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Abstract 1 Introduction

Many applications on the Internet are creating, manip-
This paper presents resource management techniquRgiing, and consuming data at an astonishing rate. Data
for allocating communication and computational restream processing is one such class of applications where
sources in a distributed stream processing platform. T@gta is streamed through a network of servers that operate
platform is designed to exploit the synergy of two classesg#f the data as they pass through then [1] 2] B] 4,5, 6, 7].
network connections — dedicated and opportunistic. PiBepending on the application, data streams can have com-
vious studies we conducted have demonstrated the bgflex topologies with multiple sources or multiple sinks.
fits of suchbi-modalresource organization that CombineExammes of data stream processing tasks are found in
small pools of dedicated computers with a very large poglany areas including distributed databases, sensor net-
of opportunistic computing capacities of idle computers {gorks, and multimedia computing. Some examples in-
serve high throughput computing applications. This pgtude: (i) multimedia streams of real-time events that are
per extends the idea of bi-modal resource organizatignscoded into different formats [8], (ii) insertion ofam-
into the management of communication resources. Simggtion tickers into multimedia streanis [9], (iii) real-gm
distributed stream processing applications demand larg@alysis of network monitoring data streams for malicious
volume of data transmission between processing sitesagfivity detection[[10], and (iv) function computation ove
a consistent rate, adequate control over the network rgata feeds obtained from sensor networks [4].
sources is important to assure a steady flow of processingone of the salient characteristics of this class of appli-
The system model used in this paper is a platform whefgions is the simultaneous demand for high-throughput
stream processing servers at distributed sites are intefc@omputing and communication resourdes [11]. Huge vol-
nected with a combination of dedicated and opportunistigne of data generated at high rates need to be processed
communication links. Two pertinent resource allocatiopithin real-time constraints. Moreover, various openasio
problems are analyzed in details and solved using decejir these data streams are provided by different servers
tralized algorithms. One is mapping of the processing aig distributed geographic locations [12]. All these fac-
the communication tasks of the stream processing Wotkrs demand a scalable and adaptive architecture for dis-
load on the processing and the communication resouragiguted stream processing platform, where fine-grained
of the platform. The other is the dynamic re-allocation @ontrol over processing and network resources is possible.
the communication links due to the variations in the capac-garlier works on stream processing engines [13, 14] re-
ity of the opportunistic communication links. Overall eptisorted to centralized single-server or server-clusteedas
mization goal of the allocations is higher task throughpuéblutions where tighter control over available resourses i
and better utilization of the eXpenSive dedicated ||nka|tposs|b|e With the poss|b|||ty of different processing-ser
out deviating much from the timely completion of the taskgees or operations being provided by different providers,
The algorithms are evaluated through extensive simulatigged for distributed stream processing platform arose. Sev
with a model based on realistic observations. The resugﬁm architectures have been proposed to Support such dis-
demonstrate that the algorithms are able to exploit the syibuted processing of streams [11] 15} 12, 16]. Due to the
ergy of bi-modal communication links towards achievingringent rate-requirement for processing and transomssi
the optimization goals. of data, most researchers have assumed a central resource
controller that can gather the availability status of all re
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sources and map the requested tasks on them. Howeves, Show that the bi-modality of the network helps to im-
with the advent of a diverse range of stream processing prove the utilization of dedicated resources such as
services, it is important to allow autonomous providers of  servers and network links.

services to collaborate and share their resources. Thus it
is important to develop decentralized resource allocation®
schemes, where control is available over local resources
only.

While it is feasible to have dedicated server resources
and precisely allocate them for processing tasks, dedicatee Show the importance of adaptive scheduling to cope
networks over wide-area installations remain costly. Al-  with the variability in the capacity of the opportunistic
though it is possible to propagate the data streams through network.

the distributed servers using the Internet, the lack of ad- | Section® we present the system model for the dis-
equate control over end-to-end bandwidth on the Int?

t and the stri t rat . s of the st fibuted stream processing platform and assert the neces-
net andine stringent rate requirements ot the stream p§8Fy assumptions. Sectibh 3 introduces and characterizes
cessing applications demand some dedicated networkt f& two resource management problems pertinent to the
sources. In fact, recent advances in optical network te

loai h trolled liaht path 17, 18 [atform — the problem of mapping the tasks to the re-
nologies such as user-controfied Ight pa [17, 18] op urces and the problem of periodically re-allocating the
the possibility of on-demand provisioning of end-to-e

. . . . . sources to adapt with the ever-changing behavior of the
optical links with total control of the available bandw'dt%pportunistic resources. Sectibh 4 explains our proposed
is exposed to the user application. ’

solution to the mapping problem. Sectioh 5 explains the
In this paper, we explore a novel approach whereagyorithm for periodic re-allocation of the communication
combination of dedicated and opportunistic communicgsources. The algorithms presented in both the Section 4
tion links is used to interconnect the servers. The main fgnd Sectiof]5 are local algorithms engineered to gradu-
cus of this paper is to explore how such a hybrid (denotggly achieve some global optimization objectives such as
as bi-modalin this paper) network can be best used fefigh throughput and resource utilization. In Secfibn 6, we
data stream processing tasks. The hypothesis that drig@gluate through extensive simulations the extent to which
this work is that the combination has a synergistic effegiese global objectives are achieved by the algorithms. We

that allows better utilization of the dedicated resourc&gen conclude with a discussion of related literature in-Sec
and yields higher return on investment. We devised digon[37.

tributed algorithms for allocation of these hybrid res@src

to demonstrate the viability of this synergy hypothesis. 2 System Model and Assumptions
Multiple global objectives such as higher task through-

put, lower violation of SLA and higher utilization of ded2 1 System Model

icated resources make the resource management a com-

plex task, especially when allocation decisions are to bep g stream processing tasthe data stream originating
taken solely based on the local information available @m adata-sourcenode, progresses through several steps
the server nodes. We divided the overall resource map-processing, termed arvice component®r service
agement process into two steps — initially individual taslgs short), before being delivered to thata-deliverynode.
are assigned node and link resources through a distribuyted example, in video streaming, the service components
mapping algorithm. Based on actual resource availaliiay be encoding of video, embedding some real time tick-
ity, link resources are then periodically re-allocatedilyc ers and transcoding the video into different formats. Al-
among competing tasks towards the global optimizatigibugh, in very general terms, the data-flow topology could
objectives. be arbitrary graphs, in this paper, we restrict our study to
This paper extends some of our previous wotks [18imple path topologies.
20] on bi-modal compute platforms where static small The distributed stream processing platform consists of
pool of dedicated compute-servers was combined wittrsaveral autonomous server nodes that serve the service
large number of opportunistically harvested cheap proemponents. A single server may serve multiple services
cessing elements to increase work throughput and utilizard a service may be available at multiple servers. Several
tion of dedicated resources. Using data stream procgsais of servers establish dedicated point-to-point limds
ing tasks as a concrete example, this paper demonstratesen them to have the flow of the data streams at a con-
the benefit of using bi-modal network infrastructures farolled rate. Each server is also connected to the public In-
communication-intensive applications. In particulaisthternet and end-to-end TCP connection can be established
paper makes the following contributions to this importabetween any pair of servers through the Internet. How-
resource management problem: ever, with the Internet, end-to-end bandwidth of the TCP

Show that the bi-modal organization allows the plat-
form to admit significantly larger workload and
yield significantly higher throughput without deviat-
ing much from the service contracts.



connections cannot be allocated and the flow rate canti@ next layer. At the bottom layer, the resource manage-
be controlled. These connections are thus treategpas ment system (RMS) of the platform manages the available
portunisticresources. Both the dedicated and opportungerver and network resources to allow seamless execution
tic links are assumed to be bi-directional and of symmaetdf the service components. The main focus of this paper
ric capacity, for both data-transport and control mesgagiis to design and analyze the algorithms for various func-
purposes. The assumption on the bi-directionality of dat@nalities of the RMS layer. The RMS is responsible for
transport is not absolutely necessary for such platformsapping of the task requests on available resources and dy-
the assumption is rather made for the convenience of disimically adapting the resource allocations in response to
course. various loading conditions. The two components of RMS
The platform is modeled as an asynchronous messageperate to achieve these functionalities. A detailed dis
passing distributed system, where there is no centralizegssion on the RMS is presented in Secfibn 3. RMS uses
controller to coordinate the resources. The servers halve local operating system API to control the underlying
knowledge of and can precisely allocate the local resourcesources. Hence host OS and physical resources lie at the
only, i.e. the processing capacity of the node and the babdttom of the layered architecture.
width of the outgoing communication links. However, the
servers comply with the global protocol and respond to2a3 Task Specification
predefined set of messages in a predefined way. The objec-
tive of the global protocol is to ensure adequate resourced he specification of the stream processing task includes
for each individual task for its seamless progress, andth@ ordered sequence of service components, the data
maximize the global work throughput. Other factors sudwource node, the data delivery node and the desired rate
as balancing the load among different servers and maof-data delivery. We assume a rate based model to specify
mizing the utilization of dedicated resources are also caesource requirement for each service component. For any
sidered. Design and evaluation of the protocol constitigervice, both the output data rate and the CPU requirement
the remaining sections of the paper. are proportional to the input data rate, and are specified by
Figure[1 illustrates a scenario of a stream processimgp factors — thebandwidth shrinkage factand theCPU
platform containing five servers. The example stream prgsage factorrespectively. We assume that these two fac-
cessing task shown in the figure requests a data streams for any service component is known globally. Thus
from data source, to be processed through serviees any node receiving the task specification can compute the
as, ag andas, and to be delivered t6,. This task may be CPU and input/output data rate requirements for each ser-
served by the server$, (servingds), Ss (servingaz), So  vice component. This rate based model is similar to the
(servingas anday). Either dedicated link or public net-ones used by Kichkaylo et al. [16] and Drougas et al. [11].
work may be used to transmit the data stream between anyhe task specification isservice level agreeme(BLA)
two consecutive servers. between the user and the platform. On receiving the re-
For convenience, the resource allocation process is giitest for resource for a task, the platform attempts to allo-
vided into two phases. First, individual tasks with mukiplcate necessary resources. The platform may be unsuccess-
service components are mapped on the processing serftdro allocate all necessary resources due to the loading
fulfilling the processing and transport capacity requireendition of the platform, and the task may be rejected as a
ments. A cost function is used to select the best amamgult. Once the task is accepted after successful resource
multiple feasible maps. The second phase re-allocatesdhlecation, it is responsibility of the platform to meet the
link bandwidths among competing tasks, after the tasksnstraints specified in the SLA.
start execution based on the initial allocation. This is-nec
essary because of the variability of data rate in the er2l4 Pricing and Revenue Flow
to-end TCP connections on the Internet. Both the re-
allocation phases and initial allocation are driven by theWe assume a rate based pricing for the services. The
same global optimization goal, namely maximization ¢ésk specification includes a price per byte of data deliv-
global throughput and resource utilization, subject te futred. This price quote is directly translated to apportibne

fillment of individual task requirements. revenue for each of the service components, using the CPU
usage and bandwidth shrinkage factors. The server that
2.2 Architecture serves a service component receives revenue for each byte

processed at this apportioned rate. In some cases, some
The stream processing platform can be viewed to berver may need to forward the data without any process-
composed of the layers showed in Figlie 2, with user dpg, due to the particular task-to-resource mapping chosen
plications at the top. The applications are composed of déltfa assume there is a universally defined price charged by
sources and several service components hosted by difeaty server for per byte of data forwarding. Because the
ent servers. Therefore, the service components constitlaga forwarding path for serviddo service + 1 is chosen
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by the server of servicg it is assumed that any forward-sage with the initial mapping and the requirement specifi-
ing price incurred before reaching the server serving thation to the data-source node. Through message passing
(i + 1)th service is paid by the previous server. among the map managers in different server nodes, the dis-
tributed mapping algorithm results in a set of feasible maps
at the map manager of the data-delivery node. Each of the
maps defines a path from the data source node to the de-
livery node through the server nodes that serve necessary
service components. The best among the available feasible
A resource management engine (denoted as RMS agemips according to a certain cost metric is selected. We as-
runs in each server that implements the protocols for gme that the cost metric is additive and the costis incurred
ordinated allocation of network and CPU resources. Theevery node and link used by the task.
resource management process is divided into two phaseA& reservation probe is then sent from the data-delivery
— initial mapping of individual tasks and dynamic renode to the data-source node along the path found in the
allocation of the resources among competing tasks. Aselected map. The RMS agent at each server node along
cordingly, each RMS agent has two modules —a map mame path tries to allocate the server and link resources pre-
ager and a dynamic scheduler. This section defines the sgabed by the map. Because the mapping process for
problems in details and illustrates the global pictureitivat multiple tasks may be ongoing concurrently, it is possi-
tegrates these two phases for global resource managerbinthat the required resource is no longer available. In
objectives. The following two sections discusses the pasich case the allocation fails, the probe is rolled back and
sible solutions to these problems. the next feasible map is probed by the data-delivery node.
A user of the distributed platform uses one of the servEhe streaming and the execution of the stream processing
nodes as a portal to launch her stream processing task. Es& begins once a successful probe reaches the data-source
task specification submitted to the portal contains the atwbde at the other end. The message flow of mapping and
dress of data stream source and an ordered list of the seservation is illustrated in Figule 3.
vice components that should process the data stream. By
default the delivery point (destination) of the stream is tt8.1 The Mapping Problem
user’s portal node, but any other node can be specified as
well. The specification also includes the required rate of Abstracting away the details of the two classes of com-
data delivery, time window for monitoring the rate antchunication links and different types of service, the map-
pricing for each byte of data delivered. The parameteqsing of a stream processing task on the network of servers
such as data rate and pricing may be negotiated betwean be described as a problem of constrained mapping of a
the user and the portal through an automated SLA negeieighted directed path on a weighted undirected graph.
ation protocol, details of which is out of the scope of this The network of servers can be defined as a giGigh=
paper. (Vr, Er). Each vertexwr € Vg, denotes a server that
After receiving the specification from user, the portdlas an available computational capadity, (vg). Each
node initiates the mapping process by sending a map medgeer € FEpr denotes a data transport link with an

3 Decentralized Management of Server and
Networ k Resources
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available bandwidthB,,(e¢g). Each edge:; also has among the feasible ones, we can formulate a correspond-
an associated additive co8¥(eg). The stream pro- ing optimization problem, where each edge € Er in
cessing task can be defined as a pBth = (V;, E;), theresource graph has an additive dé%tv). The objec-

Vy = vy =sy,v1,02,...,0,m =t; and E; = {e; = tive would be to find the feasible mapping that minimizes
(vi,v:41)]0 < i < m}. Each vertex;,0 < ¢ < m of thetotal cosW = > W (pr)lpr € M.(u,v)Vu,v € Vj.

the stream processing task has a computational capaCibstW (pr) of a pathpg is the sum of the costd/ (eg)
requirement’,..,(v;), and each edge = (v;,v;41),0 < of all edgeser in pr.

i < m has a bandwidth requiremeBt..,(e;).

The problem is to find mappings/, : V; — Vg and Figurd® shows an example resource network of eightin-
M, : E; — Pg, wherePg is the set of all possible terconnected computing nodes. Computational capacity of
paths in the resource graphs, including zero length patégch node is represented by a number inside the node. The
The second mappindy/. is needed because a server nodiék bandwidth(B) and costgd) are mentioned on each
can act as forwarding nodes and thus, each edgg;in edge. An example stream processing task of path topol-
can potentially be mapped on a multi-hop pathin Gg. 09y with one source, one sinkt and three computational
Also, multiple vertices froni/; can be mapped on a sinfodesry, xz, r3 is shown in Figurgl6, with the node capac-
gle vertex ofVz, which essentially maps edges frafly ity and bandwidth requirements.andt must be mapped
on zero length paths, i.e(v, v) paths with infinite band- on B andF", respectively. There can be many feasible map-
width and zero cost. Again, it is allowed that for two difpings of this dataflow computation on the resource graph
ferent edges;;, e € E, the mapped paths = M,(e;) in Figurel5. One of them is —
andp, = M.(e2) have some common edges. The map-

ping of the source node and the sink node is already given:
M(sy) = sg|sr € Vg andM (t;) = tg|tr € Vg.
The mapping has to fulfill the following constraints on M(s) B Me(s,z1) = (B, B)
processing capacity and bandwidth — M(z;) = B Me(z1,22) = (B,B)
M(ZCQ) = B Me(ZCQ,.CCg) = (B,D)
Yug € M(’UJ), Z Creq('UJ) < ij(vR) ]\/[(13) = D Me(x?nt) = (D,F)
{UJ‘UJEVJ,]\'I(UJ):UR} ]\/[(t) F

Vey = (u,v) € Ej,B(ey) <min|B(er),er € M.(e . . L
5= (o) 7, Bles) [Bler), er (es)] this is also the optimal solution in terms of total end-to-

The constraints define the decision problem — “Is theg@d cost between the resource nofiég) and M (t).
any M and M, that satisfies the constraints?”. This prob-
lem can be proved to be NP-complete by transformationWe developed a decentralized algorithm that finds the
to the longest path problem [21]. The details of the proekact solutions to the problem. As the problem is NP-
can be found al [22, 23]. When the result of the decisiaomplete, some approximation scheme is also proposed.
problem is true, there can be multiple feasible mappinghke algorithm and approximation schemes are discussed
that satisfies the constraints. To choose a single mappim&ectiori 4.
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Figure 5. An example resource network

3.2 The Dynamic Re-allocation Problem The adaptive reallocation is performed periodically at
each server node and the period need not be synchronized

Allocation of the server and link resources by the ma%)()ba"y' In principle, both the server an_d the link re-
ping process would suffice, if all the resources were de urces could be re-allocated. However, in the proposed
icated and under total control of the platform. Becau§¥5tem model, servers are ded|c§1ted for stream process-
the data rate over the links through the public network ARFQ A server accepts a task only if the requested amount

variable and not under direct control of the platform, a coff! Processing resource IS a\{allable. Th_us, once a task gets
erver resources allocated, its processing rate at thagrser

tinuous adaptive allocation of the resources is necessarz. . .
L e . oes not vary over time. However, transmission rate over
To minimize the overhead, it is desirable that the re- e ) .
allocation is done based on local information, otherwise & opportunistic network links may vary over time, be-
. o X ' cduse they are shared resources and not under complete
state-dissemination protocol will be necessary. The glot%

- L L Bntrol of the platform. Thus, to provide a predictable
objective of re-allocation is to maximize global procegsin o .
?(rformance guarantee for accepted tasks, it is essential

throughput and keep the data-delivery rate for each t“% adaptively re-allocate the link resources. On the other

as close as possible to the SLA defined delivery rate. 0a'md, although re-allocation of the server resources could

cally, each server can monitor the rate at which it processes . L
y P idprove load balancing and resource utilization because

data for each task using one of its services and the ratgd hanging load scenario, it is not possible to re-map the

transmits data to the next service for each task. This g

. . sk components on new servers locally or based on local

formation can be used to determine how closely the tasalf : :

is progressing compared to the SLA defined rate becahnsormatlon' and the global mapping process has a lot of
brog 9 P ' gverhead. For these reasons, we confined the re-allocation

gelgzgl rsa:viliedl:rgr?yoﬂzz?edMZiirt:iii;at?h%f gg?ncﬁfasr']r\]/ﬂthin link resources only, leaving the initial allocatiof
y comp . 9 PIANEE rver resources unchanged.

at each server will imply maximum compliance at the de-
livery point. The links that carry the stream between two data pro-

However, it is hard to know the global throughput ofessing servers can be of three different types — i) a direct
the processed data from each server. We attempted todbsdicated link, ii) a multi-hop dedicated link through one
vise some local objectives, achieving which would leaat more forwarding nodes iii) an overlay link through the
to achievement of the global objective. Recall that eaphblic network. A mapping of a task may contain any com-
server allocates local resources autonomously and agwation of these three types of links between the process-
each server is paid for each byte of data it processes. Ra@-nodes. Among them, the direct dedicated links are the
tionally, each server would be inclined towards maximizaost preferred one, because they provide controlled and
ing its own revenue. We devised the allocation policy stable data rate. A multi-hop dedicated link provides simi-
that it is consistent with such rational inclination of th&ar control and stability, but it costs more (Secfion 2.4eT
servers. The expectation is that maximization of the lodaird possibility is having an overlay link through the pub-
revenue needs maximizing local work throughput, whidit network. The flow rate is variable over such links, but
would lead to global throughput maximization. there is no additional cost for sending data through them.



So, the nodes try to opportunistically use these links whtve last Ack flag from its neighbor. To save memory,
dedicated links are overloaded or not available. each node creates a state for the new mapping process only

The dynamic link scheduler in each node is invoked pehen it becomes aware of the process by@ message.
riodically at regular intervals. Based on current evalwati The state is initializedgred = unde fined, count = 0,
of locally observed performance, the scheduler re-alescaknows(i) = false for all i) on creation. The state is re-
the locally available link resources among the competimpved whercount become® and thelast Ack is sent.
tasks that are using this node. The overall policy of theThe mapping algorithm works primarily by enumerat-
scheduler is to prioritize the tasks based on observed peg all feasible mappings on all possible paths. The opti-
formance and re-allocate the three possible types of omal mapping is then chosen from the feasible mappings.
going links based on the newly estimated priorities. TH#owever, feasible mappings are gradually expanded while
re-allocation process is illustrated in Figlice 4. The rexploring different paths and many of the mappings and
allocation algorithm is described in Sectioh 5, includingaths are pruned or discarded once any of the resource con-
the design of the appropriate priority function. straints fails. Thus explicit enumeration of all possille a
ternatives are avoided.

Each node executes th@ocessMapmethod (Algo-
rithm [) when amap message is received and theo-
cessAckmethod (Algorithm#) when amck message is

In this section, we develop a decentralized algorithm fagceived. Each time a node receives a partial map, it tries
the constrained path mapping problem introduced in Sgg-extend the partial map in all possible ways by append-
tion[3.3. The algorithm is then adapted through some agg the mapping of more task components onto itself, sub-
proximation heuristics and other modifications to use in thgt to availability of processing power (Lifi€l15). Each of
bi-modal stream processing platform. these newly generated partial maps are then extended to all

For distributed mapping, we use the scheme presenggdhe neighbors as long as the bandwidth requirement of
by Chandy and Misrd [24], which was based on Dijksttaat hop in the task is less than available bandwidth in that
and Scholten’s diffusing computation paradigm/[25]. Thik (Line 28). Note that it is possible to extend the map
centralized version of the problem, i.e. finding the magy the neighbors without having any component mapped
pings when the global knowledge of the system statedf the current node. This allows multi-hop connection be-
available at a single node, can be solved using the Bellm@ageen nodes processing consecutive components. This is
Ford relaxation scheme. Such an algorithm was analyzssheficial in cases where there is no direct dedicated link
in one of our previous works [22]. between two server nodes. All the feasible mappings are

The distributed mapping algorithm uses two kinds @hus accumulated at the data-delivery node. The acknowl-
messages — inapmessage and igckmessage. Thmap edgement process of the diffusing computation ensures ter-
messages propagate the partially computed maps fromyifigation of the algorithm and allows each node to clear the
data-source node to the data-delivery node through the rgites related to the terminated mapping.
work. Theackmessage is used for detecting termination Cyclic mapping is allowed in the extension in Ling 28.
of the mapping algorithm, as commonly used in diffusirBecauser = 0 is allowed, it is possible that a mapping
computations. grows to an infinite length. In practice, this is avoided by

For each mapping, some variables are used to maintiimiting the growth of the multi-hop mapping using a bud-
the state of the diffusing computatiorreuntmaintains the get factor. Based on the price-per-byte-processed quoted
number of outstandingckmessages to be received againgt the SLA (Section§ 213 arld 2.4), the allocated revenue
the sentmap messagespred maintains the name of thefor processing of thg — th service is limited. When the
predecessor node in the diffusing computation which maelgtput of thej-th service is sent to the server providing
the current node aware of the mapping by sendimga® (5 + 1)th service using a dedicated link, host of th¢h
message wheoountwas0. service needs to pay and thus loses revenue. The cost of

To disseminate the task specification to all the particransmission grows as more dedicated links are used in a
pating nodes, another type of message,sihte message, multi-hop link to send the same data. Thus the number
is appended with thewap message. To be efficient, whemf hops in such multi-hop links are limited by the revenue
u sends a map messagertoit is sufficient to append thebudgeted for the service and cost of each hop of dedicated
spec with the map only whenw is the pred for v. For connection. This maximum hop restriction is summarized
this knowledge, every node maintains a flagrws(i) for as themaxnull parameter (LinEI3) in the Algorithfj 1.
each neighbot, and sets the flag whensaec appended  One pointto note here is that the partial mappings cannot
map message is sent o To assist this process, the ladbe pruned using the optimality criterion, i.e. the cost met-
acksent by a node to itsred whencount becomed), is ric. Even for the same prefix of the task, a lower cost map-
differentiated from regulanck using alastAck flag. A ping may later get pruned by the resource constraint while
node resets thenows(i) flag when it receives amck with  a higher cost mapping may survive. Thus greedy pruning

4 Algorithm for the Mapping Problem



of the mappings based on the cost metric may not yield

the optimal solution. However, analysis in the Secfion 4A90rithm 1 ProcessMap(m, T)

shows that such greedy pruning dramatically reduces tHe Input:

number of messages without sacrificing too much of thé:
optimality.
3:

4.1 Heuristic Approximations
We observe that, in the worst case, the mapping algo-

rithm in Algorithm[d may generate all possible source-
destination paths in the graph and try all possible combina-

The current node executing the method is denoted as
v. The sender of the messageuis

T =ty, ta, ..., tj7| denotes the ordered set of com-
ponents in the stream processing task. Egchas

an associated’(i) denoting processing requirement.
Each(¢;,t;+1) has an associate(i, 7 + 1) denoting

the required bandwidthmaxnull denotes the maxi-
mum number of empty hops allowed in the médpis
either found appended with the map message or from

tions of the task components on each of those paths. Suchthe stored state.

intractably explosive growth of complexity is expected be-:

cause the path mapping problem is NP-complete. For prac-

tical implementations, it may be desirable to sacrifice some
degree of optimality in favor of reduction in the complex-5:
ity. Here, we explore some heuristic techniques that re-
duce the complexity while producing good approximation
for the optimal solution.

0]

411 LeastCostMap 7:

On intuitive way of reducing complexity is to greedily gj
prune the exploration of many of the alternative paths and
mappings based on the cost metric. In teastCostMap 1o
heuristic, a partial mapping that has higher cost compargd
to a previously observed mapping of the same prefix-length
is pruned from further extension. To help this, each nodg,
for each task-mapping, maintains a table of the costs of the
least-cost partial mappings of each possible prefix lengths’
among the already observed partial mappings of the com-
posite task. The cost of the newly extended mapping in thg
Line[13 of Algorithn(1 is compared to that in the table and”
is sent to neighbors in Lirie P8 only if the new mapping hal%_
smaller cost. The cost in the table is updated accordingly.”

17:
18:
19:
In the greedy pruning of higher cost partial maps, it is pog0:
sible that the mapping that would lead to the optimal s@i:
lution is pruned while the allowed mapping does not meé#:

4.1.2 AnnealedL eastCostMap

the constraints in the later stages. One way to comprom&e
between the greedy pruning and the unpruned exponential

growth of mappings is to apply a kind of simulated an24:
nealing in the pruning process. A partial mapping of co&g:
higher than the already observed minimum is allowed f@f:
extension with a probability and the probability diminishe27:
exponentially with the growing prefix-length of the map28:
ping. This heuristic is hereafter denoteddasealedLeast- 29:
CostMapheuristic. Obviously, this approach increases tH#:
message complexity, with the hope that some of the no#i-
minimal partial mappings would possibly lead to a betté#:

m is the map message containing the mapping of the
first j services on a series of server nodgss called

the prefix-lengthof m.

For any nodeu, C,,(u) denotes the computational
capacity ofu. S(u) denotes the set of service com-
ponents served by. For a pair of nodes andw,

By (u,v) denotes available bandwidth in thHe,v)
channel.

. if no state forl’ or pred is undefinedhen

storeT from the message
createpred, count andknows

pred — U, count
VneigthTk,k¢uknows(k) «~— FALSE

<_

0; else

Sendack(REGULAR) tou
end if
forx=0to|T|—j—1do
if (@ = 0) or tj4o € S(v) and Cyp(v) >
25210 +a) + Vigt; mapped o3 C(i))
then
m, < map found by extending nextservices in
T onv
if v is the data-delivery node and ¢ = > |T)
then
storem,, in the list of a feasible maps
end if
else
break
end if
for each neighbok of v do
if (Bay(v,k) > B(j+x,j+z4+1))and (¢ > 0)
or (empty hops inn < max_null — 1)) then
if knows(k) =FALSEthen
knows(k) + TRUE
AppendT to m,
end if
Sendm, to k
count < count + 1
end if
end for
end for

complete mapping.



Algorithm 2 processAck(isFinal)

ack message received from neighhor
count < count — 1
if count = 0 andpred is not invalidthen
Sendack(FINAL) to pred
pred < invalid
end if
if isFinal = FINAL then
knows(u) < FALSE
end if

servers for the processing components of the tasks. Then
we compute the lowest cost path from source to the ter-
minal vertex, subject to the node-capacity constraintg.onl
Ignoring the bandwidth constraints allows lower cost so-
lutions that are not feasible in the actual problem. All the
feasible solution for the actual problem will be feasible in
the relaxed problem. So, the optimal solution of the re-
laxed problem will be a lower bound on the optimal cost of
the actual problem. We computed the ratio of the cost of
heuristic generated solutions to this lower bound cost.

To assess the cost of executing the heuristics, we
counted the total nhumber ahap messages exchanged
among the nodes. Because arrival of each map message in-
vokes the processing algorithm on the receiving node, the

Another way of resricting the message complexity is to tal computational cost is also proportional to the number

tend a partial map to a randomly chosen subsétrugigh- : i
bors instead of expanding to all of them. Higher value(z)éc map messages. Although we did not evaluate the mes

of k increases the chance of getting the optimal solutiof. o complexity of the exact algorithm, we have compared
. - O getling b We complexities of the heuristics, which helps to choose
The RandomNeighboheuristic withk = 1 did not pro-

ne heuristic over the others.
duce results as good as LeastCostMap, although num%er
of messages were reduced dramatically. Further investiga-

4.1.3 RandomNeighbor

- [ i 35
tion may be done to determine a suitable valug.of ———
AnnealedLeastCost %
3r RandomNeighbor %_)
4.2 Performance of the Heuristics L s
25 1

To choose one among the possible heuristics, we evalu-
ated them running the heuristics on an emulated network
of nodes. We tried to measure the quality of the approxi-
mate solutions generated by the heuristics as well as their§ 15| N
message overheads. The network topology was gener-
ated by BRITE Internet topology generator|[26], using the 1 " — —
Barabasi-Albert algorithni [27]. This generates a power- 80 40 50 60 70 80 90 100 110 120
law graph and the link bandwidths were sampled from a Network size (nodes)
truncated power-law distribution having mitzMbps and

tio to the optimal cost

(a) Quality of solutions

max=1Gbps. Computational capacities of the nodes were 30000 : —

1 i 1 i - it LeastCost —+—
randomly assigned from a d|s_tr|but|on of node-capacities AnnealedLoasiGost
of a volunteer computing projedt [28]. The nodes were 25000 - RandomNeighbor ---x:-- P

emulated as processes hooked to UDP ports in LAN-
connected computers. These virtual nodes communicated
among them using UDP packets. The network size was
varied from30 to 120 nodes. The tasks for mapping con-
sisted of10 components. The bandwidth and capacity re-
quirements of each task-component was sampled from a
Normal distribution with mean equal to th6% of the av-
erage link and code capacity of the network, respectively. 0
First, we attempted to evaluate how close the solutions
generated by the heuristics are to the exact optimal solu-
tions. Because it is computationally expensive to run the
algorithm that gives the exact optimal solution, we devised
an algorithm that computes a lower bound of the optimal
solution. We relaxed the bandwidth constraints and trans-
formed the problem into finding a optimal cost path in a Figure[7(a) shows that the heuristic derived solutions
multi-stage graph. The first and last stages resemble #ne fairly close to the lower bound of the optimal solu-
source and the terminal nodes. Each of the internal stajess. One can observe that both theastCostMapmnd
haven vertices, resembling the choice of any of the theAnnealedLeastCostMajeld solutions that are equally

20000

/X// T

15000

Message count

10000

5000 ¥ .

''''''''

— 1 1 1 1
30 40 50 60 70 80 90 100 110 120
Network size (nodes)

(b) Message overhead

Figure 7. Comparing three heuristics



very close to the optimal solutions. TRandomNeighbor
heuristic does not produce good solutions, because num-

ber of feasible ways to expand the partial maps narroWgyorithm 3 ProcessMap2(u, m, T)

down very quickly here. In terms of cost of computatior- Input: As described in Algorithrill

of the heuristics, we observe in Figyre 7(b) that numbey.
of map messages to complete mapping of a single tasks
composition is much higher in thennealedLeastCostMap .
heuristic than the other two heuristics. This is because, fq.
the chosen parameter setting, thenealedLeastCostMap .
extends many more of the alternative paths and mappings

compared to théeastCostMagheuristic. Analyzing both .

the results in Figurg 7(p) and Figdre 7(b), it may be cong. yga

cluded that the additional message overhead due to the Iagt:e
pruning in theAnnealedLeastCostMagoes not worth its

if no state fofT" or pred is undefinedhen

storeT from the message

createpred, count andknows

createM (1 : |T|)

pred — U, count — 0,
VneigthTk,k¢uknows(k) «~— FALSE

Sendack(REGULAR) tou

10: end if

gain in optimality. Finally, we chose thieeastCostMap 11: for # = 0to |T| — j — 1 do

heuristic for our distributed stream processing platform. .
4.3 Modifications for Bi-Modal Commu-
nication Links 13:
So far, in the design of the decentralized mapping algg;.
rithm, we did not consider the presence of the opportunistic
communication links. As mentioned in the system model.
in Sectior 2, each node is connected to the public Interngt
and can establish an end-to-end connection with any other
node. The presence of these all-to-all links require somg
modifications in theProcessMapprocedure described in o
Algorithm[d. 20:
Because, with opportunistic links, all other nodes in thg, .
platform are neighbors in terms of connectivity, sending af,.
extended maps to all neighbors in Lind 28RsbcessMap
would be inefficient, although it would work. Instead, af-
ter extending the mappings to all the dedicated link neighs.
bors, the mappings may be extended to a small subset,pf
the opportunistic-link-neighbors. To choose a subset, we
assume that each node has an approximate knowledge of
which node serves which service. We assume that there
exist a gossip mechanism to disseminate this knowledgg.
Note that the set of services available at a node changgs
much less frequently compared to arrival of individual task,
mapping requests. Moreover, this knowledge is used only.
for minimizing the overhead, thus its inaccuracy does ngj.
harm much other than missing some possible solutions.
Another point to note is that having all-to-all connectivy,.
ity, there is no meaning of mapping a hop of the task-
composition on multiple hops of opportunistic links, al-
though multi-hop dedicated connection is still preferable,,.
The final version of thérocessMaglgorithm that ap- 5.
plies theLeast CostMajeuristic and takes care of oppor-;.
tunistic links is presented in Algorithi} 3. The (1 : |T[) 5.
data structure (LinEl5) to store the costs of the minimungz.

if (z = 0) or tj4o € S(v) and Cyup(v) >
221 Ci+2) + Vigsti mapped on 3 C(i))
then
m, < map found by extending nextservices in
T onv
if v is the data-delivery node and ¢ = > |T|)
then
storem,, in the list of a feasible maps
end if
else
break
end if
if cost(my) < M(|myl|)) then
for each dedicated-link-neighbkrof v do
if (Baw(v,k) > B(j+z,j+z+1))and (¢ >
0) or (empty hops inn < max_null — 1))
then
if knows(k) =FALSEthen
knows(k) + TRUE
AppendT to m,
end if
Sendm, to k
count <+ count + 1
end if
end for
if z > 0then
for each nodé: such that provide the service
j+x+1do
if available uplink bandwidth to the Internet
> bandwidth need for service hop+z, j+
x + 1) then
Sendm, to k
end if
end for
end if
end if

cost mapping among the already observed partial maegg, end for

and the condition in Ling_20, are added for theast-

CostMapheuristic. The other additional code in Lides 31-
[37 handles the extension of the mappings through oppor-



tunistic links. Note that such extension is allowed onKxlgorithm 4 Link re-allocation algorithm

when at least one task-component is mapped on the cur- Invoked for each node periodically

rent node (Liné_31). Because it is not possible to allocate: Group the tasks that are being processed by their

end-to-end bandwidth in the opportunistic links, only the next hop server

uplink bandwidth is allocated. The end-to-end bandwidth: for Each group do

that a task actually gets is monitored and reactively alloa:  Compute the priority of each flow competing for a

cated in a continuous feedback loop, which we will discuss  (u,v) link as -

in the next section. 5. priority < budget per byte of processed data * band-
To devise an appropriate cost metric for choosing the  width required to comply with the target rate

best among alternative feasible maps, we considered tlee if any dedicated link:(,v) existsthen

following two factors - balancing the service workload7: Assign the dedicated link to top priority flows un-

among the servers and minimizing the uncertainty of us- til all capacity is used

ing opportunistic links. The load-balance factor fora mam:  end if

(or a partial map) is computed as an average of the server  Collect all the unassigned flows

load-factors (ratio of used capacity to total capacity) fan: end for

all the servers included in the map, and is always a numt for All the remaining flowsdo

ber betwee andl. A map with lower load-balance factor12:  if The budget permitg-hop (,v) dedicated link,

spreads the components of a task on different serversrather k> 1 then

than putting all of them into one, and chooses the undag: Launch a probe search and reserve multi-hop ded-
utilized servers. In case two maps have almost same load- icated path for the flow with maximui hops
balance factor, (do not differ by more tharl or 10%), 14 Assign public network bandwidth for the flow
then the one in which the number of hops (links connecting temporarily
the processing components) assigned to dedicated linkggs else
higher is preferred. If that is also same, the map with leass: Assign public network bandwidth for the flow
number of hops through public network is preferred.  17:  end if

18: end for

5 Adaptive Re-allocation of the Bi-modal

Links location of the links, tasks are grouped according to their
next hop server node (Ling 2). While prioritizing among

The dynamic link scheduler in each node is invoked peempeting tasks for each group (Ling§3-10), the sched-
riodically at regular intervals. Based on current evahrati uler tries to maximize the revenue earning of the server and
of locally observed performance, the scheduler re-alescaprefers the tasks marked with higher price per unit of pro-
the locally available link resources among the competirgssing. On the other hand, the server tries to fulfill the rat
tasks that are using this node. The overall policy of thiequirement of each task, because it gets penalized other-
scheduler is to prioritize the tasks for use of the netwowkise. Hence the scheduler computes the priority of each
links, based on their deviation from target data rate and tiask as a product of the apportioned price and the data rate
price they would pay for the data processing service. required in next scheduling epoch.

The links that carry the stream between two data pro-For each next hop group, highest priority tasks get allo-
cessing servers can be of three different types — i) a direation from the direct dedicated link, if such a link exists
dedicated link, ii) a multi-hop dedicated link through onand capacity permits (Linkl 7). The next prior tasks are
or more forwarding nodes iii) an overlay link through thassigned multi-hop dedicated links (Liries 13). The max-
public network. A mapping of a task may contain any conmum possible hops in such multi-hop links are restricted
bination of these three types of links between the proceby-the apportioned price for that service according to the
ing nodes. Among them, the direct dedicated links are tta&sk specification. The remaining tasks from all the groups
most preferred one, because they provide controlled saré allocated bandwidth from the opportunistic public net-
stable data rate. A multi-hop dedicated link provides simiork links (Line[16).
lar control and stability, but it costs more (Secfiod 2.H)eT
third possibility is having an overlay link through the pub5.1 Is Adaptive Re-Allocation Neces-
lic network. The flow rate is variable over such links, but sary?
there is no additional cost for sending data through them.

So, the nodes try to opportunistically use these links whenSo far, we have argued that due to the inconsistent be-
dedicated links are overloaded or not available. havior of the opportunistic links, it is necessary to real-

Algorithm[4 is executed when the scheduler is invokddcate the link resources periodically in a feed-back loop.
at regular intervals. The algorithm evaluates the For &lere we asses the necessity of such re-allocation quantita-



tively. and the standard deviation of the log-ratio set,ah 95%

The main intuition behind introducing dynamic reef the cases the observed bandwidth remains between one
allocation is that the data-stream that goes through the ptdurth 2729) and four time £27) of the allocated or mean
lic network suffers from the variability and lag from thébandwidth. Bandwidth of each last-mile connection (up-
target rate, whereas the stream that uses dedicated liitksand downlink) is randomly assigned betwelehbps
all-through, does not lag from the target at all. Dynamand2 Mbps.
scheduling introduces fairness across all the tasks. So ifn addition to the public network links, the servers are
link assignment is done dynamically, it is expected to inmterconnected through dedicated links (which may be
prove the utilization of the resources and increase the oMeased lines or privately installed links). For the dedi-
all work-throughput of the system. cated network, we assume a preferential connectivity based

For the evaluation we usedl@0-node simulated streamnetwork growth model similar to the one proposed by
processing platform. Details of the simulation set-up is dBarabasi et al [27]. The basic premise here is that when
scribed later in Sectidn 8.1. We fed the same workloadacserver attempts to establish a dedicated link, it does so
two system set-ups, both having bi-modal communicatipreferably with the most connected server. This eventually
networks. In one, we disabled the adaptive re-allocationresults in a power law degree distribution in the network.
links and let the tasks complete with the initial assignme¥ife assumed that server CPU capacity is proportional to
of links and nodes. The adaptive re-allocation is enabledie number of dedicated links it has. The variety of ser-
the other. All other system parameters were the same ¥ines that a server can host is also proportional to the node
both the set-ups. From Figuifes 8(a) we observe that oveg@gree or capacity. The dedicated links have much higher
system throughputincreases with adaptive re-allocagien pandwidth than the network links connecting a node to the
an indication of higher task acceptance ratio and higher ytiiblic network. Their bandwidths were randomly assigned
lization of the system resources. Figlire 8(b) demonstralpesweenl Mbps andl0 Mbps and the propagation delays
that adaptive re-allocation results in much higher utilizavere assumed to be betweemnd 10 milliseconds. The
tion of the dedicated links. CPU utilization remains urpropagation delay of an end-to-end connection through the
changed (not shown), because the dynamic re-allocatisublic network was much higher and assumed to be be-
does not alter the node assignments. Another rationt#een10 and100 milliseconds.
behind re-allocations is to increase fairness and improvdJnless otherwise mentioned, we assumed the platform
compliance with the target delivery rate. Figiire B(c) shows havel00 server nodes anh dedicated links intercon-
that irrespective of workload, the adaptive re-allocatien necting them. There wer25 different types of services.
creases the deviation from the specified target rate. As the service variety is proportional to the node degree, a
node having! dedicated links was assumed to hbst d
different types of services (one added for public network
link). Server CPU capacity was set such that it can exe-
cutek instances of each service concurrently, according to
6.1 Simulation Model the mean data delivery rate. We g¢et= 2. For the task

workload, each task is assumed to hageservice compo-

We constructed a simulation model of the distributatents, randomly chosen fro2s different types of service.
stream processing platform according to the architectiviean data delivery rate waldvibps and total amount of
and algorithms presented in Sectiéhs 2[@nd 3, respectiveta to be processed from the source WagMB on av-

The model was build on Java based simulation engiekage. Each data point on the results shown below is an
JiST [29]. average ofl 00 observations from different experiments on

Each of the servers in distributed locations are connectaddomly generated networks with specified parameters.
to the public Internet. Although each server has a cert&iar each experiment, a synthetic workload trace contain-
uplink and downlink bandwidth, the data rate over a comg 500 stream processing tasks were generated. The task
nection that goes through the public network faces temmorival process is assumed to be Poisson, with the arrival
ral variation. We use the statistics presented by Wallericite varying across the experiments. If not mentioned oth-
and Feldmann[[30] to model the temporal variability cfrwise, the default arrival rate wée tasks per hour.
the end-to-end capacity of a path through the public net-
work. From their data collected from packet level tracés2 Benefits of Combining Opportunistic
from core routers of two major ISPs over 24 hours, the and Dedicated Resources
logarithm of the ratio of the observed transient flow rate
to the mean flow rate over long period is almost a Nor- We performed several sets of experiments to evaluate the
mal distribution. In our simulations, all flows on the publibenefits of using bi-modal networks for stream processing
network are perturbed eveiy) milliseconds according totasks. In the experiments, we compare three possible set-
this model. With the allocated bandwidth as the mean rditegs — i) a network with the dedicated links only, ii) public

6 Performance Evaluation and Discussion
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Figure 8. Effect of dynamic scheduling
network only, and iii) a network that combines both. added because the workload is held constant.

First argumentin favor of a bi-modal network for stream
processing is that combining the public network with

dedicated links, the system achieves_ much higher WF’rk'l'he discussion above highlighted the benefits of using
throughput at the same cost. To examine this, we fed S)IP-I

) ) ublic network towards improving the utilization of dedi-
ilar workload traces under same arrival rates to two s

ith onlv dedi ink based qted server and link resources (i.e., increases in return o
tem set-ups, one with only dedicate link based networ estment). Next we investigate how the bi-modal net-

and _the other using the pombination of dedicated links an tk helps the stream processing platform to improve the
public network. From Figurg 9(b) we observe that for tr‘t‘?)mpliance with the services contracts it has with indi-

§ame workload, if the platform uses dedicated links _On{ymlual tasks. We measure the compliance of the stream
it needs more tham20 links to get50% acceptance ratio, processing platform as follows. Each task request speci-

whereas the same acceptance ratio can be obtained Witli 5 time windowr” that is used to monitor the delivery

50 dedicated links only, if the public network is utilized in 50 “\ve measured the deviation from the required rate as
conjunction. Similar evidence in Figure 9(a) shows thatng;H _ B-E \yhereR is the desired rate and
clusion of the public network helps to achieve same overatfover all windows 5

system throughput at much lower number of dedicated lik'S the observed rate of delivery. In Figyre 9(g), we ob-
installations. serve that use of dedicated links brings the percent devia-

The next argument is that utilization of the privately déi_o_n down to between0% and20% from above50%. In

ployed expensive dedicated resources such as serverstglﬁocase the number of mstalled dedicated links was just
dedicated links is increased, if inexpensive public netwo?noth to make a spanning tre_e _Of t.he nodesN.e 1
is used in conjunction. From Figufe 9(c) we observe thléﬁks for_N nodes. Note that deviation is cou_nted on.the ac-
when a combination of dedicated links and the public n&EPted jobs only. So, even though for a dedicated link only
work is used, the server utilization is higher than the sd?ﬁtwork’ the d_ewatlon is almost zero, we have seen th_at
of utilizations of cases using a single type of network I'Lnk§_UCh network is unable_to acept enough jobs to fully uti-
Figure§ (&) anfr 91f) show another evidence of highIézre_the_resour(_:es. In Figufe 9(h), we observe that the de-
return on investment. In Figufe 9(e), we observe that gfgtion in the p|-modql system gets closer to zero as more
utilization of dedicated links becomes consistently high%nd more ded|cat§d links are aned tq the_netwqu. How-
across a wide range of loading scenarios if the public neter t_)eyond cert_aln numberof_llnk$26 n th'.s particular
work is used in combination. The lower utilization in CaS%xperlment), the improvementis very marginal.
of a dedicated link only network results from the fact that
the platform has rejected many task requests that would
have been feasible by the augmentation of the public re\WWhen we use a combination of dedicated and public
sources. Figurg 9({f) shows the variation of utilization dinks, it is expected that the completion time of each task
the dedicated links with the number of dedicated links. Wall be slightly elongated compared to a system with only
observe that the difference in utilization diminishes as thedicated links, due to the variability in the public netlwor
number of installed links increases. This is because whdavertheless, using the combination contains the elonga-
there is sufficient number of dedicated links to carry thi®n to a small value, compared to the case where only
required traffic of all the tasks, the public resources ate mublic network is available. In Figufe (i), we observe a
used at all, and the bi-modal system becomes equivalent@o— 20% increase in the execution time in the bi-modal
a dedicated link only system. In both cases, utilization sfstem, whereas execution time would & — 300%
the links keeps decreasing when more and more links arere in case of a public network only system.
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Figure 9. Comparing bi-modal and uni-modal networks

7 Related Work agreements.

Recently, in[[32], Das et al. have proposed the use of

. . dedicated streaming servers along with BitTorrent, to pro-
Although there is a vast body of literature on resourc . ! . .
. . ; vide streaming services with commercially valuable qual-
management in cluster, Grid or peer-to-peer hosting plat- . S .
. [ty assurances while maintaining the self scaling property
forms, there have been relatively a very few works th BitTorrent platform. With analytical models of Bit
proposes combined use of dedicated and public resources P : Y

In [31], Kenyon et al. provided arguments based on mat orrent and dedicated content servers they have demon-

. . ; . _Strated how guaranteed download time can be achieved
ematical analysis, that commercially valuable quality aﬁ]
u

. rough augmentation of these platforms. However, their
sured services can be generated from harvested public .

. : . roposal does not include actual protocols that can be used
computing resources, if small amount of dedicated com-

puters can be augmented with them. With simple modé?sacmeve these performance improvements.

for available periods of harvested cycles, their work haveArchitectures and resource management schemes for
measured the amount of dedicated resources necessagjstivibuted stream processing platforms have been studied
achieve some stochastic quality assurance from the plat-many research groups from distributed databases, sen-
form. However, they did not study how a bi-modal plasor networks, and multimedia streaming [1/ 2] 5, 3]. In
form would perform in the presence of clients with difdatabase and sensor network research, the major focus was
ferent service level agreements and how to engineer filacing the query operators to nodes inside the network
scheduling policies to maximize the adherence to thebat carries the data stream from source to the viewer [7].



In multimedia streaming problems, similar requiremenpgrticular, we examined how a hybrid platform made up of
arise when we need to perform a series of on-line opededicated server resources and bi-modal network resources
tions such as trans-coding or embedding on one or m@dedicated plus public) can be used for this class of ap-
multimedia streams and these services are providedgigations. From the simulation based investigations, we
servers in distributed locations. In both cases, the mawere able make several interesting observations. First, bi
problem is to allocate the node resources where certaindal networks can improve dedicated resource utilization
processing need to be performed along with the netwdderver plus dedicated network links). This means higher
bandwidths that will carry the data stream through thessturn on investment can be obtained by engaging the bi-
nodes. modal network. Second, the overall system is able to admit
Finding the optimal solution to this resource allocatioand process tasks at a higher rate compared to system con-
problem is inherently complex. Several heuristics hafigurations that do not leverage a bi-modal network. Be-
been proposed in the literature to obtain near-optimalso@i@use the public network is engaged at zero or very low
tions. Recursive partitioning of the network of computingost, this improvement in throughput can be result in sig-
nodes have been proposedinl[15] &nd [4] to map the streaificant economic gain for institutions that perform data
processing operators on a hierarchy of node-groups. Tisétgam processing workloads. Third, the engagement of
have demonstrated that such distributed allocation of ké-modal network comes at a slight overhead that adds low
sources for the query operators provides better respodeiys in stream processing tasks. Compared to public-
time and better tolerance to network perturbations comnly networks the delays provided by the bi-modal net-
pared to planning the mapping at a centralized location.work is almost negligible. Fourth, dynamic rescheduling
In [33] and [8], the service requirements for multi-stejs essential to cope with varying network conditions — par-
processing of multimedia streams, defined in terms of séieularly in the public network. The dynamic reschedul-
vice composition graphs have been mapped to an oveileg algorithm switches the flows according to the recom-
network of servers after pruning the whole resource n@uted priority values to achieve the best service level com-
work into a subset of compatible resources. The mapiances.
ping is performed subject to some end-to-end quality con-In summary, our study highlights the benefits of the bi-
straints, but the CPU requirements for each individual serodal architecture for compute- and network-intensive ap-
vice component is not considered. Liang and Nahrstgdications. Moreover, it provides simple distributed algo
in [12] have proposed solutions to the mapping probletithms that allows the effective utilization of such a plat-
where both node capacity requirement and bandwidth ferm for data stream processing applications. Deploying
quirements are fulfilled. However, one of the assumptioti®e distributed resource management framework in an ac-
made by Liang and Nahrstedt was that the optimization &#al prototype for data stream mapping is a possible future
gorithm was executed in a single node and complete ste@rk.
of the resource network is available to that node before ex-
gcution. Ina Igrge scale dynamic network this asgumptipgbferences
is hard to realize. If we assume that each node in the re-
source network is aware of the state of its immediate neigh- . .
borhood only, we need to compute the solution using a dii-l] T Repantis, . Drougas,_ z_;md V. Kalogeraki, Adap-
tributed algorithm such as ours. t|\{e (;omponentComposmon_ and Logd Bglancmg for
. Distributed Stream Processing ApplicationBger-
In all of the abovementioned works, the operator nodes ! 2
. S to-Peer Networking and Applicationsol. 2, no. 1,
are assumed to interconnected through an application de-
X pp. 60—74, Mar. 2009.
pendent overlay network using the Internet as underlay.

In [34], Gu and Nahrstedt presented a service overlay Ngb] A. Benoit, H. Casanova, V. Rehn-Sonigo, and
work for multimedia stream processing, where they have * v Ropert.  “Resource Allocation for Multiple

shown that dynamic re-allocation of the operator nodes concurrent In-Network Stream-Processing Applica-
provides better compliance with the service contracts in tions,” INRIA, France, Tech. Rep. RR-6864, Feb.
terms of service availability and response time. However, 2009, http://arxiv.org/abs/0903.0710.

none of the works have proposed the use of dedicated links

in conjunction with IP overlay network for improving ad- [3] J.-H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and
herence to the service contracts. Highly-Available Stream Processing over Wide Area
Networks,” in IEEE 24th International Conference
on Data Engineering (ICDE)Apr. 2008, pp. 804—

8 Conclusion 813,

In this paper, we investigated the resource managemdd{ S. Seshadri, V. Kumar, B. F. Cooper, and L. Liu, “Op-
problem with regard to data stream processing tasks. In timizing Multiple Distributed Stream Queries Using
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