J. Parallel Distrib. Comput. 71(2011) 714-728

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

CAFES: A framework for intrachip application modeling and communication

architecture design

César Marcon?, Ney Calazans®*, Edson Moreno?, Fernando Moraes ¢, Fabiano Hessel ?, Altamiro Susin®

2 Faculty of Informatics, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
b Electrical Engineering Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

ARTICLE INFO

Article history:

Received 3 March 2010

Received in revised form

27 September 2010

Accepted 5 October 2010
Available online 16 October 2010

Keywords:

NoC

Application mapping
Design framework

ABSTRACT

This paper describes CAFES, an extensible, open-source framework supporting several tasks related to
high-level modeling and design of applications employing complex intrachip communication infras-
tructures. CAFES comprises several built-in models, including application, communication architecture,
energy consumption and timing models. It also includes a set of generic and specific algorithms and ad-
ditional supporting tools, which jointly with the cited models allow the designer to describe and evaluate
applications requirements and constraints on specified communication architectures. Several examples of
the use of CAFES underline the usefulness of the framework. Some of these are approached in this paper:
(i) a realistic application captured at high-level that has its computation time estimated after mapping
at the clock cycle level; (ii) a multi-application system that is automatically mapped to a large intrachip
network with related tasks occupying contiguous areas in the chip layout; (iii) a set of mapping algo-
rithms explored to define trade-offs between run time and energy savings for small to large intrachip
communication architectures.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Recent silicon technologies allow the implementation of com-
plex Systems-on-Chip (SoC) with an excess of one billion tran-
sistors integrated in a single chip [3]. The amount of modules
communicating inside such a chip can also be quite large, reach-
ing several dozen modules [33]. Additionally, current and future
data-intensive applications like multimedia point to growingly
communication-centric systems [16]. This increases the need for
special intrachip communication resources to cope with the tight
requirements of SoC design. There are plenty of architectures for
on-chip communication suitable to deal with such requirements,
including split busses [10] and several flavors of networks on chip
(NoCs) [4].

NoCs have been proposed to provide high scalability, reusabil-
ity and reliability. They usually display features to fulfill specific
requirements such as energy consumption and latency. However,
their design also brings up new challenges. To illustrate these chal-
lenges Fig. 1 depicts the process of solving two relevant problems
in NoC-based SoC design: the partitioning and mapping synthesis
steps. The partitioning synthesis step defines an optimal grouping of
tasks on application modules. The mapping synthesis step consists

* Corresponding author.
E-mail address: ney.calazans@pucrs.br (N. Calazans).

0743-7315/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j,jpdc.2010.10.002

in finding an association of each of n tasks to a given location in
the communication architecture that minimizes some (often com-
plex) cost function. The cost function may include combinations
of latency and/or power dissipation figures. Assuming there are n
equal regions here called tiles, to where it is possible to assign any
of the n modules, there are clearly n! possible distinct mappings.
It is possible to devise trivial algorithms that inspect each map-
ping and find the best solution, but this is obviously unfeasible for
SoCs with hundreds of modules. Thus, the search of a SoC optimal
implementation requires efficient algorithms and sound models.
Referring to Fig. 1, given an application defined initially by a set
of tasks (t;), the partitioning process groups tasks into nodes (n;),
while the mapping process binds these nodes to specific tiles (t;)
of the communication infrastructure.

This paper proposes a framework called Communication Anal-
ysis For Embedded Systems (CAFES) to automate and/or ease the
execution of design tasks at the architectural level. The initial
development of CAFES targeted the evaluation of energy con-
sumption in communication architectures. CAFES is extensible in
several directions, and already displays capabilities to support in-
trachip communication architecture design tasks like: (i) Model
applications in their communication and computation aspects;
(ii) Model several features of different intrachip communication
architectures; (iii) Develop and integrate algorithms for design
tasks such as mapping and partitioning over an intrachip com-
munication architecture; (iv) Estimate static and dynamic power
dissipation, as well as message latency, for a set of intrachip

http://dx.doi.org/10.1016/j.jpdc.2010.10.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:ney.calazans@pucrs.br
http://dx.doi.org/10.1016/j.jpdc.2010.10.002

C. Marcon et al. / J. Parallel Distrib. Comput. 71 (2011) 714-728 715

Mapping

SCAESENED

App3 Communication Infrastructure

App1, App2 and App3 represent the same application described at three distinct levels of
abstraction. pA, represents the access point of n; to the communication infrastructure (NoC).

Fig. 1. Partitioning and mapping an application description (set of tasks) to a NoC-based SoC architecture.

communication architectures; (v) Evaluate application execution
time at various abstraction levels; (vi) Estimate energy consump-
tion and latency of a communication architecture for gate level
descriptions; (vii) Generate synthetic applications for a set of appli-
cation models; (viii) Automated model conversion; (ix) Generate
application-specific traffic; (x) Support new algorithms, applica-
tions models and target architecture models through framework
built-in extensibility features.

Under a user’s point of view, CAFES is a framework for design
space exploration of the communication infrastructure, enabling
the evaluation of different mapping heuristics and communication
models, and targeting latency and power/energy estimations.
Other frameworks presented in the literature target the design
space exploration of NoC structural parameters, such as number
of virtual channels, topology, buffer depth, routing algorithm.
Examples of such frameworks are ATLAS [24], the framework
supporting the uSpider NoC [7], and commercial services like those
offered by Arteris or INOCs Structured Interconnects.

This paper is organized as follows. Section 2 explores some re-
lated work. Section 3 introduces the main features and function-
alities of the CAFES framework. Section 4 presents and compares
models already supported by the framework to capture applica-
tions structure and/or functionality. The models consider com-
munication and computation. Section 5 describes communication
architecture models, and some models used for energy consump-
tion and timing estimation. Together with models described in
Section 4, these are used to estimate some relevant design require-
ments. Section 6 describes some of the additional CAFES built-in
tools and facilities. Section 7 draws conclusions and depicts ongo-
ing work.

2. Related work

NoC frameworks have to consider applications, SoC and/or
MPSoC architectures and even overall system features. This section
presents a brief account of some current works related to the topics
addressed by the CAFES framework.

One encompassing framework for NoC generation and ap-
plication production involves the xpipes compiler [14] and the
SUNMAP [26] tools. The former can generate NoC components by
specializing a library of soft macros (containing routers, network
interfaces and link architectures), while the latter can help in the

selection of a NoC topology and the customization of the topology
to fulfill application requirements. All these tools base the develop-
ment of NoC implementations from the Xpipes NoC architecture.

Krasteva et al. [17] present a framework for fast emulation
and NoC prototyping. The framework provides a library composed
by reusable hardware cores (i.e. pre-placed and pre-routed cores,
and partial configuration files). Using partial FPGA reconfiguration
can avoid whole system re-synthesis, enabling fast architecture
analysis.

Palermo and Silvano [29] present PIRATE, a framework for high-
level exploration of NoC power and performance trade-offs at
varying traffic patterns. This work proposes a methodology to gen-
erate and to simulate a NoC whose interconnection elements and
switches are configurable, which permits building different on-
chip topologies. The framework includes facilities to: (i) generate
several NoC topologies (e.g. Octagon, Cube and Mesh) in Verilog
RTL; (ii) estimate power consumption by a power characterization
flow; (iii) enable timing verification by cycle-based simulation.

Talwar et al. [32] present a study on NoC power, latency and
throughput trade-offs. They vary micro architectural and circuit
level parameters and use as support a NoC exploration framework
capable of topology generation and comparison, using parameter-
ized models of routers and links described in SystemC.

Dolif et al. [6] describe a framework for multi-task applica-
tion mapping onto MPSoC platforms. A complete stochastic allo-
cation and scheduling framework validate abstract models of
system components and assess constraint satisfaction and objec-
tive function optimization. The framework provides an MPSoC
virtual platform to accurately derive input parameters and allows
describing an application by using models whose computation
time, amount of communication and storage requirements are an-
notated. Then, the application can be simulated, and tasks are allo-
cated and scheduled to an MPSoC execution platform.

Several other framework proposals can be found in the litera-
ture. One important distinguishing feature of CAFES is its capacity
to support several application and abstract communication models
of varying complexities and accuracies, as well as its open-source
structure that supports extension to encompass new models.

3. CAFES framework architecture

This section describes the CAFES framework. Section 3.1
establishes the set of assumptions of the current version of the

716 C. Marcon et al. /. Parallel Distrib. Comput. 71 (2011) 714-728
— T
© C 2]
g = o Designer Atlas Fur':lc?icc:)nal - § 8
+— C =
i ._5._> (NoC Models) Description > <
; e — |
__| Application Models
(CWM, CDM, ...) High-level Analyzer]
v v ise4 s
‘—p(Synthetic Application Generator }— e High-level 5
° l Results ° L%
% —»(Model Converter J ;iAppIication Description| v S
(<]
o
& —p(NoC Parameters '_;
2 0o o g
u \ 4 S
- e : o .
© Testbench oati 3
Generator Application <= =
Mappers e §
HDL Application
Description
\4
o 2
i w NoC SPICE Synthesized ——{ Metal Lines .
z3 Model NoC Model Adder g
°g 3 o
f
il
© @
c . — | —> L a . o
i Logic Logic Simulation Logi Q
< H Logic Model ogic =
é Results (Modelsim) : Synthesis 8
o : (RTL a
® - — . . Precision L
c Electric Electric Simulation : . <
g Results (SPICE) Synthesis))
w . Digital Cell Library

Fig. 2. CAFES framework and its interaction with external entities.

framework and gives some directions to where it may evolve.
Sections 3.2-3.4 comprise the description of the framework
architecture in itself. Finally, Section 3.5 gives a hint on how the
CAFES user interface works.

3.1. CAFES framework assumptions

No framework can encompass the whole diversity of NoC-
based systems existing today. CAFES was initially built with
application scalability problems in mind. The software structure
allows inserting new features and enforces the reuse of already
available features, providing the environment with extensibility.
To achieve this, some assumptions and constraints were necessary.

Among SoCs that employ NoCs as target communication ar-
chitecture, many propose irregular and/or dedicated NoC topolo-
gies to account for power efficiency and maximizing performance.
However, it is instructive to observe the related trends predicted
by the ITRS. For example, the ITRS 2008 Update [13] estimates that
the maximum number of processing modules (CPUs plus others) in
a complex SoC for non-portable systems will grow from around 25
in 2010 to more than 280 in 2020. For portable systems SoCs values
are even more impressive, going from around 80 modules in 2010
to more than 800 in 2020. Clearly, managing future systems design
complexity and fulfilling their time to market demands may lead
to increasing use of regular communication architectures. Accord-
ingly, the CAFES framework supports a set of regular topologies,
including 2D mesh and 2D torus. This enables simple and sound
modeling with pre-characterized parameters, making it easier to
evaluate several distinct communication architectures. Of course,
expansions may be necessary to encompass other topologies, such
as fat trees and butterflies as well as irregular topologies. CAFES
also contains a library of algorithms dedicated to on-chip com-
munication analysis, including generic optimization for mapping
such as tabu search [9] and simulated annealing [34]. These can be

adapted to solve other problems such as partitioning and/or incre-
mented with alternative algorithms for these and other problems.
The framework also contains a library to support the manipulation
of generic data structures, such as graphs and binary search trees,
which are normally used to build application and communication
architecture descriptions.

At the low end of the implementation issues, all uses of the
framework dealt so far only with synchronous systems. However,
it is well accepted today that complex systems cannot be fully
synchronous. Accordingly, CAFES models, especially lower abstrac-
tion models, need to consider other communication architectures
paradigms, such as globally asynchronous, locally synchronous
(GALS) and fully asynchronous.

3.2. CAFES framework general structure

Fig. 2 shows the structure of the CAFES framework and its
interaction with external entities. This figure is separated into four
horizontal regions: two related to the CAFES internal structure
(central regions) and two other, related to external entities (top
and bottom regions). Integer numbers inside a dark circle refer
to the basic flow for solving the mapping problem within CAFES,
as described in Section 3.3, and section numbers inside dotted
rounded rectangles point to the paper section that details the topic.

The top region in Fig. 2, called External Front End comprises
the (human) application designer and the ATLAS framework [24]
that can generate synthesizable NoC models used by CAFES. The
next region, CAFES Front End, is the focus of the work and
will be explored in detail later in this section. Next, the CAFES
Back End region enables two kinds of actions: (i) Certification
of high-level models from the CAFES Front End, through the use
of both simulation and tuning of high-level models from lower
level information; (ii) Synthesis of lower level descriptions from
high-level descriptions. Finally, the bottom region (External Back

C. Marcon et al. / J. Parallel Distrib. Comput. 71 (2011) 714-728 717

End) shows some of the employed commercial design tools and
libraries. The Back End regions serve the purpose of calibration of
the environment. They define a flow that executes just once for a
given technology-NoC type combination.

3.3. CAFES front end

Referring to the circled numbers in Fig. 2, obtaining a solution
to the mapping problem starts when the designer chooses an
application model to use (1). With this model he employs
related tools from the environment, such as graphic editors,
to produce the application description (2). Next, the use of
ATLAS [24,28] allows producing a NoC functional description
(3) [25]. During this phase, ATLAS and CAFES generate a set
of relevant NoC parameters (4). The application description, the
NoC functional description and the NoC parameters are inputs
(5) to a mapper tool that produces a NoC-mapped application
description (6). Besides this basic flow, the CAFES Front End
comprises several accessory tools that complete its functionality.
Some degree of compatibility exists among application models.
Accordingly, the environment offers a Model Converter tool with
functionality discussed in Section 4.7. Additionally, CAFES supports
a straightforward analysis of application characteristics from the
initial description, using the High-level Analyzer tool, approached
in Section 6.3. To enable fast production of benchmark examples,
CAFES includes a Synthetic Application Generator, described in
Section 6.4. After mapping an application to a synthesizable NoC
description it is possible to simulate the whole system at the RTL
level, as long as the Testbench Generator tool is used, as described
in Section 6.5.

3.4. CAFES back end and external back end

To implement the model certification and synthesis actions,
the CAFES Back End includes in-house and commercial tools. The
main back end data repository is called the Digital Cell Library in
Fig. 2 (e.g. TSMC or IBM) [15]. With the Digital Cell Library set up,
an instance of a NoC functional description (RTL) undergoes logic
synthesis. This generates a low level NoC description, which serves
to refine a model that includes long metal lines delays, computed
with the CAFES Metal Lines Adder tool. The refined description is
the input of logic and electrical simulations, by selecting specific
modules of the NoC. The obtained logic and electrical descriptions
are then simulated and the resulting simulation data is input to
the Model Certifier that compares logic and electrical simulation
results with previous electric NoC Parameters. This enables the
successive certification and tuning of the original NoC parameters.
After concluding this calibration step, the framework is able
to provide accurate high-level estimations for the design space
exploration process. No recourse to these calibration steps is
necessary during regular use of CAFES for design exploration.

3.5. CAFES user interface

From the opening screen of CAFES, partially displayed in Fig. 3,
the designer may select an application model and target communi-
cation architecture. He may also select a specific synthesis/analysis
tool (on the Tools Menu) to use during the communication archi-
tecture analysis. Section 4 details the application models depicted
in the figure.

CAFES employs some basic communication architecture param-
eters for energy consumption and execution time estimations. At
the moment, these parameters have default values characterized
according to the target architecture and pre-defined CMOS tech-
nologies. Nevertheless, the designer may change any of these val-
ues to fit other technologies. This can take place after choosing a

!CAFES- Communication Analysis For Embedded
File Tools Help

=lolx|

rApplication Models
| Communication Weight Model (CWM)

Extended Communication Weight Model (ECWM)

Communication Dependence Model (CDM)

Communication Dependence and Computation Model (CDCM)

Application Communication Pattern Model (ACPM)

Communication Task Model (CTM)

Target Communication Architecture:

[2D Mesh NoC(X¥ routing, wormhole switching) |+

Fig. 3. CAFES initial screen, displaying the choice of application models and target
communication architecture.

=0l x|

B Target Communication Architeck re

~Topology Parameters

NoC size (lines . columns) |6 . |4
Tile size {width . height) |4 .|8 {mim2}

Buffer length 8 {phits}
~Timing Parameters
Clock cycle frequency |35ﬂ {MHz)

Number of cycles for linking I'W
Number of cycles for routing I'W

~Energy Parameters
With Transition

EIS_Phit |0.87 {nJimmy)

EcS_Phit [0.11 nJy

EsS_Phit |3.22 nJ)
EbS_Phit |2.74 nJy

fdle

Without Transition

EIPhit IEHT (nJimmy)
EcPhit [0.01 ()
EsPhit [0.46 | ()
EbPhit [0.34 | (nJ)

PRowuter |430.0 (mW)

Fig. 4. Interface for setting target architecture parameters for 2D mesh
topology and applications modeled with ECWM. The displayed energy parameters
correspond to the CMOS TSMC 0.35 pwm technology.

given application model. For instance, when the Extended Com-
munication Weight Model (ECWM) is selected together with a 2D
mesh topology NoC, XY routing and wormhole switching, CAFES
shows the parameters as illustrated in Fig. 4. Section 5.2 provides
a discussion on how to define these parameters. Most parameters
are independent of application models. Exceptions are the NoC En-
ergy Parameters, since only ECWM considers the bit transition ef-
fect, as described later, in Section 4.2.

4. Application models

Taking into account only the communication architecture de-
sign, the most relevant aspects of an application model are: (i) the
exact instant when a communication occurs and for how long
this communication occupies communication resources; (ii) the
amount of data communicated; and (iii) the communication data
pattern. Even when the number of aspects is reduced, there are
several possible application models with different features that

718 C. Marcon et al. /. Parallel Distrib. Comput. 71 (2011) 714-728

(a) ECWM graphic description.

#numberOfLines numberOfColumns
2 2
#_ECWG_GraphicVertices

#module xPosition yPosition

ME 50 150
PAO 250 50

PA2 250 250
PC 450 150

#_ECWG_Edges
#source-target phits transition(%)

ME - PAO 76800 20
ME - PA2 76800 20
PAO - PC 128 30
PAO - ME 76800 20
PA2 - PAO 320 10
PA2 - PC 128 7

PA2 - ME 76800 20
PC - PAO 128 17
PC - PA2 128 26

(b) Corresponding textual description.

Fig. 5. Example of a synthetic application captured with ECWM.

can be employed. According to the chosen application model, it
is possible to evaluate some application requirements and con-
straints with different algorithms, creating distinct trade-offs of
accuracy, computation time and memory consumption. Depend-
ing on the selected application model, the designer may explore
distinct computation and/or communication aspects. Most models
proposed here are independent of the adopted target communica-
tion architecture. In addition, the framework supports extensions
of the built-in models to other application models. Currently CAFES
includes six application models and the Model Converter tool that
are described in the rest of this section.

4.1. Communication weight model (CWM)

CWM models an application by its communication volume,
which is defined by the number of bits transmitted by all com-
munications during application execution. CWM is the simplest of
CAFES built-in model. It is normally dedicated to estimating dy-
namic energy consumption of the target communication architec-
ture. CWM facilitates the application modeling, since it is possible
to use e.g. RTL simulation to count the number of bits transmitted
by any source to any target. Similar models exist, including the Core
Graph of Murali and De Micheli [27] and the Application Character-
ization Graph of Hu and Marculescu [11].

CAFES implements CWM using a communication weight graph
(CWG), which is defined as a directed graph CWG = (M, C), where
M = {mq, my,...,m,} is the set of application modules, corre-
sponding to the CWG vertices, and C = {(m;, m;, wy)|(m;, m;) €
M and w;; € N*} denotes the communications channels between
application modules, corresponding to the CWG edges. The edge
weight wj; in (m;, m;, wy) represents the amount of bits transmit-
ted from m; to m;.

4.2. Extended communication weight model (ECWM)

According to [23], to estimate the energy consumption of the
communication architecture accurately, it is important to know
not just the amount of bits transmitted but also how many tran-
sitions occur during the transmission. The absence of this infor-
mation can lead to errors of up to 45% in the energy consumption
estimation. To minimize this error, the authors of [23] proposed
to improve CWM by including the number of transitions occurred
between successive bit transmissions. This new model is called
ECWM.

CAFES implements ECWM using an extended communication
weight graph (ECWG), which is defined as the directed graph
ECWG = (M, T). As defined before, M is the set of application
modules and wj; is the amount of communications. Assuming o

is the number of bit transitions occurred on all packets sent from
m; to mj, then T = {(m;, m;, wy;, o) |m;, m; € M, w; € N*, 0 €
N} is the ECWM edge set. In practice, o;; may be expressed as
a percentage of wy. T represents all communications between
modules, containing both the amount of bits and the amount of
bit transitions.

The designer may describe ECWG manually or extract ECWG
automatically, during the application RTL simulation, by capturing
the volume and switching activity of the bit traffic in specified
NoC channels. Fig. 5(a) and (b) display graphic and textual
descriptions of a simple synthetic application with 4 modules
and 9 communications. For example, module PA2 sends 320 phits
to module PAO, having bit transition activity of 10%. Phit is the
physical width in bits of the link between routers or between a
router and a module. Assuming a phit composed by 8 bits, this
would correspond to 256 bit transitions.

4.3. Communication dependence model (CDM)

CDM, introduced in [19], models an application according not
only the communication volume, but also to the communication
dependence. The dependence information, which improves CWM,
allows capturing concurrent requests to a same resource of the
target architecture, thus enabling the design phase to evaluate,
avoid or minimize message contention events. A basic assumption
of the CDM is that any pair of non-dependent communications that
may compete for some resource will cause contention in the model.
In this sense, CDM is a pessimistic model that enables computing
and reducing contention. In order to reduce or avoid contention,
the CDM algorithm searches for better mapping scenarios, i.e. the
ones where non-dependent communications may not compete for
some resource.

CAFES implements CDM with the communication dependence
graph (CDG), which is defined as an acyclic directed graph CDG =
(P, D). P is the set of all application messages, corresponding to
the CDG vertices. Additionally, P also contains two special ver-
tices named START and END, which represent the beginning and
the end of the application flow defined in a CDG. Given P =
{pn = (n,m;, mj, wyp) | n € N,mj,mj € Mandwy, € N} U
{START, END}, p, is the nth message sent from m; to m; containing
wjjp bits and n is an identifier that permits distinguishing differ-
ent messages exchanged by a same pair of modules. D is the set of
CDG edges that represents the communication dependence. Con-
sidering that p, and p, are application messages such thatn # r,
then D = {(p;, pn)|Dr, Pn € P}, where (p;, p,) € D if and only if p,
depends on p,,. A message p, without dependence on another mes-
sage implies an edge connecting the START vertex to p,. A message
pr which no other message depends on implies an edge connecting
pr to the END vertex.

C. Marcon et al. / J. Parallel Distrib. Comput. 71 (2011) 714-728

(a) CDCM graphic description. Numbers outside

each circle are drawn just to improve
identification correlating graphic and textual

descriptions. They do not actually exist in the

graphic view.

719

#nLines nColumns

2 2

#_CDCG_Graphics

#id xPosition yPosition

START 470 45

END 330 350
0 390 115
1 560 115
2 260 205
3 390 205
4 390 295
5 260 295

CDCG Vertices
#id source-target phits:time

0 A-B 100 : 50
1 C-D 80 : 30
2 A c 90 : 45
3 B-1D 50 : 50
4 D - A 30 : 30
5 C-B 70 : 30

CDCG Edges

#id : Dependences
START : 0 1
END :

0 13 2

1 H

2 : 5

3 H

4 : END

5 : END

(b) Corresponding ECWM textual
description.

Fig. 6. Example of a synthetic application captured with CDCM.

4.4. Communication dependence and computation model (CDCM)

CDCM, introduced in [20], add features to CDM. Besides captur-
ing all information that is conveyed by CDM, CDCM includes the
computation time on the source module that precedes each com-
munication initiated by this module. This model allows estimating
precisely figures like application execution time, static energy con-
sumption and power.

CAFES implements CDCM with the communication dependency
and computation graph (CDCG), which is defined as an acyclic
directed graph CDCG = (Q, D). Likewise to CDM, D is the set of
edges, representing the communication dependences. However,
the CDCM message model enhances the CDM message model by
adding a t; parameter. This parameter represents the computation
time of the source module (m;) after having all vertex dependences
of vertex i satisfied, until the transmission of message n. The
parameter ¢; is a natural number that represents the number of
cycles of the m; clock. The set of vertices is thus Q = {q, =
(n, my, m;, Wijn, t)|n € N, mj, m; € M, wij, € N*, andt; € N} U
{START, END}.

Fig. 6(a) illustrates a graphic description of a CDCM synthetic
example and Fig. 6(b) shows the corresponding textual description.

The set of vertices Q is {qo, q1, 92, 93, G4, g5, START, END}, such
that ¢ = (0,A,B,100,50),q; = (1,C,D,80,30),q, =
(2,A,C,90,45),q5 = (3,B,D,50,50),q4 = (4,D,A, 30, 30)
and gs = (5,C,B,70,30), and D is {(START, qo), (START, q1),
(q()v QZ)’ (qu q3)7 (Ql’ Q4), (QL QS)’ (QB, q4)7 (q47 END)5 (q57 END)}
It means, for instance, that go and q; are possibly concurrent mes-
sages, while gg and g4 can never compete for an identical commu-
nication resource, since g4 is dependent on qg.

4.5. Application communication pattern model (ACPM)

ACPM, introduced by Kreutz et al. in [18], models applications
through a totally ordered set of events, where each event is a
message associated to a tag. This tag does not carry any kind

of timing information; it is only responsible for event ordering.
When implemented inside the framework, ACPM was improved
by changing the tag meaning. Now, the tag represents the instant
of time that an associated message is sent from the source to the
target module.

CAFES implements ACPM with the application communication
pattern (ACP). This is simply the totally ordered set of events. Let
G = {go, &1, ..., &/ be the set of messages exchanged during an
application execution and M be the set of application modules.
Then, each message g is modeled as gx = (m;, m;, wy,) with
m;, mj € M and the weight w;, € N¥, is defined as in previous
models. In addition, let I'j be a subset of G, such that each Iy has
an associated time tag 6 that gives the initial sending instant for
all messages of I'y. Then, ACP = {0, Iy)|I[y € G, Iy # 0,0 €
N} U {START = (@, @), END = (4, ¥)}. START and END are special
tuples of ACP determining respectively the start and the end of the
arrangement.

Fig. 7(a) illustrates a graphic description of a synthetic exam-
ple described with ACP and Fig. 7(b) shows the corresponding
textual description. Here, six messages compose the communi-

cation of a synthetic example gy = (A, C,330),g1 = (B,D,
250),g, = (D,A,800),g5 = (C,B,60),8s4 = (B A, 120)
and g5 = (A, D, 320), performing the set of messages G =

{g0, g1, &2, €3, 84, &5}. Messages are grouped into the following
three sets: Iy = {go0,&1}, s = {g2} and I3 = {g3, 84,85},
according to their start sending instant. Each set of messages is
associated to the corresponding tag to accomplish the ACP =
{START, (0, I'), (15, I'}5), (20, Ig), END} structure.

It is easy to obtain an application description with ACPM, be-
cause besides source and target modules it is only necessary to an-
notate the volume and the instant of each communication during
a high level simulation. On the one hand, module mapping may
change the communication instants, compromising the timing es-
timation precision of this model. On the other hand, communica-
tion energy estimations are more accurate here than using CWM
because it allows including static energy estimations.

720 C. Marcon et al. /. Parallel Distrib. Comput. 71 (2011) 714-728
NoC_Size
#numberOfLines numberOfColumns
2 2
ACPG_TagsGraphic (list of Tags)
tag xPosition yPosition
START 50 50
0 50 125
15 50 200
20 50 275
END 50 350
ACPG_VerticesGraphic (vertices)
tag source - target phits : x vy
0 A - C 330 ¢ 300 50
0 B -D 250 300 125
15 D- A 800 150 200
20 C - B 60 300 200
20 B - A 120 300 275
20 A - D 320 300 350
(a) ACP graphic description. (b) Corresponding textual description.
Fig. 7. Example of a synthetic application captured by ACPM.
Table 1

A comparison of the CAFES application models. CV = Communication volume.

Model Application view

Modeled features

Communication

Computation

CWM Module cv
ECWM Module
CDM Module
CDCM Module
ACPM Module
CTM Task cv

CV + message partial order (untimed)
CV + message total order (timed)

CV + switching activity -
CV + message partial order (untimed) -

Module execution time

Task scheduling

4.6. Communication task model (CTM)

Hu and Marculescu introduced the communication task model
(CTM) in [12]. This model captures the computation and commu-
nication of an application through task scheduling and communi-
cation volume. Unlike the communication dependence assumed
in CDM and CDCM, CTM takes into account the task scheduling
dependence.

CAFES implements CTM with the communication task graph
(CTG), which is defined as the acyclic directed graph CTG = (V, B),
where V is the set of vertices and B is the set of edges. A vertex
v; = (d;, ¢, Ei) represents characteristics of the application task
i(t;). The term d; is the deadline for t; conclusion, while ¢; and E;
are vectors whose elements represent the task execution time and
the task energy consumption on the processing elements of the
target architecture, respectively. Each edge b; € B characterizes
the dependence of control and communication between the pair
of vertices (vj, vj). To each b; there is an associated amount of
bits transmitted from v; to vj(wj;). Additionally, CTG contains
two special vertices named START and END, which represent the
beginning and the end of the application.

4.7. A taxonomy for application models and model conversion

Sections 4.1-4.6 described the six models currently supported
inside CAFES. These models provide a spectrum of choices for
capturing application characteristics, but fully understanding them
is challenging. This section attempts to help in this, comparing
models as to what features can or cannot be modeled with each,
and providing relations between the abstractions defined by each.

Table 1 compares all CAFES models. Functional and structural
are two orthogonal but related views of an application. Function-
ally, a set of tasks forms an application, while structurally a set of
modules implements it. Most models in CAFES use the structural
view, except for CTM, which uses the functional view. The com-
munication among tasks or modules is the fundamental informa-
tion to model, and every model allows capturing it. A model like
CWM that captures only communication volume enables to esti-
mate dynamic energy consumption in the communication archi-
tecture. This is limited, because congestion and its effects cannot
be precisely modeled with this kind of information. To enhance
precision, models like CDM, CDCM and ACPM can capture the or-
dering of communication, using either partial or total orders for
these events. Estimating the total execution time is important for
system designers. Accordingly, some models in CAFES enable the
estimation of total execution time, either by computing the exe-
cution time of modules (in CDCM) or the moment at which tasks
are scheduled (in CTM). Note that in ACPM the execution time of
modules is implicitly considered, since it implies a total order for
messages.

To illustrate and explain the relationship among models, Fig. 8
shows in its top middle portion an example application composed
by five tasks (ty, to, t3, t4, t5) that are partitioned in two modules
(mq, my). A partitioning choice is illustrated by the plain arrows
from tasks to modules. The dotted arrows show how the models
available in CAFES allow capturing the communication and/or
computation aspects of application modules or application tasks.
Some models can be automatically extracted from others that
contain greater amount of details. These automatic conversions
define an abstraction relation between models. Possible automatic

C. Marcon et al. / J. Parallel Distrib. Comput. 71 (2011) 714-728 721

Computation
Commuhnication

Application tasks

Computation :
.

T4,
8: g

Application modules

Vv

CTM

Abstraction|
1gvel
v

Fig. 8. Application models composition regarding computation and communica-
tion. Double solid lines indicate possible inter-model conversions. Dotted lines in-
dicate which model captures which aspect (computation or communication) of an
application view (functional or structural).

;‘ CWM Mapping

File Tools

=101 x|

Fig. 9. An example of CWG that results after using the CDCM to CWM conversion
tool on the CDCG of Fig. 6(a).

model extractions are shown in Fig. 8 using double line arrows.
For instance, ACPM may be extracted from CDCM and CTM. On
the other hand, no automatic conversion can obtain CDCM, CTM
or ECWM, due to their amount of details, not encompassed by
any other of the discussed models. Any model can be converted to
CWM, which is thus the most abstract model of the CAFES model
set.

To exemplify the use of model conversion tools, Fig. 9 shows
the CWG that results when applying the CDCM to CWM conversion
tool over the CDCG data structure of Fig. 6. Clearly, this last graph
is generated when abstracting the computation time information
from the CDCG, taking into account only the communication
volume information.

This application inter-module conversion tool was used in some
works to evaluate how complete an application model is to esti-
mate a given design requirement. For instance, [20] demonstrates
that CWM is a simpler model, which is easy to extract from the ap-
plication specification, but an energy estimation with CWM may
imply up to 20% of error when compared to an estimation achieved
with CDCM.

5. Communication architecture modeling

This section details some of the fundamental structures and
models used inside CAFES to model intrachip communication ar-
chitectures. Rather than being complete, the goal of the section is
to illustrate the process of employing models inside the frame-
work. First, Section 5.1 defines the graph used to describe the
overall structure of communication architectures. Section 5.2 then
discusses an example energy model built inside CAFES. Timing
models are important in most design aspects of communication

architectures and they are deeply dependent on structural de-
sign choices like routing algorithms, buffering strategies and flow
control options. Accordingly, Section 5.3 presents an example com-
putation of a timing model used inside CAFES. Finally, Section 5.4
approaches the influence of the application model choice over en-
ergy and latency computations.

5.1. Communication resource graph (CRG)

CAFES supports some of the communication architectures con-
sidered as good candidates to become mainstream in future SoCs,
including 2D mesh and 2D torus NoCs. To model the function-
alities of these communication architectures, CAFES employs a
structure called the communication resource graph (CRG), formally
defined as a directed graph CRG = (T, IT), where the set of ver-
ticesT = {11, 72, ..., Tp} denotes the set of regions where mod-
ules are placed (the tiles). The set of edges IT = {(z;, 7))|7i, 7j € T}
designates the set of direct connections existing from tile i (t;) to
tile j (r;). In regular geometries of NoC topologies, tiles are usually
represented by their Cartesian coordinates, i.e. instead of using the
notation g to stand for the sixth tile of a 2D NoC being positioned
into the coordinates [3, 2], the notation used is 73).

The CRG does not encompass the description of the employed
routing algorithm. However it does impose constraints on the kind
of routing algorithm used. The composition of the CRG and the
routing algorithm allows defining possible paths to follow between
communicating modules. Based on these computed paths and on
estimations of tile physical dimensions, it is possible to define
the links and routers used during communication. Therefore, it
is possible to calculate information like energy consumption or
latencies.

5.2. Energy model

Reducing energy consumption remains one of the main goals of
actual electronic designs [1,31,2]. Each design must have several
parts of it analyzed individually as is the case of very long wires
and large memory and logic blocks. At design time, sound energy
models may predict with reasonable precision the whole system
consumption or even the energy consumption of some isolated
parts, enabling to search for optimal solutions, as soon as possible.
In this sense, this section shows how the basic energy consumption
model of CAFES was developed.

An energy model uses structural and technological information
to estimate dynamic and static energy consumptions of the target
communication architecture. Nevertheless, each kind of communi-
cation architecture has its own set of topological and physical pe-
culiarities, making it infeasible to use a single energy model for all
purposes and all NoCs. To illustrate how energy models are built,
this section shows the basis for energy consumption models, and a
specific equation to estimate the dynamic energy consumption of
a specific 2D mesh NoC.

CAFES models the dynamic energy consumption, using the con-
cept of bit energy (EBit), similarly to models described elsewhere,
like in [35,8]. Nevertheless, some of the models specified here
consider also the effect of the number of bits transmitted and the
number of bit transitions during message transfer [30]. For several
communication architectures, EBit can be expressed as a function
of four variable quantities, as depicted by Eq. (1). Here, EsBit is the
dynamic energy consumption of a single bit on wires and on logic
gates of each router. EbBit is the bit dynamic energy consumption
on router buffers. EcBit is the dynamic energy consumption of a
single bit on links between routers and the local module. ElBit is
the bit dynamic energy consumption on the links between routers

EBit = function(EsBit, EbBit, EcBit, EIBit). (1)

722 C. Marcon et al. /. Parallel Distrib. Comput. 71 (2011) 714-728

To exemplify the modeling of dynamic energy consumption,
Eq. (2) illustrates how EBit is composed to model a 2D direct mesh
NoC. It computes the dynamic energy consumed by a bit passing in
such a NoC from tile i (z;) to tile j (z;), where 7; corresponds to the
number of routers that the bit traverses

EBit;; = ny; x (EsBit + EbBit) + 2 x EcBit + (; — 1) x EIBit. (2)

According to the application model, CAFES decomposes each
one of the four variable quantities of EBit in two new energy
parameters: one that reflects the dynamic energy consumption
when consecutive bits have opposite values, and another that
does not consider the bit transition effect. This decomposition
may be observed in the field NoC energy Parameter of Fig. 4. As
noticeable in that figure, to inform the EsBit, EbBit, EcBit and
EIBit the designer has to supply EsPhit, EbPhit, EcPhit and EIPhit
parameters, which are respectively analogous to the first set of
parameters, but express the energy consumed at phit level in the
target communication architecture.

The NoC static energy consumption, on the other hand, depends
on the number of transistors of the target communication architec-
ture, which grows linearly with the number of tiles. To estimate the
NoC static energy consumption inside CAFES, the designer starts
supplying an estimation of the static power dissipated in a single
router, which is the PRouter parameter in Fig. 4. This value is mul-
tiplied by the number of NoC routers (|T|) providing the total NoC
power consumption, as stated by Eq. (3)

PStNoC = |T| x PRouter. (3)

Finally, the static energy consumed by the application is com-
puted by Eq. (4) that multiplies the total dissipated power by the
application execution time (texec). This last parameter may be ob-
tained by simulating the application or with the help of timing
models

EStNoC = PStNoC x texec. (4)

5.3. Timing model

CAFES uses timing models to compute message latencies, appli-
cation execution time, and static energy consumption. However, in
NoCs the computation of these values is strongly dependent on the
specific communication architecture, on the routing scheme and
on the employed switching mode. Due to this, it is not possible to
have a single generic model that satisfies any communication ar-
chitecture with reasonable accuracy.

This section exemplifies the composition of one timing model
for the 2D mesh NoC used in Section 5.2, assuming wormhole
switching and deterministic XY routing, which is one of the timing
models already available in CAFES framework. This model consid-
ers (i) the routing delay, defined as the time necessary for a packet
header to reach the target tile, and (ii) the payload delay, which de-
pends only on the remaining phits of the packet. It should be kept
in mind that the following discussion assumes the use of a fully
synchronous communication architecture.

Let A be the clock period of the communication architecture,
nR be the number of cycles necessary to define the routing of a
packet at each router, nL be the number of cycles necessary to
transmit a single phit between routers, and nl be the number of
cycles necessary to transmit a single phit between a router and its
local module. These are the NoC Timing Parameters of Fig. 4. Then,
Eq. (5) represents the minimum routing delay (dRj) of a packet
going from tile i (7;) to tile j (7;) passing by n; routers without
contention

dRj = (nj x nR+2 x nl+ (n; — 1) x nL) x A. (5)

Let nP; be the number of phits of the g-th packet, going from
module a (m,), placed in 7;, to module b (mp), placed in T
Considering that nl is equal to nL (which is the case for the NoC
under analysis), then Eq. (6) represents the payload delay (dPjjq)

dPj, = ((nPy — 1) x nl) x A. (6)

The composition of Egs. (5) and (6) generates Eq. (7) that allows
computing the total g-th packet delay (djjq) for the 2D mesh NoC in
this example

dijg = (nij x MR+ nl) +nPq x nl) x A. (7)

5.4. Exemplifying the composition of communication models with
application models

To estimate the energy consumption of a communication ar-
chitecture and the application execution time, it is necessary to as-
sociate the application model with timing and energy models for
the former. For instance, to estimate the energy consumption tak-
ing into account an application modeled by CWM, it is necessary
to associate the EBitij concept developed in Section 5.2, with the
volume of bits traversing a given edge of the CWG (i.e. the weight
of the edge under consideration). In this sense, Eq. (8) gives the
dynamic energy consumed by all communications from module
a (my) to module b (my), considering that m, and m,, are respec-
tively mapped into tile i (t;) and tile j (t;)

EBitab,‘j = Wgqp X EBit,‘j. (8)

Let |C| be the total number of communications described in
some CWG. Then, Eq. (9) provides an estimation of the dissipated
NoC dynamic energy (EDyNoC) considering all inter-module com-
munications

IC]

EDyNoC = Z EBitapij(q). (9)
q=1

Finally, to compute the total energy dissipation of the NoC
(ENoC), the framework adds the static energy computed with
Eq. (4) with the dynamic energy computed with Eq. (9), as
described by Eq. (10)

ENoC = EDyNoC + EStNoC. (10)

CWM does not capture application execution time (texec) in-
formation. In fact, this model only allows estimating the minimum
time spent during communications, it does not consider contention
effects nor the exact moments when packets are effectively trans-
mitted. To obtain better estimations for texec, CAFES has available
more powerful models, such as CDCM and ACPM, which enable the
use of more elaborate timing models described elsewhere [20,21,
18]. An example of how to compute texec using such models ap-
pears in Section 6 that explores an object recognition application
modeled with CDCM.

6. Framework supporting tools and extensions

CAFES is a Java application that includes a set of generic classes
and some algorithms specially implemented for allowing the con-
struction of application tools. Section 6.1 explores the use of the
framework for solving the mapping task and some other tools
implemented in the current CAFES version. Section 6.2 discusses
the current state of the CAFES algorithms library, a set of generic
algorithms available for developing specific analyses over com-
munication architectures. The environment provides some high-
level estimation tools, as briefly exemplifies Section 6.3. The last
Sections 6.4 and 6.5 respectively explore the relevant topic of
synthetic application automatic generation and traffic scenarios to
apply over synthetic or real application descriptions.

C. Marcon et al. / J. Parallel Distrib. Comput. 71 (2011) 714-728 723

Fig. 10. A CDCM graphic description of a realistic object recognition application
using CAFES. The application employs a distributed image segmentation algorithm.

6.1. Application mapping task

The designer starts by choosing a model to describe the appli-
cation behavior and selecting a target NoC from the available com-
munication architectures list. He may use the default parameters
or provide his own parameters that fit technological and geomet-
rical aspects of the considered communication architecture. Then,
using an internally available algorithm, the designer may extract
an optimized mapping that reduces energy consumption and saves
execution time.

As an example, consider an object recognition application using
a 2D image segmentation technique. This application implements a
distributed algorithm that splits a 640 x 480 pixels image into a 2D
matrix of squares, associating each subarea to a processing element
(PE). The example splits the image in four 76 800 pixels squares.
Then, there are four PEs (PAO, PA1, PA2 and PA3) that process
data from each square, a memory (ME) containing the whole
image data and a central PE (PC) that coordinates and synchronizes
system operation. The CAFES graphic (or textual) interfaces allow
capturing the application description according to a given model.
Fig. 10 illustrates this application modeled with CDCM, defined
in Section 4.4. Each vertex different from START and END in the
graph corresponds to a message exchanged through the NoC and
contains the computation time, the source-target identifiers and
the amount of transmitted bits.

By selecting a mapping algorithm available in CAFES and con-
figuring it to minimize the dynamic and static energy consump-
tion, the framework generates the mapping portrayed in Fig. 11.In
this figure, large black squares represent NoC routers, while small
gray squares represent processing modules. Inside each router, Eb
represents the energy dissipated in buffers and Es the energy dis-
sipated on other structures of the router (wires and combinational
logic). In addition, links are annotated with the total energy con-
sumed during application execution.

The mapping obtains the following set of pairs associating mod-
ule to tiles: {(PA], T[o,o]), (ME, T[(),]]), (PAO, t[O,Z])’ (PA3, T[],O]),
(PA2, t(1,11), (PC, 7(1,2))}. To each link in the communication ar-
chitecture the mapping associates an estimation of dynamic

& cDCM -3 NoC - Exhaustive Search
File Tools

=101 x|

R{0, 0]
769200.0 385200.0

R|O, R[0, 2
Eb 231216.0 _‘ Eb 614768.0 _‘ Eb 154544.0
38464 3846400

R[1, 0]

Dynamic energy = 9.533mJ - Static energy = 1.007mJ

Fig. 11. An automatically generated mapping for the application of Fig. 10 on a
2 x 3 mesh topology NoC. Each channel (arrows) and router (larger rectangles) is
marked with its estimated total dynamic energy consumption.

energy consumption. Values are in n]. The mapping interface also
furnishes a global estimation for dynamic and static energy con-
sumption (in m]).

Once a mapping is found, the designer may estimate the appli-
cation execution time (the texec value discussed in Section 5.4) by
analyzing the latency report supplied at the end of the mapping
task. Fig. 12 shows the latency report obtained for the object recog-
nition application with the mapping of Fig. 11. Data on Fig. 12 as-
sumes that routers operate instantaneously (number of cycles for
routing = 0, see Fig. 4) and that processing starts injecting the first
flit of messages in the NoC at the Oth clock cycle. Since the cho-
sen NoC operates using wormhole routing, an n-flit message takes
(n + number of hops from source to target) cycles to traverse the
NoC, including the local, router to PE links.

The report depicts data for each message, according to the
computation and communication time, in clock cycles. The amount
of computation clock cycles is furnished by the designer using
the t parameter at each CDCG vertex. The communication clock
cycles depend on the number of phits of each CDCG vertex and
the number of cycles needed by the router to transmit each phit
through a link. All these parameters are supplied in the NoC Timing
Parameters field of the Communication Infrastructure interface as
Fig. 4 depicts.

CAFES enables the simultaneous description of multiple in-
dependent applications operating on a same communication
architecture, since all (mapping) tools support operation with dis-
connected graphs. In this case, each graph represents an applica-
tion behavior and the set of all graphs represents a system running
more than one application at a time. This feature may be used to
search the optimum mapping of multiple applications that share
the same tiles of a communication architecture. The operation of
applications may either occur at different time periods, or they may
concur for the same tile, i.e. operate partially or totally at the same
time. This is the case of some embedded systems such as cellular
phones containing more than one application running at the same
time.

To exemplify multiple application descriptions, Fig. 13 presents
four applications modeled with CWM. This case study assumes the
simultaneous operation of all modules of the four applications in
the same target architecture. As a result, the mapping algorithm
tries to find groups of modules that minimize total energy con-
sumption for each application.

724 C. Marcon et al. /. Parallel Distrib. Comput. 71 (2011) 714-728

o +
| Message I
R +
| ID | Source -> Target I
e e +
0	ME -> PAOQ
1	ME -> PAl
2	ME -> PA2
3 ME -> PA3	
4 PAl -> PAO	
6	PA3 -> PA2
5	PA2 -> PAO
10	PA2 -> PC
8	PAO -> PC
7 PA3 -> PAl	
11	PA3 -> PC
9	PAl -> PC
12	PC -> PAO
13	PC -> PAl
14	PC -> PA2
15	PC -> PA3
17	PA1l -> ME
19	PA3 -> ME
18	PA2 -> ME
16	PAO -> ME
e e S +--

_____________________________ +
Clock cycles
——————————— o
Computation | Start | End |
——————————— o
0l 0 | 76803 |
0l 0 | 76803 |
0l 0 | 76805 |
0l 0 | 76803 |
2550 79353 | 79598 |
2550] 79353 | 79596
2550 79355 | 79918 |
375 80049 | 80182 |
375 80293 | 80428 |
754| 80346 | 80671 |
375| 81040 | 81171 |
375 81046 | 81299 |
1286 82585 | 82720 |
1286| 82585 | 82716 |
1286| 82585 | 82718 |
1286| 82585 | 82716
375 83091 | 159894 |
375 83091 | 236694 |
375 83093 | 313494 |
375 83095 | 390294 |
——————————— Bt

| Total execution time: 390294 clock cycles

Fig. 12. Latency report of the object recognition application of Fig. 10, considering the mapping achieved using CAFES (depicted in Fig. 11). Each line represents a message
containing an identification number (ID), source and target modules, the computation time which precedes the message dispatch and the instants when the message starts
and ends its transmission. The difference from Start to End columns represents the message latency in clock cycles.

CWM Mapping
File Tools

=101 x|

Fig. 13. A system composed by four applications, described using CWM.

Fig. 14. A mapping for the system composed by 4 simultaneously running
applications, as described in Fig. 13, onto a 6 x 7 bidirectional 2D torus NoC.

Fig. 14 shows a mapping achieved by CAFES, considering a 6 x 7
bidirectional 2D torus NoC. In the Figure, each rectangle represents
a tile of the target architecture, containing each an application
module. Modules of the same application start with the same letter.

6.2. CAFES algorithms library

CAFES has a set of libraries that provides algorithms applicable
to the evaluation and synthesis of intrachip communication archi-
tectures. Examples of these are simulated annealing (SA) and tabu
search (TS) and some specific algorithms related to the communi-
cation architecture or the desired design task, like the heuristic al-
gorithms largest communication first (LCF) and greedy incremental
(GI) [22]. The designer can use the desired resource library to help
him in the design task in view, or even to evaluate the quality of
each algorithm to achieve the desired task. For instance, Fig. 15 il-
lustrates partial results of [22], where different algorithms, imple-
mented inside the framework, are explored to evaluate the quality
of synthetic and real applications mapping onto a large quantity of
NoC sizes against the computational complexity, in terms of mem-
ory usage and computation time.

C. Marcon et al. /]. Parallel Distrib. Comput. 71 (2011) 714-728 725

41+
37
33
—m— SA
? -+-TS
= 29 -+ -HSO
H —+—HSM
® 25 - E —a—HT
3 ' et 23.08 -k -LCF
15 ! H
S 214 : : . ——Gl
E 17 L 200N
17 Y e SR A
: P T te04 :
T Vg | S e G
A I R Y €723
o oo b 1042
gl i oo T 954 3 ;
Ti S TTe-.AT78 LCF i -
I N : ; T ke S 5.42!
5 +— —_— ; ; .: . —_— —_— : . —_— .
69 25 49 64 81 100 121 169 210 Number of les 289 361

Fig. 15. Percentage of energy saving for mappings achieved by seven algorithms, considering a large variety of applications and NoC sizes. Figure extracted from [22].

B cocm Mapping
File Special Vertices Tools

| START

Computation and Communication path analisys 5'

@ Blue: Communication path

=10l x|

Red: Computation path
Yellow: C ion and C

Fig. 16. Example results of using the computation and communication path analysis tool applied to a CDCM synthetic application’.

6.3. High-level estimations

Depending only on the employed application description mo-
del, CAFES allows to estimate some communication and/or com-
putation bottlenecks in early design stages, as depicted in Fig. 16.

Starting from the application graphs, CAFES furnishes critical
path estimations for communication and computation. These are
high-level estimations, independent of the target architecture. This
independence derives from the fact that the high abstraction level
overlooks module placement. Consequently, the communication
path is underestimated, because it may change, depending on the
distance between communicating modules after mapping. On the
other hand, the computation path does not depend on module
placement, only on the sum of all computation figures of compo-
nent vertices. Therefore, high-level estimations for computation
paths are more accurate. Fig. 16 shows a synthetic application de-
scribed with CDCM, after applying the computation and commu-
nication path analysis tool of CAFES.

Inside Fig. 16, black arrows represent communication depen-
dence, while blue, red and yellow arrows are communication, com-
putation and overall critical paths, respectively.!

6.4. Graph generation tools to automate synthetic application
building

Several test scenarios are usually necessary to validate system
implementations. In many cases, developing a sufficiently large
number of real applications to test the system may be unfeasible or
too costly as a first approach. Thus, the availability of procedures to
generate synthetic applications is useful, if not mandatory. Several
works like [19-21,15,18,30,22] have benefited from the use of

1 For readers with the black and white versions of the paper, blue arrows are
dotted, red corresponds to dark grey arrows and yellow corresponds to white
arrows.

726 C. Marcon et al. /. Parallel Distrib. Comput. 71 (2011) 714-728

B cwM Case Generator

~NoC Size Parameter
NoC Size: |2 (lines)

|3 {columns)

~\ertex Parameters
Vertex amount: |E {lower or equal te lines 'colum

=101]

Amount of E(Iges:l 1 {minimum entering the vertex)
I 6 {maximum leaving the vertex)

Communication Weigth: | 10 {minimum weigth)

| 99999 (maximum weigth)

Generate CWM Graph

Fig. 17. Graphic interface providing access to the CAFES tool for automatic
application graph generation.

£ CWM Mapping

File Tools

=13l

Fig. 18. CWG containing the automatically generated synthetic application
described in Fig. 17.

tools for automatic application graph generation. Accordingly, the
CAFES framework has available a set of graph generation tools

to automate the process of building synthetic applications. CAFES
can produce application graphs specific for a selected application
model. The tools are similar to that proposed in [5], where it is
possible to parameterize several application aspects. Application
graph generation tools in CAFES have distinct interfaces for each
application model. As an example, Fig. 17 illustrates the use of the
tool for automatic generation of applications graphs modeled using
CWG.

Here, it is possible to parameterize the number of vertices and
edges, and the communication volume of CWG vertices. This tool
also allows parameterizing the number of lines and columns of
the communication architecture, enabling to evaluate NoCs with
different dimensions and occupation rates.

Fig. 18 shows arandomly generated graph that respects the data
distribution constraints described in Fig. 17.

6.5. Automatic traffic generation tool

NoCs generated by the ATLAS framework [24] are usable as
communication architectures in CAFES. Designers select a NoC in
the Target Communication Architecture field (see Fig. 3). To estimate
execution time and energy by simulation, it is necessary to
stimulate the NoC inputs with application data traffic. This may be
achieved by producing a NoC testbench from the application graph,
using a straightforward translation of the graph into a VHDL or
SystemC behavioral description. CAFES can automatically generate
VHDL testbenches with an internal tool whose output depends
on the application model as well as on the target communication
architecture.

To exemplify the application graph translation into a behavioral
VHDL description, refer to the CDCG description in Fig. 10. Fig. 19
depicts part of the VHDL obtained after feeding this CDCG as input
to the CAFES automatic traffic generation tool. Each VHDL process
emulates the communication and computation of an application
module placed inside a tile according to the mapping of Fig. 11. All
computations and communications wait until their respective de-
pendences are solved. Next, the computation and communication
occur and the corresponding dependence flag signal is set to true,
enabling all communications depending on it. For instance, mod-
ule PA1, which is placed into tile with coordinates [0, 2] ({0 2;), Te-
mains waiting for the sent_ME_PA1_1 flag be true, then executes
the computation time (25 ns), sends 240 phits to the module placed
in tile 170 o; (PAO) and notifies all other modules that this commu-
nication occurred, by setting the sent_PA1_PAO_1 flag true.

PA1_02: process -- Module PA1 mapped in tile R[0,2]

begin
loop
wait until sent_ME_PA1_1 = true;
Computation(Time := 25ns);

Communication(TargetLine : = 0, TargetColumn := 0, NumberOfPhits := 240);

sent_PAl1_PAO_4 <= true;

wait until sent_PA1_PAO_4 = true and sent_PA3_PAl_7 = true;

Computation(Time : = 5ns);

Communication(TargetLine := 1, TargetColumn := 2, NumberOfPhits := 128);

sent_PAl1_PC_9 <= true;

wait until sent_PC_PA1_13 = true;
Computation(Time : = 5ns);

Communication(TargetLine : = 0, TargetColumn := 1, NumberOfPhits := 76800);

sent_PAl1_ME_17 <= true;
end loop;
end process;

Fig.19. Partial VHDL description automatically generated from the CDCG in Fig. 10. It emulates the behavior of tile 7y ; in the mapping of the object recognition application,

depicted in Fig. 11.

C. Marcon et al. / J. Parallel Distrib. Comput. 71 (2011) 714-728 727

7. Conclusions and ongoing work

This work described CAFES, a framework for application mod-
eling and design of infrastructure communication architectures.
It is an extensible open-source framework that integrates models,
tools and a synthesis flow for system design, having NoCs as target
architectures. Several models used to describe applications and
target architectures are built inside the framework. Using these
models, several tools as traffic generators, mappers and estima-
tors are implemented. The extensibility of the framework allows
inserting new application and NoC models, tools and other facili-
ties, enabling to fulfill the design of a diversity of NoC-based sys-
tems existing today.

Results achieved attest that using the framework facilities a
designer may significantly reduce the energy consumption and
latency of the target application with an acceptable design time.
CAFES enables to estimate the energy consumption and latency
at high and low abstraction levels, depending on the desired
accuracy and available design time. The available description
models allow capturing various applications features, and an
inter-module conversion tool enables verifying the capability of
each application description model. Also, it permits assessing the
precision of results achieved with each model.

The implementation of the partitioning and dynamic mapping
synthesis tasks on CAFES is an ongoing work. Also, a more thorough
integration of CAFES with synthesis tools for communication
infrastructure generation is underway. The inclusion of support to
heterogeneous MPSoC designs is another direction where work in
CAFES occurs now. This implies adding more input information to
the framework, such as the set of processing elements and their
individual features. Also, it would be interesting to inform the clock
frequency associated to each tile or to each router and PE forming
a tile. With this last type of information it is possible to support
heterogeneous GALS MPSoCs, a current limitation of CAFES.

Acknowledgment

The authors acknowledge the support of the Conselho Nacional
de Desenvolvimento Cientfico e Tecnolgico (CNPq-Brazil) through
research grants 308924/2008-8, 141247/2005-3, 301599/2009-
2, 309255/2008-2, 306178/2009-5, 485315/2007-6 and 312485/
2009-3.

References

[1] A. Aswatha, T. Basavaraju, A. Kalpana, Efficient power modeling for on-chip
global interconnects, in: 51st Midwest Symposium on Circuits and Systems,
MWSCAS, August 2008, pp. 458-461.

[2] H. Blume, J.V. Livonius, L. Rotenberg, T.G. Noll, H. Bothe,]J. Brakensiek,
Performance and power analysis of parallelized implementations on an
MPCore multiprocessor platform, in: International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation, IC-SAMOS, July
2007, pp. 74-81.

[3] D. Burger, J.R. Goodman, Billion-transistor architectures, in: Guest Editors’
Introduction, [EEE Computer 30 (9) (1997) 46-48.

[4] W. Dally, B. Towles, Route packets, not wires: on-chip interconnection
networks, in: Design Automation Conference, DAC, June 2001, pp. 684-689.

[5] R. Dick, D. Rhodes, W. Wolf, TGFF: task graphs for free, in: International
Workshop on Hardware/Software Codesign, CODES/CASHE, March 1998,
pp. 97-101.

[6] E.Dolif, M. Lombardi, M. Ruggiero, M. Milano, L. Benini, Communication-aware
stochastic allocation and scheduling framework for conditional task graphs
in multi-processor systems-on-chip, in: Seventh ACM & IEEE International
Conference on Embedded Software, EMSOFT, October 2007, pp. 47-56.

[7] S.Evain,].P. Diguet, D. Houzet, uspider: a CAD tool for efficient NoC design, in:
22nd Norchip Conference, November 2004, pp. 218-221.

[8] M. Ghadiry, M. Nadi, D. Rahmati, New approach to calculate energy on NoC,
in: International Conference on Computer and Communication Engineering,
ICCCE, May 2008, pp. 1098-1104.

[9] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997,
412 pp.

[10] C. Hsieh, M. Pedram, Architectural energy optimization by bus splitting, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 21
(4) (2002).

[11] J. Hu, R. Marculescu, Energy-aware mapping for tile-based NoC architectures
under performance constraints, in: Asia and South Pacific Design Automation
Conference, ASPDAC, January 2003, pp. 233-239.

[12] J. Hu, R. Marculescu, Energy-aware communication and task scheduling
for network-on-chip architectures under real-time constraints, Design,
Automation, and Test in Europe (DATE) (2004) 234-239.

[13] ITRS International Technology Roadmap for Semiconductors, 2008, Update—
overview. Available at: http://www.itrs.net/Links/2008ITRS/Update/2008_
Update.pdf (captured in October 2009, 2008).

[14] A.]Jalabert, et al., XpipesCompiler: a tool for instantiating application specific
networks on chip, Design, Automation, and Test in Europe, DATE (2004)
884-889.

[15] S.Johann Filho, A. Aguiar, C. Marcon, F. Hessel, High-level estimation of execu-
tion time and energy consumption for fast homogeneous MPSoCs prototyping,
in: IEEE/IFIP International Workshop on Rapid System Prototyping, RSP, June
2008, pp. 27-33.

[16] Kurt Keutzer, S. Malik, A.R. Newton,].M. Rabaey, A. Sangiovanni-Vincentelli,
System level design: orthogonalization of concerns and platform-based
design, IEEE Transactions on Computer-Aided Design of Circuits and Systems
19 (12) (2000).

[17] Y. Krasteva, F. Criado, E. de la Torre, T. Riesgo, A fast emulation-based
NoC prototyping framework, in: International Conference on Reconfigurable
Computing and FPGAs, ReConFig, December 2008, pp. 211-216.

[18] M. Kreutz, C. Marcon, N. Calazans, A. Susin, Energy and latency evaluation of
NoC topologies, in: IEEE International Symposium on Circuits and Systems,
ISCAS, May 2005, pp. 5866-5869.

[19] C. Marcon, A. Borin, A. Susin, L. Carro, F. Wagner, Time and energy efficient
mapping of embedded applications onto NoCs, in: Asia and South Pacific
Design Automation Conference, ASPDAC, January 2005, pp. 33-38.

[20] C. Marcon, N. Calazans, F. Moraes, A. Susin, L. Reis, F. Hessel, Exploring
NoC mapping strategies: an energy and timing aware technique, Design,
Automation, and Test in Europe (DATE) (2005) 502-507.

[21] C. Marcon, M. Kreutz, A. Susin, N. Calazans, Models for embedded application
mapping onto NoCs: timing analysis, in: IEEE/IFIP International Workshop on
Rapid System Prototyping, RSP, June 2005, pp. 17-23.

[22] C. Marcon, E. Moreno, N. Calazans, F. Moraes, Comparison of NoC mapping
algorithms targeting low energy consumption, IET Computers & Digital
Techniques 2 (6) (2008) 471-482.

[23] C. Marcon, J. Palma, N. Calazans, F. Moraes, A. Susin, R. Reis, Modeling the
traffic effect for the application cores mapping problem onto NoCs, in: VLSI-
SoC: From Systems to Silicon, vol. 240, Springer, 2007, pp. 179-194 (Chapter
12).

[24] F. Moraes, N. Calazans, A. Mello, L. Méller, E. Moreno, ATLAS—an environment
for NoC generation and evaluation. Available online at: http://www.inf.pucrs.
br/~gaph/ATLASHtml/ATLASIndex_us.html (captured on April.22.09).

[25] F.Moraes, N. Calazans, A. Mello, L. Moller, L. Ost, HERMES: an infrastructure for
low area overhead packet-switching networks on chip, Integration, the VLSI
Journal 38 (1) (2004) 69-93.

[26] S. Murali, G. De Micheli, SUNMAP: a tool for automatic topology selection
and generation for NoCs, in: Design Automation Conference, DAC, 2004,
pp. 914-914.

[27] S. Murali, G. De Micheli, Bandwidth-constrained mapping of cores onto
NoC architectures, Design, Automation, and Test in Europe (DATE) (2004)
896-901.

[28] L. Ost, A. Mello,]. Palma, F. Moraes, N. Calazans, MAIA—a framework for
networks on chip generation and verification, in: Asia and South Pacific Design
Automation Conference, ASPDAC, June 2005, pp. 18-21.

[29] G. Palermo, C. Silvano, PIRATE: a framework for power/performance
exploration of network-on-chip architectures, Lecture Notes in Computer
Science (2004) 521-531.

[30] J. Palma, L. Indrusiak, F. Moraes, A. Ortiz, M. Glesner, R. Reis, Inserting data
encoding techniques into NoC-based systems, in: IEEE Computer Society
Annual Symposium on VLSI, May 2007, pp. 299-304.

[31] S. Samii, et al., Cycle-accurate test power modeling and its application to SoC
test architecture design and scheduling, [EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 27 (5) (2008) 973-977.

[32] B. Talwar, et al., Latency, power and performance trade-offs in network-on-
chips by link microarchitecture exploration, in: International Conference on
VLSI Design, January 2009, pp. 163-168.

[33] S.R.Vangal,]. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh,
T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, S. Borkar, An
80-tile sub-100-W teraFLOPS processor in 65-nm CMOS, IEEE Journal of Solid-
State Circuits 43 (1) (2008) 29-41.

[34] P. van Laarhoven, E. Aarts, Simulated Annealing: Theory and Applications,
Kluwer Academic Publishers, 1987, 204 pp.

http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://www.inf.pucrs.br/~gaph/ATLASHtml/ATLASIndex_us.html
http://www.inf.pucrs.br/~gaph/ATLASHtml/ATLASIndex_us.html
http://www.inf.pucrs.br/~gaph/ATLASHtml/ATLASIndex_us.html
http://www.inf.pucrs.br/~gaph/ATLASHtml/ATLASIndex_us.html
http://www.inf.pucrs.br/~gaph/ATLASHtml/ATLASIndex_us.html
http://www.inf.pucrs.br/~gaph/ATLASHtml/ATLASIndex_us.html
http://www.inf.pucrs.br/~gaph/ATLASHtml/ATLASIndex_us.html
http://www.inf.pucrs.br/~gaph/ATLASHtml/ATLASIndex_us.html
http://www.inf.pucrs.br/~gaph/ATLASHtml/ATLASIndex_us.html
http://www.inf.pucrs.br/~gaph/ATLASHtml/ATLASIndex_us.html

728 C. Marcon et al. /. Parallel Distrib. Comput. 71 (2011) 714-728

[35] T. Ye, L. Benini, G. De Micheli, Analysis of power consumption on switch
fabrics in network routers, in: Design Automation Conference, June 2002,
pp. 524-529.

César Augusto Missio Marcon received the bachelor’s
degree from the Federal University of Rio Grande do Sul
(UFRGS), Brazil, in Electrical Engineering in 1989, the M.Sc.
degree in Computer Science in 1992, also from UFRGS,
and the Ph.D. degree in Computer Science in 2005, from
the same University. He is currently an Assistant Professor
at the Catholic University of Rio Grande do Sul (PUCRS).
His research interests include intrachip communication
networks, embedded system design and implementation,
and computer-aided design techniques and tools.

Ney Laert Vilar Calazans received the bachelor’s degree
from the Federal University of Rio Grande do Sul
| (UFRGS), Brazil, in Electrical Engineering in 1985, the
—— M.Sc. degree in Computer Science in 1988, also from
UFRGS, and the Ph.D. degree in Microelectronics in
E" 1993, from the Université Catholique de Louvain (UCL),
E’ Belgium. He is currently a Professor at the Catholic
University of Rio Grande do Sul (PUCRS). His research
interests include intrachip communication networks, non-
synchronous circuit design and implementation, and
computer-aided design techniques and tools. Professor
Calazans is a member of the Brazilian Computer Society, SBC.

Edson Ifarraguirre Moreno was born in Porto Alegre,
Brazil, in 1976. He received the bachelor’s degree in
Computer Science from the Catholic University of Rio
Grande do Sul (PUCRS) in 2001. He is currently a Ph.D.
candidate at the same university. His doctoral research
focuses on networks on chip (NoCs) and multiprocessor
systems on chip (MPSoCs) design. His research interests
also include high level hardware and embedded systems
modeling, computer aided design techniques and tools
and multicore programmability.

Fernando Gehm Moraes received the Electrical Engineer-
ing and M.Sc. degrees from the Universidade Federal do Rio
Grande do Sul (UFRGS), Porto Alegre, Brazil, in 1987 and
1990, respectively. In 1994 he received the Ph.D. degree
from the Laboratoire d’Informatique, Robotique et Mi-
croélectronique de Montpellier (LIRMM), France. He is cur-
rently a Professor at the Catholic University of Rio Grande
do Sul (PUCRS). He has authored and co-authored 12 peer
reviewed journal articles in the field of VLSI design, com-
prising the development of networks on chip and telecom-

- . munication circuits. He has also authored and co-authored
more than 140 conference papers on these topics. His research interests include in-
trachip communication networks (NoCs), and MPSoC design. Professor Moraes is a
member of the IEEE and of the Brazilian Computer Society, SBC.

Fabiano Passuelo Hessel is an Associate Professor of
- Computer Science at Pontifical Catholic University of Rio
Grande do Sul (PUCRS), Brazil. He received his Ph.D. in
Computer Science from Université Joseph-Fourier, TIMA
laboratory, France. He is the head of the Embedded Sys-
tems research group. He was the Associate Editor of
the ACM Transactions on Embedded Computer Systems—
Special Issue on Rapid System Prototyping. He has several
publications in prestigious conferences and journals, book
chapters and books. His research interests are embed-
ded real-time systems, real-time operating systems and

- | -
MPSoC systems.

Altamiro Amadeu Susin received the bachelor’s degree
in Electrical Engineering and M.Sc. degrees from Universi-
dade Federal do Rio Grande do Sul (UFRGS), Brazil, in 1972
and 1977, respectively. Since 1968 he worked in the Data
Centers of two local Universities. In 1981 he got his Dr. Ing.
degree from the Institut National Polytechnique de Greno-
ble, France. He is presently a professor at the Electrical
Engineering Department of UFRGS, in charge of Digital Sys-
tems Design disciplines at the graduate and undergraduate
levels. He is also a member of the Computer Science Grad-

’ uate Program of UFRGS, where he is responsible for VLSI
Architecture courses. His main research interests are Integrated Circuits Architec-
ture, Embedded Systems, Signal Processing. Prof. Susin has published more than one
hundred technical papers in these domains. He has been responsible for several R&D
projects funded by public agencies and/or industries.

	CAFES: A framework for intrachip application modeling and communication architecture design
	Introduction
	Related work
	CAFES framework architecture
	CAFES framework assumptions
	CAFES framework general structure
	CAFES front end
	CAFES back end and external back end
	CAFES user interface

	Application models
	Communication weight model (CWM)
	Extended communication weight model (ECWM)
	Communication dependence model (CDM)
	Communication dependence and computation model (CDCM)
	Application communication pattern model (ACPM)
	Communication task model (CTM)
	A taxonomy for application models and model conversion

	Communication architecture modeling
	Communication resource graph (CRG)
	Energy model
	Timing model
	Exemplifying the composition of communication models with application models

	Framework supporting tools and extensions
	Application mapping task
	CAFES algorithms library
	High-level estimations
	Graph generation tools to automate synthetic application building
	Automatic traffic generation tool

	Conclusions and ongoing work
	Acknowledgment
	References

