
ar
X

iv
:0

90
3.

41
00

v1
 [

cs
.D

C
]

24
 M

ar
 2

00
9

Decentralized Management of Bi-modal Network Resources
in a Distributed Stream Processing Platform

Shah Asaduzzaman
School of Information Tech. and Engg.

University of Ottawa
Ottawa, ON, K1N 6N5, Canada

Email: asad@site.uottawa.ca

Muthucumaru Maheswaran
School of Computer Science

McGill University
Montreal, QC H3A 2A7, Canada

Email: maheswar@cs.mcgill.ca

Abstract

This paper presents resource management techniques
for allocating communication and computational re-
sources in a distributed stream processing platform. The
platform is designed to exploit the synergy of two classes of
network connections – dedicated and opportunistic. Pre-
vious studies we conducted have demonstrated the bene-
fits of suchbi-modalresource organization that combines
small pools of dedicated computers with a very large pool
of opportunistic computing capacities of idle computers to
serve high throughput computing applications. This pa-
per extends the idea of bi-modal resource organization
into the management of communication resources. Since
distributed stream processing applications demand large
volume of data transmission between processing sites at
a consistent rate, adequate control over the network re-
sources is important to assure a steady flow of processing.
The system model used in this paper is a platform where
stream processing servers at distributed sites are intercon-
nected with a combination of dedicated and opportunistic
communication links. Two pertinent resource allocation
problems are analyzed in details and solved using decen-
tralized algorithms. One is mapping of the processing and
the communication tasks of the stream processing work-
load on the processing and the communication resources
of the platform. The other is the dynamic re-allocation of
the communication links due to the variations in the capac-
ity of the opportunistic communication links. Overall opti-
mization goal of the allocations is higher task throughput
and better utilization of the expensive dedicated links with-
out deviating much from the timely completion of the tasks.
The algorithms are evaluated through extensive simulation
with a model based on realistic observations. The results
demonstrate that the algorithms are able to exploit the syn-
ergy of bi-modal communication links towards achieving
the optimization goals.

1 Introduction

Many applications on the Internet are creating, manip-
ulating, and consuming data at an astonishing rate. Data
stream processing is one such class of applications where
data is streamed through a network of servers that operate
on the data as they pass through them [1, 2, 3, 4, 5, 6, 7].
Depending on the application, data streams can have com-
plex topologies with multiple sources or multiple sinks.
Examples of data stream processing tasks are found in
many areas including distributed databases, sensor net-
works, and multimedia computing. Some examples in-
clude: (i) multimedia streams of real-time events that are
transcoded into different formats [8], (ii) insertion of infor-
mation tickers into multimedia streams [9], (iii) real-time
analysis of network monitoring data streams for malicious
activity detection [10], and (iv) function computation over
data feeds obtained from sensor networks [4].

One of the salient characteristics of this class of appli-
cations is the simultaneous demand for high-throughput
computing and communication resources [11]. Huge vol-
ume of data generated at high rates need to be processed
within real-time constraints. Moreover, various operations
on these data streams are provided by different servers
at distributed geographic locations [12]. All these fac-
tors demand a scalable and adaptive architecture for dis-
tributed stream processing platform, where fine-grained
control over processing and network resources is possible.

Earlier works on stream processing engines [13, 14] re-
sorted to centralized single-server or server-cluster based
solutions where tighter control over available resources is
possible. With the possibility of different processing ser-
vices or operations being provided by different providers,
need for distributed stream processing platform arose. Sev-
eral architectures have been proposed to support such dis-
tributed processing of streams [11, 15, 12, 16]. Due to the
stringent rate-requirement for processing and transmission
of data, most researchers have assumed a central resource
controller that can gather the availability status of all re-

http://arxiv.org/abs/0903.4100v1

sources and map the requested tasks on them. However,
with the advent of a diverse range of stream processing
services, it is important to allow autonomous providers of
services to collaborate and share their resources. Thus it
is important to develop decentralized resource allocation
schemes, where control is available over local resources
only.

While it is feasible to have dedicated server resources
and precisely allocate them for processing tasks, dedicated
networks over wide-area installations remain costly. Al-
though it is possible to propagate the data streams through
the distributed servers using the Internet, the lack of ad-
equate control over end-to-end bandwidth on the Inter-
net and the stringent rate requirements of the stream pro-
cessing applications demand some dedicated network re-
sources. In fact, recent advances in optical network tech-
nologies such as user-controlled light path [17, 18] open
the possibility of on-demand provisioning of end-to-end
optical links with total control of the available bandwidth
is exposed to the user application.

In this paper, we explore a novel approach where a
combination of dedicated and opportunistic communica-
tion links is used to interconnect the servers. The main fo-
cus of this paper is to explore how such a hybrid (denoted
as bi-modal in this paper) network can be best used for
data stream processing tasks. The hypothesis that drives
this work is that the combination has a synergistic effect
that allows better utilization of the dedicated resources,
and yields higher return on investment. We devised dis-
tributed algorithms for allocation of these hybrid resources
to demonstrate the viability of this synergy hypothesis.

Multiple global objectives such as higher task through-
put, lower violation of SLA and higher utilization of ded-
icated resources make the resource management a com-
plex task, especially when allocation decisions are to be
taken solely based on the local information available on
the server nodes. We divided the overall resource man-
agement process into two steps – initially individual tasks
are assigned node and link resources through a distributed
mapping algorithm. Based on actual resource availabil-
ity, link resources are then periodically re-allocated locally
among competing tasks towards the global optimization
objectives.

This paper extends some of our previous works [19,
20] on bi-modal compute platforms where static small
pool of dedicated compute-servers was combined with a
large number of opportunistically harvested cheap pro-
cessing elements to increase work throughput and utiliza-
tion of dedicated resources. Using data stream process-
ing tasks as a concrete example, this paper demonstrates
the benefit of using bi-modal network infrastructures for
communication-intensive applications. In particular, this
paper makes the following contributions to this important
resource management problem:

• Show that the bi-modality of the network helps to im-
prove the utilization of dedicated resources such as
servers and network links.

• Show that the bi-modal organization allows the plat-
form to admit significantly larger workload and
yield significantly higher throughput without deviat-
ing much from the service contracts.

• Show the importance of adaptive scheduling to cope
with the variability in the capacity of the opportunistic
network.

In Section 2 we present the system model for the dis-
tributed stream processing platform and assert the neces-
sary assumptions. Section 3 introduces and characterizes
the two resource management problems pertinent to the
platform – the problem of mapping the tasks to the re-
sources and the problem of periodically re-allocating the
resources to adapt with the ever-changing behavior of the
opportunistic resources. Section 4 explains our proposed
solution to the mapping problem. Section 5 explains the
algorithm for periodic re-allocation of the communication
resources. The algorithms presented in both the Section 4
and Section 5 are local algorithms engineered to gradu-
ally achieve some global optimization objectives such as
high throughput and resource utilization. In Section 6, we
evaluate through extensive simulations the extent to which
these global objectives are achieved by the algorithms. We
then conclude with a discussion of related literature in Sec-
tion 7.

2 System Model and Assumptions

2.1 System Model

In a stream processing task, the data stream originating
from adata-sourcenode, progresses through several steps
of processing, termed asservice components(or service
in short), before being delivered to thedata-deliverynode.
For example, in video streaming, the service components
may be encoding of video, embedding some real time tick-
ers and transcoding the video into different formats. Al-
though, in very general terms, the data-flow topology could
be arbitrary graphs, in this paper, we restrict our study to
simple path topologies.

The distributed stream processing platform consists of
several autonomous server nodes that serve the service
components. A single server may serve multiple services
and a service may be available at multiple servers. Several
pairs of servers establish dedicated point-to-point linksbe-
tween them to have the flow of the data streams at a con-
trolled rate. Each server is also connected to the public In-
ternet and end-to-end TCP connection can be established
between any pair of servers through the Internet. How-
ever, with the Internet, end-to-end bandwidth of the TCP

connections cannot be allocated and the flow rate cannot
be controlled. These connections are thus treated asop-
portunisticresources. Both the dedicated and opportunis-
tic links are assumed to be bi-directional and of symmet-
ric capacity, for both data-transport and control messaging
purposes. The assumption on the bi-directionality of data-
transport is not absolutely necessary for such platforms,
the assumption is rather made for the convenience of dis-
course.

The platform is modeled as an asynchronous message
passing distributed system, where there is no centralized
controller to coordinate the resources. The servers have
knowledge of and can precisely allocate the local resources
only, i.e. the processing capacity of the node and the band-
width of the outgoing communication links. However, the
servers comply with the global protocol and respond to a
predefined set of messages in a predefined way. The objec-
tive of the global protocol is to ensure adequate resources
for each individual task for its seamless progress, and to
maximize the global work throughput. Other factors such
as balancing the load among different servers and maxi-
mizing the utilization of dedicated resources are also con-
sidered. Design and evaluation of the protocol constitute
the remaining sections of the paper.

Figure 1 illustrates a scenario of a stream processing
platform containing five servers. The example stream pro-
cessing task shown in the figure requests a data stream
from data sourced2 to be processed through servicesa2,
a3, a4 anda5, and to be delivered toS1. This task may be
served by the serversS4 (servingd2), S3 (servinga2), S2

(servinga3 anda4). Either dedicated link or public net-
work may be used to transmit the data stream between any
two consecutive servers.

For convenience, the resource allocation process is di-
vided into two phases. First, individual tasks with multiple
service components are mapped on the processing servers
fulfilling the processing and transport capacity require-
ments. A cost function is used to select the best among
multiple feasible maps. The second phase re-allocates the
link bandwidths among competing tasks, after the tasks
start execution based on the initial allocation. This is nec-
essary because of the variability of data rate in the end-
to-end TCP connections on the Internet. Both the re-
allocation phases and initial allocation are driven by the
same global optimization goal, namely maximization of
global throughput and resource utilization, subject to ful-
fillment of individual task requirements.

2.2 Architecture

The stream processing platform can be viewed to be
composed of the layers showed in Figure 2, with user ap-
plications at the top. The applications are composed of data
sources and several service components hosted by differ-
ent servers. Therefore, the service components constitute

the next layer. At the bottom layer, the resource manage-
ment system (RMS) of the platform manages the available
server and network resources to allow seamless execution
of the service components. The main focus of this paper
is to design and analyze the algorithms for various func-
tionalities of the RMS layer. The RMS is responsible for
mapping of the task requests on available resources and dy-
namically adapting the resource allocations in response to
various loading conditions. The two components of RMS
cooperate to achieve these functionalities. A detailed dis-
cussion on the RMS is presented in Section 3. RMS uses
the local operating system API to control the underlying
resources. Hence host OS and physical resources lie at the
bottom of the layered architecture.

2.3 Task Specification

The specification of the stream processing task includes
the ordered sequence of service components, the data
source node, the data delivery node and the desired rate
of data delivery. We assume a rate based model to specify
resource requirement for each service component. For any
service, both the output data rate and the CPU requirement
are proportional to the input data rate, and are specified by
two factors – thebandwidth shrinkage factorand theCPU
usage factor, respectively. We assume that these two fac-
tors for any service component is known globally. Thus
any node receiving the task specification can compute the
CPU and input/output data rate requirements for each ser-
vice component. This rate based model is similar to the
ones used by Kichkaylo et al. [16] and Drougas et al. [11].

The task specification is aservice level agreement(SLA)
between the user and the platform. On receiving the re-
quest for resource for a task, the platform attempts to allo-
cate necessary resources. The platform may be unsuccess-
ful to allocate all necessary resources due to the loading
condition of the platform, and the task may be rejected as a
result. Once the task is accepted after successful resource
allocation, it is responsibility of the platform to meet the
constraints specified in the SLA.

2.4 Pricing and Revenue Flow

We assume a rate based pricing for the services. The
task specification includes a price per byte of data deliv-
ered. This price quote is directly translated to apportioned
revenue for each of the service components, using the CPU
usage and bandwidth shrinkage factors. The server that
serves a service component receives revenue for each byte
processed at this apportioned rate. In some cases, some
server may need to forward the data without any process-
ing, due to the particular task-to-resource mapping chosen.
We assume there is a universally defined price charged by
any server for per byte of data forwarding. Because the
data forwarding path for servicei to servicei+1 is chosen

Public Internet

processing/data
server

d
e
d
ic

a
te

d
lin

k

sample task: d
2

a
2

a
3

a
4

a
5

s
1

S
1

[a
2
, a

3
]

S
2

[a
2
,a

3
,a

4
,a

5
]

S
3

[a
2
,a

4
]

S
4

[a
3
,d

2
]

S
5

[a
1
,d

1
]

Figure 1. Stream processing platform

Host OS

RMS

Component Services

User application

Physical Resources

Map
Manager

Resrvation
Manager

Dynamic
Scheduler

Figure 2. Layered architecture

by the server of servicei, it is assumed that any forward-
ing price incurred before reaching the server serving the
(i+ 1)th service is paid by the previous server.

3 Decentralized Management of Server and
Network Resources

A resource management engine (denoted as RMS agent)
runs in each server that implements the protocols for co-
ordinated allocation of network and CPU resources. The
resource management process is divided into two phases
– initial mapping of individual tasks and dynamic re-
allocation of the resources among competing tasks. Ac-
cordingly, each RMS agent has two modules – a map man-
ager and a dynamic scheduler. This section defines the two
problems in details and illustrates the global picture thatin-
tegrates these two phases for global resource management
objectives. The following two sections discusses the pos-
sible solutions to these problems.

A user of the distributed platform uses one of the server
nodes as a portal to launch her stream processing task. The
task specification submitted to the portal contains the ad-
dress of data stream source and an ordered list of the ser-
vice components that should process the data stream. By
default the delivery point (destination) of the stream is the
user’s portal node, but any other node can be specified as
well. The specification also includes the required rate of
data delivery, time window for monitoring the rate and
pricing for each byte of data delivered. The parameters
such as data rate and pricing may be negotiated between
the user and the portal through an automated SLA negoti-
ation protocol, details of which is out of the scope of this
paper.

After receiving the specification from user, the portal
node initiates the mapping process by sending a map mes-

sage with the initial mapping and the requirement specifi-
cation to the data-source node. Through message passing
among the map managers in different server nodes, the dis-
tributed mapping algorithm results in a set of feasible maps
at the map manager of the data-delivery node. Each of the
maps defines a path from the data source node to the de-
livery node through the server nodes that serve necessary
service components. The best among the available feasible
maps according to a certain cost metric is selected. We as-
sume that the cost metric is additive and the cost is incurred
at every node and link used by the task.

A reservation probe is then sent from the data-delivery
node to the data-source node along the path found in the
selected map. The RMS agent at each server node along
the path tries to allocate the server and link resources pre-
scribed by the map. Because the mapping process for
multiple tasks may be ongoing concurrently, it is possi-
ble that the required resource is no longer available. In
such case the allocation fails, the probe is rolled back and
the next feasible map is probed by the data-delivery node.
The streaming and the execution of the stream processing
task begins once a successful probe reaches the data-source
node at the other end. The message flow of mapping and
reservation is illustrated in Figure 3.

3.1 The Mapping Problem

Abstracting away the details of the two classes of com-
munication links and different types of service, the map-
ping of a stream processing task on the network of servers
can be described as a problem of constrained mapping of a
weighted directed path on a weighted undirected graph.

The network of servers can be defined as a graphGR =
(VR, ER). Each vertexvR ∈ VR, denotes a server that
has an available computational capacityCav(vR). Each
edgeeR ∈ ER denotes a data transport link with an

Data-

source

node

Data-

delivery

node

Map
Re
se
rv
e

Ro
llb
ac
k

da
ta
-s
tre
am

R
es
er
ve

Figure 3. Mapping, reservation and rollback

a
2

b
3

c
2

a
3

b
4

c
3

public network

S
1

S
3

S
2dedicated

link

Figure 4. Dynamic scheduling of link re-
sources done by server S1 on three com-
peting task segments a2-a3, b3-b4, c2-c3

available bandwidthBav(eR). Each edgeeJ also has
an associated additive costW (eR). The stream pro-
cessing task can be defined as a pathPJ = (VJ , EJ),
VJ = v0 = sJ , v1, v2, ..., vm = tJ and EJ = {ei =
(vi, vi+1)|0 ≤ i < m}. Each vertexvi, 0 ≤ i ≤ m of
the stream processing task has a computational capacity
requirementCreq(vi), and each edgeei = (vi, vi+1), 0 ≤
i < m has a bandwidth requirementBreq(ei).

The problem is to find mappingsMv : VJ → VR and
Me : EJ → PR, wherePR is the set of all possible
paths in the resource graphs, including zero length paths.
The second mappingMe is needed because a server node
can act as forwarding nodes and thus, each edge inEJ

can potentially be mapped on a multi-hop pathpR in GR.
Also, multiple vertices fromVJ can be mapped on a sin-
gle vertex ofVR, which essentially maps edges fromEJ

on zero length paths, i.e.(v, v) paths with infinite band-
width and zero cost. Again, it is allowed that for two dif-
ferent edges,e1, e2 ∈ EJ , the mapped pathsp1 = Me(e1)
andp2 = Me(e2) have some common edges. The map-
ping of the source node and the sink node is already given:
M(sJ) = sR|sR ∈ VR andM(tJ) = tR|tR ∈ VR.

The mapping has to fulfill the following constraints on
processing capacity and bandwidth –

∀vR ∈M(vJ),
∑

{vJ |vJ∈VJ ,M(vJ)=vR}

Creq(vJ) ≤ Cav(vR)

∀eJ = (u, v) ∈ EJ , B(eJ) ≤ min[B(eR), eR ∈Me(eJ)]

The constraints define the decision problem – “Is there
anyM andMe that satisfies the constraints?”. This prob-
lem can be proved to be NP-complete by transformation
to the longest path problem [21]. The details of the proof
can be found at [22, 23]. When the result of the decision
problem is true, there can be multiple feasible mappings
that satisfies the constraints. To choose a single mapping

among the feasible ones, we can formulate a correspond-
ing optimization problem, where each edgeeR ∈ ER in
the resource graph has an additive costW (vR). The objec-
tive would be to find the feasible mapping that minimizes
the total costW =

∑
W (pR)|pR ∈ Me(u, v)∀u, v ∈ VJ .

CostW (pR) of a pathpR is the sum of the costsW (eR)
of all edgeseR in pR.

Figure 5 shows an example resource network of eight in-
terconnected computing nodes. Computational capacity of
each node is represented by a number inside the node. The
link bandwidth(B) and costs(d) are mentioned on each
edge. An example stream processing task of path topol-
ogy with one sources, one sinkt and three computational
nodesx1, x2, x3 is shown in Figure 6, with the node capac-
ity and bandwidth requirements.s andt must be mapped
onB andF , respectively. There can be many feasible map-
pings of this dataflow computation on the resource graph
in Figure 5. One of them is –

M(s) = B

M(x1) = B

M(x2) = B

M(x3) = D

M(t) = F

Me(s, x1) = (B,B)

Me(x1, x2) = (B,B)

Me(x2, x3) = (B,D)

Me(x3, t) = (D,F)

this is also the optimal solution in terms of total end-to-
end cost between the resource nodesM(s) andM(t).

We developed a decentralized algorithm that finds the
exact solutions to the problem. As the problem is NP-
complete, some approximation scheme is also proposed.
The algorithm and approximation schemes are discussed
in Section 4.

[b]

20

20

20

20

20

50

20

100

A

B

C

D
 F

E

G

H

b=10

d=2

b=20

d=1

b=10

d=3

b=20

d=1

b=10

d=2

b=20

d=1
 b=10

d=3

b=10

d=1

b=10

d=2

b=10

d=1

b=10

d=2
b=10

d=1

Figure 5. An example resource network

[b]

10
 5
 5

15
 10

b=15
 b=5

b=5

b=10

s
=B

t
=F

x
1
 x
2

x
3

Figure 6. An example stream processing
task with a path topology

3.2 The Dynamic Re-allocation Problem

Allocation of the server and link resources by the map-
ping process would suffice, if all the resources were ded-
icated and under total control of the platform. Because
the data rate over the links through the public network are
variable and not under direct control of the platform, a con-
tinuous adaptive allocation of the resources is necessary.

To minimize the overhead, it is desirable that the re-
allocation is done based on local information, otherwise a
state-dissemination protocol will be necessary. The global
objective of re-allocation is to maximize global processing
throughput and keep the data-delivery rate for each task
as close as possible to the SLA defined delivery rate. Lo-
cally, each server can monitor the rate at which it processes
data for each task using one of its services and the rate it
transmits data to the next service for each task. This in-
formation can be used to determine how closely the task
is progressing compared to the SLA defined rate, because
delivery rate is directly defined by the rate of processing
by each service component. Maximizing the compliance
at each server will imply maximum compliance at the de-
livery point.

However, it is hard to know the global throughput of
the processed data from each server. We attempted to de-
vise some local objectives, achieving which would lead
to achievement of the global objective. Recall that each
server allocates local resources autonomously and also
each server is paid for each byte of data it processes. Ra-
tionally, each server would be inclined towards maximiz-
ing its own revenue. We devised the allocation policy so
that it is consistent with such rational inclination of the
servers. The expectation is that maximization of the local
revenue needs maximizing local work throughput, which
would lead to global throughput maximization.

The adaptive reallocation is performed periodically at
each server node and the period need not be synchronized
globally. In principle, both the server and the link re-
sources could be re-allocated. However, in the proposed
system model, servers are dedicated for stream process-
ing. A server accepts a task only if the requested amount
of processing resource is available. Thus, once a task gets
server resources allocated, its processing rate at that server
does not vary over time. However, transmission rate over
the opportunistic network links may vary over time, be-
cause they are shared resources and not under complete
control of the platform. Thus, to provide a predictable
performance guarantee for accepted tasks, it is essential
to adaptively re-allocate the link resources. On the other
hand, although re-allocation of the server resources could
improve load balancing and resource utilization because
of changing load scenario, it is not possible to re-map the
task components on new servers locally or based on local
information, and the global mapping process has a lot of
overhead. For these reasons, we confined the re-allocation
within link resources only, leaving the initial allocationof
server resources unchanged.

The links that carry the stream between two data pro-
cessing servers can be of three different types – i) a direct
dedicated link, ii) a multi-hop dedicated link through one
or more forwarding nodes iii) an overlay link through the
public network. A mapping of a task may contain any com-
bination of these three types of links between the process-
ing nodes. Among them, the direct dedicated links are the
most preferred one, because they provide controlled and
stable data rate. A multi-hop dedicated link provides simi-
lar control and stability, but it costs more (Section 2.4). The
third possibility is having an overlay link through the pub-
lic network. The flow rate is variable over such links, but
there is no additional cost for sending data through them.

So, the nodes try to opportunistically use these links when
dedicated links are overloaded or not available.

The dynamic link scheduler in each node is invoked pe-
riodically at regular intervals. Based on current evaluation
of locally observed performance, the scheduler re-allocates
the locally available link resources among the competing
tasks that are using this node. The overall policy of the
scheduler is to prioritize the tasks based on observed per-
formance and re-allocate the three possible types of out-
going links based on the newly estimated priorities. The
re-allocation process is illustrated in Figure 4. The re-
allocation algorithm is described in Section 5, including
the design of the appropriate priority function.

4 Algorithm for the Mapping Problem

In this section, we develop a decentralized algorithm for
the constrained path mapping problem introduced in Sec-
tion 3.1. The algorithm is then adapted through some ap-
proximation heuristics and other modifications to use in the
bi-modal stream processing platform.

For distributed mapping, we use the scheme presented
by Chandy and Misra [24], which was based on Dijkstra
and Scholten’s diffusing computation paradigm [25]. The
centralized version of the problem, i.e. finding the map-
pings when the global knowledge of the system state is
available at a single node, can be solved using the Bellman-
Ford relaxation scheme. Such an algorithm was analyzed
in one of our previous works [22].

The distributed mapping algorithm uses two kinds of
messages – i)mapmessage and ii)ackmessage. Themap
messages propagate the partially computed maps from the
data-source node to the data-delivery node through the net-
work. Theack message is used for detecting termination
of the mapping algorithm, as commonly used in diffusing
computations.

For each mapping, some variables are used to maintain
the state of the diffusing computation –countmaintains the
number of outstandingackmessages to be received against
the sentmap messages.pred maintains the name of the
predecessor node in the diffusing computation which made
the current node aware of the mapping by sending amap
message whencountwas0.

To disseminate the task specification to all the partici-
pating nodes, another type of message, thespec message,
is appended with themap message. To be efficient, when
u sends a map message tov, it is sufficient to append the
spec with the map only whenu is the pred for v. For
this knowledge, every node maintains a flagknows(i) for
each neighbori, and sets the flag when aspec appended
map message is sent toi. To assist this process, the last
acksent by a node to itspred whencount becomes0, is
differentiated from regularack using alastAck flag. A
node resets theknows(i) flag when it receives anack with

the lastAck flag from its neighbori. To save memory,
each node creates a state for the new mapping process only
when it becomes aware of the process by amap message.
The state is initialized (pred = undefined, count = 0,
knows(i) = false for all i) on creation. The state is re-
moved whencount becomes0 and thelastAck is sent.

The mapping algorithm works primarily by enumerat-
ing all feasible mappings on all possible paths. The opti-
mal mapping is then chosen from the feasible mappings.
However, feasible mappings are gradually expanded while
exploring different paths and many of the mappings and
paths are pruned or discarded once any of the resource con-
straints fails. Thus explicit enumeration of all possible al-
ternatives are avoided.

Each node executes theprocessMapmethod (Algo-
rithm 1) when amap message is received and thepro-
cessAckmethod (Algorithm 4) when anack message is
received. Each time a node receives a partial map, it tries
to extend the partial map in all possible ways by append-
ing the mapping of more task components onto itself, sub-
ject to availability of processing power (Line 15). Each of
these newly generated partial maps are then extended to all
of the neighbors as long as the bandwidth requirement of
that hop in the task is less than available bandwidth in that
link (Line 28). Note that it is possible to extend the map
to the neighbors without having any component mapped
on the current node. This allows multi-hop connection be-
tween nodes processing consecutive components. This is
beneficial in cases where there is no direct dedicated link
between two server nodes. All the feasible mappings are
thus accumulated at the data-delivery node. The acknowl-
edgement process of the diffusing computation ensures ter-
mination of the algorithm and allows each node to clear the
states related to the terminated mapping.

Cyclic mapping is allowed in the extension in Line 28.
Becausex = 0 is allowed, it is possible that a mapping
grows to an infinite length. In practice, this is avoided by
limiting the growth of the multi-hop mapping using a bud-
get factor. Based on the price-per-byte-processed quoted
in the SLA (Sections 2.3 and 2.4), the allocated revenue
for processing of thej − th service is limited. When the
output of thej-th service is sent to the server providing
(j + 1)th service using a dedicated link, host of thej-th
service needs to pay and thus loses revenue. The cost of
transmission grows as more dedicated links are used in a
multi-hop link to send the same data. Thus the number
of hops in such multi-hop links are limited by the revenue
budgeted for the service and cost of each hop of dedicated
connection. This maximum hop restriction is summarized
as themaxnull parameter (Line 3) in the Algorithm 1.

One point to note here is that the partial mappings cannot
be pruned using the optimality criterion, i.e. the cost met-
ric. Even for the same prefix of the task, a lower cost map-
ping may later get pruned by the resource constraint while
a higher cost mapping may survive. Thus greedy pruning

of the mappings based on the cost metric may not yield
the optimal solution. However, analysis in the Section 4.1
shows that such greedy pruning dramatically reduces the
number of messages without sacrificing too much of the
optimality.

4.1 Heuristic Approximations

We observe that, in the worst case, the mapping algo-
rithm in Algorithm 1 may generate all possible source-
destination paths in the graph and try all possible combina-
tions of the task components on each of those paths. Such
intractably explosive growth of complexity is expected be-
cause the path mapping problem is NP-complete. For prac-
tical implementations, it may be desirable to sacrifice some
degree of optimality in favor of reduction in the complex-
ity. Here, we explore some heuristic techniques that re-
duce the complexity while producing good approximation
for the optimal solution.

4.1.1 LeastCostMap

On intuitive way of reducing complexity is to greedily
prune the exploration of many of the alternative paths and
mappings based on the cost metric. In theLeastCostMap
heuristic, a partial mapping that has higher cost compared
to a previously observed mapping of the same prefix-length
is pruned from further extension. To help this, each node,
for each task-mapping, maintains a table of the costs of the
least-cost partial mappings of each possible prefix lengths,
among the already observed partial mappings of the com-
posite task. The cost of the newly extended mapping in the
Line 15 of Algorithm 1 is compared to that in the table and
is sent to neighbors in Line 28 only if the new mapping has
smaller cost. The cost in the table is updated accordingly.

4.1.2 AnnealedLeastCostMap

In the greedy pruning of higher cost partial maps, it is pos-
sible that the mapping that would lead to the optimal so-
lution is pruned while the allowed mapping does not meet
the constraints in the later stages. One way to compromise
between the greedy pruning and the unpruned exponential
growth of mappings is to apply a kind of simulated an-
nealing in the pruning process. A partial mapping of cost
higher than the already observed minimum is allowed for
extension with a probability and the probability diminishes
exponentially with the growing prefix-length of the map-
ping. This heuristic is hereafter denoted asAnnealedLeast-
CostMapheuristic. Obviously, this approach increases the
message complexity, with the hope that some of the non-
minimal partial mappings would possibly lead to a better
complete mapping.

Algorithm 1 ProcessMap(m, T)
1: Input:
2: The current node executing the method is denoted as

v. The sender of the message isu.
3: T =t1, t2, . . . , t|T | denotes the ordered set of com-

ponents in the stream processing task. Eachti has
an associatedC(i) denoting processing requirement.
Each(ti, ti+1) has an associatedB(i, i + 1) denoting
the required bandwidth.max null denotes the maxi-
mum number of empty hops allowed in the map.T is
either found appended with the map message or from
the stored state.

4: m is the map message containing the mapping of the
first j services on a series of server nodes.j is called
theprefix-lengthof m.

5: For any nodeu, Cav(u) denotes the computational
capacity ofu. S(u) denotes the set of service com-
ponents served byu. For a pair of nodesu and v,
Bav(u, v) denotes available bandwidth in the(u, v)
channel.

6: if no state forT or pred is undefinedthen
7: storeT from the message
8: createpred, count andknows
9: pred ← u, count ← 0,

∀neighbork,k 6=uknows(k)← FALSE

10: else
11: Sendack(REGULAR) tou
12: end if
13: for x = 0 to |T | − j − 1 do
14: if (x = 0) or (tj+x ∈ S(v) and Cav(v) ≥∑x

j=1 C(j + x) + ∀i≤jti mapped onv
∑

C(i))
then

15: mx ←map found by extending nextx services in
T onv

16: if v is the data-delivery node and (j + x ≥ |T |)
then

17: storemx in the list of a feasible maps
18: end if
19: else
20: break
21: end if
22: for each neighbork of v do
23: if (Bav(v, k) ≥ B(j+x, j+x+1)) and ((x > 0)

or (empty hops inm ≤ max null− 1)) then
24: if knows(k) =FALSE then
25: knows(k)← TRUE
26: AppendT tomx

27: end if
28: Sendmx to k

29: count← count+ 1
30: end if
31: end for
32: end for

Algorithm 2 processAck(isFinal)
ack message received from neighboru

count← count− 1
if count = 0 andpred is not invalidthen

Sendack(FINAL) to pred

pred← invalid
end if
if isFinal = FINAL then
knows(u)← FALSE

end if

4.1.3 RandomNeighbor

Another way of restricting the message complexity is to ex-
tend a partial map to a randomly chosen subset ofk neigh-
bors instead of expanding to all of them. Higher values
of k increases the chance of getting the optimal solution.
The RandomNeighborheuristic withk = 1 did not pro-
duce results as good as LeastCostMap, although number
of messages were reduced dramatically. Further investiga-
tion may be done to determine a suitable value ofk.

4.2 Performance of the Heuristics

To choose one among the possible heuristics, we evalu-
ated them running the heuristics on an emulated network
of nodes. We tried to measure the quality of the approxi-
mate solutions generated by the heuristics as well as their
message overheads. The network topology was gener-
ated by BRITE Internet topology generator [26], using the
Barabasi-Albert algorithm [27]. This generates a power-
law graph and the link bandwidths were sampled from a
truncated power-law distribution having min=10Mbps and
max=1Gbps. Computational capacities of the nodes were
randomly assigned from a distribution of node-capacities
of a volunteer computing project [28]. The nodes were
emulated as processes hooked to UDP ports in LAN-
connected computers. These virtual nodes communicated
among them using UDP packets. The network size was
varied from30 to 120 nodes. The tasks for mapping con-
sisted of10 components. The bandwidth and capacity re-
quirements of each task-component was sampled from a
Normal distribution with mean equal to the50% of the av-
erage link and code capacity of the network, respectively.

First, we attempted to evaluate how close the solutions
generated by the heuristics are to the exact optimal solu-
tions. Because it is computationally expensive to run the
algorithm that gives the exact optimal solution, we devised
an algorithm that computes a lower bound of the optimal
solution. We relaxed the bandwidth constraints and trans-
formed the problem into finding a optimal cost path in a
multi-stage graph. The first and last stages resemble the
source and the terminal nodes. Each of the internal stages
haven vertices, resembling the choice of any of then

servers for the processing components of the tasks. Then
we compute the lowest cost path from source to the ter-
minal vertex, subject to the node-capacity constraints only.
Ignoring the bandwidth constraints allows lower cost so-
lutions that are not feasible in the actual problem. All the
feasible solution for the actual problem will be feasible in
the relaxed problem. So, the optimal solution of the re-
laxed problem will be a lower bound on the optimal cost of
the actual problem. We computed the ratio of the cost of
heuristic generated solutions to this lower bound cost.

To assess the cost of executing the heuristics, we
counted the total number ofmap messages exchanged
among the nodes. Because arrival of each map message in-
vokes the processing algorithm on the receiving node, the
total computational cost is also proportional to the number
of map messages. Although we did not evaluate the mes-
sage complexity of the exact algorithm, we have compared
the complexities of the heuristics, which helps to choose
one heuristic over the others.

 1

 1.5

 2

 2.5

 3

 3.5

 30 40 50 60 70 80 90 100 110 120

R
at

io
 to

 th
e

op
tim

al
 c

os
t

Network size (nodes)

LeastCost
AnnealedLeastCost

RandomNeighbor

(a) Quality of solutions

 0

 5000

 10000

 15000

 20000

 25000

 30000

 30 40 50 60 70 80 90 100 110 120

M
es

sa
ge

 c
ou

nt

Network size (nodes)

LeastCost
AnnealedLeastCost

RandomNeighbor

(b) Message overhead

Figure 7. Comparing three heuristics

Figure 7(a) shows that the heuristic derived solutions
are fairly close to the lower bound of the optimal solu-
tions. One can observe that both theLeastCostMapand
theAnnealedLeastCostMapyield solutions that are equally

very close to the optimal solutions. TheRandomNeighbor
heuristic does not produce good solutions, because num-
ber of feasible ways to expand the partial maps narrows
down very quickly here. In terms of cost of computation
of the heuristics, we observe in Figure 7(b) that number
of map messages to complete mapping of a single task-
composition is much higher in theAnnealedLeastCostMap
heuristic than the other two heuristics. This is because, for
the chosen parameter setting, theAnnealedLeastCostMap
extends many more of the alternative paths and mappings
compared to theLeastCostMapheuristic. Analyzing both
the results in Figure 7(a) and Figure 7(b), it may be con-
cluded that the additional message overhead due to the late
pruning in theAnnealedLeastCostMapdoes not worth its
gain in optimality. Finally, we chose theLeastCostMap
heuristic for our distributed stream processing platform.

4.3 Modifications for Bi-Modal Commu-
nication Links

So far, in the design of the decentralized mapping algo-
rithm, we did not consider the presence of the opportunistic
communication links. As mentioned in the system model
in Section 2, each node is connected to the public Internet
and can establish an end-to-end connection with any other
node. The presence of these all-to-all links require some
modifications in theProcessMapprocedure described in
Algorithm 1.

Because, with opportunistic links, all other nodes in the
platform are neighbors in terms of connectivity, sending of
extended maps to all neighbors in Line 28 ofProcessMap
would be inefficient, although it would work. Instead, af-
ter extending the mappings to all the dedicated link neigh-
bors, the mappings may be extended to a small subset of
the opportunistic-link-neighbors. To choose a subset, we
assume that each node has an approximate knowledge of
which node serves which service. We assume that there
exist a gossip mechanism to disseminate this knowledge.
Note that the set of services available at a node changes
much less frequently compared to arrival of individual task
mapping requests. Moreover, this knowledge is used only
for minimizing the overhead, thus its inaccuracy does not
harm much other than missing some possible solutions.
Another point to note is that having all-to-all connectiv-
ity, there is no meaning of mapping a hop of the task-
composition on multiple hops of opportunistic links, al-
though multi-hop dedicated connection is still preferable.

The final version of theProcessMapalgorithm that ap-
plies theLeast CostMapheuristic and takes care of oppor-
tunistic links is presented in Algorithm 3. TheM(1 : |T |)
data structure (Line 5) to store the costs of the minimum-
cost mapping among the already observed partial maps,
and the condition in Line 20, are added for theLeast-
CostMapheuristic. The other additional code in Lines 31-
37 handles the extension of the mappings through oppor-

Algorithm 3 ProcessMap2(u, m, T)
1: Input: As described in Algorithm 1
2: if no state forT or pred is undefinedthen
3: storeT from the message
4: createpred, count andknows
5: createM(1 : |T |)
6: pred ← u, count ← 0,

∀neighbork,k 6=uknows(k)← FALSE

7: ∀iM(i)← inf
8: else
9: Sendack(REGULAR) tou

10: end if
11: for x = 0 to |T | − j − 1 do
12: if (x = 0) or (tj+x ∈ S(v) and Cav(v) ≥∑x

j=1 C(j + x) + ∀i≤jti mapped onv
∑

C(i))
then

13: mx ←map found by extending nextx services in
T onv

14: if v is the data-delivery node and (j + x ≥ |T |)
then

15: storemx in the list of a feasible maps
16: end if
17: else
18: break
19: end if
20: if cost(mx) < M(|mx|)) then
21: for each dedicated-link-neighbork of v do
22: if (Bav(v, k) ≥ B(j+x, j+x+1)) and ((x >

0) or (empty hops inm ≤ max null − 1))
then

23: if knows(k) =FALSE then
24: knows(k)← TRUE
25: AppendT to mx

26: end if
27: Sendmx to k

28: count← count+ 1
29: end if
30: end for
31: if x > 0 then
32: for each nodek such thatk provide the service

j + x+ 1 do
33: if available uplink bandwidth to the Internet

≥ bandwidth need for service hop(j+x, j+
x+ 1) then

34: Sendmx to k

35: end if
36: end for
37: end if
38: end if
39: end for

tunistic links. Note that such extension is allowed only
when at least one task-component is mapped on the cur-
rent node (Line 31). Because it is not possible to allocate
end-to-end bandwidth in the opportunistic links, only the
uplink bandwidth is allocated. The end-to-end bandwidth
that a task actually gets is monitored and reactively allo-
cated in a continuous feedback loop, which we will discuss
in the next section.

To devise an appropriate cost metric for choosing the
best among alternative feasible maps, we considered the
following two factors - balancing the service workload
among the servers and minimizing the uncertainty of us-
ing opportunistic links. The load-balance factor for a map
(or a partial map) is computed as an average of the server
load-factors (ratio of used capacity to total capacity) for
all the servers included in the map, and is always a num-
ber between0 and1. A map with lower load-balance factor
spreads the components of a task on different servers rather
than putting all of them into one, and chooses the under-
utilized servers. In case two maps have almost same load-
balance factor, (do not differ by more than0.1 or 10%),
then the one in which the number of hops (links connecting
the processing components) assigned to dedicated links is
higher is preferred. If that is also same, the map with least
number of hops through public network is preferred.

5 Adaptive Re-allocation of the Bi-modal
Links

The dynamic link scheduler in each node is invoked pe-
riodically at regular intervals. Based on current evaluation
of locally observed performance, the scheduler re-allocates
the locally available link resources among the competing
tasks that are using this node. The overall policy of the
scheduler is to prioritize the tasks for use of the network
links, based on their deviation from target data rate and the
price they would pay for the data processing service.

The links that carry the stream between two data pro-
cessing servers can be of three different types – i) a direct
dedicated link, ii) a multi-hop dedicated link through one
or more forwarding nodes iii) an overlay link through the
public network. A mapping of a task may contain any com-
bination of these three types of links between the process-
ing nodes. Among them, the direct dedicated links are the
most preferred one, because they provide controlled and
stable data rate. A multi-hop dedicated link provides simi-
lar control and stability, but it costs more (Section 2.4). The
third possibility is having an overlay link through the pub-
lic network. The flow rate is variable over such links, but
there is no additional cost for sending data through them.
So, the nodes try to opportunistically use these links when
dedicated links are overloaded or not available.

Algorithm 4 is executed when the scheduler is invoked
at regular intervals. The algorithm evaluates the For al-

Algorithm 4 Link re-allocation algorithm
1: Invoked for each nodeu periodically
2: Group the tasks that are being processed inu by their

next hop serverv
3: for Each groupv do
4: Compute the priority of each flow competing for a

(u,v) link as -
5: priority← budget per byte of processed data * band-

width required to comply with the target rate
6: if any dedicated link (u,v) existsthen
7: Assign the dedicated link to top priority flows un-

til all capacity is used
8: end if
9: Collect all the unassigned flows

10: end for
11: for All the remaining flowsdo
12: if The budget permitsk-hop (u,v) dedicated link,

k > 1 then
13: Launch a probe search and reserve multi-hop ded-

icated path for the flow with maximumk hops
14: Assign public network bandwidth for the flow

temporarily
15: else
16: Assign public network bandwidth for the flow
17: end if
18: end for

location of the links, tasks are grouped according to their
next hop server node (Line 2). While prioritizing among
competing tasks for each group (Lines 3-10), the sched-
uler tries to maximize the revenue earning of the server and
prefers the tasks marked with higher price per unit of pro-
cessing. On the other hand, the server tries to fulfill the rate
requirement of each task, because it gets penalized other-
wise. Hence the scheduler computes the priority of each
task as a product of the apportioned price and the data rate
required in next scheduling epoch.

For each next hop group, highest priority tasks get allo-
cation from the direct dedicated link, if such a link exists
and capacity permits (Line 7). The next prior tasks are
assigned multi-hop dedicated links (Lines 13). The max-
imum possible hops in such multi-hop links are restricted
by the apportioned price for that service according to the
task specification. The remaining tasks from all the groups
are allocated bandwidth from the opportunistic public net-
work links (Line 16).

5.1 Is Adaptive Re-Allocation Neces-
sary?

So far, we have argued that due to the inconsistent be-
havior of the opportunistic links, it is necessary to real-
locate the link resources periodically in a feed-back loop.
Here we asses the necessity of such re-allocation quantita-

tively.
The main intuition behind introducing dynamic re-

allocation is that the data-stream that goes through the pub-
lic network suffers from the variability and lag from the
target rate, whereas the stream that uses dedicated links
all-through, does not lag from the target at all. Dynamic
scheduling introduces fairness across all the tasks. So if
link assignment is done dynamically, it is expected to im-
prove the utilization of the resources and increase the over-
all work-throughput of the system.

For the evaluation we used a100-node simulated stream
processing platform. Details of the simulation set-up is de-
scribed later in Section 6.1. We fed the same workload to
two system set-ups, both having bi-modal communication
networks. In one, we disabled the adaptive re-allocation of
links and let the tasks complete with the initial assignment
of links and nodes. The adaptive re-allocation is enabled in
the other. All other system parameters were the same for
both the set-ups. From Figures 8(a) we observe that overall
system throughput increases with adaptive re-allocation,as
an indication of higher task acceptance ratio and higher uti-
lization of the system resources. Figure 8(b) demonstrates
that adaptive re-allocation results in much higher utiliza-
tion of the dedicated links. CPU utilization remains un-
changed (not shown), because the dynamic re-allocation
does not alter the node assignments. Another rationale
behind re-allocations is to increase fairness and improve
compliance with the target delivery rate. Figure 8(c) shows
that irrespective of workload, the adaptive re-allocationde-
creases the deviation from the specified target rate.

6 Performance Evaluation and Discussion

6.1 Simulation Model

We constructed a simulation model of the distributed
stream processing platform according to the architecture
and algorithms presented in Sections 2 and 3, respectively.
The model was build on Java based simulation engine
JiST [29].

Each of the servers in distributed locations are connected
to the public Internet. Although each server has a certain
uplink and downlink bandwidth, the data rate over a con-
nection that goes through the public network faces tempo-
ral variation. We use the statistics presented by Wallerich
and Feldmann [30] to model the temporal variability of
the end-to-end capacity of a path through the public net-
work. From their data collected from packet level traces
from core routers of two major ISPs over 24 hours, the
logarithm of the ratio of the observed transient flow rate
to the mean flow rate over long period is almost a Nor-
mal distribution. In our simulations, all flows on the public
network are perturbed every10 milliseconds according to
this model. With the allocated bandwidth as the mean rate

and the standard deviation of the log-ratio set at1, in 95%
of the cases the observed bandwidth remains between one
fourth (2−2σ) and four time (22σ) of the allocated or mean
bandwidth. Bandwidth of each last-mile connection (up-
link and downlink) is randomly assigned between1 Mbps
and2 Mbps.

In addition to the public network links, the servers are
interconnected through dedicated links (which may be
leased lines or privately installed links). For the dedi-
cated network, we assume a preferential connectivity based
network growth model similar to the one proposed by
Barabasi et al [27]. The basic premise here is that when
a server attempts to establish a dedicated link, it does so
preferably with the most connected server. This eventually
results in a power law degree distribution in the network.
We assumed that server CPU capacity is proportional to
the number of dedicated links it has. The variety of ser-
vices that a server can host is also proportional to the node
degree or capacity. The dedicated links have much higher
bandwidth than the network links connecting a node to the
public network. Their bandwidths were randomly assigned
between1 Mbps and10 Mbps and the propagation delays
were assumed to be between1 and10 milliseconds. The
propagation delay of an end-to-end connection through the
public network was much higher and assumed to be be-
tween10 and100 milliseconds.

Unless otherwise mentioned, we assumed the platform
to have100 server nodes and99 dedicated links intercon-
necting them. There were25 different types of services.
As the service variety is proportional to the node degree, a
node havingd dedicated links was assumed to host1 + d

different types of services (one added for public network
link). Server CPU capacity was set such that it can exe-
cutek instances of each service concurrently, according to
the mean data delivery rate. We setk = 2. For the task
workload, each task is assumed to have10 service compo-
nents, randomly chosen from25 different types of service.
Mean data delivery rate was1Mbps and total amount of
data to be processed from the source was100MB on av-
erage. Each data point on the results shown below is an
average of100 observations from different experiments on
randomly generated networks with specified parameters.
For each experiment, a synthetic workload trace contain-
ing 500 stream processing tasks were generated. The task
arrival process is assumed to be Poisson, with the arrival
rate varying across the experiments. If not mentioned oth-
erwise, the default arrival rate was60 tasks per hour.

6.2 Benefits of Combining Opportunistic
and Dedicated Resources

We performed several sets of experiments to evaluate the
benefits of using bi-modal networks for stream processing
tasks. In the experiments, we compare three possible set-
tings – i) a network with the dedicated links only, ii) public

 0

 2

 4

 6

 8

 10

 12

 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bp

s)

Process arrival per hour

with scheduling
no scheduling

(a) Throughput

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 20 40 60 80 100 120 140 160 180 200

U
til

iz
at

io
n

(%
)

Process arrival per hour

with scheduling
no scheduling

(b) Utilization of dedicated links

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 20 40 60 80 100 120 140 160 180 200

D
ev

ia
tio

n
(%

)

Process arrival per hour

with scheduling
no scheduling

(c) Deviation from target rate

Figure 8. Effect of dynamic scheduling

network only, and iii) a network that combines both.
First argument in favor of a bi-modal network for stream

processing is that combining the public network with
dedicated links, the system achieves much higher work
throughput at the same cost. To examine this, we fed sim-
ilar workload traces under same arrival rates to two sys-
tem set-ups, one with only dedicate link based networks
and the other using the combination of dedicated links and
public network. From Figure 9(b) we observe that for the
same workload, if the platform uses dedicated links only,
it needs more than120 links to get50% acceptance ratio,
whereas the same acceptance ratio can be obtained with
50 dedicated links only, if the public network is utilized in
conjunction. Similar evidence in Figure 9(a) shows that in-
clusion of the public network helps to achieve same overall
system throughput at much lower number of dedicated link
installations.

The next argument is that utilization of the privately de-
ployed expensive dedicated resources such as servers and
dedicated links is increased, if inexpensive public network
is used in conjunction. From Figure 9(c) we observe that
when a combination of dedicated links and the public net-
work is used, the server utilization is higher than the sum
of utilizations of cases using a single type of network links.

Figures 9(e) and 9(f) show another evidence of higher
return on investment. In Figure 9(e), we observe that the
utilization of dedicated links becomes consistently higher
across a wide range of loading scenarios if the public net-
work is used in combination. The lower utilization in case
of a dedicated link only network results from the fact that
the platform has rejected many task requests that would
have been feasible by the augmentation of the public re-
sources. Figure 9(f) shows the variation of utilization of
the dedicated links with the number of dedicated links. We
observe that the difference in utilization diminishes as the
number of installed links increases. This is because when
there is sufficient number of dedicated links to carry the
required traffic of all the tasks, the public resources are not
used at all, and the bi-modal system becomes equivalent to
a dedicated link only system. In both cases, utilization of
the links keeps decreasing when more and more links are

added because the workload is held constant.

The discussion above highlighted the benefits of using
public network towards improving the utilization of dedi-
cated server and link resources (i.e., increases in return on
investment). Next we investigate how the bi-modal net-
work helps the stream processing platform to improve the
compliance with the services contracts it has with indi-
vidual tasks. We measure the compliance of the stream
processing platform as follows. Each task request speci-
fies a time windowT that is used to monitor the delivery
rate. We measured the deviation from the required rate as∑

over all windows
B−B̂
B

, whereB is the desired rate and

B̂ is the observed rate of delivery. In Figure 9(g), we ob-
serve that use of dedicated links brings the percent devia-
tion down to between10% and20% from above50%. In
this case the number of installed dedicated links was just
enough to make a spanning tree of the nodes, i.e.N − 1
links forN nodes. Note that deviation is counted on the ac-
cepted jobs only. So, even though for a dedicated link only
network, the deviation is almost zero, we have seen that
such network is unable to accept enough jobs to fully uti-
lize the resources. In Figure 9(h), we observe that the de-
viation in the bi-modal system gets closer to zero as more
and more dedicated links are added to the network. How-
ever, beyond certain number of links, (125 in this particular
experiment), the improvement is very marginal.

When we use a combination of dedicated and public
links, it is expected that the completion time of each task
will be slightly elongated compared to a system with only
dedicated links, due to the variability in the public network.
Nevertheless, using the combination contains the elonga-
tion to a small value, compared to the case where only
public network is available. In Figure 9(i), we observe a
10 − 20% increase in the execution time in the bi-modal
system, whereas execution time would be200 − 300%
more in case of a public network only system.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Number of links

dedicated + public
dedicated only

(a) Task Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

A
cc

ep
t (

%
)

Number of links

dedicated + public
dedicated only

(b) Task acceptance ratio

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140 160 180 200

U
til

iz
at

io
n

(%
)

Process arrival per hour

dedicated + public
dedicated only (sp. tree)

public links only

(c) Server utilization at different workload

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

U
til

iz
at

io
n

(%
)

Number of links

dedicated + public
dedicated only

(d) Server utilization vs dedicated links

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 20 40 60 80 100 120 140 160 180 200

U
til

iz
at

io
n

(%
)

Process arrival per hour

dedicated + public
dedicated only (sp. tree)

public links only

(e) Link utilization at different workload

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

U
til

iz
at

io
n

(%
)

Number of links

dedicated + public
dedicated only

(f) Link utilization vs number of dedicated links

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120 140 160 180 200

D
ev

ia
tio

n
(%

)

Process arrival per hour

dedicated + public
dedicated only (sp. tree)

public links only

(g) SLA deviation at different workload

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

D
ev

ia
tio

n
(%

)

Number of links

dedicated + public
dedicated only

(h) SLA deviation vs number of dedicated links

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140 160 180 200

T
im

e
(m

in
ut

es
)

Process arrival per hour

dedicated + public
dedicated only (sp. tree)

public links only

(i) Elongation of task execution time

Figure 9. Comparing bi-modal and uni-modal networks

7 Related Work

Although there is a vast body of literature on resource
management in cluster, Grid or peer-to-peer hosting plat-
forms, there have been relatively a very few works that
proposes combined use of dedicated and public resources.
In [31], Kenyon et al. provided arguments based on math-
ematical analysis, that commercially valuable quality as-
sured services can be generated from harvested public
computing resources, if small amount of dedicated com-
puters can be augmented with them. With simple models
for available periods of harvested cycles, their work have
measured the amount of dedicated resources necessary to
achieve some stochastic quality assurance from the plat-
form. However, they did not study how a bi-modal plat-
form would perform in the presence of clients with dif-
ferent service level agreements and how to engineer the
scheduling policies to maximize the adherence to these

agreements.

Recently, in [32], Das et al. have proposed the use of
dedicated streaming servers along with BitTorrent, to pro-
vide streaming services with commercially valuable qual-
ity assurances while maintaining the self scaling property
of BitTorrent platform. With analytical models of Bit-
Torrent and dedicated content servers they have demon-
strated how guaranteed download time can be achieved
through augmentation of these platforms. However, their
proposal does not include actual protocols that can be used
to achieve these performance improvements.

Architectures and resource management schemes for
distributed stream processing platforms have been studied
by many research groups from distributed databases, sen-
sor networks, and multimedia streaming [1, 2, 6, 3]. In
database and sensor network research, the major focus was
placing the query operators to nodes inside the network
that carries the data stream from source to the viewer [7].

In multimedia streaming problems, similar requirements
arise when we need to perform a series of on-line opera-
tions such as trans-coding or embedding on one or more
multimedia streams and these services are provided by
servers in distributed locations. In both cases, the main
problem is to allocate the node resources where certain
processing need to be performed along with the network
bandwidths that will carry the data stream through these
nodes.

Finding the optimal solution to this resource allocation
problem is inherently complex. Several heuristics have
been proposed in the literature to obtain near-optimal solu-
tions. Recursive partitioning of the network of computing
nodes have been proposed in [15] and [4] to map the stream
processing operators on a hierarchy of node-groups. They
have demonstrated that such distributed allocation of re-
sources for the query operators provides better response
time and better tolerance to network perturbations com-
pared to planning the mapping at a centralized location.

In [33] and [8], the service requirements for multi-step
processing of multimedia streams, defined in terms of ser-
vice composition graphs have been mapped to an overlay
network of servers after pruning the whole resource net-
work into a subset of compatible resources. The map-
ping is performed subject to some end-to-end quality con-
straints, but the CPU requirements for each individual ser-
vice component is not considered. Liang and Nahrstedt
in [12] have proposed solutions to the mapping problem
where both node capacity requirement and bandwidth re-
quirements are fulfilled. However, one of the assumptions
made by Liang and Nahrstedt was that the optimization al-
gorithm was executed in a single node and complete state
of the resource network is available to that node before ex-
ecution. In a large scale dynamic network this assumption
is hard to realize. If we assume that each node in the re-
source network is aware of the state of its immediate neigh-
borhood only, we need to compute the solution using a dis-
tributed algorithm such as ours.

In all of the abovementioned works, the operator nodes
are assumed to interconnected through an application de-
pendent overlay network using the Internet as underlay.
In [34], Gu and Nahrstedt presented a service overlay net-
work for multimedia stream processing, where they have
shown that dynamic re-allocation of the operator nodes
provides better compliance with the service contracts in
terms of service availability and response time. However,
none of the works have proposed the use of dedicated links
in conjunction with IP overlay network for improving ad-
herence to the service contracts.

8 Conclusion

In this paper, we investigated the resource management
problem with regard to data stream processing tasks. In

particular, we examined how a hybrid platform made up of
dedicated server resources and bi-modal network resources
(dedicated plus public) can be used for this class of ap-
plications. From the simulation based investigations, we
were able make several interesting observations. First, bi-
modal networks can improve dedicated resource utilization
(server plus dedicated network links). This means higher
return on investment can be obtained by engaging the bi-
modal network. Second, the overall system is able to admit
and process tasks at a higher rate compared to system con-
figurations that do not leverage a bi-modal network. Be-
cause the public network is engaged at zero or very low
cost, this improvement in throughput can be result in sig-
nificant economic gain for institutions that perform data
stream processing workloads. Third, the engagement of
bi-modal network comes at a slight overhead that adds low
delays in stream processing tasks. Compared to public-
only networks the delays provided by the bi-modal net-
work is almost negligible. Fourth, dynamic rescheduling
is essential to cope with varying network conditions – par-
ticularly in the public network. The dynamic reschedul-
ing algorithm switches the flows according to the recom-
puted priority values to achieve the best service level com-
pliances.

In summary, our study highlights the benefits of the bi-
modal architecture for compute- and network-intensive ap-
plications. Moreover, it provides simple distributed algo-
rithms that allows the effective utilization of such a plat-
form for data stream processing applications. Deploying
the distributed resource management framework in an ac-
tual prototype for data stream mapping is a possible future
work.

References

[1] T. Repantis, Y. Drougas, and V. Kalogeraki, “Adap-
tive Component Composition and Load Balancing for
Distributed Stream Processing Applications,”Peer-
to-Peer Networking and Applications, vol. 2, no. 1,
pp. 60–74, Mar. 2009.

[2] A. Benoit, H. Casanova, V. Rehn-Sonigo, and
Y. Robert, “Resource Allocation for Multiple
Concurrent In-Network Stream-Processing Applica-
tions,” INRIA, France, Tech. Rep. RR-6864, Feb.
2009, http://arxiv.org/abs/0903.0710.

[3] J.-H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and
Highly-Available Stream Processing over Wide Area
Networks,” in IEEE 24th International Conference
on Data Engineering (ICDE), Apr. 2008, pp. 804–
813.

[4] S. Seshadri, V. Kumar, B. F. Cooper, and L. Liu, “Op-
timizing Multiple Distributed Stream Queries Using

Hierarchical Network Partitions,” inProceedings of
21th International Parallel and Distributed Process-
ing Symposium (IPDPS 2007), Mar. 2007, pp. 1–10.

[5] L. Chen, K. Reddy, and G. Agrawal, “GATES: A
Grid-Based Middleware for Processing Distributed
Data Streams,” inProceedings of the International
Symposium on High Performance Distributed Com-
puting (HPDC), Jul. 2004, pp. 192–201.

[6] P. Pietzuch, “Challenges in Dependable Internet-
scale Stream Processing,” inProceedings of the 2nd
workshop on Dependable distributed data manage-
ment (SDDDM ’08), 2008, pp. 25–28.

[7] P. R. Pietzuch, J. Ledlie, J. Shneidman, M. Rous-
sopoulos, M. Welsh, and M. I. Seltzer, “Network-
Aware Operator Placement for Stream-Processing
Systems,” inProceedings of the 22nd International
Conference on Data Engineering, ICDE 2006, Apr.
2006, p. 49.

[8] X. Gu and K. Nahrstedt, “Distributed Multimedia
Service Composition with Statistical QoS Assur-
ances,”IEEE Trans. Multimedia, vol. 8, no. 1, pp.
141–151, 2006.

[9] D. Carney, U. Çetintemel, M. Cherniackh, C. Con-
vey, S. Lee, G. Seidmang, M. Stonebraker, N. Tatbul,
and S. Zdonik, “Monitoring Streams: a New Class
of Data Management Applications,” inProceedings
of the 28th international conference on Very Large
Data Bases (VLDB’02), 2002, pp. 215–226.

[10] C. Cranor, T. Johnson, O. Spataschek, and
V. Shkapenyuk, “Gigascope: a Stream Database for
Network Applications,” inProceedings of the 2003
ACM SIGMOD international conference on Manage-
ment of data (SIGMOD’03), 2003, pp. 647–651.

[11] Y. Drougas and V. Kalogeraki, “RASC: Dynamic
Rate Allocation for Distributed Stream Process-
ing Application,” in Proceedings of the Interna-
tional Parallel and Distributed Processing Sympo-
sium (IPDPS), Mar. 2007.

[12] J. Liang and K. Nahrstedt, “Service Composition
for Generic Service Graphs,”Multimedia Systems,
vol. 11, no. 6, pp. 568–581, 2006.

[13] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik, “Aurora: A New Model and Architec-
ture for Data Stream Management,”VLDB Journal,
vol. 12, no. 2, pp. 120–139, Aug. 2003.

[14] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S. Babu, M. Datar, G. Manku, C. Olston, J. Rosen-
stein, and R. Varma, “Query Processing, Resource

Management, and Approximation in a Data Stream
Management System,” inCIDR-2003, Jan. 2003.

[15] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer,
and K. Schwan, “Resource aware distributed stream
management using dynamic overlays,” inProc. 25th
IEEE ICDCS, Jun. 2005, pp. 783–792.

[16] T. Kichkaylo and V. Karamcheti, “Optimal Resource-
Aware Deployment Planning for Component-based
Distributed Applications,” inProceedings of the In-
ternational Symposium on High Performance Dis-
tributed Computing (HPDC), Jul. 2004, pp. 150–159.

[17] J. Wu, S. Campbell, J. M. Savoie, H. Zhang,
G. Bochmann, and B. Arnaud, “User-managed End-
to-end Lightpath Provisioning over CA-Net 4,” in
National Fiber Optics Engineers Conference, 2003,
pp. 275–282.

[18] W. Golab and R. Boutaba, “Path Selection in User-
controlled Circuit-switched Optical Networks,”Op-
tical Switching and Networking, vol. 5, no. 2-3, pp.
123–138, Jun. 2008.

[19] S. Asaduzzaman and M. Maheswaran, “Strategies
to Create Platforms for Differentiated Services from
Dedicated and Opportunistic Resources,”Journal of
Parallel and Distributed Computing, vol. 67, no. 10,
pp. 1119–1134, 2007.

[20] ——, “Utilizing Unreliable Public Resources for
Higher Profit and Better SLA Compliance in Com-
puting Utilities,” Journal of Parallel and Distributed
Computing, vol. 66, no. 6, pp. 796–806, 2006.

[21] M. Garey and D. Johnson,Computers and In-
tractability: A Guide to the theory of NP-
Completeness. W. H. Freeman and Company, New
York, 1979.

[22] S. Asaduzzaman and M. Maheswaran, “Towards a
Decentralized Algorithm for Mapping Network and
Computational Resources for Distributed Data-Flow
Computations,” in21st Annual International Sympo-
sium on High Performance Computing Systems and
Applications, May 2007, p. 30.

[23] S. Asaduzzaman, “Managing Opportunistic and Ded-
icated Resources in a Bi-modal Service Deployment
Architecture,” Ph.D. dissertation, School of Com-
puter Science, McGill University, Jan. 2008.

[24] K. M. Chandy and J. Misra, “Distributed Computa-
tion on Graphs: Shortest Path Algorithms,”Commu-
nications of the ACM, vol. 25, no. 11, pp. 833–837,
1982.

[25] E. W. Dijkstra and C. S. Scholten, “Termination
Detection for Diffusing Computations,”Information
Processing Letters, vol. 11, no. 1, pp. 1–4, Aug. 1980.

[26] A. Medina, A. Lakhina, I. Matta, and J. Byers,
“BRITE: an Approach to Universal Topology Gener-
ation,” in Proc. 9th Intl. Symp. on Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems, Aug. 2001, pp. 346–353.

[27] A. Barabasi and R. Albert, “Emergence of Scaling in
Random Networks,”Science, vol. 286, no. 5439, pp.
509–512, 1999.

[28] D. P. Anderson and G. Fedak, “The Computational
and Storage Potential of Volunteer Computing,” in
6th IEEE International Symposium on Cluster Com-
puting and the Grid (CCGrid), May 2006.

[29] R. Barr, Z. J. Haas, and R. van Renesse, “JiST: An
efficient approach to simulation using virtual ma-
chines,”Software: Practice and Experience, vol. 35,
no. 6, pp. 539–576, 2005.

[30] J. Wallerich and A. Feldmann, “Capturing the Vari-
ability of Internet Flows Across Time,” in25th IEEE

International Conference on Computer Communica-
tions (INFOCOM-2006), Apr. 2006.

[31] C. Kenyon and G. Cheliotis, “Creating Services with
Hard Guarantees from Cycle Harvesting Resources,”
in 3rd IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGRID’03), May
2003.

[32] S. Das, S. Tewari, and L. Kleinrock, “The Case for
Servers in a Peer-to-Peer World,” inProceedings of
IEEE International Conference on Communications
(ICC ’06), Jun. 2006, pp. 331–336.

[33] M. Wang, B. Li, and Z. Li, “sFlow: Towards
resource-efficient and agile service federation in ser-
vice overlay networks,” inProc. 24th IEEE ICDCS,
Mar. 2004, pp. 628–635.

[34] X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward,
“QoS-Assured Service Composition in Managed Ser-
vice Overlay Networks,” in23rd International Con-
ference on Distributed Computing Systems, May
2003, pp. 194–203.

	Introduction
	System Model and Assumptions
	System Model
	Architecture
	Task Specification
	Pricing and Revenue Flow

	Decentralized Management of Server and Network Resources
	The Mapping Problem
	The Dynamic Re-allocation Problem

	Algorithm for the Mapping Problem
	Heuristic Approximations
	LeastCostMap
	AnnealedLeastCostMap
	RandomNeighbor

	Performance of the Heuristics
	Modifications for Bi-Modal Communication Links

	Adaptive Re-allocation of the Bi-modal Links
	Is Adaptive Re-Allocation Necessary?

	Performance Evaluation and Discussion
	Simulation Model
	Benefits of Combining Opportunistic and Dedicated Resources

	Related Work
	Conclusion

