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Abstract 

The FireGrid project aims to harness the potential of advanced forms of computation to 

support the response to large-scale emergencies (with an initial focus on the response to fires in 

the built environment). Computational models of physical phenomena are developed, and then 

deployed and computed on High Performance Computing resources to infer incident conditions 

by assimilating live sensor data from an emergency in real time – or, in the case of predictive 

models, faster-than-real time. The results of these models are then interpreted by a knowledge-

based reasoning scheme to provide decision-support information in appropriate terms for the 

emergency responder. These models are accessed over a Grid from an agent-based system, of 

which the human responders form an integral part. This paper proposes a novel FireGrid 

architecture, and describes the rationale behind this architecture and the research results of its 

application to a large-scale fire experiment. 

Keywords: Emergency Response, Grid, High Performance Computing, Multi-Agent System, 

Knowledge-Based Reasoning, Fire Simulation Model 



 

1. Introduction 

To minimise losses to life and property during emergencies, decisions have to be made by people in a timely 

manner; and the availability of relevant information is critical if the right decisions are to be made. Advances in 

Information Technology (IT) provide alternative channels for information flow, with the potential to place additional 

crucial information at the disposal of decision makers during an emergency response. The vision for the FireGrid 

project [3,5] is of a generic software architecture that provides an integrated IT solution primarily for supporting the 

response to emergency events. In the first instance, the project has focused on the emergency response to fires in the 

built environment.  

For obvious reasons, fire-fighters will rarely be aware of the actual conditions within a building during a fire 

incident. Consequently, they will be compelled to make intervention decisions based on the limited information 

provided by their senses, and drawing heavily on their training and on their past experiences of fires. However, given 

the complex nature of fire, for even the most experienced of fire-fighters the interpretation and extrapolation of 

conditions is a difficult task. Advances in several technologies when taken together suggest a new approach to the 

problem of assessing conditions during fire emergencies: 

 Developments in sensor technology, and a reduction in unit cost, offer the prospect of deploying large-scale, 

robust and cost-effective sensor networks within buildings; 

 Advances in the understanding of fire and related phenomena have resulted in sophisticated computational 

models which might be used to interpret sensor data; 

 The availability of Grid infrastructure for distributed High Performance Computing (HPC) and data processing 

suggests a platform on which these models could be run in real and faster-than-real time, making their use in 

emergencies a practical proposition.  

The FireGrid concept aims to improve – both in range and quality – the information available to fire-fighters. 

This requires capturing information in real time, interpreting information accurately, and presenting information in 

an accessible and concise manner. 

In this paper, we propose a novel system architecture in which real-time sensor data is captured, filtered and 

stored; in which computational models are developed, deployed on High Performance Computing resources and, in 

the event of an emergency, run using ‘live’ sensor data in real-time to steer the model output; and in which the 

results from these models are interpreted using knowledge-based reasoning operating within an agent-based 

command-and-control layer. A Grid middleware component provides a uniform interface for interactions among the 



agent-based command-and-control layer, computational models and HPC resources, and Artificial Intelligence (AI) 

techniques are used to interpret the outputs of the models for the end user. The prototype of a FireGrid system 

incorporating all of these aspects has been demonstrated and evaluated through its application in the context of a 

large-scale fire experiment. 

The rest of this paper is structured as follows. Section 2 presents some related work and challenges on emergency 

response and management systems. Section 3 describes the rationale behind the FireGrid architecture; Section 4 

describes the components of developed architecture; Section 5 presents an experimental evaluation of the FireGrid 

architecture through its application to a large-scale fire demonstration; and Section 6 provides some concluding 

remarks. 

2. Emergency Response and Management Systems 

In recent years, a significant amount of effort has been devoted to providing computer support for emergency 

management. Geographical Information System-based applications have been developed to help decision makers to 

analyze, manage and respond to emergency situations by situating incident information in its geospatial context 

[10,24]; specific examples include emergency management systems for containing chemical and nuclear pollutants 

[12], for monitoring the risk of oil pollution [25], and for tracking and visualising the predicted course of hurricanes 

[26]. An Artificial Intelligence-based emergency response system [4] has been applied to environmental monitoring, 

and an example of the use of a knowledge-based model for decision support during flood emergencies can be found 

in [13]. Multi-agent systems have been used in complicated and large environmental emergency systems [15]; 

WIPER [22], designed as a multi-agent system, is an attempt to provide emergency planners and responders with an 

integration of web services and service oriented architecture technologies. DrillSim [19] is an augmented reality 

multi-agent simulation environment for testing IT solutions in emergency contexts. DEFACTO [23] incorporates 

state-of-the-art artificial intelligence, 3D visualization and human interaction reasoning into a system for responder 

training.  

Notwithstanding these successes, FireGrid introduces a further significant and overriding concern, namely the 

collection, management and use of dynamic information, which is so critical to emergency response. Most of the 

existing work provides information that is pre-compiled and prepared beforehand, rather than being generated in real 

time. While this can be appropriate for certain types of incident, the provision of up-to-date information in the event 

of an unforeseen highly dynamic emergency presents a set of challenges all its own, especially as the scale of the 

incident grows and information from dispersed and diverse sources must be integrated before it can be used to make 



decisions. This dynamism has implications too for the human interfaces to the system, as the pressures of the 

situation, the rate of information flow and poor visualizations can conspire to overwhelm the decision maker. 

To address these challenges, a FireGrid system should, firstly, provide status information about resources, 

incidents or events in real time; secondly, provide data management functionality that dynamically locates and 

transports datasets between storage systems and applications; and finally, be granted sufficient autonomy to facilitate 

the responder’s task by performing filtering and interpretation of information prior to presentation.  

To meet these goals we propose a novel FireGrid architecture. In the following sections, we present the rationale 

behind the FireGrid architecture, describe technologies used in the system architecture, and demonstrate the research 

results of its application to a large-scale fire experiments.  

3. The Rationale Behind FireGrid: From Data To Decision 

In essence, the objective of a FireGrid system is dynamic data manipulation: we envisage a system that acquires 

sensor data from the environment of a fire, that interprets and analyses this data to produce relevant information, and 

that relays this – presented in an appropriate form – to the response decision-makers. Hence, at an abstract level, an 

architecture for a FireGrid system must encompass data gathering, data interpretation and information presentation. 

3.1 Data Gathering 

For a fire incident, the data gathering process consists of the continual collection of data from the environment of the 

fire, and the transfer and storage of this data. Different sensors such as smoke detectors, thermocouples (temperature 

sensors), and CO and CO2 detectors are deployed in the building for continuous monitoring of its internal state. In 

the event of fire, the output from each of these sensors provides potentially valuable data for input to computational 

models. Typically, these sensors will be polled in batch mode periodically by one or more ‘data loggers’, physical 

devices with which groups of sensors have some direct communications link, and which also convert the signals 

received from the sensors into their corresponding quantities (so, for instance, voltage levels reported by 

thermocouples are converted into the corresponding temperature readings). In modern systems, these steps are 

automatic, and at this point these data values can be accessed and stored in a database. Since sensors (or their lines of 

communication) can be noisy or can fail because of manufacturing flaws or the extremes of the fire incident itself, 

the data first needs to be verified and filtered to provide some measure of the accuracy and quality of data received 

from the building. To address this issue, we have developed a constraint-based filtering algorithm for validating 

sensor readings [27]. The data values must also be tagged with meta-data describing their origin and sampling time, 

before being transferred in real-time into some data storage facility. While a higher sampling rate produces more 



data and increases the potential for downstream data processing, it also means more data must be processed, 

transferred and stored in the same amount of time. Hence, some practical compromise must be found. 

For a deployment in a particular building, a central database is created for storing all information about and 

generated by the use of a FireGrid system. In addition to the dynamic real-time data that is being continuously fed 

from the sensor network, the database also holds static data, that is (reasonably) time-invariant data such as the 

geometry/layout of the building, the types of sensors and their locations, the types and material of furniture and the 

location of fire suppression systems. Apart from physical and material properties, static data may also include pre-

computed scenarios of fire development, which can be compared with the real fire state so as to steer computational 

models. 

3.2 Data Interpretation 

The data interpretation process is one of transforming the collected data into descriptions of the current status and 

predictions of the development of the incident; clearly, these interpretations should produce results that are relevant 

to decision-making during an emergency response. In the first instance, this transformation is done using 

computational interpretation and simulation models of varying sophistication and complexity. Such a model might 

involve little more than a simple calculation over the latest sensor readings to provide, say, the current maximum 

temperature in a room. Richer modelling approaches that exploit Computational Fluid Dynamics (CFD), Finite 

Element (FE) methods and other techniques are potentially powerful tools for representing aspects of fire 

development and associated phenomena such as structural integrity, smoke movement and human egress. However 

even these prove inadequate for the representation of certain phenomena, where coupled methodologies are required 

to provide linkage between different aspects of real problems. Whilst some of these exist, for example in coupled 

CFD-FE treatments such as that available in ANSYS CFX [2] and coupled fire-egress models such as CRISP [8,9], 

many are highly demanding computationally or remain in the research domain. For the purposes of FireGrid, where 

it is intended to use these models to interpret and predict in real time, ideally a model would be independent of any 

particular context (such as a specific building) or incident, and would rely for its initial conditions on information 

acquired from the system database, with updates based on later sensor data whenever appropriate. In this context, the 

computational cost of running a simulation arises from the interplay of a number of factors: the complexity of the 

underlying model; its scope in terms of the size of the physical and temporal space which it considers; the amount of 

data to be processed; and the desired accuracy and precision of the results. At their most costly – say, models that 

attempt to extrapolate from the data and produce accurate, precise and far-reaching predictions of the course of the 

incident – these simulations are computationally intensive, and require a proportional amount of computational 



power if results are to be produced in a timely fashion. Furthermore, strategies for effective and efficient data 

communication are required to support this processing. These considerations have led to the adoption of HPC, with 

appropriate simulation models deployed on specific HPC resources (and optimised to run most effectively on those 

resources), and invoked in the data context provided by a Grid Computing infrastructure. We shall have more to say 

about the use of HPC and the Grid below in sections 4.2 and 4.3. 

We have developed a computational model entitled “K-CRISP” [16,17], an extension of CRISP, for simulating 

the fire in the experiment described in Section 5. This model is a sensor-linked extended zone model for fire 

development and simplified structural response for multiple rooms coupled with a model of human behaviour. It can 

be run in a Monte-Carlo fashion for risk analysis, with multiple alternative scenarios for the development of the fire 

after ignition time generated from a set of initial conditions [8]. The model predicts what the sensor measurements 

will be for given input conditions (for example, fire location, item properties, and doors open and closed) and 

compares its initial predictions to the real data collected from sensors. Using a procedure based (in part) on Bayesian 

inference, the model adjusts its parametric space from which new scenarios are generated, thereby identifying fire 

scenarios which are progressively better matches to the sensor readings. This data-driven approach for ‘steering’ the 

model has been shown to be effective in directing the evolution of the model parameters, and hence of the 

predictions it makes. The model is able to provide some indication, particularly in the short term, of the predicted 

evolution of the fire, human egress behaviour and structural integrity (that is, the likelihood of collapse). Moreover, 

by virtue of the fact that information on probabilities is an integral part of the simulation output, information can be 

derived to provide end users with an indication of the likelihood of various hazard scenarios. As might be expected, 

the best forecasts are those for the immediate future and for relatively simple fires, with progressively less 

confidence at longer lead times and in more complex scenarios. Nevertheless, given the uncertainties in real fire 

development, the benefits of more detailed model representations may be marginal and the system developed thus 

far is considered to be an appropriate engineering approach to the problem, providing information of potential 

benefit to emergency response. The Monte-Carlo technique underlying this model readily lends itself to 

parallelisation and thus to maximum exploitation of however many processing units are available at the HPC 

resource.  

However, while it may be potentially useful for emergency response, unless the model has been developed 

specifically for this purpose its output is unlikely to be in a form that is immediately comprehensible to the 

emergency responder: it will likely need further interpretation to extract the relevant information. And when faced 

with the possibility of information from a number of different models, to be useful any system would need to be able 

to reconcile these into a coherent whole for the responder. Moreover, we would like a system in which the 



communication occurs in two directions, with responders able to request specific information of the system (requests 

which may then lead to the invocation of specific models). The need to achieve this level of interpretation and 

interaction for emergency response has led us to build a knowledge-based reasoning scheme to interpret the output 

of computational models. This scheme incorporates query answering, belief revision and hazard inference, 

mechanisms which are underpinned by the FireGrid system ontology.  

3.2.1 The Knowledge-Based Reasoning Scheme: The FireGrid Ontology 

As envisaged, a FireGrid system would allow its fire-fighter user to relate the output from simulation and 

interpretation models to the risks faced in the current incident. In order to do this, some common ground must be 

identified within (or else imposed upon), on the one hand, the information emerging from the computer models, and 

on the other, that understood by fire-fighters as potentially relevant to the risks they face. In other words, in AI terms 

it is necessary to establish an ontology for use within the system. An ontology sets out in explicit terms the key 

concepts in the domain, along with the relationships that hold among them, and in so doing it defines the 

terminology to be used when referring to these concepts. Based on discussions with both fire-fighters and modellers, 

we were able to identify a number of common concepts understood by both. In its underlying approach this ontology 

draws on other ontological work, in particular the categories defined in DOLCE [11]. Below we discuss some of the 

key ontological definitions, namely the distinction between State-Parameters and Events; the expression of Hazards; 

and the ontological assumptions made about space and time. A high-level view of part of the FireGrid ontology is 

shown in Fig.1. 

 

Fig. 1 A high-level view of part of the FireGrid ontology 

In Fig.1, concepts (e.g., Time-point, Location, etc.) shown in boxes are arranged in a sub-concept hierarchy 

below the most generic FireGrid-Thing concept. Dashed lines describe relationships among concepts. So, for 



instance, the concept of Event is a sub-concept of Spatio-Temporal-Phenomenon; it in turn has sub-concepts 

corresponding to different types of event; and it has specific relationships with Time-Point and, via its parent 

concept, with Location. Terms in the hierarchy shown without boxes (here, red, amber and green) correspond to 

instances of the parent concept (Hazard-Level). 

(1) State Parameters and Events 

The FireGrid ontology makes a distinction between State-Parameters and Events. State parameters are 

quantities that are considered to be continuously measurable for some place over some duration of time. 

Illustrative sub-concepts include Maximum-Temperature and Smoke-Layer-Height. Events, in contrast, are 

considered to be instantaneous occurrences at some location, such as Collapse or Explosion. Furthermore, it 

is asserted that a certain sub-concept of Event can only occur once (if at all) at a particular location during 

the incident – although in reality multiple occurrences of an Event sub-concept are certainly possible, this 

constraint was imposed to ease the conceptual difficulties of knowing which occurrence of a particular type 

of Event a model is referring to, when, for example, it provides a revised set of predictions. It is intended that 

both State-Parameters and Events can be derived (albeit through additional knowledge-based interpretation) 

from the output of models – and, moreover, if a given model does not produce a recognized State-Parameter 

or Event, then its usefulness for and relevance to FireGrid is, at best, questionable. 

(2) Hazards 

From the fire-fighter’s perspective, the values of State-Parameters and the occurrence of Events can be 

related (again, through knowledge-based interpretation) to the concept of a Hazard: a Hazard is defined as 

something that can impinge upon the operational safety of fire-fighters at a particular place for some 

particular duration. For the purposes of relating this to the simplified ‘traffic light’ paradigm for information 

presentation (see below), we can define the concept of Hazard-Level as being a relative measure of the 

severity of a Hazard that pertains at some time at some location; and, more specifically, we can identify 

three specific values of Hazard-Level and define these in terms directly related to fire-fighting operations: 

 A green Hazard-Level should be interpreted as “the system is unaware of any specific hazard to fire-

fighters operating under normal safe systems of work at this location at this time”; 

 An amber Hazard-Level as “additional control measures may need to be deployed to manage hazards at 

this location at this time”;  

 A red Hazard-Level as “this location may be dangerous for fire-fighters at this time”.  



(3) Space and Time 

As described above each Hazard-Level (as well as each Hazard, State-Parameter and Event) is relevant to a 

particular physical location, which raises the question of the definition and extent of Location within the 

system ontology. This is not as straightforward as may first appear; in models, differentiated spaces (usually) 

correspond to volumes of gas bounded by physical partitions (and hence correspond to rooms), but this may 

vary if the model is of either a large space or at a high resolution. For fire-fighters, on the other hand, the 

notion of Location is situation-dependent and dynamic, depending on (among other things) the nature and 

scale of the building including its vital access and exit routes, the position of the fire incident and any 

occupants, the tactical operations that are currently underway and so on. To reconcile these views we have 

adopted a pragmatic approach, defining contiguous locations each of which corresponds to a room in the 

building in question, since this is one notion that seems to be mutually understood. 

Similarly Hazards, State-Parameters and Events all occur in time, and the fire-fighters’ decisions relate 

to both their understanding of what is currently happening and what is predicted to happen in the future. 

And, as for location, the handling of time within a FireGrid system is not a simple matter. It is necessary that 

all information in the system is tagged with absolute timestamps, rather than referring to relative times (and 

it follows that the clocks of system components that generate or present information are synchronized). We 

shall return to the representation of time in a FireGrid system in the context of the discussion of belief 

revision given below. 

3.2.2 The Knowledge-Based Reasoning Scheme: Using the Ontology 

The ontology defined in these terms is used to express and communicate the information that is generated by the 

models. This usually requires the model to be ‘wrapped’ by appropriate interpretation code, developed with the 

assistance of the modeller, that is able to interpret the native output of the model in terms of State-Parameters or 

Events.  

A further use of the ontology is to provide the basis of a ‘query language’ that enables the system user – through 

an appropriate user interface agent – to construct and pose to the system requests for specific information (and 

hence, the ontology here allows the user to communicate with the system). This involves the use of different types of 

query, with each type intended to elicit particular instances of State-Parameter or Event. For example, a confirm-

query is used to request the current value of a designated State-Parameter; while a predict-when-query is used to 

request the time of the (first) occurrence of some type of Event: 

 



confirm-query state-parameter-type: Maximum-Temperature location: room-1 [start-time: now] 

predict-when-query event-type: Collapse location: room-2 

These requests are handled by an autonomous query manager agent able to invoke appropriate models. A model 

is considered appropriate for answering a query if its information-providing capabilities ‘match’ the query. These 

capabilities are also expressed in terms of the ontology; consider the following ‘rule’ that expresses the capabilities 

of a ‘current maximum temperature’ model: 

IF query-type=confirm-query AND state-parameter-type=Maximum-Temperature  

THEN this model is capable of answering the query  

ELSE this model is not capable of answering the query 

Given expressions of model capabilities in this form, the query manager should be able automatically to match 

queries to models. The results generated by the models are then passed back as messages from the query manager 

agent to the user interface agent, and hence to the responder. See [21] for more details of this query-answering 

approach. 

In addition to enabling effective communications, the second broad use of an ontology is to allow automated 

reasoning of some form. From the perspective of the end user, a system architecture of the sort described here entails 

the effective management and interpretation of potentially large amounts of information, derived from different 

models at different times (and hence potentially conflicting or contradictory), and referring to physical 

manifestations of the incident at particular points in time and space. To address this task we use two distinct forms of 

automated reasoning, applied sequentially and cyclically as new information arrives at the responder’s interface: 

first, this information is managed by a belief-revision reasoning mechanism to maintain a consistent description of 

the current and predicted values of State-Parameters and occurrences of Events; second, a rule-based reasoning 

mechanism interprets this description in terms of the hazards it implies. 

3.2.3 The Knowledge-Based Reasoning Scheme: FireGrid Belief Revision 

The information that is presented to the responder is based on a current belief set maintained by the user-interface 

agent. A belief here is some proposition that is held to be true for some location and over some duration. In addition, 

every belief must have one or more justifications, indicating the rationale for believing it. The justification will 

usually be one or more messages (sent via the query manager) from the models in the system: the content of 

messages provides the basis for beliefs. As more information arrives from the models, a process of belief revision is 

required to maintain the consistency of the set of beliefs. The belief revision required for FireGrid differs in certain 

important aspects from conventional AI approaches to belief revision such as [1]. Specifically, whereas common 



approaches to belief revision operate at an abstract logical and content-independent level, for FireGrid the revision 

must take into account application-dependent ontological notions. 

When a new message arrives from a model, it will correspond to a proposition about either the value of a State-

Parameter or the occurrence of an Event at some time at some location (and it is implicit that this proposition is 

‘believed’ by the model at the time it was sent; in this treatment, we ignore the degrees of belief implied by 

probabilistic models). The contents of this message have to be considered in the context of the existing beliefs. This 

process is best illustrated through the use of an example. 

Consider a message (which originated in the computational results of a model denoted by the label model_1) sent 

to the user-interface agent consisting of the following elements:  

 sender: model_1 

 time received: 12:54:34 

 contents: Maximum-Temperature = 230°C in location: room-A at time: 12:54:32 

If the agent currently believed nothing about the Maximum-Temperature in room-A and received the above 

message, and assuming that the source of the message (that is the model_1) is trusted, this message would provide 

sufficient justification for the agent now believing the contents of the message. Moreover, since nothing else is 

known about the values of this state parameter in this location, the reasoning would assign a duration to this belief 

stretching from the current time to some indefinite time in the future. That is, since it is not believed otherwise, an 

assumption of the belief revision mechanism is that the values of state parameters persist, and hence in this case the 

maximum temperature would now be believed to remain at 230°C indefinitely – or at least until such time as some 

other message causes this belief to be revised with a definitive end-point. 

If, on the other hand, something is already believed either about the current or the future values of the maximum 

temperature at this location, then a more complex train of reasoning begins, which attempts to reconcile this message 

with the existing belief(s). This may involve adjusting durations of beliefs or, where there seems to be a direct 

contradiction, choosing to adopt one or other of the possibilities and disregarding the other. While this might be done 

on the basis of, say, the relative trustworthiness of the originating models, in practice we tend to trust models 

equally, and rely instead on two general principles encoded in the revision mechanism: one of favouring more recent 

information (and any beliefs it justifies) as being more likely to be true; and a second of favouring interpretations of 

current state based on sensor data over predictions. 

Contradictions become apparent when trying to reconcile inconsistent state descriptions about the same location 

at the same time. Since we have effectively compartmentalized the incident into distinct locations, determining 

whether the contents refer to the same location is straightforward. However, determining if the contents refer to the 



same time is more problematic; since absolute timestamps are used, the contents of a message and an existing belief 

about a state parameter may have widely differing values at times that differ by perhaps only fractions of a second. 

Of course, such a transition in values is possible (often coinciding with some event), but in practice seems more 

likely to result from the divergence between new information, derived from later sensor readings or more complete 

simulations, and a belief based on obsolete information. Accordingly, we choose to try to ‘smooth’ these transitions 

by defining that if the difference between the start times of a belief and the contents of a message is within a 

tolerance (set experimentally to 30 seconds) then they refer to the ‘same’ time. Furthermore, this tolerance helps to 

overcome the problem that interpretations of ‘current’ state based on sensor data will always refer to the past due to 

the inevitable lags and delays in the system; with this tolerance, these interpretations can be assumed to be about 

‘now’ (as would be the case with the example message given above). 

A further complexity arises when the content of a message is a prediction – that is, it purports to describe the 

value of a State-Parameter or the occurrence of some Event at some location at some future time. While this might 

be adopted as a belief with a duration as before, the inexorable flow of time will mean that, assuming this belief has 

not been retracted or modified in the meantime, at some time the prediction will come to refer to the current time, 

and in the absence of other information a choice must be made about whether or not to accept the predicted value as 

an actual current value. While reasoning of this sort is difficult to justify on grounds of logical soundness, it can be 

justified on the basis of a cautious approach to the safety of fire-fighters in the absence of information to the 

contrary. 

3.2.4 The Knowledge-Based Reasoning Scheme: Hazard Rule-Based Interpretation 

Assuming that the set of beliefs has been revised and is consistent, the next step is to interpret these beliefs by 

applying a set of hazard rules to them. These rules represent expert knowledge about fire-fighting capabilities and 

practice; an example might be: 

IF Maximum-Temperature ≥ 100°C at location l from time t1 until time t2 

THEN there exists a Hazard with Hazard-Level = amber at location l from time t1 until time t2 

A hazard rule consists of one or more conditions and a single conclusion, which corresponds to an interpretation 

of the conditions in terms of an instance of a Hazard (with associated Hazard-Level value) for the time and place in 

question. In addition, a hazard rule – especially one that refers to less commonly encountered hazards – may have an 

associated explanation and recommendations. So, for instance, a rule referring to excessive CO levels may offer the 

explanation that CO levels in that range can “cause headache, fatigue and nausea” alongside the recommendation to 

“avoid prolonged exposure or consider the use of breathing apparatus”. 



For each rule, then, a search is made in the set of beliefs for subsets that both satisfy all the conditions and are 

contemporaneous (that is, which have overlapping durations). If such a subset exists, then the conclusion of the rule 

can be drawn. An inferred instance of a Hazard results in what is essentially a new belief (or in the modification of 

an existing belief about a Hazard with an additional justification), with a duration delimited by the latest start time 

and earliest end time among the subset of beliefs satisfying the conditions. Note that changes to the belief set can 

effectively mean that earlier inferences about hazards no longer hold: in AI terms this is a truth maintenance 

problem. However, rather than implement a full-blown Truth Maintenance System, we have adopted the simpler, but 

less efficient, expedient of re-computing the hazards following changes to the belief set. 

Finally, since the application of the rules may have resulted in the inference of multiple simultaneous hazards, to 

provide a summary of this information that is more readily assimilated by the responder, the inference engine 

collates these into a single cumulative Hazard (and accompanying Hazard-Level value) for each location at every 

time. This is a (relatively) straightforward matter of determining the ‘worst’ hazard (level) that is believed to apply. 

So, for instance, if from the state of room-A at the current time, two ‘amber’ hazards and one ‘red’ hazard have been 

inferred then the current overall hazard in room-A will have a hazard level of ‘red’. Note that the set of hazard rules 

is intended to be derived with the assistance of fire-fighting experts; and that, moreover, different rules might apply 

in different contexts (such as when there are hazards specific to the building in question), allowing the FireGrid 

system to be tailored accordingly (and hence these rules can be seen equally to form part of the information 

presentation phase). 

3.3 Information Presentation 

The final stage is information presentation. This process is required to deliver and present the interpretation 

results to the emergency responder in the most appropriate manner in order to make a quick and correct response. 

This requires an understanding of the particular capabilities, roles and tasks of the responder, the medium for 

presenting the information, and the operational context in which the information is delivered, as well as more general 

theories of situation awareness and human interface design. The content and complexity of the interpretation is also 

an issue here, since this can encompass both real and projected values and their variations in space and time and can 

contain uncertainties and errors. Moreover, if results from more than one model are used, the possibility of 

conflicting or inconsistent interpretations arises. Hence effective presentation can demand the use of sophisticated 

filtering, interleaving and preferential strategies, tailored to the specific needs of specific users. 

As should be evident, the particular presentation adopted depends on the application in question. For our 

purposes, based on consultations with serving fire officers, we decided to focus on the task of providing information 



at the tactical decision-making level; accordingly the most obvious target user is (using UK fire service terminology) 

the Incident Commander (IC) (or, more realistically, a senior support officer stationed in a command centre at the 

scene of the incident and detailed to monitor the FireGrid system and report directly to the IC). The IC [14] is: 

“…responsible for the overall management of the incident and will focus on command and control, 

deployment of resources, tactical planning, the coordination of sector operations…and the health and safety of 

crews.” pp. 15-16. 

Rather than being determined in advance, the range of possible incidents and contributing factors means that the 

response to any given incident is left to the experience and expertise of the IC in question, except when very specific 

or rare hazards are involved (such as incidents involving hazardous materials or aircraft). However, one decision is 

effectively universal when dealing with building fires, regardless of specifics: the decision of whether or not to send 

fire-fighters into the building. Fire-fighters may be sent into a building (and the IC is said to have adopted an 

offensive tactical mode) if and only if the IC considers that in doing so the chances of saving people (especially) or 

property outweighs the additional risk to fire-fighters. Otherwise a defensive tactical mode – the default – is adopted, 

whereby the fire-fighters say outside the building until such time as either the fire is extinguished and the incident 

closed, or else conditions are such that they are now considered to make an offensive mode appropriate. 

Whether offensive or defensive tactics are adopted, this decision is subject to continuous review by the IC, 

through a process known as dynamic risk assessment. This process, which of necessity is often done rapidly and with 

incomplete or uncertain information, represents an attempt to rationalise the factors contributing to the tactical mode 

decision. This process has been identified as the most appropriate target for information from a FireGrid system: this 

information (and its modes of presentation) should be such as to contribute to the IC’s dynamic risk assessment. 

Moreover, the pressures of performing this analytical task on the incident ground are such that seemingly 

conflicting requirements emerged for information to be presented both in a manner that can be rapidly assimilated 

into this assessment process, and in a way that provides sufficient detailed rationale to allow its careful 

consideration. From discussions with senior fire-fighters emerged the idea that these requirements might be 

reconciled at the interface level through a ‘traffic light’ display (evident in the description of the knowledge-based 

reasoning in the previous sections) to give an at-a-glance overview of the current status, with a point-and-click 

facility for delving into the reasons for the colour of light displayed. In interface terms, then, the level of the 

cumulative current hazard at a particular location is used directly to colour the corresponding traffic light for that 

location in the graphical user interface (see Fig. 4). Furthermore, feedback from potential users suggested some 

indication of future hazard would also be useful, and so a second light was added to display the worst hazard level 

predicted to occur in the future. Clicking within a location causes a pop-up window to appear in which are given the 



hazard rules which fired to produce the inferred hazards. In addition a time-line indicates when any hazards are 

predicted to occur within a time-frame projected into the future (pragmatically set to 15 minutes for our experiments, 

but different incidents might demand different time-frames); moving a slider allows the user to explore the nature of 

these hazards. 

3.4 Summary 

Thus, the generic approach for FireGrid is to use sensor data as input into computational models which simulate 

fire and associated phenomena, and so provide useful interpretations of the current and imminent state of the 

incident to help responders to make decisions. In the following section we describe how these generic elements are 

situated in a computational framework that makes a FireGrid system a viable proposition.  

4. A Sensor-Steered, Grid-Enabled, Agent-Based Infrastructure for Emergency Support 

The rationale behind the FireGrid approach described in the previous section allows us to state that the FireGrid 

architecture consists of four principal components: a data acquisition and storage component for capturing and 

storing live sensor data; a simulation component for deploying and running computational models on HPC 

resources; a knowledge-based command-and-control component to provide decision-support for emergency 

responders; and a Grid middleware component to provide a uniform interface that connects the simulation 

component and the agent-based command-and-control component. In this section we describe some of the 

implementational details of each of these components. Fig.2 shows the interactions of these components. 

 

Fig. 2 The FireGrid architecture for emergency response support. 



4.1 Data Acquisition and Storage Component 

The role of the data acquisition and storage component is to implement the collection of data as described above 

in Section 3.1, which introduced the notions of dynamic and static data held in a system database. In practice, 

collection of dynamic sensor data requires the sequential application of a Data Acquisition Unit (DAU), a Data 

Translation Unit (DTU), both conventional elements of sensor networks, and a Data Grading Unit (DGU) to capture 

and validate raw data from various types of sensors. The role of the DAU is to pull raw sensor data (in the form of 

voltage readings, typically in the range 0V to +/-5V). The role of the DTU is to transform the raw data coming from 

the data acquisition unit into a form that is appropriate for interpretation (for example, the conversion of 

thermocouple voltage readings into temperatures). The DTU also time-stamps data (using the enhanced Unix time 

representation). Time-stamping is vital for the operation of the models and, subsequently, for the knowledge-based 

reasoning mechanisms that merge the information produced (hence, it is assumed that, multiple DTUs have their 

internal clocks synchronized). The role of the DGU is to filter the data coming from the data translation unit to 

attempt to validate its accuracy and reliability before storing it in the database; as a result, every sensor reading has 

an associated numerical ‘quality’ rating. For experimentation purposes, a standard relational database has been used 

to store both the static and the dynamic data, and is hosted on a physically remote server to prevent damage. 

However, this still represents a single point of failure for the system, and so additional precautions, such as the 

distribution or even duplication of the database would have to be considered for any actual deployment. 

4.2 Simulation Component 

The simulation component consists of computational models deployed on HPC resources for interpreting and 

predicting the current status and future development of fire and related phenomena. As described in section 3.2, we 

have developed a sensor-linked fire simulation model. We intend to exploit the use of HPC resources makes 

plausible the use of computationally expensive simulations of a fire incident in order to provide information to 

responders. It is important to realise that the use of HPC does not guarantee faster computation. HPC resources 

typically provide access to some number of processing units in parallel; hence to best exploit the resource, code 

should be inherently parallel – although parallelizing serial code is rarely a simple task. Furthermore, HPC only 

provides a speed-up in terms of processing time; code that, for example, requires synchronization or performs 

multiple file or database accesses may see little or no improvement in run-times. Specific HPC machines will have 

specific architectures and operating systems, which means that, even where suitable code exists, modifications and 

recompilations will usually be necessary to port code from one resource to another. A further important point, more 

specific to FireGrid, is that, since they are valuable resources, access to HPC machines is usually managed through a 



scheduling system. Obviously, during emergency response situations it would be unacceptable to have FireGrid jobs 

held in a queue, so we have an additional requirement, namely that a FireGrid system requires either a dedicated 

HPC resource of its own, or else (more practically, given the costs involved) it requires access to HPC resources in 

‘urgent computing mode’, enabling it to bypass queues while the resource manager ensures sufficient processing 

power is available by managing the load on the machine, possibly interrupting running jobs. 

K-CRISP, the principal simulation model selected for the experimentation described in the following section, 

employs a Monte-Carlo technique, involving the generation of large numbers of independent scenarios. As such it is 

inherently parallel, and so it is well suited to HPC deployment, and an appropriate implementation has been 

developed. We have used two available HPC resources for experimentation, namely the Edinburgh Compute and 

Data Facility (ECDF) at the University of Edinburgh and HPCx, the UK National Academic Supercomputer, which 

was a backup machine in the event of failure, using Linux and IBM AIX operating systems respectively. For ECDF, 

the ‘urgent computing’ requirement was fulfilled by isolating a portion of the machine (a single, 8-core computing 

node) from the main cluster and deploying a separate instance of the batch system (SUN Grid Engine) to manage it 

as a dedicated resource for FireGrid system jobs. For HPCx, the requirement was fulfilled by the exclusive allocation 

of computer resource (one 32-core computing node), reserved prior to each experimental run via an advanced 

reservation request to the general HPCx batch system. The reservation effectively provided a dedicated computing 

resource for the FireGrid project during each fire experiment. 

4.3 Grid Middleware Component 

The Grid middleware component allows users to access the various computing resources via a uniform 

computational interface. In general, remote access to HPC resources is often mediated via the Grid, since this 

provides the following desirable system characteristics [7]: 

 Heterogeneity: different hardware and software platforms interacting in a seamless manner. 

 Dynamism: placing minimal assumptions on the performance, availability and presence of different 

components of the system. 

 Scalability: the capacity to cope with significant peaks in data generation and movement at key points during 

use. 

 Security: components able to share potentially sensitive data in a secure manner, with trusted third-party 

systems. 

 High performance: providing a level of responsiveness that is in line with the needs of a user with dynamic and 

evolving requirements. 



Functional requirements for the FireGrid system are the provision of a job execution service for invoking models 

on remote resources, the staging to the remote host of input files for the models, the transfer of output files from the 

remote host back to the client after job completion, the monitoring of job status, and the provision of security and 

authorisation services. We have used the Globus Toolkit 4 (GT4) [6] to build the middleware layer, which adopts a 

client/server model. The CoG Kit [18] has been used for developing a client agent to submit a computing job. The 

security scheme of the GT4 provides authorisation and authentication to the FireGrid system. 

4.4 Agent-Based Command-and-Control Component 

Users of a FireGrid system need to be able to access the information generated by the models and to formulate 

requests for specific information (to be fulfilled, where possible, using the outputs of particular models), according 

to the framework provided by the knowledge-based reasoning scheme described in Section 3. As already seen, this 

scheme involves the allocation of particular reasoning tasks to specific agents, namely a query manager agent, which 

interacts with the models to answer requests for information, and a user-interface agent, which manages and 

interprets the information from the models for its user. This, and the modular approach to construction and 

deployment that it would provide, led us to adopt an agent-based software model for implementing the command-

and-control layer, and relating these knowledge-based reasoning tasks to the other components of the architecture. 

Hence, in the command-and control layer of the FireGrid architecture, we have two particular types of agent:  

 A query manager agent. This agent has the task of attempting to provide specific information that is requested 

by users (in some cases their interfaces will make these requests autonomously on behalf of users). This is done 

by interacting with the available interpretation and prediction models, and may involve arranging for resources 

to be scheduled and managing data for these models through interactions with the Grid middleware layer. The 

use of the query language described above in Section 3.2.2 allows queries to be formulated and each available 

model to provide an explicit description of its information-providing capabilities. When a query is received, the 

query manager will search for any model capable of answering this query. If such a model is found, the query 

manager will interact with the Grid middleware layer to invoke the model and produce an answer to the query, 

which it then passes back to the requester. If a capable model is not found, the query manager replies with a 

message to this effect and awaits the next query. 

 One or more Command, Control, Communication and Intelligence (C3I) user interface agents. Each of these 

provides an interface (with the underlying reasoning mechanisms) conveying the state of the building in 

question as interpreted by the FireGrid system and allowing the user to interact with the system. The nature of 

the interface (and, to some extent, its reasoning since the hazard interpretation rules can be role-specific) is 



determined by the capabilities and role of its intended user. While, as mentioned in section 3.3, we have 

concentrated efforts on providing support for the IC, in other contexts a user might be, say, a member of the 

local security staff responsible for monitoring the building, and instigating evacuation and calling out the 

emergency services if a fire is detected, but who would not be expected to tackle personally anything but the 

smallest fires.. These interfaces also allow, where appropriate, users to formulate queries and send them to the 

query manager. 

In addition to these, there may be further agents in the system, used, for instance, to monitor the status of 

environments (such as a fire alarm agent that monitors sensor data for evidence of a fire and which can alert the user 

or perform some other action accordingly) or even autonomous or semi-autonomous units able to enact some 

response to the situation (such as sprinkler systems). In practical terms, agents were developed using the I-X 

software suite [20], developed by one of the project partners, which provides a generic framework and the 

underlying technical implementation for providing support for processes occurring among collaborating human and 

computer agents. 

5. Experimental Evaluation: A Case-Study 

We have prototyped a FireGrid system and tested it in a large-scale fire experiment that was run in the state-of-

the-art Burn Hall fire test facility at the Building Research Establishment (BRE), near London, UK. In this section, 

we describe this experiment.  

The experiment involved a fire initiated in a specially constructed rig representing a small 3-room apartment. The 

notional scenario for the experiment concerned the possibility of occupants trapped in the apartment: the tactical 

decision was whether or not to send fire-fighters into the building to conduct a search (although no actual fire-

fighting activities or any other intervention in the course of the fire was performed during the experiment). A 

member of the FireGrid team played the role of support officer to the IC (a senior fire officer was among the 

audience for the experiment). 

The primary objectives for this experiment were as follows: 

 Integrating simulation models running on HPC resources with live data from sensors in the rig; 

 Integrating the simulation models with the agent-based command-and-control layer; 

 Demonstrating Grid-enabled, sensor-steered and coupled ensemble HPC simulations; 

 Integrating loosely coupled simulation codes and semi-analytic models for extrapolation in order to predict the 

evolution of the fire and some critical points such as ‘flashover’, egress failures and structural collapse. 



5.1 Experimental Configuration 

The experimental rig consisted of three rooms connected in a T-shape plan by a corridor, as shown in Fig. 3. 

Each room was a cube of side 2.4m. The rooms were connected by a corridor 3.6m in length and 1.2m wide. Room 1 

was to be the location of the source of the fire. It would also contain typical household furniture (sofa, table, 

television and bookshelves, all potential fuel for a fire). A technician would start the fire by igniting the sofa. A total 

of 125 sensors placed throughout the rig measured temperatures, heat flux, gas (O2, CO, CO2) concentrations and 

deformation of structural elements. Values from each of these sensors were polled in batch mode at roughly 3-

second intervals, and fed to a database server housed off-site.  

This rig and its contents were intended to produce a ‘flashed-over’ fire in a relatively short time (in the event the 

whole experiment, from ignition to manual extinguishment lasted around one hour). A type of Event in terms of the 

FireGrid ontology, flashover typically occurs when the gases produced by a fire in some enclosed space reach 

temperatures high enough (above 500°C,as a rule of thumb) to ignite simultaneously all combustible matter in the 

vicinity. From the perspective of responders, flashover represents a potential transition from a contained fire to an 

uncontrolled fire. In addition, certain structural elements of the rig were expected to deform and fail during the fire; 

the potential collapse of ceilings and floors is, of course, a major hazard for fire-fighters.  

 
Fig. 3 The experimental rig (based on an original diagram drawn by P. Clark, BRE). 

5.2 Experimental Results 

Figs. 4-7 show camera footage of the experiment along with screenshots of the user interface, and figs. 8-11 

show some of the underlying results from the principal simulation model. During the experiment the computational 

architecture functioned entirely as envisaged and the K-CRISP model was able to continuously generate forecasts of 

the future evolution of the hazard (so as not to overwhelm the end user with varying predictions, it was chosen to 

update the user interface display at an interval of 15s). 



Fig. 4 is a four-camera view of the fire scene after fire has been detected. Fig. 5 presents interpretation of the 

incident at the same time as seen on the IC’s C3I interface. The fire in Room 1 has been detected by the system 

(indicated by the red floor in this room), and the models have been invoked. While the current conditions throughout 

the rig may still be considered tenable for fire-fighting operations (the lower ‘traffic light’ is coloured amber in the 

fire room and green elsewhere), information from the model indicates that the conditions in the Room 1 are 

predicted to deteriorate to ‘red’ (and those in the Corridor to ‘amber’). The pop-up window here shows details of the 

various red and amber hazards predicted for Room 1 over the next 15 minutes. As it happened, there then followed a 

very interesting course of events, with the fire reaching a size, at about 15 minutes after detection, where it was 

poised to flash-over, but due to the fuel burning out, there then in fact followed a decay phase. During the decay the 

model adapted to the change in burning behaviour by revising its predictions accordingly, retracting the prediction of 

flashover. However, nearly 20 minutes later, another sudden transition in the burning behaviour occurred, with fire 

spreading to further items (table and TV unit), with the resulting increase in size then supporting rapid further 

growth, igniting the bookshelf and leading to flashover. Fig. 6 shows the fire scene after flashover and Fig. 7 shows 

the C3I presentation of the same situation. The latter suggests that current and projected conditions in every room are 

now ‘red’, with high temperatures recorded throughout the rig – though it should be noted that due to the speed of 

this transition there was no advanced warning of the precise moment of the transition. Indeed, to truly predict such 

would require a model of enormously increased detail, in order to represent the ignition of the further items, a 

capability that would be impractical with all the uncertainties of real-life scenarios [17]. However, the essence of the 

demonstration concerns the general capabilities of the model to provide an indication of the possible evolution of the 

incident, rather than detailed information about the precise moment of the transition in burning behaviours, which 

would in any case be far too late for reaction or evasive action by the fire service. In this respect, the model was 

successful in having given an early warning of the possible evolution of the fire early on in the incident, and even if 

the fire had proceeded to burn out completely before the flashover transition had been reached that warning would 

have been no less valid. 



 
Fig. 4 Camera footage from within the 

apartment after the fire has taken hold. 

 
Fig. 5 The C3I interface interpreting for the IC the state of the 

incident as it is shown in Fig. 4. 

 
Fig. 6 Camera footage of the incident 

immediately after flashover has occurred – 

flame, smoke and debris fill the apartment (and 

one camera has been destroyed). 

 
Fig. 7 The C3I interface showing the interpretation of the incident 

state at the same time as the footage shown in Fig. 6. 

Subsequent to the live tests, further analysis of model performance was undertaken using a replay of the sensor 

data generated during the experiment, that is, with the model is still effectively ‘blind’, and with equivalent 

computational resources. Figs. 8 – 11 show the comparisons between sensor measurements and prediction results at 

selected times during the evolution of the incident. The dark line is the average of the actual temperature values 

recorded in Room 1 up to the time in question; the light grey lines show the projected values of the corresponding 

parameter in each of an ensemble of cases selected by the model at any particular instant, drawn from a much greater 

number of scenarios generated (new scenarios were computed at a rate of about 1000 per minute using only 8 nodes 

on the HPC resource). It can be seen that selection from amongst the range of current scenarios is adequate to allow 

the model to follow the general trend of the fire evolution, even when the course of the fire changed completely as 

between Figs. 9 and 10. Tests also demonstrated that the model was very robust to sensor failure, continuing to 

perform adequately with even when live sensor inputs had been reduced to a single characteristic hot layer gas 

temperature in the room of fire origin.  
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Fig. 8 Comparison between actual sensor measurement 

and prediction result at 300s after detection. 

Fig. 9 Comparison between actual sensor measurement 

and prediction result at 900s. 
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Fig. 10 Comparison between actual sensor measurement 

and prediction result at 1500s. 

Fig. 11 Comparison between actual sensor measurement 

and prediction result at 2010s. 

Besides the fire status information the model was also generating predictions of structural integrity. During the 

live test these correctly indicated probable failure of a structural truss placed within the room of fire origin, as 

actually occurred towards the end of the fire. Again, more careful analysis was undertaken later using a replay of 

the sensor data. Figs. 12 and 13 compare the evolution of the experimental measurement and predictions of the 

vertical deflection at the centre of the truss, with the predictions being a weighted average derived from the range 

of fire curves generated at any particular instant. For this member the transition from collapse being possible to 

being probable occurs at a mid-span deflection of 0.25mm. Fig. 12 shows the prediction early in the fire at a time 

of 300s after detection. Even at this stage the greatly increased likelihood of collapse at times approaching 900s is 

indicated, with the transition from possible to probable occurring at around 870s; also shown is the actual 

measured deflection – this is initially slightly negative (that is, upward) presumably due to the fire exposure of the 

lower surfaces of the member, a factor not considered in the simple model; nevertheless, the actual behaviour was 



comparable to the prediction, with a deflection of 0.25mm reached at 814s. The failure values are also in 

accordance with the fire temperature rising toward 500°C, beyond which steel begins to rapidly lose strength. 

After the fire behaviour changed at around 900s, the predicted structural performance was revised (Fig. 13), 

with some recovery of the member up to a time of about 1900s, a trend also mirrored in the deflection 

measurements; however, following flashover at around 2000s a rapid further deterioration ensued, induced by the 

sudden increase in fire exposures. Total collapse of the truss followed at around 3100s during the cooling phase of 

the fire, extinguishing water having been applied at about 2500s. 

 
 

Fig. 12 Comparison between actual sensor measurement 

and predicted structural deflections at 300s after 

detection. 

Fig. 13 Comparison between actual sensor measurement 

and predicted structural deflections at 2100s. 

5.3 Summary  

The experiment was sufficient to demonstrate that our proposed architecture is capable of providing real-time 

decision-making information and it therefore fulfilled its primary objectives. The various technical components 

were integrated seamlessly, which can be described from the following aspects: 

 The latest sensor measurements were relayed rapidly via simple interpretative models to the end user, to inform 

of any current hazards. 

 The sensor data was consumed and assimilated by the K-CRISP predictive simulation model. The model 

adapted to the evolving sensor measurements and predicted hazard conditions, encompassing both fire 

exposures and structural integrity, which were fully consistent with the range of possible outcomes exhibited by 

the actual fire.  

 Access to the HPC resources through the Grid proceeded without any delay, which ensured that prediction 

results were generated and delivered in good time (that is, while they were still considerable ‘actionable’ 

predictions). 



 The C3I has provided a succinct interface for Incident Commanders using a ‘traffic light’ display to convey 

hazard information in an accessible manner, supplemented with underlying rationale and advice, and designed 

to integrate into the operational decision-making processes.  

6. Conclusions 

Emergency response is an important concern in modern societies; it requires the urgent and coordinated 

invocation of resources including human responders, organisations and relevant services in a timely and effective 

manner. Technologies like those mentioned in this paper could come to play an effective role in any response – and, 

indeed, they have the potential to transform the way in which responders approach their task. 

Through an imaginative integration of advanced sensors, computational models, Grid and multi-agent system 

technologies, we proposes a novel e-Infrastructure for next-generation emergency response support: live sensor data 

captures the unfolding situation; the Grid enables uniform and secure access to distributed HPC resources; 

simulation models running on these resources produce interpretations and predictions which are further interpreted 

by knowledge-based reasoning to relate them to current and projected hazards; and an agent layer seamlessly 

delivers these interpretations to the users of the system as decision-making intelligence. The experimental results on 

a large-scale fire suggest that the FireGrid approach has the potential to provide vital information to emergency 

responders to support critical decision making and contribute to effective emergency management. 
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