
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/11 2 8 8 0/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

S a nc h ez-Mon e d e ro, Javie r , Poved a no-Molin a, Javier, Lop ez-Vega, Jose M. a n d Lopez-

Soler, Juan M. 2 0 1 1. Bloom filt e r-b a s e d discove ry p ro tocol for DDS middle w a r e .

Jour n al of p a r allel a n d dis t ribu t e d co m p u tin g 7 1 (10) , p p. 1 3 0 5-1 3 1 7.

1 0.10 1 6/j.jpdc.201 1.05.00 1

P u blish e r s p a g e: h t t p://dx.doi.o rg/10.10 1 6/j.jpdc.201 1.05.00 1

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Bloom Filter Based Discovery Protocol for DDS

Middleware

Javier Sanchez-Monederoa,∗, Javier Povedano-Molinab, Jose M. Lopez-Vegab,
Juan M. Lopez-Solerb

aDepartment of Computer Science and Numerical Analysis, University of Córdoba,
Rabanales Campus, Albert Einstein building 3rd floor, 14071, Córdoba, Spain

bDepartment of Signal Theory, Telematics and Communications, University of Granada,
ETSI Informática y de Telecomunicación, C/ Periodista Daniel Saucedo Aranda, s/n,

18071 Granada, Spain

Abstract

The Data Distribution Service (DDS) middleware has recently been standard-
ized by the OMG. Prior to data communication, a discovery protocol had to
locate and obtain remote DDS entities and their attributes. Specifically, DDS
discovery matches the DataWriters (DWs) and DataReaders (DRs) entities
(Endpoints) situated in different network nodes. DDS specification does not
specify how this discovery is translated “into the wire”. To provide interope-
rability and transparency between different DDS implementations, the OMG
has standardized the DDS Interoperability Wire Protocol (DDS-RTPS). Any
compliant DDS-RTPS implementation must support at least the SDP (Simple
Discovery Protocol). The SDP works in relatively small or medium networks
but it may not scale as the number of DDS Endpoints increases. This paper
addresses the design and evaluation of an SDP alternative – which uses Bloom
Filters (BF) – that increases DDS scalability. BFs use Hash functions for space-
efficient probabilistic data set representation. We provide both analytical and
experimental studies. Results show that our approach can improve the discovery
process (in terms of network load and node resource consumption), especially
in those scenarios with large Endpoint per Participant ratios.

Keywords: DDS, Data Distribution Service, discovery, middleware, bloom
filter, peer-to-peer, RTPS

∗Corresponding author.
Email addresses: jsanchezm@uco.es (Javier Sanchez-Monedero), jpovedano@ugr.es

(Javier Povedano-Molina), jmlvega@ugr.es (Jose M. Lopez-Vega), juanma@ugr.es (Juan M.
Lopez-Soler)

Preprint submitted to Journal of Parallel and Distributed Computing May 9, 2011

1. Introduction

The Data Distribution Service (DDS) [24, 25] is high performance middle-
ware for predictable distribution of data with minimal overhead. DDS has
been standardized by the Object Management Group (OMG) to expedite pub-
lish/subscribe communications in real-time and embedded systems. OMG DDS
specification is increasingly being used to integrate real-world systems. Exam-
ples include Air-traffic Control Systems, Navy Combat Management Systems,
Automatic Stock Trading Systems, as well as Industrial control and SCADA
systems. The Data Distribution Service implements a true distributed peer-to-
peer architecture that exploits a data-centric approach leveraging reliable and
efficient end-to-end communications. The DDS data-centric approach facilitates
the interoperability of heterogeneous systems by building a Global Data Space
(GDS). Some applications publish data in the GDS and, in like manner, others
use the data space to subscribe to information of interest.

A key feature of DDS architecture is that information consumers and produc-
ers are decoupled in space (providers and consumers can be located anywhere),
in time (there is no need of simultaneous end-point availability) and in platform
(providers and consumers can be developed in diverse operating systems, hard-
ware architectures and languages). DDS also achieves multiplicity decoupling,
i.e. the middleware manages multiple simultaneous sources and destinations
for the same data. Summing up, DDS sets up an overall decoupled data-centric
publication-subscription paradigm.

To join the GDS, the middleware must be able to locate both remote Pub-
lisher and Subscriber entities to obtain their attributes and accordingly, to com-
municate with them. In doing so, a discovery protocol is involved. Discovery
is a time-consuming process that might run in scenarios with scarce resources
(such as memory and network bandwidth). Due to these reasons it is important
to provide efficient discovery protocols as this helps to improve DDS scalability.

Different discovery protocols have been proposed in assorted contexts. For
example, in wired networks Jini [33], the IETF Service Location Protocol [11]
and Universal Plug and Play [8] have been asserted. In wireless networks, among
many others works, both single [13] and multi hop [20] discovery schemes have
been proposed. More discovery schemes are briefly described in Section 7.

The DDS standard specifies discovery information exchanged between pub-
lishers and subscribers. However, the standard does not specify how this dis-
covery information is physically sent through the network. The lack of a DDS
wire protocol has an immediate consequence: different DDS implementations
are not necessarily interoperable. In order to address this situation, the OMG
has standardized the DDS Interoperability Wire Protocol (DDS-RTPS) [25].
DDS-RTPS relies on the Real-Time Publish-Subscribe protocol (RTPS) [25] to
transmit data over the network. RTPS defines the SDP (Simple Discovery Pro-
tocol) to be used for DDS entities in passive searching. The discovery protocol
defines a meta-traffic exchange that enables DDS entities to identify, locate and
obtain attributes of all the other GDS entities. Thereby, DDS based applications
automatically obtain a complete picture of their Domains.

2

For the purpose of interoperability, any compliant DDS-RTPS implementa-
tion must provide at least the SDP discovery protocol. Originally, SDP was
specified for relatively small or medium networks with a relatively stable GDS
(that is, low birth and death Endpoints rates). However, it may not scale as the
number of DDS Endpoints increases.

The following example highlights some SDP limitations. Let’s imagine a uni-
cast scenario with 100 Domain Participants and 2000 Endpoints. During the dis-
covery phase, every Participant will send and receive approximately 4000 SDP
messages to discover all the other Participants and Endpoints in the domain
(see Eq. (1) in Section 3.2). In this scenario, the total of messages sent through
the network will be approximately equal to 200000 (see Eq. (2)), whereas not
all of them will be necessary given that not every Endpoint will be interested in
discovering every other Endpoint. For example, in a typical sensor network like
a naval frigate [12] most of the sensor publishers (temperature, radars, etc.) will
only be interested in discovering other subscriber entities. However, they will
not be interested in other sensor publishers. If every Endpoint were interested
in just 50% of the Endpoints, half of the SDP network load would be wasted.

This paper proposes an SDP enhancement. Broadly speaking, our goal is to
improve discovery protocol scalability, and more precisely to reduce the network
load and memory requirements in SDP while preserving both the DDS decoupled
publication-subscription GDS model and its peer-to-peer nature.

We harness the power of Bloom Filters (BF) [2] in SDP to improve DDS
scalability. Inspired by its traditional use in data base query and more recently
in some network applications [4], we propose to include BF in SDP –hereafter
referred to as SDPBloom–. Bloom Filters, originally conceived by Burton H.
Bloom in the 70s [2], are space-efficient probabilistic data structures that were
defined for efficient membership queries.

Basically, the main idea behind SDPBloom is for each DDS Participant to
summarize and send all its Endpoints information with a BF. With this simple
approach, any Participant in the GDS will efficiently receive the whole remote
Participant discovery-related information.

As we will show, in SDPBloom the number of sent messages is not dependent
on the Endpoints number (E). More precisely, it approximates P · P , where P
is the number of Participants. In the baseline SDP, however, this number is
equal to P · E. Therefore, given that usually P < E, our approach improves
discovery performance. In the following sections, analytical and experimental
results demonstrate the benefits of SDPBloom.

The rest of the paper is organized as follows: Section 2 introduces DDS
terminology and basic concepts; Section 3 analyzes the DDS Simple Discovery
Protocol; the next section provides basic Bloom Filters background; Section 5
describes the proposed discovery solution and compares it to the SDP baseline
scheme; Section 7 reviews some related works; Section 6 reports on the experi-
mental tests which complete our analytical study; finally, Section 8 summarizes
the conclusions and possible extensions to this work.

3

SubscriberSubscriber

Data
Reader

Data
Writer

Data
Writer

Publisher

Data
Reader

Data
Reader

Subscriber SubscriberPublisher

Data
Writer

Topic
Node Domain

Participant

Topic Topic

DDS Data Domain

Figure 1: DDS entities relationship.

2. The Data Distribution Service

The OMG DDS standard is specified in one main document and several
supplemental ones. The main document is the Data Distribution Service for
Real-time Systems specification [24], and it defines the publish/subscribe com-
munications model (APIs, Semantics, Quality of Service, Programming Model,
etc) for distributed systems. It also includes the Data-Centric Publish-Subscribe
(DCPS) communication standard. The DCPS conceptual model is based on
the abstraction of a Global Data Space. Publisher applications post data into
the GDS, and DDS middleware efficiently disseminates them to all interested
Subscriber applications with a high level of transparency. Therefore, DDS mid-
dleware decouples the production and consumption of information through the
GDS. Additionally, the interoperability of different applications is also enhanced
given that the GDS provides a framework for flexible and transparent data
sharing. Closely related, the OMG DDS Interoperability Wire Protocol (DDS-
RTPS) specification [25] (based on RTPS) enables different DDS implementa-
tions to be inter-operable.

For better understanding, the following DDS concepts are briefly stated –
some of them are depicted in Fig. 1–. In some cases, we also provide illustrative
examples applied to the Naval Frigate [12] use case:

Domain. It is a virtual network concept which helps to isolate and optimize
communications among distributed applications that share common inter-
ests. The DDS applications are able to publish and subscribe data if they
belong to the same Domain. The Domain in the Naval Frigate example
involves the GDS in which different elements (radars, sensors, Integrated
Machinery Control Systems, weapon systems, workstations, Combat In-
formation Centers, staff rooms, comms room equipment, etc.) produce
and consume information.

Domain Participant. (Or simply Participant) It represents the application
involvement in the communication plane in a given Domain. It isolates
applications running on the same set of physical computers. A Partici-
pant operates as a service entry-point and behaves as a container for other

4

entity objects as well. In the example, any radar, sensor, Integrated Ma-
chinery Control System, etc. access to the GDS through the corresponding
Participant.

Topic. It materializes the interaction between the GDS and the applications.
A Topic can be defined as the logical channel that associates Participants.
It is identified by its unique name in the whole Domain. It fully specifies
the type of data that can be communicated when publishing or subscribing
information to the DDS Global Data-Space. Examples of Topics could be
the radar data, GPS position, etc.

Publisher. It is the object responsible for the actual data dissemination. It
may publish data objects of different types by using different DataWriters
(see below). In the example, Publishers are any of the elements that
produce information, for instance, a radar or GPS system.

Subscriber. A Subscriber is an entity responsible for receiving published data.
It provides the received data to the application. A Subscriber reads Topics
in the GDS for which a matching subscription exists and informs the
DataReaders (defined below) that data have been received. In the naval
frigate example, any of the elements that consume information, such as
the Combat Information Center, are Subscribers.

DataWriter. Applications use DataWriters to write data in the GDS of a
Domain through a Publisher. A DataWriter acts as a typed accessor to a
Publisher. Typed means that each DataWriter object is dedicated to one
application data type (i.e. GPS data).

DataReader. It notifies an application that data from the GDS are available.
For accessing received data, the application must use a typed DataReader
attached to the Subscriber.

Quality of Service (QoS). The DDS QoS is a set of data transmission poli-
cies that not only control the use of resources such as network bandwidth,
memory, processor usage, etc. but also define Topic properties such as
data persistence, reliability, timeliness, etc. QoS politics customize the
DDS service provided for application requirements.

DDS can be described as an overlay peer-to-peer structure where the Pub-
lishers of a given Topic are linked to all Subscribers for the same Topic through
the GDS. Hereafter, DataReaders and DataWriters will be jointly referred to
as Endpoints.

To communicate Publishers and Subscribers, DDS relies on a discovery proto-
col which allows a Publisher to dynamically discover compatible Subscribers and
vice-versa. Any OMG DDS-RTPS standard compliant implementation needs to
provide at least the SDP discovery protocol to identify the presence or absence
of other Endpoints when they either join or leave the Domain. The discovery
protocol accomplishes the transparent and inter-operable plug-and-play dissem-
ination of all the information between Publishers and Subscribers.

5

DomainParticipant

Participant
Discovery
Phase

Endpoint
(Reader/
Writer)
Discovery
Phase

Builtin
DataWriter

Advertises this
participant

Participant DATA

“DCPSParticipant” builtin topic

Builtin
DataReader

Discovers other
participants

Participant DATA

“DCPSParticipant” builtin topic

Builtin
DataWriter

Publication DATA

“DCPSPublication” builtin topic

Builtin
DataReader

Subscription DATA

“DCPSSubscription” builtin topic

Builtin
DataWriter

Publication DATA

“DCPSPublication” builtin topic

Builtin
DataReader

Subscription DATA

“DCPSSubscription” builtin topic

Advertises this
Participant's

DataWriters and
DataReaders

Discovers other
Participant's

DataWriters and
DataReaders

Network

Figure 2: DCPS built-in entities for discovery purposes.

3. DDS Simple Discovery Protocol

According to the DDS Interoperability Protocol [25], any discovery protocol
must be divided into two consecutive phases: the Participant Discovery Protocol
(PDP) and the Endpoint Discovery Protocol (EDP). The purpose of PDP is to
discover new Participants in the Domain. Whenever a new Participant is dis-
covered, the EDP procedure is triggered to exchange local and remote Endpoints
information between two Participants. Different implementations may choose
to support multiple PDPs and EDPs, possibly vendor-specific. As long as two
Participants have at least one PDP and EDP in common, they can exchange
the required discovery information. For the purpose of interoperability, at least
the Simple Discovery Protocol –explained in the following subsection– must be
supported.

3.1. SDP description

Simple Discovery Protocol is divided into the Simple Participant Discovery
Protocol (SPDP) and the Simple Endpoint Discovery Protocol (SEDP).

SDP utilizes DDS publications themselves for discovery purposes. It uses
a special set of Topics, DataReaders and DataWriters for advertising and dis-
covering other Participants and Endpoints. These special entities are called
built-in entities. To improve performance, the discovery process can be tuned
with specific QoS policies which could be applied to the built-in entities.

Fig. 2 shows the Topics related to SPDP (“DCPSParticipant”) and SEDP
(“DCPSSubscription”, “DCPSPublication”). For each one of these Topics there
is a specific associated data type. For example the SPDPdiscoveredParticipant-
Data is the data type used in the “DCPSParticipant” Topic.

6

Bootstrapping– The discovery process is started from a list of known hosts.
It contains the locators (typically unicast or multicast IP addresses) for which
a Participant will announce its presence. Alternatively, if there are no specified
IP addresses, default addresses will be used. Both options can be used together.

When a Participant in a node is enabled, the first discovery stage consists
in discovering other Participants. This discovery –restricted to Participants in
the same DDS Domain– is done via PDP. In SPDP, a special message called
SPDPdiscoveredParticipantData or simply Participant DATA, is periodically
sent to known peers when a DomainParticipant is created or deleted. If multi-
cast is available, a unique Participant DATAmessage is sent by each Participant.

Participant Announcement– By default, when new SPDPdiscoveredPar-
ticipantData messages are received, the SPDPdiscoveredParticipantData itself
is sent to the remote Participant. Then, the remote Participant is stored locally.

The SPDPdiscoveredParticipantData contains information for establishing
communication between two Participants, that is, information related to the
protocol version, vendor identification, unicast and multicast locators (transport
protocol to use, IP address and port combinations) and information about how
to track Participant liveliness. Also, the information contained includes which
Endpoint Discovery Protocols the remote Participant supports. Therefore, the
proper Endpoint Discovery Protocol can be selected to exchange Endpoint in-
formation with the remote Participant.

Endpoint Announcement– Similarly, SEDP publication and subscription
information is composed of the data needed for matching local and remote
Endpoints. These data are specified as:

1. The Topic name of the Endpoint.

2. The data type name.

3. The data typecode. It is defined as the data-type structure description for
a DDS object.

4. The supported QoS parameters such as accepted deadline, reliability level,
etc.

The DDS middleware must check that the previous first three data –Topic,
data type names and typecode– are the same. It must also verify that the offered
and requested QoS parameters are compatible. If that is the case, the remote
Endpoint is suitable for starting publication-subscription communication. Even
though the typecode is not included in standard discovery information, the data
type description is usually included in DDS implementations for proper data se-
rializing, de-serializing and error checking purposes. For example, a publication
Topic name and type name can match another subscription but if the typecode
is not exactly the same, the communication will not be established in order to
preserve data correctness.

Due to the pure peer-to-peer nature of RTPS/DDS, each Participant stores
the information about discovered Participants, associated publications and sub-
scriptions in a local database. The SEDP protocol sends the Endpoints infor-
mation for every Participant in the local Participant database. Therefore, each
Participant receives all the discovered Participants’ Endpoints information. For

7

Node A Node B

Publication A1 DATA

Participant DATA
 heartbeat period

Participant B DATA

Participant B DATA (deleted)

Modified publication A1 DATA

Participant B DATA

participant A DATA

Participant B DATA

2

2

Participant B deleted

1

1

1

Resend
Participant B
DATA. Wait
random time
depending of
discovery's
QoS

Participant B
heartbeat
period

DataWriter
A1 created

DataWriter A1's
 QoSmodified

Participant A
created

Figure 3: Basic SDP nodes dialog.

each –created or deleted– Endpoint, a Participant sends a discovery message.
The Participants and Endpoints liveliness are settled by using the topic sam-
ple acknowledgment mechanism and piggybacked heartbeats as defined by the
DDS-RTPS standard [25].

Fig. 3 shows a typical nodes dialog in which both SPDP heartbeats and
SEDP messages are exchanged to notify Endpoint creation, modification and
deletion.

3.2. Discovery protocol complexity evaluation. SDP analysis

The complexity evaluation of discovery procedures is a multidimensional
problem for which we define a set of metrics. In broad terms, for the sake of
scalability, a good discovery protocol should minimize the consumed bandwidth
and the impact on the end-node resources as well. The later can be measured in
terms of memory consumption and CPU usage. Memory consumption is closely
related to the number of Endpoints the node must store. It also depends on the
number of live transport-sessions (logical transport connections) that the node
maintains. CPU usage is related to the amount of network traffic that the node
must handle.

Table 1 defines the set of metrics to be evaluated. In our simple evaluation
model, the metrics selected depend on the number of Participants (P) and the
total number of Endpoints (E).

8

Metric name Symbol Meaning
Nparticipant Np Number of messages sent or received by each Participant if

multicast is not used
Ntotal Nt Number of messages handled by the network if multicast is

not used
Nmparticipant Nmp Number of messages sent or received by each Participant if

multicast is used
Nmtotal Nmt Number of messages handled by the network if multicast is

used
Mparticipant Mp Number of Endpoints that need to be stored on each Parti-

cipant
Sparticipant Sp Number of live transport-sessions that need to be maintained

by each Participant
NmarginalParticipant Ap Number of messages sent and received if a new empty Parti-

cipant is added to the network
NmarginalEndpoint Ae Number of messages sent if a single Endpoint is added to one

Participant assuming no multicast
NmmarginalParticipant Amp Number of messages sent and received if a new empty Parti-

cipant is added to the network if multicast is used
NmmarginalEndpoint Ame Number of messages sent if a single Endpoint is added to one

Participant if multicast is used

Table 1: DDS discovery-protocol scalability metrics.

The distribution of Endpoints and Topics within the network can influence
the results expected for individual Participants. A Domain with most of its
Endpoints clustered in just one Participant will behave differently than another
with uniformly distributed Endpoints. Thus, to estimate the discovery traffic
load the following assumptions were adopted:

• To simplify the analysis, Endpoints are considered to be uniformly dis-
tributed among Participants. In other words, the Endpoints per Partici-
pant (E/P) ratio is the same for every DDS node. Although this assump-
tion cannot be generalized, it will not affect global resource evaluation.

• A message is only accounted as one packet. Heartbeats and ACKS are
not considered.

Our study considers SDP as the reference baseline system. In SDP, each
Participant will send its Endpoints information to any other Participant, and it
will receive Endpoints information from every other Participant.

The total number of sent messages is approximately the number of Par-
ticipants times the number of Endpoints. The complexity is therefore O(P 2).
However, if multicast is used, the number of sent messages can be reduced to
the number of Endpoints. In any case, each Participant will receive a message
for every Endpoint in the system other than its own.

Each Participant must store a full database containing information about
any discovered Endpoint in the system. In a large network, most of these End-
points will not be needed at all by the Endpoints in the given Participant. There-
fore, a lot of extra storage is unnecessarily wasted. The discovery database is

9

used by local Endpoints (present or future) to look for compatible remote End-
points.

If a new Endpoint or Participant is added, a message will be sent to every
other Participant in the DDS Domain. In the case of a new Participant, it will
receive a message from every other Participant as well as a message announcing
every existing Endpoint.

From now on, network traffic equations will be expressed in terms of the
number of messages exchanged. Storage requirement equations will be expressed
as the number of items that are requested to be stored.

The number of messages sent or received by one Participant is the number
of messages sent and received during the SPDP for announcing the Participant
times the number of Endpoints the Participant has to announce to any other
Participant in the SEDP (E/P)

NParticipant = 2 · (P − 1) ·
E

P
∼ 2 · E (1)

The total number of messages sent is equal to

Ntotal = P · (P − 1) ·
E

P
∼ P · E (2)

If multicast is used, the number of messages can be reduced significantly.
In this case, a single message can inform all network Participants about an
Endpoint. Therefore, the number of messages sent or received by one Participant
can be expressed as

Nmparticipant = E/P + (P − 1) ·
E

P
= E (3)

The total number of messages sent equals

Nmtotal = P ·
E

P
= E (4)

The storage needed for each Participant is given by

MParticipant = E (5)

The storage needed to keep the alive transport connections using the SDP
is equal to

SParticipant = (P − 1) ∼ P (6)

An empty Participant will have no Endpoints. If a new empty Participant
is added to the network, the number of messages generated will be equal to

NmarginalParticipant = 2 · P + E (7)

If a new Endpoint is added to the network, the number of messages generated
will be

NmarginalEndpoint = P + 0.5 ·
E

T
(8)

10

where T is the number of Topics in the network.
And finally, using multicast, equations (7) and (8) will reduce to

NmmarginalParticipant = 1 + P + E (9)

NmmarginalEndpoint = 1 + 0.5 ·
E

T
(10)

4. Bloom filters

A Bloom Filter is a space-efficient data structure which compactly represents
a set of elements. It supports element insertion operations but not element
deletions. BFs [2] are used in multiple fields to summarize content and manage
efficient membership queries. An excellent review of BF network applications
can be found in [4].

A Bloom filter is a mono-dimensional array of m bits that initially are set
as equal to zero. A set of k Hash functions map elements to one position in
the array. The insertion operation consists in setting the array positions given
by the k Hash functions at one. The membership test operation consists in
hashing the key to check whether the proper positions are set to one. If any of
the positions is set to zero the tested item does not belong to the set.

The possible penalty of extremely compact BF data representation is that
membership queries can turn out to be false positives; false negatives are not
possible, however. In other words, there is a non-zero probability that a set of
array positions would be set to one even though the element is not in the set.
This probability depends on the number of Hash functions (k), the size of the
array (m) and the number of items represented in the filter (n). False positive
probability can be approximated by [18]:

FP ≈

(

1−

(

1−
1

m

)kn
)k

≈
(

1− e−
kn

m

)k

(11)

To study the influence of increasing n (number of keys) in a filter for different
values of k, Fig. 4 plots the theoretical false positive rate estimation respectively
according to Eq. (11) for m = 46 bytes. In this figure the filter lengths were
estimated for storing n = 20 keys. Our goal here is to characterize the effect
of a mismatch between filter design and operational conditions. To accomplish
this, the number of keys is increased without resizing the filter. Figure 4 shows
that increasing the number of Hash functions (k) is not always desirable if the
filter size (m) is not increased accordingly. In general, the false positive rate
increases faster for a fixed-size filter if the number of Hash functions is higher.
This trend can be explained because as more Hash functions are used, more
vector positions are set to one when a key is added to the filter, thus increasing
the probability that all vector positions associated with a specific query be equal
to one.

11

 20 40 60 80 100 120 140 160 180 200
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

F
al

se
 p

os
iti

ve
 r

at
io

Endpoints (keys)

k

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 20 40 60 80 100 120 140 160 180 200

K
 (

nu
m

be
r

of
 h

as
h

fu
nc

tio
ns

)

Endpoints (keys)

Theoretical FP rate

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.10.9

0.8

0.7
0.6
0.5

0.4

0.3
0.2

 0.1

Figure 4: Theoretical BF false positive ratio for m=46 bytes.

5. SDP with Bloom filters

5.1. SDPBloom description

The Problem– Section 3.2 evaluates the SDP analytically. According to
the analysis provided, for those scenarios with a high number of Participants and
Endpoints per Participant, two problems that could be overcome are identified:

1. Memory requirements. The memory grows with the number of Partici-
pants and Endpoints since each Participant stores information about every
entity, even those entities that are not of interest.

2. Network traffic. To distribute all the Endpoint information to every Par-
ticipant a considerable traffic load is generated, especially if multicast is
not available.

Our Proposal– To deal with these problems the proposal is to harness the
power of Bloom Filters. The basic idea is that each Participant will send its
own BF to other Participants . The filter epitomizes the Endpoint set in the
same DDS Domain. Consequently, the number of messages sent to announce
the Endpoints is reduced to a sole message containing the actual BF. Thereby,
both the memory requirements and the network traffic load will be decreased.
The adoption of BF changes the SDP dialog paradigm among Participants from
“give me all information you have” to “give me information to know what you
have”. We call this alternative SDPBloom.

BFs enable each Participant to check if any of its Endpoints of interest is
in the set represented by the filter. In SDPBloom each Participant stores the
information about all the entities but with a significantly smaller size.

The keys or items stored in the filter must be a unique identification for
Endpoints. We could utilize just the Topic name as a key to be inserted into the
filter. In this case a Participant would make membership queries to the filter
by using the Topic name of the local Endpoints. Alternatively, a more complex
key can be built that is composed of the union of three elements (the Topic

12

name, the type name and the typecode). The alternatives and influence of the
key composition are discussed in Section 6.

SDPBloom Algorithm:
Require: Enabled Domain Participant
1: Build Bloom filter BF
2: while Participant is enabled do

3: if Endpoint deleted then

4: Rebuild BF
5: end if

6: for all New Endpoint E do

7: Build E key Ek
8: Insert Ek in BF
9: end for

10: Add BF to ParticipantDATA message
11: for all Remote Participant filter r do

12: for all Local Endpoint key Ek do

13: if Ek ∈ r then

14: {Try to start publication or subscription}
15: Send Endpoint information (SSEDP message) to the remote Participant
16: if Ek’s SSEDP desired message is not received then

17: Matched Endpoint Ek is a false positive
18: end if

19: end if

20: end for

21: end for

22: end while

Figure 5: SDPBloom pseudocode algorithm.

Changes to SDP Participant Announcement– One relevant issue is to
determine when the BF should be sent to other Participants in the Domain.
As previously mentioned, the OMG DDS-RTPS standard [25] divides discovery
into PDP and EDP protocols. Taking into account the purpose of each protocol,
Endpoints information (the BF) should be included in EDP. However, –as jus-
tified in the next paragraph– we propose including the filter in the Participant
DATA messages which are sent periodically to advertise Domain Participants
in the Participant discovery procedure.

Sending the filter during the PDP has two advantages. First, this alternative
is closer to the content announcement policy. Secondly, it reduces the number of
messages sent to the network. More precisely, to announce its presence and its
Endpoints filter, a Participant will send P −1 messages, where P is the number
of Participants in the network. This means that one message is issued for each
Participant in the Domain. On the other hand, sending the filter after the PDP
would imply an extra message sent to the network to announce the filter, so
the total messages for announcing the Participant and its Endpoints would be
equal to 2 · P .

SDPBloom is described in pseudocode in Fig. 5. Additionally, Fig. 6 shows
a typical sequence diagram. To highlight traffic load reduction, both SDP and
SDPBloom network messages are shown. The filter rebuild period (if there are
changes in the entities) and sent period are also represented. This last event
can occur after a specified period or can be requested after a Participant DATA
message reception.

13

participant A DATA

Node A Node B

participant B DATA

DataWriter A1 created
DataWriter A2 created

DataWriter An created

Participant DATA heartbeat / BF Refresh period

participant A Bloom filter

Participant DATA heartbeat / BF Refresh period

Participant DATA heartbeat / BF Refresh period

participant A Bloom filter

DataWriter A3 created

 participant A BF

B creates A2, A4 and F subscriptions
B can match A1-N topics, topic F is a false positive

...

B can not match any topic

B deduces it was a false
possitive and annotates it

Subscribe A2

Subscribe A4

Subscribe F

 I have not F

B matchs A2, A4, F and tries to
subscribe A2,A4,F

Node B's storage

SDP SDPBloom

● Participant A whish to inform about its
Endpoints

● Participant B whish to mach A2, A4 and F
● We omit PDP information
● The HB is the same for both Participants

Network messages

SDPBloom
filter

SDP

SDPBloom
matched
Endpoints

Figure 6: SDPBloom nodes dialog.

Given that BFs store keys the same way that Hash tables do, non-key at-
tributes –such as QoS parameters– cannot be inserted on the filter a priori.
The filters only allow membership queries but unfortunately they do not sup-
port range queries, such as checking a range of a QoS attribute. For example,
the filter can store a key such as “Radar 02” to support matching Topic name
operations, but it is not valid for storing QoS parameters, such as an offered
deadline time. Therefore, by default a remote DDS node cannot check whether a
deadline period in the filter is smaller or bigger than its accepted deadline. Our
proposal is to include an intelligent/assisted Endpoint discovery phase. Once a
Participant receives the remote BF, all the topics that might be of interest for
this Participant must be checked. If the query result is positive (that is, the
Participant is interested in a topic announced in the filter), then a modified ver-
sion of SEDP protocol is used to exchange QoS settings and other parameters.
If they are compatible, the Endpoints will be matched at the end. This approach
can reduce the traffic load, given that most publication-subscription related in-
formation will be sent only in case of potential matching. Since SEDP always
sends the whole Endpoints set information, we call Selective SEDP (SSEDP) to
the slighted SEDP modification for selective Endpoints information interchange.

5.2. SDPBloom analysis

This section we analyses the SDPBloom algorithm. For a clearer comparison,
SDPBloom analysis is here presented by extending the SDP study in Section
3.2.

Let us define Matched Endpoints (ME), as the average ratio of the number
of matched Endpoints over the total number of Endpoints for each Participant.

14

After matching one or several Endpoints, some information (SSEDP messages)
must be transferred to start the publication-subscription procedure. ME con-
trols the number of sent and received messages during this process. In real
scenarios, for instance in the naval frigate example, almost invariably it holds
that ME ≪ E.

In SDPBloom each Participant only sends and receives a filter representing
each other Participant in the network. Therefore,

NParticipant = 2 · (P − 1) · (ME · (E/P)) ∼ 2 ·ME · E (12)

The total number of messages sent is equal to the number of Participants
multiplied by what each Participant sends, i.e. one BF

Ntotal = P · (P − 1) · (ME · (E/P)) ∼ P ·ME · E (13)

When multicast is utilized, there is only one message for advertising a Par-
ticipant multiplied by the Matched Endpoints traffic, therefore

Nmparticipant = 1 + (P − 1) · (ME · E/P) ∼ ME · E (14)

The total number of messages is given by

Nmtotal = P · (ME · (E/P)) = ME · E (15)

The storage needed for each Participant is one BF plus its Endpoints and
its matched Endpoints,

MParticipant = P +
E

P
+ME · E (16)

The storage needed to keep alive the transport sessions is the same as SDP,
therefore

SParticipant = (P − 1) ∼ P (17)

If a new empty Participant is added to the network, the number of generated
messages is independent of E, so

NmarginalParticipant = 2 · P (18)

If a new Endpoint is added to the network, we are in the same case as when
SDP is used, so

NmarginalEndpoint = P + 0.5 ·
E

T
(19)

Using multicast, there is one message per Participant to announce itself and
another sent by every other Participant with its BF, therefore

NmmarginalParticipant = 1 + P ∼ P (20)

NmmarginalEndpoint = 1 + 0.5 ·
E

T
(21)

15

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800 900 1000

N
p

(M
es

sa
ge

s
nu

m
be

r)

Participants (P)

SDP vs SDPBloom
SDP

SDPBloom ME=0.1
SDPBloom ME=0.2
SDPBloom ME=0.5

Figure 7: SDP and SDPBloom participant messages (metric Np).

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 2.2e+07

 0 100 200 300 400 500 600 700 800 900 1000

N
t (

M
es

sa
ge

s
nu

m
be

r)

Participants (P)

SDP vs SDPBloom
SDP

SDPBloom ME=0.1
SDPBloom ME=0.2
SDPBloom ME=0.5

Figure 8: SDP and SDPBloom total network messages (metric Nt).

16

 0 100 200 300 400 500 600 700 800 900 1000
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07
 9e+07
 1e+08

 1.1e+08

SDPB
ME=0.1

SDPB
ME=0.2

SDP

P

E/P

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07
 9e+07
 1e+08
 1.1e+08

Figure 9: Total network messages (metric Nt) versus P and E/P.

Taking the naval frigate example again, note that SDPBloom halves the
number of messages sent and received by each Participant. In addition, storage
needs for tracking entities of interest (Mp) are also reduced from 2000 items
(SDP) to 1120 in SDPBloom.

Curves depicted in Figs. 7 and 8 have been generated according to the
previous SDP and SDPBloom analytical study. Here, performance is measured
in terms of the number of network messages. For the sake of simplicity, memory
consumption is not shown, although similar trends can be expected for storing
remote Endpoints information. In the Figures we assume a uniform E/P = 20
ratio for all the Participants. So, as the number of Participants grows, the
number of Endpoints increases accordingly. For SDPBloom curves, different
points are obtained by varying the Matched Endpoints ratio.

After conducting the study, we conclude that SDPBloom can reduce system
resource requirements since memory consumption and network messages are
significantly smaller. However, the adoption of SDPBloom is conditioned by the
specific network scenario. More precisely, the improvements are more significant
as the number of Endpoints per Participant (E/P) increases. In addition, as
the ME factor grows, SDPBloom approaches SDP performance. This can be
explained since ME = 1 means that every Participant is interested in all the
possible Endpoints in the network.

Additionally, Fig. 9 plots the relation between metric Nt –defined in Table
1–, the number of Participants P , and the E/P ratio. It can be seen that
SDPBloom improves SDP performances for different values of E/P . In the
worst case, when E/P = 1, SDPBloom performance will be similar to SDP.

17

6. Experimental results

To validate the analytical study in Section 5.2 and to determine the SDP-
Bloom benefits in real scenarios, we developed a testing tool referred to as
sdpb tester.

6.1. Experimental framework

The sdpb tester was developed in C++. It utilizes the Open Bloom Filter
implementation by Arash Partow [26] and the Real-Time Innovations, Inc. DDS
implementation [29]. It implements the algorithm described in Fig. 5.

It automatically creates a set of different Topics and Endpoints in a single
node or a set of nodes. The sdpb tester collects discovery information in
the node and publishes it in the DDS Global Data Space according to SDP
or SDPBloom procedure. In the case of SDPBloom, keys representing entities
are stored in a BF and are included in the SPDPdiscoveredParticipantData
messages. The sdpb tester reports on the size of the discovery information
for both SDP and SDPBloom schemes. Thereby, the sdpb tester can measure
the achieved compression ratio. More precisely, the sdpb tester supplies the
following functionalities:

• It behaves as a SDPBloom Publisher, or as a SDPBloom Subscriber or as
both of them for discovery information.

• To test the data typecode impact on the filter key composition, it can
create a set of Endpoints that has two different data types.

• It also allows parameterizing the following BF options: the false positive
probability rate, the number of keys that will be stored in the filter a priori
and the number of Hash functions to use. In addition, it can customize
the key that will be inserted into the filter. It deals with any combination
of Topic name, type name and typecode for the key.

• It can collect local discovery information and store it on the filter.

• It checks local Endpoints against the filter received.

In Open Bloom Filter implementation [26], the filter length is determined
by considering two input parameters, namely the desired false positive rate and
the estimated number of keys that the filter will store.

To identify the Endpoints, the sdpb tester builds a unique key by adding
a set of strings. For example, the key:

"WSimple Type 0Simplestruct Simple {string<255> msg}"

represents a key in which:

• W specifies that the Endpoint is a DataWriter.

• Simple Type 0 is the Topic name.

18

• Simple shows the type name.

• struct Simple string<255> msg;; is the typecode.

A remote DataReader of the same Topic and type just needs to build the same
key and check if it is in the filter.

6.2. Data types IDL description

The test used the SPDPdiscoveredParticipantData (SPDP protocol), Pub-
licationsBuiltinTopicData (SEDP/SSEDP protocol) and SubscriptionBuiltin-
TopicData (SEDP/SSEDP protocol) data structures defined in the DDS-RTPS
standard. Additionally, Listing 1 provides the IDL (Interface Description Lan-
guage) [23] description of the data types used for the tests conducted. The
test types examples considered are the Simple and Complex types. The Dis-
coveryBloomFilter is the extra data that have been added to the SPDPdis-
coveredParticipantData structure to include the BF in the SDPBloom PDP
announcements.

s t r u c t DiscoveryBloomFi l ter {
sequence<octet ,1024> pbf ; # Bloom f i l t e r b y t e s v e c t o r
shor t keys number ; # Number o f keys
f l o a t fp prob ; # Fa l s e p o s i t i v e p r o b a b i l i t y

} ;

s t r u c t Simple {
s t r i n g msg ;

} ;

s t r u c t Complex {
s t r i n g msg ;
oc t e t f l a g ;
shor t l ength ;
f l o a t temperature ;
long s i z e ;
oc t e t bytes matr ix [1 0 0] ;

} ;

Listing 1: Types IDL description.

6.3. Simulation tests and results

Multiple tests have been conducted in order to analyse different aspects of
the method proposed. Subsection 6.3.1 presents general network performance
metrics comparing SDP and SDPBloom. Subsections 6.3.2 and 6.3.3 highlight
the benefits of using BF compared to the alternative of simply modifying SDP
to include the Endpoints list as “plain text” in SPDP announcements. Discov-
ery data size and compression ratio are studied in terms of the different keys
composition structure and different data types. Finally, Subsection 6.3.4 studies
the issue of false positives.

19

6.3.1. DDS Samples, UDP datagrams and bandwidth

Scenario description
Scenario 1 Scenario 2 Scenario 3 Scenario 4

App1 App2 App1 App2 App1 App2 App1 App2
Simple-w 10 8 10 10 10 2 10 0
Simple-r 0 2 0 3 0 8 0 10
Complex-w 10 8 10 0 10 2 10 0
Complex-r 0 2 0 3 0 8 0 10
ME 0.2 0.6 0.8 1.0

Experimental results
SDP SDPB SDP SDPB SDP SDPB SDP SDPB

DDS Samples 168 40 144 48 160 128 160 160
UDP Datgs. 273 80 232 96 265 241 283 282
Bytes trans. 67412 18176 60192 25856 66812 60536 69832 70172

Table 2: Example-SDP-SDPB scenario description.

Scn1 Scn2 Scn3 Scn4

0

20

40

60

80

100

120

140

160

180

D
D

S
 S

a
m

p
le

s

(a) DDS Sampled published

Scn1 Scn2 Scn3 Scn4

0

50

100

150

200

250

300

U
D

P
 d

a
ta

g
ra

m
s

(b) UDP datagrams sent

Scn1 Scn2 Scn3 Scn4

0

10000

20000

30000

40000

50000

60000

70000

80000

B
y
te

s
 t
ra

n
s
fe

rr
e

d

(c) Bytes transferred

SDP

SDPBloom

Figure 10: SDP and SDPBloom comparison.

The first experiments measure DDS Samples, UDP datagrams and bytes
transferred to the network. DDS Samples are shown because they represent a
measure that is independent of UDP related QoS parameters, which can vary
the amount of final UDP datagrams sent to the network. Two applications
containing a Participant with different DDS entities were run in an Ethernet
network. All DDS entities were created using default QoS parameters and the
transport was set up solely to UDPv4. The Endpoints key composition was the
Topic name and type name. Then applications were executed during 16 sec-
onds, publishing SPDPdiscoveredParticipantData discovery information every 4
seconds in order to simulate an initial discovery procedure. The Open Bloom

20

filter needs two parameters to create the filter, the desired false positive rate
(FP) and the number of keys (n) that will store the filter a priori. Then, the
optimal number of hash functions and size of the filter are optimally estimated
by the Open Bloom filter in order to fit them to the FP and n values. For all
the experiments in this subsection the FP and n values were set at 0.005% and
20 respectively. Then, the bytes vector size was adjusted to 40 Bytes. This is
the main extra data which is added to the SPDPdiscoveredParticipantData for
SDPBloom. Network data were collected and analysed with TShark [9]. Finally,
it is interesting to note that no false positives occurred during these experiments.

Table 2 describes the four scenarios under consideration. For each entity type
in the table, a different DDS Topic was created so that Simple DW number one
only matches a Simple DR with Topic number one. For example, scenario 1 is
composed of application App1, which has 10 Simple DWs (associated with 10
Topics) and 10 Complex DWs (associated with 10 different Topics), and appli-
cation App2, which is composed of 8 Simple DWs, 2 Simple DRs (linked with
2 Simple DWs at App1)), 8 Complex DWs and 2 Complex DRs (linked with 2
Complex DWs at App1), i.e. ME = 0.2 for the whole scenario. The scenarios
differ mainly in the Matched Endpoint ratio (ME) in order to check the impact
of this parameter on SDPBloom performance. Experimental result numbers are
also shown in Table 2. The performance results of SDP and SDPBloom can
be easily compared in Fig. 10. That figure reveals that SDPBloom differences
with SDP are most remarkable when the ME factor decreases (see scenarios
Scn1 and Scn2). The third scenario (ME = 0.80) represents a trade-off point
where the performance of SDPBloom is closer to SDP. In this situation the
decision to use SDP or SDPBloom would depend on specific environment re-
strictions. The fourth scenario (Scn4) represents an environment where all the
Endpoints are interested in all the Endpoints (ME = 1.00); in this situation
SDPBloom would not be suitable. It should be pointed out that most traffic
is due to the SEDP (or SSEDP) protocol (PublicationsBuiltinTopicData and
SubscriptionBuiltinTopicData messages). SDPBloom traffic reduction is due to
the intelligent SSEDP message exchange that occurs once a remote Endpoint
matching is found on the filter.

In addition, Scn3 in Figures 10b and 10c exhibits the relative differences
between SDP and SDPBloom compared to the differences in Figure 10a which
shows the DDS samples sent. This behavior can be explained since SDPBloom’s
SPDPdiscoveredParticipantData messages are larger than the SDP ones, so they
are sliced in more UDP datagrams than SDP’s SPDPdiscoveredParticipantData.

6.3.2. Key composition influence

The analytical study did not consider the BF key composition utilized for
discovery matching (Section 5.1). However, as mentioned in Section 3.1, the
Topic name, the type name and the typecode tuple is often sent in the discovery
process. To compare SDP and SDPBloom, the BF key-composition influence is
measured in the following experiments. This evaluation is directly related to the
consumed bandwidth to announce Participant’s entities if BF were not used.

21

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100

D
is

c
o
v
e
ry

 D
a
ta

 S
iz

e
 (

B
y
te

s
)

Endpoints in Participant

SDP vs SDPBloom
SDP (Key: Topic; Simple)

SDPBloom (Key: Topic; Simple)
SDP (Key: Topic; Complex)

SDPBloom (Key: Topic; Complex)
SDP (Key: Topic; Simple-Complex)

SDPBloom (Key: Topic; Simple-Complex)

Figure 11: SDP vs SDPBloom (Key topic).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60 70 80 90 100

D
is

c
o
v
e
ry

 D
a
ta

 S
iz

e
 (

B
y
te

s
)

Endpoints in Participant

SDP vs SDPBloom
SDP (Key: topic+type+typecode; Simple)

SDPBloom (Key: topic+type+typecode; Simple)
SDP (Key: topic+type+typecode; Complex)

SDPBloom (Key: topic+type+typecode; Complex)
SDP (Key: topic+type+typecode; Simple-Complex)

SDPBloom (Key: topic+type+typecode; Simple-Complex)

Figure 12: SDP vs SDPBloom (Key topic+typename+typecode).

22

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

C
o
m

p
re

s
s
io

n
 r

a
ti
o

Endpoints in Participant

SDP vs SDPBloom keys compression ratio for Complex type
SDPBloom (Key: topic; Complex)

SDPBloom (Key: topic+type; Complex)
SDPBloom (Key: topic+type+typecode; Complex)

Figure 13: SDP vs SDPBloom compress ratio for Complex type.

In Figs. 11 and 12, the x axis shows the number of Endpoints created in
a DomainParticipant whereas the y axis represents either the sent discovery
data size or the compression ratio. Three different tests are reported: using the
Simple, Complex or both data types. As can be noticed in all the evaluations
reported, the reference SDP data stays constant.

Fig. 11 shows SDP and SDPBloom using the Topic name as the key for
Endpoint matching. Since the Topic name is the same for the three tests, obvi-
ously the three tests provide identical results for SDP and SDPBloom. However,
in Fig. 12 the data type name and typecode are added to the key composition.
Results bear out that the best data compression is obtained with the larger
typecode, i.e.the Complex type.

6.3.3. Compression ratio for each type and key combination

Figs. 13 and 14 plot the SDPBloom gain compared to the SDP baseline
scheme in terms of data size compression as a function of the number of End-
points per Participant (E/P) for different key compositions. Results for both
Complex as well as Simple and Complex types are respectively depicted. In
both cases, the best improvement is obtained when the SDPBloom key includes
the Topic name, the data type and the typecode.

Regarding the key data type of the Endpoints, the Complex type provides a
higher compression ratio (approximately up to 50:1) as was to be expected. This
makes sense since Complex typecode is the largest, as mentioned in Section 6.3.2.
More interestingly, results show that the compression ratio tends to stabilize
rapidly (approximately for E/P ≥ 10). For E/P ≤ 20 better compression
ratios are obtained as the number of Endpoints per Participant increases. As
explained in Subsection 6.3.1, the Open Bloom filter tries to estimate the k and

23

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

C
o
m

p
re

s
s
io

n
 r

a
ti
o

Endpoints in Participant

SDP vs SDPBloom keys compression ratio for Simple and Complex type
SDPBloom (Key: topic; Simple-Complex)

SDPBloom (Key: topic+type; Simple-Complex)
SDPBloom (Key: topic+type+typecode; Simple-Complex)

Figure 14: SDP vs SDPBloom compress ratio for Simple and Complex types.

the bytes vector length optimally within an iterative procedure. Therefore, the
data size of the keys grows uniformly while the estimated filter size does not.
This explains the decrease in the compression ratio in Figs. 13 and 14.

6.3.4. False positives

To tune the filter design, the false positive (FP) ratio should be taken into
consideration. It is important to set up the filter parameters according to the
envisaged use of the filter. For instance, the false positive ratio will influence in
algorithm performance since the filter should be rebuilt, by using a larger array,
when the estimated FP ratio exceeds a given threshold.

In particular, for all the experiments reported, a filter has been created
for storing up to 20 Endpoints per Participant (keys) with an initial target-
estimated false-positive ratio of 0.0015. These values yield a 46 byte vector. In
the experiment conducted, a discovery data Publisher creates a set of Endpoints
and adds it to the filter, while keeping the filter vector size constant. To increase
the FP rate, Endpoints (keys) are added to the filter gradually. A discovery
Subscriber creates a large set of false keys (outliers) and checks if the false keys
are in the received filter. This can be checked in Fig. 15. For k = 15 if 10 extra
Endpoints keys are added without resizing the filter, the FP rate is increased
to 0.045, however, if k = 5 the FP ratio only grows up to 0.01.

Results are depicted in Fig. 15. Theoretical FP rate values are obtained
according to Eq. (11). It can be pointed out that the experimental false posi-
tive rates are greater than theoretical ones. [21] shows the differences between
theoretical and simulation filter error rates as well. In this respect, in [3] the
authors claim that:

Mullin [21] and Gremillion [10] both observe that the false-positive

24

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

F
P

 r
a

ti
o

Endpoints number

Theoretical and experimental FP ratio

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 5 10 15 20 25 30

F
P

 r
a

ti
o

Endpoints number

Theoretical and experimental FP ratio (low values)

Theoretical FP Rate (k=5)
Theoretical FP Rate (k=11)
Theoretical FP Rate (k=15)

Experimental FP Rate (k=5)
Experimental FP Rate (k=11)
Experimental FP Rate (k=15)

Figure 15: Experimental false positive rate (0-32 Endpoints).

rate of Bloom filters in their database applications are slightly higher
than pk . However, they attribute this to poor quality pseudoran-
dom numbers. Our results offer another possible explanation: the
actual false-positive rate is higher than pk , even if perfect random
numbers are available.

Additionally, FP experiments also provided some insight into the Hash func-
tion number. If the number of DDS entities is constant, higher k value minimizes
the FP rate for fixed length filters. Meanwhile, if DDS entities are added dy-
namically, lower k values minimize the appearance of false positives without
resizing and rebuilding the filter.

7. Related work

In the real world, different DDS implementations adopt different discovery
schemes. As previously mentioned, to provide interoperability, any DDS imple-
mentation must support DDS-RTPS (SDP), for example [27] and [29]. However,
if interoperability is not requested other alternatives have been developed suc-
cessfully. For instance, in [22] discovery is based on a centralized Information
Repository. Currently implemented as a CORBA server, whenever a client re-
quests a subscription for a topic, the Information Repository server locates the
topic and notifies any existing publishers about the location of the new sub-
scriber. Repository-based discovery reduces traffic between peers, although the
whole discovery procedure relies on a single point. If the server fails the DDS
system will not work at all. To mitigate this weakness, a Repository Federa-
tion [22] is suggested. In this case, different servers can collaborate to improve
robustness if the original repository is no longer available.

RTI Enterprise Discovery Service [16] provides a similar pluggable central-
ized approach that also reduces steady state traffic, because Participants in this
case only have to maintain liveliness with the server, not with every peer.

Other lightweight DDS discovery approaches have also been proposed, such
as the static Low Bandwidth Discovery Plug-in [7]. This unidirectional scheme

25

gets the information about remote entities (including endpoint QoS settings)
from a local file. In spite of reducing bandwidth, its static nature makes this
approach unsuitable for dynamic application deployments.

In comparison to previous schemes and SDP, SDPBloom reduces the number
of messages and saves traffic load. Additionally, it is DDS-RTPS compliant
(thus interoperability is satisfied), it is not static (therefore, it is suitable for
dynamical deployments) and finally, it is not characterized by the single-point
of failure weakness like other centralized schemes.

Up to the authors’ knowledge, there are no specific papers focused on DDS
discovery. Beyond the DDS context, the discovery issue has been addressed
in multiple environments which include network operating systems [15], mobile
communications [20], agents platforms [5], and peer-to-peer networks [19] among
many others. Resource and service discovery are studied in [1] in order to
summarize different technologies and to provide guidelines for selecting these
alternatives for large-scale multi-domain networks.

[14] provides a discovery protocol taxonomy in which the most relevant con-
tributions are summarized. Basically, classic approaches are based on a cen-
tralized client-server paradigm. Alternatively, other paradigms have been in-
troduced [31]: the centralized peer-to-peer, pure peer-to-peer and hierarchical
peer-to-peer[17]. DDS discovery can be classified as pure peer-to-peer.

Peer-to-peer architectures can be divided into structured and unstructured
systems [19]. A structured system maintains a well-defined organization among
participating nodes. Objects are placed on these nodes based on logical identi-
fiers calculated by pre-defined functions. However in DDS, instead of organizing
its nodes and entities into a structure –such as Distributed Hash Tables (DHT)
implemented in Chord [32], Pastry [30] and others–, unstructured communica-
tion paths are built by the DDS Topic virtual channel concept. In this sense,
DDS can be classified as an unstructured P2P scheme.

According to [5], in P2P architectures there are two approaches for distribut-
ing discovery information: push and pull strategies. In the push methodology,
a node or an entity in a node sends unsolicited advertisements to other nodes.
The pull approach explicitly sends information requests to nodes in the net-
work. For example, Chord and Pastry schemes implement the pull strategy
for information distribution. In those systems, nodes demand information keys
from neighbor nodes that answer or forward the requests. The neighbor nodes
themselves can answer, or alternatively, they can forward the request to other
nodes. In general, publication-subscription architectures use the announcement
approach, and more precisely, SDP adopts the advertisement methodology.

Interestingly enough, other schemes that use BFs for discovery have also
successfully devised, for example, [6] includes BFs for Service Discovery Service
(SDS). In particular, for mobile ad hoc networks, Liu and Heijenk [18] propose
to use the attenuated BF variant for context discovery, and more recently, Yu
et al. [34] for service discovery.

26

8. Conclusions and future work

In this paper we have provided an analytical evaluation framework for DDS
discovery protocols. In particular, the Simple Discovery Protocol is evaluated
as the baseline reference scheme. We propose the SDPBloom alternative to
overcome the scalability limitations found in SDP. Our approach exploits Bloom-
filter advantages for compact data representation. Along with the analytical
study, we have developed a testing tool for evaluating the expected performance
of our proposal in practical scenarios.

After conducting the experiments, we conclude that SDPBloom can improve
the discovery process in DDS applications (in terms of network load and node
resource consumption), especially in those scenarios with large E/P ratios and
low-medium ME values. Note that even for non-large scenarios, there are dis-
tributed applications with a great number of DDS Topics per Participant. Of
course, all will depend on the specific application requirements, on the particular
variety of events or, on the actual managed information.

General favorable environments for SDPBloom have been identified. It is
remarkable that, even with these favorable conditions, advantages of SDPBloom
are not relevant in those scenarios where the relative amount of discovery traffic
is not significant compared to the global amount of DDS traffic. Moreover,
scenarios with many Endpoints with common Topics -but with heterogeneous
and incompatible QoS settings- would not be benefited by our solution since
SSEDP messages will be sent even when incompatible QoS setting between
Endpoints exist. However, these unfavorable conditions do not imply drawbacks
of using SDPBloom compared to SDP.

Bloom filters present a potential drawback: they are not able to list the
content of the actual filter. However, DDS middleware implementations check
DDS entities presence by analyzing the discovery traffic. This facility is usually
carried out for debugging purposes or for providing DDS entities presence reli-
ability. Bloom filters can introduce more difficulties into the debugging process
because checking the content of a filter implies a priori knowledge of the items
that are stored in it.

A possible solution could be to utilize the current SEDP. Thereby, the End-
points discovery information could be retrieved on-demand, as occurs when
there is a filter match between two Participants. If the process is facilitated by
using network analyzing tools, the solution can be to set up the DDS system
to periodically publish entities information. Hence, a network analyzing pro-
gram could read the Endpoint information traffic. In this case, the publishing
frequency does not necessarily need to be the same as the Participant announce-
ment frequency and it could be controlled by the adoption of a given DDS QoS
policy.

Interoperability of the proposed discovery protocol with DDS instances not
equipped with SDPBloom must be studied. In DDS-RTPS document Section
8.5.1, it is said that “Implementations may choose to support multiple PDPs
and EDPs”, however, it is not established how the discovery protocol must be
selected from a set of available protocols. To inter-operate any pair of partic-

27

ipants one possible approach for selecting the particular protocol could be as
follows: each Participant could announce the list of eligible discovery proto-
cols (depending on the DDS implementation) ranked according the application
designer preferences. In this way they could agree to use the most prefer-
able common protocol. Additionally, to assure interoperability -according to
the standard- SPDP and SEDP must always be present in the announced list,
typically with the lowest rank. These details -very coupled to the particular
implementation- deserve a deeper study in future works.

Summarizing, the advantages of adopting the proposed SDPBloom approach
in DDS are:

• The number of messages sent to the network for Endpoint advertisement
in SDPBloom stays constant while the number of Endpoints increases.

• The Participant’s Endpoints information exchange is reduced to the infor-
mation of the matched Endpoints, which is significantly smaller than the
total Endpoints number of SDP.

• The improvements are better in scenarios with a high number of Endpoints
per Participant.

• The more information that is added to the key, the better the compression
ratio provided. In this sense, it is noteworthy how the typecode especially
increases the compression ratio.

In addition to the previously identified SDPBloom advantages, the following
SDPBloom’s drawbacks were found:

• Given the extremely compact information representation, the debugging
process can be more difficult. However, as previously mentioned, there
are some feasible solutions to alleviate this problem.

• In SDPBloom,the false-positive Endpoints matching probability is greater
than zero. This non-desirable behavior could make the algorithm non-
deterministic. For critical real-time applications this might not be no
acceptable; therefore, as future work this issue demands further study.

Finally, it should be pointed out that false positives probability is an in-
creasing function of the key length. Related to that, there is always an optimal
trade-off between achieved bandwidth reduction versus the CPU increase be-
cause of the use of BF. [28] propose several new BF variants for flexible trade-off
between false positive rate, space efficiency, cache-efficiency, hash-efficiency, and
computational effort. Deeper study of these issues and its potential adoption in
SDPBloom remain for future works.

Acknowledgments

We explicitly thank the anonymous reviewers, whose valuable comments
definitively helped to improve the quality of this manuscript. The research of

28

Javier Sánchez-Monedero has been funded by the Junta de Andalućıa Ph. D.
Student Program. This research was subsidized in part by the Plan Propio de la
Universidad de Granada, 2010 and by the Ministerio de Ciencia e Innovación
of the Spanish Government (project TIN2009-13992-C02-02).

References

[1] R. Ahmed, N. Limam, J. Xiao, Y. Iraqi, R. Boutaba, Resource and service
discovery in large-scale multi-domain networks, Communications Surveys
Tutorials, IEEE 9 (2007) 2–30.

[2] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM 13 (1970) 422–6.

[3] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison,
M. Smid, Y. Tang, On the false-positive rate of bloom filters, Information
Processing Letters 108 (2008) 210 –3.

[4] A. Broder, M. Mitzenmacher, Network Applications of Bloom Filters: A
Survey, Internet Mathematics 1 (2005) 485–509.

[5] C. Campo, C. Garćıa-Rubio, A.M. López, F. Almenárez, PDP: A
lightweight discovery protocol for local-scope interactions in wireless ad
hoc networks, Computer Networks 50 (2006) 3264 –83.

[6] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph, R.H. Katz, An
architecture for a secure service discovery service, in: Proceedings of the
5th annual ACM/IEEE international conference on Mobile computing and
networking, MobiCom ’99, ACM, New York, NY, USA, 1999, pp. 24–35.

[7] eProsima, Low Bandwidth Discovery Plug-in.
http://www.eprosima.com/directDownloads/DiscoveryPlugin.pdf, .

[8] U. Forum, UPnP white paper, http://upnp.org/sdcps-and-
certification/resources/whitepapers/, 2006.

[9] W. Foundation, Wireshark.http://www.wireshark.org/, 2010.

[10] L.L. Gremillion, Designing a bloom filter for differential file access, Com-
munications of the ACM 25 (1982) 600–4.

[11] E. Guttman, C. Perkins, J. Veizades, M. Day, Service Location Protocol,
Version 2, Standards Track. RFC 2608, Internet Engineering Task Force.,
2002.

[12] H. van ’t Hag, DDS Scalability: One size fits all?, in: Real-time and Em-
bedded Systems Workshop, Arlington VA, USA.

[13] S. Helal, N. Desai, V. Verma, C. Lee, Konark - a service discovery and
delivery protocol for ad-hoc networks, in: IEEE Wireless Communications
and Networking Conference (WCNC 2003), volume 3, pp. 2107 –13.

29

[14] J. Hoffert, S. Jiang, D.C. Schmidt, A taxonomy of discovery services and
gap analysis for ultra-large scale systems, in: ACM-SE 45: Proceedings of
the 45th annual southeast regional conference, ACM, New York, NY, USA,
2007, pp. 355–61.

[15] T.A. Howes, M.C. Smith, G.S. Good, Understanding and Deploying LDAP
Directory Services, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

[16] R.T.I. Inc., RTI Data Distribution Service. Users’ Manual (version 4.5),
2010.

[17] N. Limam, J. Ziembicki, R. Ahmed, Y. Iraqi, D.T. Li, R. Boutaba,
F. Cuervo, OSDA: Open service discovery architecture for efficient cross-
domain service provisioning, Computer Communications 30 (2007) 546–63.

[18] F. Liu, G.J. Heijenk, Context discovery using attenuated bloom filters in
ad-hoc networks, Journal of Internet Engineering 1 (2007) 49–58.

[19] E. Meshkova, J. Riihijrvi, M. Petrova, P. Mhnen, A survey on resource dis-
covery mechanisms, peer-to-peer and service discovery frameworks, Com-
puter Networks 52 (2008) 2097 –128.

[20] A.N. Mian, R. Baldoni, R. Beraldi, A survey of service discovery protocols
in multihop mobile ad hoc networks, IEEE Pervasive Computing 8 (2009)
66–74.

[21] J.K. Mullin, A second look at bloom filters, Communications of the ACM
26 (1983) 570–1.

[22] Object Computing, Inc., OpenDDS. http://www.opendds.org, 2010.

[23] Object Management Group, OMG, OMG IDL Syntax and Semantics -
Common Object Request Broker Architecture (CORBA), v3.0, 2002.

[24] Object Management Group, OMG, Data Distribution Service for Real-time
Systems specification, version 1.2, 2007.

[25] Object Management Group, OMG, The Real-time Publish-Subscribe Wire
Protocol DDS Interoperability Wire Protocol specification, version 2.1,
2009.

[26] A. Partow, General Purpose Hash Function Algorithms.
http://www.partow.net/programming/hashfunctions/index.html, 2009.

[27] PrismTech Ltd., OpenSplice DDS. http://www.opensplice.com, 2010.

[28] F. Putze, P. Sanders, J. Singler, Cache-, hash- and space-efficient bloom
filters, Experimental Algorithms, 6th International Workshop, WEA 2007,
Springer-Verlag, Lecture Notes in Computer Science 4525 (2007) 108–21.

30

[29] Real-Time Innovations Inc., RTI Data Distribution Service.
http://www.rti.com, 2010.

[30] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems, in: Middleware ’01: Pro-
ceedings of the IFIP/ACM International Conference on Distributed Sys-
tems Platforms Heidelberg, Springer-Verlag, 2001, pp. 329–50.

[31] R. Schollmeier, A definition of peer-to-peer networking for the classifica-
tion of peer-to-peer architectures and applications, in: First International
Conference on Peer-to-Peer Computing, pp. 101–2.

[32] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, H. Balakrishnan, Chord: a scalable peer-to-peer lookup pro-
tocol for internet applications, IEEE/ACM Transaction on Networking 11
(2003) 17–32.

[33] J. Waldo, K. Arnold, The JINI specification., Addison-Wesley, Reading,
MA, 2nd edition, 2000.

[34] Y. Yu, Y. Zhou, S. Du, Service discovery in mobile ad hoc networks using
mobility-aware attenuated bloom filters, in: Services Science, Management
and Engineering, 2009. SSME ’09. IITA International Conference on, pp.
266 –9.

31

	Introduction
	The Data Distribution Service
	DDS Simple Discovery Protocol
	SDP description
	Discovery protocol complexity evaluation. SDP analysis

	Bloom filters
	SDP with Bloom filters
	SDPBloom description
	SDPBloom analysis

	Experimental results
	Experimental framework
	Data types IDL description
	Simulation tests and results
	DDS Samples, UDP datagrams and bandwidth
	Key composition influence
	Compression ratio for each type and key combination
	False positives

	Related work
	Conclusions and future work

