (Step 3 and 4).

Algorithm 2 The Predictor

First, it creates two lists based on the learned rules:

F − List = {fi ⇐ {ei1, ei2, · · · , eik} : 1 ≤ i ≤ Nf}

E − List = {ej ⇒ {fj1, fj2, · · · , fjl} : 1 ≤ j ≤ Ne}

where fi is a fatal event and ei is a fatal or non-fatal event, Nf is number
of fatal events, and Ne is number of any events. During operating, when an
event e occurs:
(1) Append e into the monitoring event set E = {e1, e2, · · · , en, e} where

the events are sorted in an increasing order of their occurrence times,
remove ei if its occurrence time is more than WP before the occurrence
time of e, i.e., keep the most recent events occurred within WP

(2) Go through the E-List of e, obtain the potential failures that may be
triggered by e: {f 1, f 2, · · · , fk}

(3) For each potential failure f i, go through its F-List: f i ⇐
{ei

i1, e
i
i2, · · · , e

i
ik}

(4) If {ei
i1, e

i
i2, · · · , e

i
ik} ⊆ E, then produce a warning that the failure f i

may occur within the time of WP .

5 Experiments

To evaluate the effectiveness of the proposed framework, we use the real
RAS logs collected from the production systems at ANL and SDSC (see Ta-
ble 2). Further, to comprehensively examine the framework, our experiments
are structured to answer the key questions listed in Section 1.

5.1 Evaluation Metrics

Two metrics are used to measure prediction accuracy:

(1) Precision is defined as the proportion of correct predictions to all the
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predictions made.

precision =
Tp

Tp + Fp

(2) Recall is defined as the proportion of correct predictions to the number
of failures.

recall =
Tp

Tp + Fn

Here, Tp is number of correct predictions (i.e., true positives), Fp is number
of false alarms (i.e., false positives), and Fn is number of missed failures (i.e.,
false negatives). Obviously, a good prediction engine should achieve a high
value (closer to 1.0) for both metrics. We note that these metrics are also used
by the reviser to determine whether a rule is effective or not (see Algorithm
1).

5.2 Results

In our experiments, the training set is initially set to six months, which will
be dynamically adjusted during operation. The default retraining window WR

is four weeks, and the default prediction window WP , also the rule generation
window, is 300 seconds.

The minimum support and confidence values for association rules are set
to 0.01 and 0.1 respectively. The low values are chosen for the purpose of
capturing infrequent events. The rules that are not good will be removed by
the reviser. There are three other parameters used by our framework, namely
MinROC for the reviser, and the thresholds for statistical rule based learner
and probability distribution based learner. In our experiments, MinROC is
set to 0.7, and the thresholds for statistical rules and probability distribution
based learner are set to 0.8 and 0.6 respectively. Choosing optimal values for
these parameters is difficult, and often experimental determination might be
the only viable option. We have tested different values, from a low value like
0.1 to a high value like 0.9, and found that these values can yield the best
prediction accuracy for both logs. In general, low values for these parameters
result in more failure rules and thus better failure coverage, at the expense of
introducing more false alarms.

5.2.1 Q1: How Much Improvement Is Achieved by the Meta-learning?

In this set of experiments, we compare prediction results by using static meta-
learner as against individual base learners (i.e., association rule, statistical
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Fig. 7. Meta-learning versus base predictive methods. Each plot contains four curves,
representing association rule based learner, statistical rule based learner, probability
distribution based learner, and static meta-learner. Here, the “static” means that
the meta-learner applies mixture-of-experts ensemble of the base methods without
dynamic relearning. It is clear that meta-learning can substantially boost prediction
accuracy in terms of both precision and recall.
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rule, and probability distribution). Here, the “static” means that the meta-
learner simply applies mixture-of-experts ensemble of the base methods, with-
out dynamic training, retraining and revising. Hence, for both logs, the first
six months are used as the training set, and the remaining parts are for test-
ing. The results are shown in Figure 7, where the x-axis shows the sequence
number of the week.

First, both precision and recall decrease as the time goes by, no matter which
method is used. The reason is that all these methods are based on a static
approach, meaning that they learn the rules on the six-month training set
and then use these rules for prediction on the rest of the logs. The rules may
well capture failure patterns at the beginning. However, system behavior is
dynamically changing. As a result, the established rules become outdated,
thereby resulting in lower prediction accuracy as the time goes by.

We make several interesting observations regarding each base method. First,
statistical rule base method provides a reasonably good result for precision;
however, it results in a low value for recall. It suggests that this method
is only good at discovering certain types of failures which exhibit temporal
correlations. Second, association rule base method has the worse results in
terms of recall. This is mainly due to the fact that while this method well
captures causal correlation between non-fatal and fatal events, it is limited by
the proportion of fatal events without any precursor warnings (e.g., low recall

values). Our analysis shows that for both logs, there are a large portion of
fatal events (up to 75%) which are not preceded by any precursor non-fatal
events. Third, the recall results provided by probability distribution based
method are quite good (e.g., higher than 0.5 for both logs). Nevertheless,
it can introduce many false alarms. The problem of probability distribution
based method is that it cannot pinpoint the occurrence times of the failures,
thereby giving many false alarms once the elapsed time since the last failure
is large enough.

A Venn diagram of these base learners is presented in Figure 8. It shows the
numbers of fatal events predicted by these base learners between the 44th and
48th week of the SDSC log. In total, there are 156 fatal events during this
period, and 67 of them are captured by multiple base learners. The coverage
of each base learner is as follows: association rule based learner 23.7% (37 fatal
events), statistical rule based learner 37.2% (58 fatal events), and probability
distribution based learner 56.4% (88 fatal events). The diagram clearly shows
that it is improper to expect a single method to capture all of failures alone.

Observation #1: In a large-scale system, there are numerous failure patterns
in general; thus a single base learner is unlikely to capture all of them alone.

Meta-learning can substantially improve recall, indicating that meta-learning
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Fig. 8. A Venn diagram to show logical relations between association rule based
learner (AR), statistical rule based learner (SR), and probability distribution based
learner (PD) between the 44th and 48th week of the SDSC log. Each number rep-
resents the number of fatal events captured by one or multiple base learners. There
are totally 156 fatal events occurred during this period of time. For example, the
number six in the intersection of three circles indicates that six fatal events can be
predicted by all these base learners.
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can improve prediction coverage by capturing various fault patterns. The im-
pact of using meta-learning on precision is not as significant as on recall, but
still non-trivial, especially as compared to association rule based method and
probability distribution method. Note that the meta-learner does not modify
any of these base methods; instead, it dynamically chooses one base learner
for failure forecasting upon each invocation. The benefit of using meta-learner
is its ability to form a good integration of these base learners so as to improve
both precision and recall.

Observation #2: Meta-learning can substantially improve prediction accu-
racy by intelligently integrating multiple predictive methods without requiring
complex system modeling.

5.2.2 Q2: How Much Improvement Is Achieved by the Dynamic Approach?

In this set of experiments, we assess the benefits brought by the dynamic
approach. Specifically, we analyze what is the appropriate size for the training
set, how often to trigger relearning, whether it is necessary to perform dynamic
revising, and how many rules are changed by applying dynamic relearning.

Figure 9 presents the answer to the first question, i.e., what is the appropriate
size for the training set? In the figure, each plot consists of four curves: (1)
dynamic-whole means to train the rules using all the historical data, e.g., in
the 32nd week, the data in the previous 31 weeks is used for training; (2)
dynamic-6 mo means to train the rules using the recent 6 months, e.g., in the
32nd week, the data in the previous 26 weeks is used for training; (3) dynamic-
3 mo means to train the rules using the recent 3 months, e.g., in the 32nd
week, the data in the previous 13 weeks is used for training; and (4) static
means to use the initial 6-month data as the fixed training set. With the first
method, as the time goes by, the training set is gradually increased every four
weeks. With the second and third methods, the training set is sliding with
the time every four weeks, with a fixed size of six months or three months
respectively. With the fourth method, we always use the rules generated in
the initial training set for failure prediction, i.e., without any retraining.

Clearly, dynamic-whole provides the best results in terms of both precision

and recall, followed by dynamic-6 mo. Further, we can see that the accuracy
difference between these two methods is generally less than 0.08. As we will
show in Section 5.2.4, the overhead introduced by training on a large data set is
not trivial. Therefore, in practice we suggest to make a tradeoff between better
prediction accuracy and lower computation overhead. For these systems, we
suggest to use the most recent 6-month data for dynamic training.

Next, it is shown that by using the static method without dynamically adjust-
ing the training set, the prediction accuracy is monotonically decreasing. This
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Fig. 9. What is the appropriate size for the training set? Each plot consists of four
curves: (1) dynamic-whole means to train the rules using all the historical data; (2)
dynamic-6 mo means to train the rules using the recent 6 months; (3) dynamic-3
mo means to train the rules using the recent 3 months; and (4) static means to use
the first 6-mo training set. Clearly, dynamic-whole and dynamic-6 mo are the best.
Combining the results shown in Table 5, we suggest that dynamic training on the
most recent 6-month provides the best balance between prediction accuracy and
runtime overhead.
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is reasonable as the fixed rule set learned by static meta-learner is unable to
adapt to new changes/reconfigurations occurring in the system.

Finally, the results produced by dynamic-3 mo are the worst among four dif-
ferent mechanisms. The reason is that this method relies on a limited amount
of training data for rule generation and this could substantially limit its ca-
pability of discovering sufficient failure patterns for prediction. Nevertheless,
as compared to static, the prediction results are more stable in the sense that
they do not decrease dramatically with time. In summary, the plots indicate
that dynamically adjusting the training set is needed; however it is not nec-
essary to re-train the rules on the entire available data, generally the most
recent few months are sufficient.

Observation #3: Learned rules of fault patterns may not be applicable for
very long, thus dynamically adjusting the training set is indispensable for
good prediction accuracy. In general, using the most recent few months like
six months makes a good tradeoff between accuracy and runtime overhead.

Figure 10 answers the second question, i.e., how often to trigger relearning.
It presents the results by using different retraining windows (WR = 2, 4, or
8 weeks). While prediction accuracy generally remains similar, more frequent
retraining can provide better accuracy by up to 0.06. Further, we notice that
for the SDSC log, both precision and recall decrease more than 10% during
the 64th week. This is due to the fact that the system went through a major
system reconfiguration around this time. As a consequence, failure patterns
were changed, thereby resulting in lower prediction accuracy during this period
of time. Dynamic training is able to construct a new set of pattern rules. As
we can see, both precision and recall are changed back to the normal range
after a few retraining processes. Generally speaking, if the system is constantly
changing or its workload is highly dynamic, frequent retraining is necessary,
which can help to rapidly build up the effective rules for online prediction.

Observation #4: The frequency to trigger relearning depends on system
characteristics. If the system is highly dynamic, frequent retraining is nec-
essary to maintain satisfactory prediction accuracy.

The plots also indicate that our method can start to provide a good failure
prediction service only after eight weeks of training. For the ANL log, precision
is between 0.72−0.81 and recall is ranging between 0.56−0.66; for the SDSC
log, precision is between 0.70−0.83 and recall is ranging between 0.59−0.70.
In other words, our method does not need a long training phase to provide
an acceptable prediction service. We shall also point out that even when the
training set is two weeks (not shown in the figure), the predictor is still capable
of capturing more than 43% of failures. In our previous study [14], we have
found that runtime adaptive fault management is capable of providing positive
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Fig. 10. How often to trigger relearning? The plots present the cases where the rules
are re-trained every 2, 4, or 8 weeks, i.e., WR is set to 2,4, or 8. Obviously, more
frequent retraining can boost prediction accuracy; however, the improvement is not
drastic with the difference less than 0.06 in terms of both precision and recall.
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Fig. 11. Is it necessary to conduct dynamic revising? It is clear that dynamic revising
can boost prediction accuracy by up to 6%.

performance gain as long as the underlying prediction mechanism can capture
30% of failures. Therefore, our dynamic meta-learning framework is able to
serve runtime fault tolerant tool after as few as two weeks of training.

Figure 11 compares the prediction results with and without using the reviser.
The plots show that dynamic revising can boost both precision and recall, and
the improvement is up to 6%. As stated in Section 4, failures are rare events.
In order to ensure these infrequent events to be analyzed, the parameters like
confidence and support adopted in the association rules are typically chosen
without much consideration to the effectiveness of the generated rules, thereby
resulting in some rules that may mislead the prediction. The reviser acts like an
additional learning process. It works on the candidate rules generated by the
meta-learner, and filters out those rules that are not effective on the training
set so as to improve prediction accuracy. The results shown in this figure
demonstrate the necessity of using dynamic revising.

Observation #5: Dynamic revising can help improve failure prediction by
filtering out bad rules of fault patterns.

Next, we examine the number of rules changed by using dynamic meta-
learning, and the results are presented in Figure 12. Each plot contains four
curves representing number of rules unchanged, number of rules added by the
meta-learner, number of rules removed by the meta-learner, and number of
rules removed by the reviser respectively.

It is clear that the numbers are dynamically changing (i.e., the rules are added
or removed) during the operation. Initially when the training starts, there are
only dozens of rules, which will be gradually popularized in the following
retraining steps. For a period of one year, the knowledge repository will accu-
mulate more than 100 rules for both systems. The number of unchanged rules
starts to stabilize for the ANL log around the 70th week—about 140 − 160
rules. However, for the SDSC log, the number keeps increasing (up to 260 rules
at the 120th week). In general, the number of rules used for runtime prediction
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Fig. 12. Number of Rules Changed. We measure the numbers of rules that are
unchanged, added by the meta-learner, removed by the meta-learner, and removed
by the reviser. These numbers are constantly changing, indicating that the dynamic
approach is essential for capturing varying pattern rules.

with the ANL log is between 60 − 115, and it is between 100 − 190 for the
SDSC log. The difference between these logs is due to many factors, including
system management, workload characteristics, etc. The change rate of rules,
i.e., the ratio between changed and unchanged, ranges between 44% − 212%.

Further, we notice a substantial change occurs during the 64th week with the
SDSC log, where 57 rules are added and 148 rules are removed. The change
is significantly since normally about 20 − 30 rules are added and 50 − 80 are
removed per retraining. Between the 60th and 64th week, a system reconfigu-
ration occurs. Our method retrains the rules every four weeks, meaning that
it extracts a set of rules at the 60th week and then retrains the system at
the 64th week. Due to the system change, these two sets of rules are quite
different, thereby resulting in significant rule changes. This is consistent with
the results shown in Figure 10.

The plots also show that the number of rules removed by the reviser is not
trivial, by up to 80. This implies that the reviser can significantly remove non-
trivial amount of rules. This result, combined with the information shown in
Figure 11, proves that dynamic revising is indispensable for better prediction
by removing bad rules.

Observation #6: The rules of fault patterns are constantly changing during
system operation. It further implies that dynamic relearning is essential for
maintaining prediction accuracy.

5.2.3 Q3: How Sensitive Is Prediction Accuracy to Prediction Window Size?

Figure 13 presents prediction results by using different prediction windows (5-
min, 15-min, 30-min, 45-min, 1-hr, 1.5-hr, and 2-hr). The reason for choosing
these durations is based on the results reported in [1,17] and our own experi-
ments with different applications [14]. A time window smaller than 5 minutes
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Fig. 13. Impact of Prediction Window. In general, the larger the window is, the
higher the recall is and the lower the precision is.

may become too small for taking preventive action based on the prediction,
whereas a time window larger than 2 hour will induce an increased overhead
on the system as it will require maintaining the history of all the events for
the duration of two hours. Also, the processing/analysis cost of these events
for online failure prediction is not trivial.

The trend is obvious: the larger the prediction window is, the higher the recall

is and the lower the precision is. When the prediction window is set to a larger
number, it is more likely for the predictor to capture more events, thereby
resulting in more chances to find a matching rule of failure pattern. This leads
to a higher value for recall, meaning the predictor can capture more failures.
As an example, when the prediction window is set to two hours, recall can be
as high as 0.82. On the other hand, if the prediction window is large, it is also
likely for the predictor to trigger false alarms due to the growing possibility
of catching a misleading rule. For different prediction windows, the difference
on precision is less than 0.25, and it is about 0.15 in terms of recall. Further,
for all the cases, both precision and recall is generally above 0.55.

Observation #7: The larger the prediction window is, the higher the recall

is and the lower the precision is.
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Table 5
Operation Overhead (in minutes) as a Function of Training Size.

Training Rule Generation Rule

Size Stat Rule Asso Rule Prob Dist Ensemble & Revise Matching

3 mo < 1 1 < 2 1 < 1

6 mo < 1 2 < 2 1 < 1

12 mo < 1 3 < 2 2 < 1

18 mo < 1 4 < 2 2 < 1

24 mo < 1 5 < 2 3 < 1

30 mo < 1 6 < 2 4 < 1

5.2.4 Q5: How Much Runtime Overhead Is Introduced?

Operation overhead depends on the size of training set. Table 5 summarizes the
overheads as a function of training data, in which the overhead is classified into
two parts, namely rule generation overhead and rule matching overhead. These
times are measured on a local PC configured with a 1.6GHz Intel Pentium
processor and 768 MB memory. Obviously, the overhead could be less when a
more powerful PC is used.

The overhead mainly comes from rule generation, while the rule matching
process (i.e., the event-driven predictor) is trivial, usually in dozens of seconds.
As shown in the table, when the training set is set to 6 months (half of a year),
the rule generation may take 6.0 minutes; and it can increase to 13 minutes
when the training set is set to 30 months (two and a half year). Note that
the rule generation process can be conducted in parallel when the production
system is in operation, therefore this cost should not be counted into the
actual runtime overhead for failure prediction. The actual runtime overhead
introduced by the event-driven predictor is normally less than 1.0 minute.
Thus, we believe the framework is feasible as a runtime prediction mechanism.
Combining the results shown in this table and in Figure 9, we suggest that
dynamic meta-learning on the recent 6 months is practical and time efficient.

Observation #8: The runtime overhead is trivial (e.g., in dozens of seconds),
while the major overhead introduced by rule generation can be conducted in
parallel when the target machine is in operation.
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6 Related Work

Recognizing the importance of fault tolerance, the community has paid much
attention to failure prediction. Exiting predictive approaches can be broadly
classified as model-based or data-driven methods. Model-based approach de-
rives a probabilistic or analytical model of the system and triggers a warning
when a deviation from the model is detected [7,13,25]. Examples include an
adaptive statistical data fitting method called MSET presented in [26], Semi-
Markov reward models described in [34], and a naive Bayesian based model
to predict disk drive failures [12]. In large-scale systems, errors may propagate
from one component to other component, which is commonly addressed by de-
veloping fault propagation models (FPM) [35]. While model-based methods are
effective for forecasting some failures, they seem too complicated to be practical
for failure prediction in large-scale systems composed of tens of thousands of
components.

A data-driven method, such as using data mining techniques, attempts to learn
failure patterns from historical data for failure prediction, without construct-
ing an accurate model ahead of time. These methods extract fault patterns
from system normal behaviors, and detect abnormal observations based on
the learned knowledge without assuming a priori model ahead of time. For
example, the group at the RAD laboratory has applied statistical learning
techniques for failure diagnosis in Internet services [27,33]. The SLIC (Sta-
tistical Learning, Inference and Control) project at HP has explored similar
techniques for automating fault management of IT systems [36]. Sahoo et al.
have applied association rules to predict failure events in a 350-node IBM
cluster [23]. In [16,17], Liang et al. have examined several data mining and
machine learning techniques for failure forecasting in a Blue Gene/L system.
Other representative works include system log analysis [4,41] and a prediction
framework for networked systems [37].

While this paper is built upon existing studies, it distinguishes from the above
studies at several aspects. First, unlike existing studies focusing on one specific
predictive method, this paper presents a dynamic meta-learning framework to
dynamically integrate existing predictive methods for better prediction. In
this study, we have examined three widely-used predictive methods, namely
association rule based learner [23,28], statistical rule based learner [16], and
probability distribution based learner [4] in the framework. We believe other
predictive methods can be easily incorporated into our framework. Second,
this study emphasizes dynamic training and learning, which is rarely exam-
ined in the literature. By means of real system logs from production systems,
we have demonstrated that dynamic relearning is essential to capture behav-
ior changes during system operation. By examining our framework in various
ways, we have shown that using the most recent few months like six months
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makes a good tradeoff between accuracy and runtime overhead. Next, unlike
offline log analysis studies, our prediction is event-driven, meaning that our
framework triggers a warning on the occurrence of events during system op-
eration. An event-driven approach is well suited for online failure prediction.
Last but not the least, in addition to presenting the key techniques for boost-
ing prediction accuracy, we have also systematically analyzed our framework
and answered several key questions commonly raised in failure prediction. It
provides a deep insight into failure prediction in large-scale systems. To the
best of our knowledge, we are among the first to comprehensively evaluate the
impact of different factors in failure forecasting.

7 Summary

In this paper, we have presented a dynamic meta-learning prediction engine
for large-scale systems. Recognizing problems in failure prediction, our predic-
tion mechanism relies on two key techniques to improve prediction accuracy
in real systems. Meta-learning is applied to boost prediction accuracy by in-
tegrating multiple predictive methods, while a dynamic approach is employed
to train the rules of failure patterns at runtime. Our prediction mechanism
does not require a long training phase by dynamically adjusting the training
set during system operation. Further, it can adapt to system changes, even
after a major system reconfiguration. Our case studies with real system logs
have demonstrated its effectiveness with a good accuracy, e.g., capturing up
to 82% of failures. The studies have also shown that the proposed mechanism
is practical and well suited for forecasting failures in real systems.

Our study has some limitations that remain as our future work. First, in the
current design, the prediction window size is fixed. Our on-going work includes
adaptively changing this window size such that the system can automatically
tune its size to reduce the training cost, without sacrificing the prediction accu-
racy. Second, we plan to examine other data mining methods, such as decision
tree and neural network, to popularize our base learners. We will also investi-
gate other ensemble learning techniques to improve the meta-learner. Finally,
more case studies with a variety of HPC systems will be conducted. Although
our case studies focus on the Blue Gene/L systems, we believe the proposed
mechanism is applicable to other systems. For the systems that do not have
an error checking and logging facility, the first step is to develop a monitor-
ing tool which is capable of gathering fault-related information from various
system components and archive the information in a centralized repository.
The proposed framework can be easily extended to these systems by linking
to their event repositories.
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