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Abstract: One important problem which may arise in designing a deployment strategy for 
a wireless sensor network is how to deploy a specific number of sensor nodes throughout 
an unknown network area so that the covered section of the area is maximized. In a 
mobile sensor network, this problem can be addressed by first deploying sensor nodes 
randomly in some initial positions within the area of the network, and then letting sensor 
nodes to move around and find their best positions according to the positions of their 
neighboring nodes. The problem becomes more complicated if sensor nodes have no 
information about their positions or even their relative distances to each other. In this 
paper, we propose a cellular learning automata-based deployment strategy which guides 
the movements of sensor nodes within the area of the network without any sensor to know 
its position or its relative distance to other sensors. In the proposed algorithm, the learning 
automaton in each node in cooperation with the learning automata in the neighboring 
nodes controls the movements of the node in order to attain high coverage. Experimental 
results have shown that in noise free environments, the proposed algorithm can compete 
with the existing algorithms such as PF, DSSA, IDCA, and VEC in terms of network 
coverage. It has also been shown that in noisy environments, where utilized location 
estimation techniques such as GPS-based devices and localization algorithms experience 
inaccuracies in their measurements, or the movements of sensor nodes are not perfect and 
follow a probabilistic motion model, the proposed algorithm outperforms the existing 
algorithms in terms of network coverage.  
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1. Introduction 
Sensor deployment is a fundamental issue for wireless sensor networks  [1]. The main objective of a 

sensor deployment strategy is to achieve desirable coverage of the network area. In general, sensor 
deployment strategies can be classified into the following four categories  [2] [3]: 

- Predetermined: This strategy is useful only if the network area is completely known  [2] [4] [5] 
 [6] [7] [8]. 

- Randomly undetermined: In this strategy, sensor nodes are spread uniformly throughout the 
network area  [3] [9] [10] [11] [12] [13]. 

- Biased distribution: In some contexts, the uniform deployment of sensor nodes may not 
always satisfy the design requirements and biased deployment can then be a viable option 
 [14]. 

- Self-regulated: In this strategy which is useful only in mobile sensor networks, sensor nodes 
are deployed randomly in some initial positions within the area of the network. After this 
initial placement, sensor nodes move around and find their best positions according to the 
positions of their neighboring nodes  [15] [16] [17] [18] [19] [20]. 

One important problem which may arise in designing a deployment strategy for a wireless sensor 
network is how to deploy a specific number of sensor nodes so that the covered section of the area is 
maximized. Since this is an optimization problem, random based deployment strategies (Randomly 
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undetermined and biased distribution) are not suitable approaches for solving it. Predetermined 
deployment strategies which are commonly centralized are not well suited to this problem as well. 
This is because a counterpart of this problem in computational geometry domain, which is to 
maximize the guarded interior of an art gallery by a specific number of vertex guards, is proved to be 
APX-hard  [21]. This indicates that finding an approximation close enough to the optimal solution of 
the problem is impossible in polynomial time. Self-regulated deployment strategies on the other hand 
are well suited to this problem. 

To the best of our knowledge, all of the self-regulated deployment strategies given in literature 
require for every node to be aware of either its geographical position within the area of the network or 
its relative distance to all of its neighbors. If none of this information is available to the nodes of a 
network, the problem becomes more complicated. In this paper, we propose a self-regulated 
deployment strategy based on cellular learning automata called CLA-DS which guides the movements 
of sensor nodes within the area of the network without any sensor to know its position or its relative 
distance to other sensors. In the deployment strategy proposed in this paper, neighboring nodes apply 
forces to each other which make every node move according to the resultant force vector applied to it. 
Each node is equipped with a learning automaton. The Learning automaton of a node at any given 
time decides for the node whether to apply force to its neighbors or not. This way, each node in 
cooperation with its neighboring nodes gradually learns its best position within the area of the network 
so as to attain high coverage. Experimental results show that in terms of network coverage, the 
proposed deployment algorithm can compete with the existing deployment algorithms such as PF, 
DSSA, IDCA, and VEC in noise free environments, and outperforms the existing deployment 
algorithms in noisy environments, where utilized location estimation techniques such as GPS-based 
devices and localization algorithms experience inaccuracies in their measurements, or the movements 
of sensor nodes are noisy.  

The rest of this paper is organized as follows. Section 2, gives a brief literature overview on 
deployment problem in mobile wireless sensor networks. Cellular learning automata will be discussed 
in section 3. The problem statement is given in section 4. In section 5 the proposed deployment 
algorithm is presented. Simulation results are given in section 6. Section 7 is the conclusion. 

2. Related Work 
Mobile sensor nodes can be used to improve the coverage of wireless sensor networks in different 

ways  [38]. In a hybrid network consisting of both stationary and mobile sensor nodes, they can be 
used mainly to heal the coverage holes caused by the stationary nodes. In a mobile network consisting 
of only mobile nodes, they can be used to maximize the coverage of the area. And in event monitoring 
scenarios where some short-lived events may appear in different locations, mobile nodes can be 
dispatched to monitor the event sources for better event coverage. 

Voronoi diagram is a major tool used to detect coverage holes in hybrid networks  [39] [40]. A 
Voronoi diagram is first constructed for all stationary sensor nodes, assuming that each node knows its 
own and its neighbors’ positions. In the constructed diagram, if some points of a Voronoi cell are not 
covered by the cell’s generating sensor node, these points will contribute to coverage holes. When a 
coverage hole detected, a stationary node can bid mobile nodes to heal its coverage hole. 

In mobile sensor networks, nodes can adjust their positions after initial deployment in order to 
reduce their overlaps and maximize area coverage. Wang et. al. in [42] groups the existing movement 
schemes for mobile sensor networks into the following three categories: coverage pattern based 
movement, virtual force based movement, and grid quorum based movement. Methods in the coverage 
pattern based movement group  [41] [42] [43] try to relocate mobile nodes based on a predefined 
coverage pattern. The most commonly used coverage pattern is the regular hexagon with the sensing 
range Rs as its side length. In  [41], initially one node is selected as a seed. Seed node computes six 
locations surrounding itself so as to form a regular hexagon and greedily selects its nearest neighbors 
to each of the selected locations. Selected neighbors then move to the selected locations and become 
new seeds. Another hexagonal coverage pattern is given in  [42] which can completely cover the sensor 
field. According to this coverage pattern, final locations of mobile nodes are specified. Sensor 
movement problem then converted into a maximum-weight maximum-matching problem and centrally 
be solved. This approach is extended in  [43] to provide k-coverage of the environment. 
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In the group of virtual force based node movement methods  [15] [16] [17] [18] [19] [20], sensor nodes 
apply some kinds of virtual forces to their neighboring nodes. Resultant force vector applied to each 
sensor node from its neighboring nodes specifies the direction and distance that the node should move 
to. In  [15], a distributed potential-field-based approach is presented in which each node is repelled by 
other neighboring nodes. In addition to the repulsive forces, nodes are also subject to a viscous friction 
force. This force is used to ensure that the network will eventually reach static equilibrium; i.e., to 
ensure that all nodes will ultimately come to a complete stop. In [16][18], a node may apply attractive 
or repulsive forces to its neighboring nodes according to its distance with them. Nearby neighbors are 
repelled and far away ones are attracted. In order to reduce the movement of sensor nodes, the 
algorithm is virtually executed on cluster heads and then, sensor nodes move directly to the locations 
specified for them by the result of the algorithm. Like the algorithm given in  [15], the deployment 
algorithm proposed in  [17] is also based on virtual potential fields, but it considers the constraint that 
in the deployed network, each of the nodes has at least K neighbors. Heo and Varshney in  [19] 
proposed three different distributed deployment algorithms called DSSA, IDCA, and VDDA. DSSA 
uses virtual repulsive forces between neighboring nodes. IDCA modifies DSSA by filtering out nodes, 
for which local density is very near to the desired density, from moving. VDDA is a distributed 
deployment approach based on the Voronoi diagram. Wang et. al. in  [20] give two sets of distributed 
protocols for controlling the movement of sensors, one favoring communication and one favoring 
movement. In each set of protocols, Voronoi diagrams are used to detect coverage holes. 

In the group of grid quorum based movement methods  [44] [45] [46] [47] [48] [49] [50], the area of the 
network is divided into a number of grid cells and each mobile sensor node must find a suitable cell as 
its final location and move to that cell.  

In an event detection and monitoring sensor network, sensing tasks are performed in an on-demand 
manner. At first, sensors are used to detect events. After detecting an event, it is often desirable to 
relocate more mobile sensors close to the event location for performing the sensing task. Wang et. al. 
in  [51] consider a hybrid network in which stationary nodes detect events. When a new event is 
detected, one mobile node is assigned to that event for more advanced sensing and analysis tasks. In 
 [52] Butler and Rus proposed two moving strategies for the event coverage problem in a mobile sensor 
network; history-free strategy and history-based strategy. Either of these strategies moves sensors 
closer to the event locations. Using a Voronoi diagram, a mobile node stops moving if it detects that 
its movement causes coverage holes. 

3. Dynamic Irregular Cellular Learning Automata (DICLA) 
     In this section we briefly review learning automata, cellular learning automata, irregular cellular 

learning automata, and then introduce dynamic irregular cellular learning automata. 

3-1. Learning Automata 
Learning Automata (LA) are adaptive decision-making devices that operate on unknown random 

environments. A learning Automaton has a finite set of actions to choose from and at each stage, its 
choice (action) depends upon its action probability vector. For each action chosen by the automaton, 
the environment gives a reinforcement signal with fixed unknown probability distribution. The 
automaton then updates its action probability vector depending upon the reinforcement signal at that 
stage, and evolves to some final desired behavior. A class of learning automata is called variable 
structure learning automata and are represented by quadruple },,,{ Tpβα  in which 

},,,{ 21 rαααα L= represents the action set of the automata, },,,{ 21 rββββ L=  represents the input 
set, },,,{ 21 rpppp L=  represents the action probability set, and finally )](),(),([)1( npnnTnp βα=+  
represents the learning algorithm. Let iα  be the action chosen at time n, then the recurrence equation 
for updating p is defined as 

(1)ijjnjpanjpnjp
nipanipnip

≠∀−=+
−+=+

                )(.)()1(
                   ))(1.()()1(

for favorable responses, and  
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for unfavorable ones. In these equations, a and b are reward and penalty parameters respectively. For 
more information about learning automata the reader may refer to  [22] [23] [24]. 

3-2. Cellular Learning Automata 
Cellular learning automata (CLA), which is a combination of cellular automata (CA)  [25] and 

learning automata (LA), is a powerful mathematical model for many decentralized problems and 
phenomena. The basic idea of CLA is to utilize learning automata to adjust the state transition of CA. 
A CLA is a CA in which a learning automaton is assigned to every cell. The learning automaton 
residing in a particular cell determines its action (state) on the basis of its action probability vector. 
Like CA, there is a rule that the CLA operates under. The local rule of CLA and the actions selected by 
the neighboring LAs of any particular LA determine the reinforcement signal to the LA residing in a 
cell. The neighboring LAs of any particular LA constitute the local environment of that cell. The local 
environment of a cell is non-stationary because the action probability vectors of the neighboring LAs 
vary during evolution of the CLA. A CLA is called synchronous if all LAs are activated at the same 
time in parallel. CLA has found many applications such as image processing  [27], rumor diffusion 
 [29], channel assignment in cellular networks  [30] and VLSI placement  [31], to mention a few. For 
more information about CLA the reader may refer to  [26] [28] [32] [33].  

3-3. Irregular Cellular Learning Automata 
An Irregular cellular learning automata (ICLA) is a cellular learning automata (CLA) in which the 

restriction of rectangular grid structure in traditional CLA is removed. This generalization is expected 
because there are applications such as wireless sensor networks, immune network systems, graph 
related applications, etc. that cannot be adequately modeled with rectangular grids. An ICLA is defined 
as an undirected graph in which, each vertex represents a cell which is equipped with a learning 
automaton. Despite its irregular structure, ICLA operation is equivalent to that of CLA. CLA has found 
a number of applications in wireless sensor networks  [34] [35] [36]. 

3-4. Dynamic Irregular Cellular Learning Automata 
We define Dynamic ICLA (DICLA) as an undirected graph in which, each vertex represents a cell 

and a learning automaton is assigned to every cell (vertex). A finite set of interests is defined for 
DICLA. For each cell of DICLA a tendency vector is defined whose jth element shows the degree of 
tendency of the cell to the jth interest. In DICLA, the state of each cell consists of two parts; the action 
selected by the learning automaton and the tendency vector. Two cells are neighbors in DICLA if the 
distance between their tendency vectors is smaller than or equal to the neighborhood radius. 

Like CLA, there is a local rule that DICLA operates under. The rule of DICLA and the actions 
selected by the neighboring learning automata of any particular learning automaton LAi determine the 
followings: 1. the reinforcement signal to the learning automaton LAi, and 2. the restructuring signal to 
the cell in which LAi resides. Restructuring signal is used to update the tendency vector of the cell. 
Dynamicity of DICLA is the result of modifications made to the tendency vectors of its constituting 
cells. Figure 1 gives a schematic of DICLA. A DICLA is formally defined below. 
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Figure 1. Dynamic Irregular cellular learning automata (DICLA) 

Definition 1. A dynamic irregular cellular learning automata (DICLA) is a structure 
( , , , , , , , , )A G E V A t Fα τΨ= < > Ψ Φ < > Ζ  where 

1. G is an undirected graph, with V as the set of vertices and E as the set of edges. Each vertex 
represents a cell in DICLA. 

2. Ψ is a finite set of interests. Cardinality of Ψ is denoted by Ψ . 
3. A is the set of learning automata each of which is assigned to one cell of DICLA. 
4. , tα ΨΦ < >  is the cell state. State of a cell ci ( iΦ ) consists of two parts; 1. iα  which is the 

action selected by the learning automaton of that cell, and 2. A vector ( ), 1, 2, ,, , ,i

T

i i it t t tΨ Ψ= K  

which is called tendency vector of the cell. Each element [ ], 0, 1k it ∈  in tendency vector of the 

cell ci shows the degree of tendency of ci to the interest kψ ∈Ψ . 

5. τ is the neighborhood radius. Two cells ci and cj of DICLA are neighbors if , ,i jt t τΨ Ψ− ≤ . In 

other words, two cells of DICLA are neighbors if the distance between their tendency vectors is 
smaller than or equal toτ . 

6. [ ]: , 0,1iF β
Ψ

Φ →  is the local rule of DICLA in each cell ci, where 

{ } { }, ,i j ii jt t τΨ ΨΦ = Φ + Φ− ≤  is the set of states of all neighbors of  ci, β  is the set of 

values that the reinforcement signal can take, and [ ]0,1 Ψ
is a Ψ -dimensional unit hypercube. 

From the current states of the neighboring cells of each cell ci, local rule performs the followings: 
1. gives the reinforcement signal to the learning automaton LAi resides in ci, and 2. produces a 

restructuring signal ( ( )1 1, , ,
T

ζ ζ ζ ζ Ψ= K ) which is used to change the tendency vector of ci. 

Each element iζ of the restructuring signal is a scalar value within the close interval [ ]0, 1 . 

7. [ ] [ ] [ ]: 0, 1 0, 1 0, 1Ψ Ψ Ψ
Ζ × →  is the restructuring function which modifies the tendency vector of 
a cell using the restructuring signal produced by the local rule of the cell. 
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In what follows, we consider DICLA with N cells. The learning automaton LAi which has a finite 
action set iα  is associated to cell ci (for i=1, 2, …, N) of DICLA. Let the cardinality of iα  be mi. The 

state of DICLA represented by p=(p1, p2, ..., pN), where ( )1 2, , ,
ii i i imp p p p= K  is the action probability 

vector of LAi.  
The operation of DICLA takes place as the following iterations. At iteration n, each learning 

automaton chooses an action. Let iiα α∈  be the action chosen by LAi. Then, each learning automaton 
receives a reinforcement signal. Let iβ β∈  be the reinforcement signal received by LAi. This 

reinforcement signal is produced by the application of the local rule ( ) [ ], 0,1jF β
Ψ

Φ → .  Each 

LA updates its action probability vector on the basis of the supplied reinforcement signal and the 
action chosen by the cell. Next, each cell ci updates its tendency vector using the restructuring function 
Ζ  (equation (3)).   

(3)( ) ( ) ( )( ), ,1 ,i i i
t n t n nζΨ Ψ+ = Ζ  

A DICLA is called asynchronous if at a given time only some cells are activated independently 
from each other, rather than all together in parallel. The cells may be activated in either time-driven or 
step-driven manner. In time-driven asynchronous DICLA, each cell is assumed to have an internal 
clock which wakes up the LA associated to that cell while in step-driven asynchronous DICLA a cell is 
selected in fixed or random sequence. 

3-4-1. DICLA Norms of Behavior 
Behavior of DICLA within its environment can be studied from two different aspects; the operation 

of DICLA in the environment, which is a macroscopic view of the actions performed by its 
constituting learning automata, and the restructurings of DICLA, which is the result of application of 
the restructuring function. To study the operation of DICLA in the environment we use entropy and to 
study the restructurings of DICLA we use restructuring tendency.  

3-4-1-1. Entropy 
Entropy, as introduced in the context of information theory by Shannon  [57], is a measure of 

uncertainty associated with a random variable and is defined according to equation (4), 

(4)( ) ( ) ( )( )ln
X

H X P X P X
χ∈

= − ⋅∑  

where X represents a random variable with set of values χ  and probability mass function P(X). 
Considering the action chosen by a learning automaton LAi as a random variable, the concept of 
entropy can be used to measure the uncertainty associated with this random variable at any given time 
instant n according to equation (5), 

(5)( ) ( ) ( )( )
1

ln
im

i ij ij
j

H n p n p n
=

= − ⋅∑  

where im  is the cardinality of the action set of learning automaton LAi. In the learning process, 

( )iH n  represents the uncertainty associated with the decision of LAi at time instant n. Larger values 
of ( )iH n  mean more uncertainty in the decision of the learning automaton LAi. Hi can only represent 
the uncertainty associated with the operation of a single learning automaton, but as the operation of 
DICLA in the environment is a macroscopic view of the operations of all of its constituting learning 
automata, we extend the concept of entropy through equation (6) in order to provide a metric for 
evaluating the uncertainty associated with the operation of a DICLA. 
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 (6)( ) ( )
1

N

i
i

H n H n
=

=∑  

 
In the above equation, N is the number of learning automata in DICLA. The value of zero for 
( )H n  means ( ) { }0,1 , ,ijp n i j∈ ∀ . This means that no learning automaton in DICLA changes its 

selected action over time, or in other words, the behavior of DICLA remains unchanged over time. 
Higher values of ( )H n  mean higher rates of changes in the behavior of DICLA. 

3-4-1-2.  Restructuring Tendency 
Restructuring tendency (υ ), as defined by equation (7), is used to measure the dynamicity of the 

structure of DICLA.  

(7)( ) ( )
1

N

i
i

n nυ ζ
=

=∑  

The value of zero for ( )nυ  means that tendency vector of no cell of DICLA during nth iteration has 
changed which means that no changes has occurred in the structure of DICLA during the nth iteration. 
Higher values of ( )nυ  mean higher changes in the structure of DICLA during the nth iteration.  

4. Problem Statement 
Consider N mobile sensor nodes s1, s2, …, sN with equal sensing ranges of Rs=r and transmission 

ranges of Rt=2.r which are initially deployed in some initial positions within an unknown 2 
dimensional environment Ω. Assume that a rough estimate of the surface of Ω ( S Ω ) is available 
(using Google maps for example). According to this estimate, expected number of neighbors for a 
sensor node (number of sensors residing within its transmission range) referred to as [ ]neiE N  is equal 

to 
2

1tR
N

S

π

Ω

⋅
⋅ −
$

. [ ]neiE N  is provided to all sensor nodes prior to their initial deployments. Sensor 

nodes are able to move in any desired direction within the area of the network at a constant speed, but 
they cannot cross the barrier of Ω. We assume that sensor nodes have no mechanism for estimating 
their physical positions or their relative distances to each other. 

Consider the following definitions: 
Definition 2. Sensing region of a node si denoted by C(si) is a circle with radius Rs centered on si. 
Definition 3. Covered sub-area denoted by ( )C Ω  refers to any point within the network area which is 
in the sensing region of at least one of the sensor nodes. ( )C Ω  is stated using equation (8) 

(8)( ) ( )( )
1

,
N

i
i

C C s
=

⎛ ⎞
Ω = Ω⎜ ⎟

⎝ ⎠
I U  

 
Definition 4. Covered section denoted by ( )CS Ω is the surface of the covered sub-area. 

Definition 5. Deployment strategy is an algorithm which gives for any given sensor node si a certain 
position within the area of the network. 
Definition 6. Deployed network refers to a sensor network which results from a deployment strategy. 
Definition 7. Self-regulated deployment strategy is a deployment strategy in which each sensor node 
finds its proper position within the network area by exploring the area and cooperating with its 
neighboring sensor nodes. 
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Definition 8. A connected network is a network in which there is a route between any two sensor 
nodes. 
 

Using the above definitions and assumptions, the problem considered in this paper can be stated as 
follows: Propose a self-regulated deployment strategy which deploys N mobile sensor nodes 
throughout an unknown network area Ω with estimated surface S Ω  so that the covered section of Ω 
( ( )CS Ω ) is maximized and the deployed network is connected. 

5. CLA-DS: A Cellular Learning Automata-based Deployment Strategy 
The proposed deployment strategy consists of 4 major phases; Initial deployment, mapping, 

deployment, and maintenance. During the initialization phase, sensor nodes are initially deployed in 
some initial positions within the area of the network. Mapping the network topology to a DICLA is 
done in the mapping phase. Deploying sensor nodes throughout the area of the network is performed 
during the deployment phase. Finally, in the maintenance phase, deployed network is maintained in 
order to compensate the effect of possibly node failures on the covered sub-area ( ( )C Ω ). We explain 
these 4 phases in more details in the subsequent sections. 

5-1. Initial Deployment 
Three main strategies exist for initially deploying sensor nodes in some initial positions within the 

area of the network (Ω ): 
- Random deployment: In random deployment strategy, a random based deployment strategy 

 [3] [9] [10] [11] [12] [13] [14] is used to deploy sensor nodes uniformly at random throughout 
Ω . Using this strategy for initial deployment reduces the cost of the deployment phase due to 
the fact that after such initial deployment, sensor nodes need only to heel coverage holes 
within their vicinities rather than exploring Ω  for finding their proper positions.  

- Sub-area deployment: In this deployment strategy, sensor nodes are placed manually in 
some initial positions within a small accessible sub-area of the network.  

- Hybrid deployment: In this approach, sensor nodes are deployed randomly within a small 
sub-area of the network.  

Any of the random deployment, sub-area deployment, or hybrid deployment strategy can be used 
for the initial deployment phase of CLA-DS. 

5-2. Mapping 
In the mapping phase, a time-driven asynchronous DICLA, which is isomorphic to the sensor 

network topology, is created. Each sensor node si located at (xi, yi) in the sensor network corresponds 
to the cell ci in DICLA. Interest set of DICLA consists of two members; X-axis and Y-axis of the 
network area. Initially (at time instant 0), tendency levels of each cell ci to these interests are 

( ) ( )
( )1,

0
0

max ,
i

i

x
t

MaxX MaxY
=  and ( ) ( )

( )2,

0
0

max ,
i

i

y
t

MaxX MaxY
=  respectively. (MaxX, MaxY) is 

the farthest location within the network area at which a sensor node can be located. Neighborhood 

radius (τ ) of DICLA is equal to 
( )max ,

tR
MaxX MaxY

, and hence two cells ci and cj in DICLA are 

adjacent to each other if si and sj in the sensor network are close enough to hear each other’s signals.  
According to the definition of DICLA, values of tendency levels are used along with the 

neighborhood radius of DICLA to specify the neighboring cells of a cell. But here, values of ( )1, 0it  

and ( )2, 0it  cannot be computed due to the fact that sensor nodes are not aware of their physical 
positions. This does not cause any problems due to the fact that in a DICLA which is mapped into a 
sensor network, neighboring cells of each cell are implicitly specified according to the topology of the 
network (two cells are adjacent to each other if their corresponding sensor nodes are within the 
transmission ranges of each other). 
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The learning automaton in each cell ci of DICLA, referred to as LAi, has two actions 0α , and 1α . 
Action 0α is "apply force to neighboring nodes", and action 1α  is "do not apply force to neighboring 
nodes". The probability of selecting each of these actions is initially set to .5.  

5-3. Deployment 
Each sensor node has a state which can be “mobile” or “fixed”. Initially, each sensor node selects 

its state randomly with probability of selecting "fixed" state to be Pfix. Pfix is a constant which is known 
to all sensor nodes. A "fixed" sensor node leaves the deployment phase immediately and starts with the 
maintenance phase.  

Deployment phase for each "mobile" sensor node si is divided into a number of rounds ( )0iR , 

( )1iR , ( )2iR , .... Each round ( )iR n is started by the asynchronous activation of cell ci of DICLA. 
The nth activation of cell ci occurs at time _i n ROUND DURATIONδ + ×  where iδ  is a random number 
generated for cell ci and ROUND_DURATION is an upper bound for the duration of a single round. 
We call n the local iteration number for the cell. Delays iδ  are chosen randomly in order to reduce the 
probability of collisions between neighboring nodes. 

Upon the startup of a new round ( )iR n , LAi selects one of its actions randomly according to its 
action probability vector. Selected action, which is one of "apply force to neighboring nodes", or "do 
not apply force to neighboring nodes", specifies whether sensor node si will apply any forces to its 
neighboring nodes during the current round or not. Sensor node si then creates a packet called 
APPLIED_FORCE containing its state and the selected action and broadcasts it in its neighborhood. 
After broadcasting the APPLIED_FORCE packet, sensor node si waits for certain duration 
(RECIEVE_DURATION) to receive APPLIED_FORCE packets from its neighboring nodes. Received 
packets are stored into a local database within the node.  

When RECIEVE_DURATION is over, sensor node si collects following statistics from the stored 
information in its local database: number of received packets ( ( )r

iN n ), and number of neighbors 

selecting "apply force to neighboring nodes" action ( ( )f
iN n ). According to the collected statistics, 

local rule of the cell ci computes the reinforcement signal ( )i nβ  and the restructuring signal ( )
i

nζ  
which are used to update the action probability vector of LAi and the tendency vector of ci. Details on 
this will be given in section 5-3-1.  

Next, sensor node si uses vector ( )
i

nζ  as its movement path for the current round. In other words, 

if si is located at ( ) ( )( ),i ix n y n , it moves to ( ) ( )( ) ( ) ( )( )1, 2,1 , 1 ,i i i i i ix n y n x n y nζ ζ+ + = + + . 

Last step during round ( )iR n  is the application of the restructuring function Ζ  which updates the 
tendency levels of cell ci using the restructuring signal ( )

i
nζ   according to equation (9).  

(9)

( ) ( ) ( )
( )

( ) ( ) ( )
( )

1,
1, 1,

2,
2, 2,

1
max ,

1
max ,

i
i i

i
i i

t

t

n
n t n

MaxX MaxY

n
n t n

MaxX MaxY

ζ

ζ

+ = +

+ = +

⎧
⎪
⎪
⎨
⎪
⎪⎩

When this step is done, sensor node si waits for the next activation time of its corresponding cell ci 
in DICLA to start its next round ( ( )1iR n + ).  

Deployment phase for a sensor node si is completed upon the occurrence of one of the followings: 
- Stability: Sensor node si moves less than a specified threshold (LEAST_DISTANCE) during 

its last Nr rounds. 
- Oscillation: Sensor node si oscillates between almost the same positions for more than No 

rounds. 
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When a sensor node si completes the deployment phase of CLA-DS, its state is changed to “fixed” 
and it starts with the maintenance phase. 

5-3-1. Applying Local Rule 
Local rule of a cell ci based on the states of the cell and its neighboring cells computes the 

reinforcement signal iβ  and the restructuring signal 
i

ζ  . 
Reinforcement Signal: The reinforcement signal for the nth round in a node si is computed based 

on a comparison between the number of neighbors of si ( ( )r
iN n ) and the expected number of 

neighbors ( [ ]neiE N ). According to this comparison, following two cases may occur: 

- ( )r
iN n is almost equal to [ ]neiE N or formally ( ) [ ]r

i neiN n E N ε− <  where ε  is a 

specified constant: In this case, if the selected action of LAi is "do not apply force to 
neighboring nodes", then the reinforcement signal is to reward the action. Otherwise, the 
reinforcement signal is to penalize the action.  

o ( )r
iN n  is smaller or greater than [ ]neiE N or formally ( ) [ ]r

i neiN n E N ε>− : In this 

case, if the selected action of LAi is "apply force to neighboring nodes", then the 
reinforcement signal is to reward the action. Otherwise, the reinforcement signal is to 
penalize the action.  

Equations (1) and (2) are used for rewarding or penalizing the selected action of LAi. The idea behind 
the above method of computing the reinforcement signal is that to have a uniform deployment of 
sensor nodes, one way is to minimize the difference between the number of neighbors of each sensor 
node and the expected number of neighbors ( [ ]neiE N ). When ( )r

iN n is almost equal to [ ]neiE N , it 
means that the number of neighbors of sensor node si is as it must be, and hence it is better for this 
node not to apply any forces to its neighbors. In the other case when ( ) [ ]r

i neiN n E N ε>− , the 

number of neighbors of si differs from that expected, and hence it is better for it to apply forces to its 
neighbors. 

Restructuring Signal: The restructuring signal ( ) ( ) ( )( )1, 2,,
i

T

i in n nζ ζ ζ= is a 2 dimensional 

vector with a random orientation whose magnitude is ( )f
iN n  (number of neighbors selecting "apply 

force to neighboring nodes" action). The elements of this vector are computed according to equation 
(10) using an angle θ  which is selected uniformly at random from the range [ ]0, 2π . 

(10)
( ) ( ) ( )
( ) ( ) ( )

1,

2,

cos

sin

f
i i

f
i i

n N n

n N n

ζ θ

ζ θ

= ⋅

= ⋅

⎧⎪
⎨
⎪⎩

 

 
This vector specifies the orientation, direction, and distance of movement for the node si during the 

current round.    

5-4. Maintenance 
Maintenance phase in a sensor node si is similar to the deployment phase except that si remains 

fixed during this phase and the force vectors applied by its neighbors have no effect on it. 
Additionally, during this phase, sensor node si collects a list of its “fixed” neighboring nodes 
(neighboring nodes which are in maintenance phase). If something happens to a member sj of this list 
(its battery exhausted, it experiences some failures, it leaves the sensing region of si, …) then sensor 
node si does not receive APPLIED_FORCE packets from sj anymore. This indicates that a hole may 
occur in the vicinity of si. As a result, si leaves the maintenance phase, set its state to “mobile” and 
starts over with the deployment phase in order to fill any probable holes. Since collisions may also 
result in not receiving APPLIED_FORCE packets from neighbors, a node si starts over with the 
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deployment phase only if it does not receive APPLIED_FORCE packets from one of its “fixed” 
neighbors for more than k rounds. 

6. Experimental Results 
To evaluate the performance of CLA-DS several experiments have been conducted and the results 

are compared with the results obtained for potential field-based algorithm given in  [15] referred to as 
PF hereafter, DSSA and IDCA algorithms given in  [19], and the basic VEC algorithm given in  [20]. 
The Algorithms are compared with respect to three criteria:  coverage, node separation, and distance.  

 

- Coverage: Fraction of the area which is covered by the deployed network. Coverage is 
specified according to equation (11). 

(11)( )CS
Coverage

S
Ω

Ω

=  

 
- Node separation: Average distance from the nearest-neighbor in the deployed network. Node 

separation can be computed using equation (12). In this equation, dist(si, sj) is the Euclidean 
distance between sensor nodes si and sj. Node separation is a measure of the overlapping area 
between the sensing regions of sensor nodes; smaller node separation means more 
overlapping.  

(12) 
( )

( )( )
1

1
min ,

j i

N

i js Nei s
i

Node separation
N

dist s s
∈

=

= ∑  

- Distance: The average distance traveled by each node. This criterion is directly related to the 
energy consumed by the sensor nodes.  

 

Experiments are performed for three different simulation areas which are shown in Figure 2. 
Networks of different sizes from N=50 to N=500 sensor nodes are considered for simulations. Sensing 
ranges (Rs=r) and transmission ranges (Rt=2.r) of sensor nodes are assumed to be 5(m) and 10(m) 
respectively. Energy consumption of nodes follows the energy model of the J-Sim simulator  [37]. 
Table 1 gives the values for different parameters of the algorithm. 

 

Figure 2. Different simulation areas 

Table 1. Parameters of CLA-DS algorithm and their values 

Parameter Value

Pfix .1

ROUND_DURATION 11 (s)

RECEIVE_DURATION 10 (s)

LEAST_DISTANCE 1 (m)

No 6 rounds

ε 1

a (reward parameter) .25
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b (penalty parameter) .25

K 3 rounds

 

All simulations have been implemented using J-Sim simulator. J-Sim is a java based simulator 
which is implemented on top of a component-based software architecture. Using this component-
based architecture, new protocols and algorithms can be designed, implemented and tested in the 
simulator without any changes to the rest of the simulator's codes.  

All reported results are averaged over 50 runs. We have used CSMA as the MAC layer protocol, 
free space model as the propagation model, binary sensing model and Omni-directional antenna.  

6-1. Experiment 1 
In this experiment we compare the behavior of the CLA-DS algorithm with that of PS, DSSA, 

IDCA, and VEC algorithms in terms of coverage as defined by equation (11). Experiment is 
performed for N=50, 100, 200, 300, 400, and 500 sensor nodes which are initially deployed using a 
hybrid deployment method within a square with side length 10 (m) centered on the center of the 
network area. Figure 3 to Figure 5 give the results of this experiment for different network areas given 
in Figure 2. From the results we can conclude the following:  

1. Although CLA-DS algorithm does not use any information about sensor positions or their relative 
distances to each other, its performance in covering the network area in all three environments is 
almost equal to that of PF algorithm in which sensor nodes have information about their relative 
distances to each other. This indicates the efficiency of the learning automata in guiding sensor 
nodes through the network area for finding their best positions. 

2. In sparse networks (N<400), DSSA and IDCA algorithms better cover the network area than 
other algorithms. In dense networks, CLA-DS and PF algorithms outperform DSSA and IDCA 
algorithms in terms of coverage. This is due to the fact that the repulsive forces between 
neighboring nodes in DSSA and IDCA algorithms are stronger in sparse networks than in dense 
networks, and hence in sparse networks, sensor nodes can better spread through the network area. 

3. VEC algorithm performs the same as CLA-DS and PF algorithms in sparse networks, but in 
dense networks, its performance is degraded. The reason for low performance of VEC algorithm 
in a dense network is that in a dense network, Voronoi cells of sensor nodes are very small and 
are covered very quickly and therefore many of sensor nodes stop moving during initial rounds 
without enough exploration through the network area for finding better positions. Note that in 
VEC algorithm, a node moves only if its movement increases the coverage of its Voronoi cell. 

4. Coverage for all algorithms is better in circular network area than in rectangular and complex 
network areas. This means that sensor nodes are uniformly spread in all directions through the 
network area.  
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Figure 3. Comparison of CLA-DS with existing deployment algorithms in terms of coverage criterion within 
the rectangular network area 
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Figure 4. Comparison of CLA-DS with existing deployment algorithms in terms of coverage criterion within the 
circular network area 
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Figure 5. Comparison of CLA-DS with existing deployment algorithms in terms of coverage criterion within the 
complex network area 

6-2. Experiment 2 
In this experiment, we compare CLA-DS algorithm with PS, DSSA, IDCA, and VEC algorithms in 

terms of the node separation criterion given by equation (12). The simulation settings of experiment 1 
are also used for this experiment. Figure 6 to Figure 8 give the results of this experiment for different 
network areas given in Figure 2. Node separation is a measure of the overlapping area between the 
sensing regions of sensor nodes; smaller node separation means more overlapping. Results of this 
experiment indicate that the overlapping area between sensor nodes in CLA-DS is more than in the 
PS, DSSA, IDCA, and VEC algorithms. Since the coverage of CLA-DS algorithm is better than or 
equal to the existing algorithms, having smaller node separation or more overlapped area makes CLA-
DS superior to the existing algorithms due to the following reasons: 

- The fraction of the network area, which is under the supervision of more than one sensor 
node, is higher in CLA-DS algorithm than the existing algorithms. This increases the 
tolerance of the network against node failures.  

- In occurrences of coverage holes (due to node failures or deaths for example), neighboring 
nodes need fewer movements to heel the holes when node separation is smaller.  
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Figure 6. Comparison of CLA-DS with existing deployment algorithms in terms of node separation criterion 
within the rectangular network area 
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Figure 7. Comparison of CLA-DS with existing deployment algorithms in terms of node separation criterion 
within the circular network area 
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Figure 8. Comparison of CLA-DS with existing deployment algorithms in terms of node separation criterion 
within the complex network area 

6-3. Experiment 3 
In this experiment, CLA-DS algorithm is compared with PS, DSSA, IDCA, and VEC algorithms in 

terms of the distance criterion. The simulation settings of experiment 1 are also used for this 
experiment. Figure 9 to Figure 11 give the results of this experiment for different network areas given in 
Figure 2. From the results obtained for this experiment one may conclude the following: 

1. In terms of distance criterion, the most efficient algorithm among CLA-DS, PF, DSSA, IDCA, 
and VEC algorithms is PF algorithm. This is due to the fact that in PF algorithm, unlike other 
algorithms, movements of sensor nodes are directed by the application of Newton's second law of 
motion  [53]. 

2. In highly sparse networks (N<200), CLA-DS outperforms DSSA and IDCA algorithms in terms 
of distance criterion, but in dense networks, DSSA and IDCA algorithms perform better than 
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CLA-DS. This is again due to the fact that the repulsive forces between neighboring nodes in 
DSSA and IDCA algorithms are stronger in sparse networks than in dense networks, and hence in 
dense networks, movements of sensor nodes are more limited than in sparse networks. As it is 
shown in experiment 1, this limited movement degrades the performance of DSSA and IDCA 
algorithms in covering the network area. 

3. For VEC algorithm, the average distance moved by sensor nodes for networks with different sizes 
is almost the same. This is due to the fact that in this algorithm, the number of sensor nodes 
which do not explore the network area sufficiently increases as the density of the network 
increases.  
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Figure 9. Comparison of CLA-DS with existing deployment algorithms in terms of distance criterion within the 
rectangular network area 
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Figure 10. Comparison of CLA-DS with existing deployment algorithms in terms of distance criterion within 
the circular network area 
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Figure 11. Comparison of CLA-DS with existing deployment algorithms in terms of distance criterion within 
the complex network area 
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6-4. Experiment 4 
This experiment is conducted to study the behavior of CLA-DS algorithm in comparison to PS, 

DSSA, IDCA, and VEC algorithms in terms of coverage, node separation, and distance criteria when 
random deployment used as the initial deployment method. Experiment is performed for N=50, 100, 
200, 300, 400, and 500 sensor nodes which are randomly deployed throughout the complex network 
area given in Figure 2. Figure 12 to Figure 14 give the results of this experiment. From these figures we 
may conclude the following:  

1. In terms of coverage criterion, performances of all algorithms are almost the same. 
2. In terms of node separation criterion, CLA-DS algorithm outperforms other algorithms. 
3. In terms of distance criterion, CLA-DS algorithm has the worst performance among the existing 

algorithms. This is because CLA-DS does not use any information regarding the sensor positions 
or their relative distances to each other. 
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Figure 12. Comparison of CLA-DS with existing deployment algorithms in terms of coverage criterion when 
random deployment used as the initial deployment method 
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Figure 13. Comparison of CLA-DS with existing deployment algorithms in terms of node separation criterion 
when random deployment used as the initial deployment method 
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Figure 14. Comparison of CLA-DS with existing deployment algorithms in terms of distance criterion when 
random deployment used as the initial deployment method 

6-5. Experiment 5 
In this experiment, we compare CLA-DS algorithm with PS, DSSA, IDCA, and VEC algorithms in 

terms of coverage, node separation, and distance criteria when the region, within which sensor nodes 
are initially deployed, changes. For this study, we consider a network of N=500 sensor nodes which 
are initially deployed using a hybrid deployment method for complex network area given in Figure 2. 
We experiment with the following four different regions:  

- A square with side length 10 (m) located at the up-left corner of the area (Up-Left). 
- A square with side length 10 (m) centered on the center of the area (Center). 
- Down half of the area (Down Half) 
- Left half of the area (Left Half) 

Figure 15 to Figure 17 give the results of this experiment.  From the results one can say the 
following:  

1. In terms of distance criterion, performances of all algorithms are degraded when the initial 
deployment region is in a corner of the network area.  

2. Coverage and node separation of CLA-DS and PF algorithms are not highly affected by changing 
the initial deployment region of sensor nodes. This indicates the efficiency of these two 
algorithms in spreading sensor nodes through the network area. 

3. Starting from a corner of the region highly affects the performance of DSSA, IDCA, and VEC 
algorithms in terms of coverage and node separation criteria. To explain the reason of this 
phenomenon, we may say that in these algorithms, sensor nodes have limited movements which 
do not allow them to sufficiently explore the network area. This drawback becomes more serious 
when the initial deployment region is in a corner of the area. 
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Figure 15. Comparison of CLA-DS with existing deployment algorithms in terms of coverage criterion in 
different initial deployment regions 
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Figure 16. Comparison of CLA-DS with existing deployment algorithms in terms of node separation 
criterion in different initial deployment regions 
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Figure 17. Comparison of CLA-DS with existing deployment algorithms in terms of distance criterion in 
different initial deployment regions 

6-6. Experiment 6 
In this experiment, CLA-DS algorithm is compared with PS, DSSA, IDCA, and VEC algorithms in 

terms of coverage, node separation, and distance criteria when devices or algorithms used for location 
estimation in sensor nodes experience different levels of noise. Such noises due to inaccuracies in 
measurements are common both in GPS-based location estimator devices  [54] and localization 
techniques adopted to wireless sensor networks  [55] [56]. For simulating a noise level of 0 1λ< < , for 
each sensor node si two numbers Rndi(x) and Rndi(y) are selected uniformly at random from the ranges 
[0, MaxX] and [0, MaxY] respectively and are used for modifying the position (xi, yi) of the node 
according to equation (13).  For this study, λ  is assumed to be one of the following: .2, .25, .35, and 
.5. 

(13) 
( )
( )

.

.

Noisy
i i i

Noisy
i i i

x x Rnd

y y Rnd

x

y

λ

λ

= +

= +

⎧⎪
⎨
⎪⎩

 

The experiment is performed for N=500 sensor nodes which are initially deployed using a hybrid 
deployment method within a square with side length 10 (m) centered on the center of the complex 
network area given in Figure 2. Figure 18 to Figure 20 give the results of this experiment for different 
criteria. These figures show that: 

1. Noise level has no effect on the performance of CLA-DS algorithm with respect to coverage, 
node separation and distance criteria. This is due to the fact that CLA-DS algorithm does not use 
any information about the position of sensor nodes. 
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2. PF algorithm is highly affected by increasing the noise level. This is because in PF, movements 
of sensor nodes are directed by the application of Newton's second law of motion  [53] which is 
highly sensitive to  noise. 

3. Noise level does not highly affect the performances of DSSA and IDCA algorithms with respect 
to coverage criterion. This is due to the fact that these algorithms, like CLA-DS algorithm, try to 
minimize the difference between local density and expected local density of sensor nodes which 
is not sensitive to noise level. 

4. Noise level highly affects the performances of DSSA and IDCA algorithms with respect to node 
separation and distance criteria. This is because DSSA and IDCA algorithms, unlike CLA-DS, 
use the relative distances of neighboring sensor nodes, which is sensitive to noise level, in order 
to minimize the difference between local density and expected local density of sensor nodes. 
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Figure 18. Comparison of CLA-DS with existing deployment algorithms in terms of coverage criterion in 
presence of noise in estimating the position of sensor nodes 
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Figure 19. Comparison of CLA-DS with existing deployment algorithms in terms of node separation criterion in 
presence of noise in estimating the position of sensor nodes 

0
50

100
150

200
250

300
350

400
450

0 0.2 0.25 0.35 0.5
Noise Level

D
is

ta
nc

e

CLA-DS
PF
DSSA
IDCA
VEC

 

Figure 20. Comparison of CLA-DS with existing deployment algorithms in terms of distance criterion in 
presence of noise in estimating the position of sensor nodes 



20 
 

6-7. Experiment 7 
In this experiment, we compare the behavior of CLA-DS, PS, DSSA, IDCA, and VEC algorithms 

with respect to coverage, node separation and distance criteria when the movements of sensor nodes 
are not perfect and follow a probabilistic motion model. A probabilistic motion model can better 
describe the movements of sensor nodes in real world scenarios. We use the probabilistic motion 
model of sensor nodes given in  [58]. In this probabilistic motion model, movements of a sensor node si 
for a given drive ( ( )id n ) and turn ( ( )ir n ) command is described using the following equations: 

(14)
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In equation (14), ( ) ( )
2

i
i

T n
nθ +  is referred to as the major axis of movement, ( ) ( )

2
i

i

T n
n

π
θ

+
+  

is the minor axis of movement (orthogonal to the major axis), and Ci(n) is an extra lateral translation 
term to account for the shift in the orthogonal direction to the major axis. Di(n), Ti(n), and Ci(n) are all 
independent and conditionally Gaussian given ( )id n  and ( )ir n :  

(15)
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where ( ),N a b is a Gaussian distribution with mean a and variance b, and 2

dDσ , 2

rDσ , 
1

2
Dσ , 2

dTσ , 2

rTσ , 

1

2
Tσ , 2

dCσ , 2

rCσ , and 
1

2
Cσ  are all parameters of the specified motion model. Table 2 gives values of these 

parameters used for this experiment. 
 

Table 2. Parameters of the specified probabilistic motion model and their corresponding values 

Parameter 2

dDσ  2

rDσ  
1

2
Dσ  2

dTσ  2

rTσ  
1

2
Tσ  2

dCσ  2

rCσ  
1

2
Cσ  

Value .021869 .010731 .000001 .000345 .338267 .666048 .008588 .013427 .000014 
   
The experiment is performed for N=500 sensor nodes which are initially deployed using a hybrid 

deployment method within a square with side length 10 (m) centered on the center of the complex 
network area given in Figure 2. Figure 21 to Figure 23 show the results of this experiment. The results 
indicate the following facts: 

- Using the probabilistic motion model instead of the perfect motion model degrades 
significantly the performances of PF, DSSA, and IDCA algorithms in terms all three criteria, 
but does not affect the performances of VEC and CLA-DS algorithms substantially.  
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- When the probabilistic motion model is used CLA-DS and VEC algorithms outperform the 
existing algorithms in terms of coverage criterion. 

- Node separation of CLA-DS algorithm is smaller than that of VEC algorithm. This indicates 
the superiority of CLA-DS algorithm over VEC algorithm in terms of node separation 
criterion using a similar discussion to that given in experiment 2. 

- Node separation of CLA-DS algorithm is larger than that of PF, DSSA, and IDCA 
algorithms. This means that CLA-DS has more overlapping area between sensor nodes.  

- For probabilistic motion model, the average distance moved by sensor nodes for all 
algorithms except for VEC algorithm is higher than when perfect motion model is used.  
When the probabilistic motion model is used the performances of CLA-DS, PF, DSSA, and 
IDCA algorithms are degraded by 24%, 136%, 81%, and 100% respectively. This indicates 
that CLA-DS algorithm is more robust to deviations in the movements of sensor nodes than 
PF, DSSA, and IDCA algorithms.  

- For VEC algorithm, the average distance moved by sensor nodes does not change 
significantly when the probabilistic motion model is used. This is due to following two 
reasons: 1. In VEC algorithm, many of the sensor nodes stop moving during initial rounds 
without enough exploration through the network area, and 2. Sensor nodes move within their 
Voronoi cells in VEC algorithm and hence their movements are very limited. 
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Figure 21. Comparison of CLA-DS with existing deployment algorithms in terms of coverage criterion when 
movements of sensor nodes follow a probabilistic motion model 
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Figure 22. Comparison of CLA-DS with existing deployment algorithms in terms of node separation 
criterion when movements of sensor nodes follow a probabilistic motion model 
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Figure 23. Comparison of CLA-DS with existing deployment algorithms in terms of distance criterion when 
movements of sensor nodes follow a probabilistic motion model 

6-8. Experiment 8 
This experiment is conducted to study the behavior of CLA-DS, PS, DSSA, IDCA, and VEC 

algorithms in controlling the local density of sensor nodes in the network during the deployment 
process. The results of this experiment also show that CLA-DS algorithm gradually learns the 
expected local density. For this study, we consider networks of N=500, 200, and 50 sensor nodes 
which are initially deployed using a hybrid deployment method within a square with side length 10 
(m) centered on the center of the complex network area given in Figure 2. Figure 24 to Figure 26 give 
the results of this experiment. In these figures, X-axis gives the overall distance moved by all sensor 
nodes during the deployment process and Y-axis shows the local density of sensor nodes as measured 
during the deployment process. These figures show that CLA-DS algorithm, without any node 
knowing its physical position or its relative distances to its neighbors, controls the local density of 
sensor nodes in such a way that the local density approaches its expected value just as other algorithms 
do. Of course, it takes longer time for CLA-DS to achieve this. This is due to the fact that CLA-DS 
does not use any information regarding the physical positions of sensor nodes or their relative 
distances to each other. 
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Figure 24. Local density of sensor nodes during the deployment process when N=500 
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Figure 25. Local density of sensor nodes during the deployment process when N=200 
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Figure 26. Local density of sensor nodes during the deployment process when N=50 

6-9. Experiment 9 
This experiment is conducted to study the effect of parameter Pfix on the performance of CLA-DS 

algorithm. For this study, we consider a network of N=500 sensor nodes which are initially deployed 
using a hybrid deployment method within a square with side length 10 (m) centered on the center of 
the complex network area given in Figure 2. Figure 27 to Figure 29 give the results of this experiment. 
These figures indicate that by increasing the value of parameter Pfix in CLA-DS algorithm, the covered 
section of the area, node separation and the average distance traveled by each sensor node decrease. In 
other words, higher values of Pfix results in more energy saving during the deployment process at the 
expense of poor coverage. Determination of Pfix for an application is very crucial and is a matter of 
cost versus precision. For better coverage, higher price must be paid. 
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Figure 27. Effect of parameter Pfix on the performance of CLA-DS in terms of coverage criterion 
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Figure 28. Effect of parameter Pfix on the performance of CLA-DS in terms of node separation criterion 
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Figure 29. Effect of parameter Pfix on the performance of CLA-DS in terms of distance criterion 

6-10. Experiment 10 
This experiment is conducted to study the behavior of DICLA as a learning model in CLA-DS 

algorithm. For this study, we consider a network of N=500 sensor nodes which are initially deployed 
using a hybrid deployment method within a square with side length 10 (m) centered on the center of 
the complex network area given in Figure 2. Figure 30 depicts the action probability vector of a 
randomly selected learning automaton from DICLA. As it can be seen, at the beginning of the 
deployment process, the action probability of "apply force to neighboring nodes" action increases. 
This is due to the fact that the density of sensor nodes in the initial hybrid deployment method is very 
high and hence, sensor nodes must apply force to each other to spread through the area. As time 
passes, the action probability of "do not apply force to neighboring nodes" action gradually increases 
and approaches unity.  As a result, local node density gradually approaches its desired value 
( [ ]neiE N ). 
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Figure 30. Action probabilities of a randomly selected learning automaton from DICLA 
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Figure 31 shows the DICLA entropy during the deployment process. This figure indicates that the 
entropy of DICLA is high at initial rounds of CLA-DS algorithm, but gradually decreases as time 
passes. It goes below 45 at about round number 750. This means that after this round, the entropy of 
each learning automaton LAi in DICLA is on average below .09. If the entropy of a two-action learning 
automaton is below .09, then it can be concluded that the action probability of one of its actions is 
higher than .982. This means that action switching in each learning automaton in DICLA rarely occurs 
after round number 750. 
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Figure 31. DICLA entropy 

Figure 32 depicts the changes in DICLA restructuring tendency during deployment process. This 
figure shows that the restructuring tendency of DICLA is initially high and gradually approaches zero. 
It is initially high because during initial rounds, the magnitude of the force vector applied to each 
sensor node is large, and it gradually approaches zero because as time passes, the local density of 
sensor nodes approaching its expected value which results in the magnitude of the force vector applied 
to each sensor node to approach zero. 
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Figure 32. DICLA restructuring tendency  

6-11. Summary of Results 
In this study, we compared the performance of CLA-DS deployment algorithm in terms of 

coverage, node separation, and distance criteria with PF, DSSA, IDCA, and VEC deployment 
algorithms. Comparisons were made for different network sizes and areas, different initial deployment 
strategies and regions, and noise free and noisy environments. From the results of this study we can 
conclude that: 
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- In all noise free environments and starting from either of hybrid or random initial 
deployment strategies, the proposed algorithm (CLA-DS) can compete with existing 
algorithms in terms of coverage criterion, outperforms existing algorithms in terms of node 
separation criterion, and performs worse than existing algorithms in terms of distance 
criterion. 

- The coverage and node separation for CLA-DS and PF do not change when the initial 
deployment region of sensor nodes within the area of the network changes.  

- CLA-DS algorithm, unlike existing algorithms, does not use any information regarding the 
position of sensor nodes or their relative distances to each other and therefore, in noisy 
environments, where utilized location estimation techniques such as GPS-based devices and 
localization algorithms experience inaccuracies in their measurements, CLA-DS algorithm 
outperforms existing algorithms in terms of all the criteria. 

- The algorithms which are least affected by the selection of “node movement model” of 
sensor nodes are CLA-DS and VEC.   

- CLA-DS algorithm, unlike existing algorithms, has a parameter (Pfix) for controlling the tradeoff 
between the network coverage and the average distance traveled by sensor nodes.   

7. Conclusion 
In this paper, a deployment strategy based on cellular learning automata called CLA-DS for mobile 

sensor networks was proposed. CLA-DS, unlike similar existing deployment strategies, does not use 
any information regarding sensor positions or their relative distances to each other. Using the proposed 
movement strategy, each node in cooperation with its neighboring nodes gradually learns its best 
position within the area of the network in order to attain high coverage. Experimental results showed 
that in noise free environments, CLA-DS algorithm can compete with the existing algorithms such as 
PF, DSSA, IDCA, and VEC in terms of network coverage. It was also showed that in noisy 
environment, where utilized location estimation techniques such as GPS-based devices and 
localization algorithms experience inaccuracies in their measurements, or the movements of sensor 
nodes are not perfect and follow a probabilistic motion model, CLA-DS algorithm outperforms the 
existing algorithms in terms of network coverage.  
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