J. Parallel Distrib. Comput. 71 (2011) 1434-1446

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Brown Dwarf: A fully-distributed, fault-tolerant data warehousing system™

Katerina Doka*, Dimitrios Tsoumakos, Nectarios Koziris

Computing Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Greece

ARTICLE INFO ABSTRACT

Arfic{e history: In this paper we present the Brown Dwarf, a distributed data analytics system designed to efficiently

Received 2 July 2010 store, query and update multidimensional data over commodity network nodes, without the use of

Ticl\e/l“’eg(‘)‘; ;e‘”sed form any proprietary tool. Brown Dwarf distributes a centralized indexing structure among peers on-the-fly,
ay

reducing cube creation and querying times by enforcing parallelization. Analytical queries are naturally
performed on-line through cooperating nodes that form an unstructured Peer-to-Peer overlay. Updates
are also performed on-line, eliminating the usually costly over-night process. Moreover, the system
employs an adaptive replication scheme that adjusts to the workload skew as well as the network churn
by expanding or shrinking the units of the distributed data structure. Our system has been thoroughly
evaluated on an actual testbed: it manages to accelerate cube creation up and querying up to several
tens of times compared to the centralized solution by exploiting the capabilities of the available network
nodes working in parallel. It also manages to quickly adapt even after sudden bursts in load and remains
unaffected with a considerable fraction of frequent node failures. These advantages are even more
apparent for dense and skewed data cubes and workloads.

Accepted 10 July 2011
Available online 23 July 2011

Keywords:
Peer-to-Peer

Data warehousing
Data cube

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The advent of the new century has been clearly marked by what
IT people refer to as “data explosion” [20]. Market globalization,
business process automation, the growing use of sensors and other
data-producing devices [29], along with the increasing affordabil-
ity of hardware have contributed to this continuous trend. Large
companies, scientific organizations (e.g., NASA or WMO) as well
as more specialized enterprises (such as government, Internet-
related, etc.) heavily rely on data analysis in order to identify
behavioral patterns and discover interesting trends/associations.
New compliance regulations mandate even more data retention as
a brute force method to reduce risk, while an increasing number
of organizations begin to digitize their records. It is not surprising
that enterprises are adding capacity at an astounding rate.

Data warehousing has thus become a vital component of
every organization, as it contributes to business-oriented decision-
making. Data warehouses store vast amounts [24] of historical
and operational data in the form of multidimensional cubes. Their
workloads (often referred to as analytical queries) usually consist
of read-only queries interleaved with batch updates. Besides the
well-documented need for off-line analytics, the requirement for
constant data analysis in order to immediately detect real-time

* This is an extended version of the short paper presented in HPDC'10.
* Corresponding author.
E-mail addresses: katerina@cslab.ece.ntua.gr (K. Doka),
dtsouma@cslab.ece.ntua.gr (D. Tsoumakos), nkoziris@cslab.ece.ntua.gr
(N. Koziris).

0743-7315/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j,jpdc.2011.07.008

changes in trends is ever-growing [6,20]. The satisfaction of both
modes implies the need for an always-on, real-time data access
and support system for concurrent processing of large query rates
without significant deterioration in response times.

Traditional warehouses present a strictly centralized and off-
line approach in terms of data location and processing [21,35,30]:
views are usually calculated on a daily or weekly basis after the
operational data have been transferred from various locations.
Furthermore, the need to keep large volumes of historical data
online and ensure their availability and fast access even under
heavy workload dictates a continuous investment in hardware,
electrical power and software maintenance. Some works in the
field propose distributed warehousing systems [18,4,2], but the
warehouse and its aggregation, update and querying functionality
remain centralized. Recently, effort has been made to distribute
the data warehouse itself by applying techniques from the field
of Peer-to-Peer (P2P) computing [12], but with no a priori
consideration for group-by queries. Moreover, none of these
approaches deals with the query performance versus variable data
availability or load skew.

Recently, a new class of large scale analytics engines [3,33] has
emerged to leverage the recent innovation in the industry around
large-scale data management. Deployed on shared-nothing, com-
modity hardware architectures, they cover the newly added re-
quirement for scalability, robustness and availability at low cost.
Yet, as they are based on the MapReduce programming model,
they target mostly batch-mode analytics jobs rather than real-
time, “per-tuple” processing [23]. Lastly, parallel databases [27,32]
offer great efficiency at the cost of elasticity and robustness in
failures [28].

http://dx.doi.org/10.1016/j.jpdc.2011.07.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:katerina@cslab.ece.ntua.gr
mailto:dtsouma@cslab.ece.ntua.gr
mailto:nkoziris@cslab.ece.ntua.gr
http://dx.doi.org/10.1016/j.jpdc.2011.07.008

K. Doka et al. /]. Parallel Distrib. Comput. 71 (2011) 1434-1446 1435

Local Stores

Company
Headquarters

Users -
Analysts

s iNsertion

= mmmmwmg UPdate
— JUETY

Fig. 1. Motivating scenario of distributing a data warehouse.

Our goal is to create an on-demand version of a highly
efficient data warehousing system, where geographically spanned
users, without the use of any proprietary tool, can share and
query information. As a motivating scenario, let us consider a
business establishment that maintains records of its operations.
These records could well be security, network or system event
logs making the search and analysis of that data an essential
part of managing, securing and auditing how this company’s
technology infrastructure is used. Instead of creating a centralized
data warehouse on site with a large upfront (and maintenance)
cost, the management chooses to distribute data and computation
to possibly multiple location-transparent facilities of commodity
nodes and access it more easily and ubiquitously. Fig. 1 depicts
this scenario where multiple establishments of a business insert,
update and query such a distributed warehouse.

To this end, we propose the Brown Dwarf,! a system that per-
forms on-line distribution of a centralized warehousing structure,
the Dwarf [30], over network hosts in a way that all queries that
were originally answered through the centralized structure are
now distributed over an unstructured P2P network of commodity
nodes. Dwarf is an approach to compute, index and query large
volumes of multidimensional data. While it offers many advan-
tages, like data compression and efficiency in answering aggregate
queries, it exhibits certain limitations that prohibit its use as a solu-
tion for our motivating problem. Besides the lack of fault-tolerance
and decentralization, a Dwarf structure may take up orders of mag-
nitude more space than the original tuples [11]. Our Brown Dwarf
system relaxes these storage requirements and enables the compu-
tation of much larger cubes. Moreover, it allows for on-line updates
that can originate from any host that accesses the particular ser-
vice. Finally, the proposed system can handle significantly larger
query rates and actively protect against failing or uncooperative
peers, as it offers multiple entry points and adaptive replication of
the most loaded parts of the cube. In summary, the contributions
of this paper are the following:

e A complete indexing, query processing and update system for
data cubes over a distributed environment. The cube is created

1 A Brown Dwarf is an object which has a size between that of a giant planet and
that of a small star. It is possible that a non-negligible portion of the mass in the
Universe is in the form of Brown Dwarfs.

Table 1
A sample fact table with three dimensions and one
measure.

DIM1 DIM2 DIM3 Measure

S G P, $70

S1 Cs Py $40

S, G Py $90

N G P, $50

(1 DIM1
c2]c3

DIM2

|P1 $40 |F‘2 $70 |$110|

(5)

0
) P1 $130|P2 $120|$250
9)
L5 |P2870 $70
(3) - DIM3

Fig. 2. Centralized Dwarf for the fact table of Table 1, using the sum aggregation
function.

with just one pass over the data, while updates are processed
on-line. Commodity PCs can participate in this distributed data
store, while users need no proprietary tool to access it.

e A robust and efficient adaptive replication scheme, perceptive
to workload skew as well as node churn. Brown Dwarf nodes
achieve this using only local load measurements and overlay
knowledge.

e A thorough validation of the proposed system using an actual
deployment. Our findings show that Brown Dwarf can be as
much as 36 times faster in creating the cube and 60 times faster
in querying it compared to the centralized version. Moreover, it
offers a fair distribution of the original dwarf and the induced
query load at low cost (shared among many nodes), it shows
impressively prompt adaptation to query skew and proves
resilient to a considerable fraction of node failures even with
low replication ratios.

2. The centralized Dwarf and overview of the Brown Dwarf

Dwarf [30] is a centralized structure for indexing, storing,
querying and updating both fully and partially materialized data
cubes. Dwarf’s main advantage is the fact that it eliminates both
prefix and suffix redundancies among the dimension values of
multiple views. Prefix redundancy happens when a value of a
single or multiple dimensions occurs in multiple group-bys (and
possibly many times in each group-by). For example, for the
raw data in Table 1 (referred to as the fact table), the value S,
appears in (S,, Cq, Pq), (S3, Cq, P;) but also in many group-bys
(e.g., (S5, Cq), (S2), etc.). On the other hand, suffix redundancy
occurs when some group-bys share a common suffix. For example,
we can see in Table 1 that the (Cy, x) group-by has the same
value as the (S,, Cq, x) one, with x being any value in the third
dimension.

Fig. 2 shows the cube created by this algorithm for the fact table
of Table 1. The structure is divided in as many levels as the number
of dimensions. The root node contains all distinct values of the first
dimension. Each cell value points to a node in the next level that
contains all the distinct values that are associated with its value.
Gray cells correspond to ALL values of that cell, used for aggregates
on each dimension. Any group-by query can be answered through
traversing the structure and following the query attributes, leading
to a leaf node with the answer. For example, query (S, C3, Py) will
return the $40 value while (S, ALL, ALL) will return the aggregate
value $140 following the path (1) — (6) — (7).

1436 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 1434-1446

Brown Dwarf (or BD for short) is a system that distributes
Dwarf over a network of interconnected nodes. The goal is to have
the ease of constructing, querying and updating this structure in
an on-line fashion over a network overlay instead of a central
location.

The BD construction algorithm distributes dwarf nodes to
network hosts on-the-fly as tuples are parsed in a single pass.
Pictorially, Fig. 3 shows that nodes (1) through (9) are selected
in this order to store the corresponding dwarf nodes of Fig. 2.
These nodes form an unstructured P2P overlay, using the indexing
induced by the centralized creation algorithm. Queries and updates
are then naturally handled using the same path that would be
utilized in Dwarf, with overlay links now being followed: if the
incoming query asks about S; it will be forwarded to node (2).
From there, depending on the requested group-by (ALL, C; or C3),
terminal nodes (3), (4) or (5) can be visited.

Compared to the traditional Dwarf (or other centralized
indexing methods used in data-warehousing), BD offers the
following advantages:

e The existence of more than one hosting nodes offers the
ability to parallelize the cube construction, querying and update
process.

e The distribution of the structure enables the computation and
storage of much larger cubes.

e BD allows for on-line updates that can originate from any host
accessing the update service of the system.

e The proposed system can handle significantly larger rate of
requests without having to replicate the whole structure, as it
offers multiple entry points and adaptive replication of the most
loaded parts of the cube.

3. The Brown Dwarf system

The essence of Brown Dwarf (or BD) is the distribution of the
original, centralized structure over the nodes of an unstructured
overlay in a way that guarantees query processing efficiency even
under node churn.

While structured P2P overlays provide efficient lookup opera-
tions for (key, value) pairs, they do not directly support the stor-
age of more complex data structures. Moreover, they require full
control over the induced topology as well as the storage distri-
bution, thus proving unfitting for many realistic scenarios. Con-
trarily, unstructured overlays [14] offer more loose constraints on
topology and data management (nodes are responsible for their
own repositories), making them particularly appealing for our
application.

The general approach of BD is the following: each vertex of the
dwarf graph (henceforth termed as dwarf node) is designated with
a unique ID (UID) and assigned to an overlay (or network) node.
We assume that each network node n is aware of the existence
of a number of other network nodes, which form its Neighbor Set,
NS,.. Adjacent dwarf nodes are stored in adjacent network nodes
in the P2P layer by adding overlay links. Thus, each edge of the
centralized structure represents a network link between n and a
node in NS,. Each peer maintains a hint table, necessary to guide
a query from one network node to another until the answer is
reached and a parent list, required by our replication process to
avoid inconsistencies.

The hint table is of the form (currAttr, child), where currAttr is
the current attribute of the query to be resolved and child is the UID
of the dwarf node which the currAttr leads to. If the dwarf node
containing currAttr constitutes a leaf node, child is the aggregate
value. The parent list contains the UID(s) of the dwarf node’s parent
node(s) along with the currAttr, whose child led to the specific
node. In order to route messages among network nodes, each
of the peers maintains a routing table that maps UIDs to NIDs
(i.e., network IDs, e.g., IP address and port).

currAttr | child currAttr| child

currAttr | child ALL | 8 2
Q|3 — | 2
a | 4 _currAttr|child {0 currAttr [child
ALL i 5 cl P1 $130
L ALL P2 [$120
1 ‘ T ALL $250
= 2 J
¢ B
3 9
currAttr | child | = |rd
P1 540 | 0 i) — | _currAttr child
P2 [$70 S P1 590
ALL ($110 P2 1850
| - ALL $140
curr;\]ttr CsT(;j T Y currAttr | child
= 3— P2 (570
ALL | $40 L0 ——— ALL |s$70

Fig. 3. The distribution of the dwarf nodes in the Brown Dwarf of Table 1 and their
hint tables.

3.1. Insertion

The creation of the data cube is undertaken by a specific node
(creator), that has access to the fact table. The creator follows
the dwarf insertion algorithm, distributing the dwarf nodes on-
the-fly during the tuple-by-tuple processing, instead of keeping
them in secondary storage. In general, the creation of a cell in
the original dwarf corresponds to the insertion of a value under
currAttr in the hint table. The creation of a dwarf node corresponds
to the registration of a value under child. Thus, all distinct values
of the cells belonging to a dwarf node are eventually registered
under currAttr. Moreover, the node each currAttr points to is kept
under the child attribute. In the case of a dwarf leaf node, child
corresponds to the measure or the aggregate value.

Let d be the number of dimensions and t; = (ay, a, ..., ag) be
the first tuple of the fact table. Upon processing of t1, a; triggers
the creation of the root node, meaning that a network node from
the creator’s NS is allocated (let it be node Ny). A new hint table
is created and stored in N;o,¢ under a randomly chosen UID. At
this point, only the currAttr can be filled in with a;. Moreover, the
parent list of Ny, is set to null (as the root node has no parents).
Moving to a,, a new node is allocated from the neighborhood
of Nipot and a new hint table is created following the previous
procedure. The UID of N is appended to the list of parents of
the newly allocated node and the UID of the node is added to
Nioot's hint table under a;. The same procedure is followed by all
dimension attributes of t; (plus the special ALL attribute wherever
needed). As tuples of the fact table are being processed one by
one, new hint tables are created and existing ones are gradually
modified (see Algorithm 1).

Note that our insertion mechanism does not demand the
creation of the centralized dwarf. Nodes are created and hint tables
are filled in gradually as tuples are processed. The only information
the creator needs to hold at each moment is that of d dwarf nodes
(the nodes of the path that t; traverses).

For the first tuple of Table 1, the corresponding nodes and cells
are created on all levels of the dwarf structure (Fig. 2). Each of
the created nodes (1), (2), (3) are assigned to respective overlay
nodes. In the hint table of (1), Sy is placed under currAttr and (2)
under child. Following the same procedure, the routing table for
(2) is filled in with G, and (3) and that of (3) with P, and $70 (the
measure attribute, since it is a leaf node). Insertion moves on to
the next tuple, which shares only prefix S; with the previous one.
This means that the C; needs to be inserted to the same node as
C,, namely (2), and (4) needs to be allocated. Thus, C3 must be
registered in the node’s hint table as a new currAttr and (4) as a
new child value. Moreover, (3) is now closed, so ALL along with

K. Doka et al. /]. Parallel Distrib. Comput. 71 (2011) 1434-1446 1437

Algorithm 1 BD Insertion
teurr: the tuple to be inserted, ty.: the tuple previously inserted

Nereator: the node that initiates the insertion
while unprocessed tuples exist do
teur < the next tuple of the fact table
while next attribute of tc,, exists in tp do
find the network node N, that holds the corresponding
dwarf node
end while
add the first uncommon attribute to the hint table of Nj,g
under currAttr
for all remaining attributes of t.,; do
create dwarf node and assign it a UID
add UID to the hint table of Ny,
randomly pick a node Nyey from NSy,
send dwarf node to Nyexc
Niast <= Npext
end for
beginning bottom up add the ALL cells and create new dwarf
nodes according to original SuffixCoalesce
end while

the aggregate value $70 are registered in its hint table. Gradually,
all necessary nodes are allocated and their hint tables are filled in
with the appropriate routing information (see Fig. 3).

3.2. Query resolution

Queries are resolved by following their path along the BD
system attribute by attribute. Each attribute value of the query
belongs to a dwarf node which, through its hint table, leads to the
network node responsible for the next one.

Anode initiating a query ¢ = (q, Gz - - - q4), With g; being either
a value of dimension i or ALL, forwards it to N;oo. There, the hint
table is looked up for q; under currAttr. If it exists, child will be the
next node the query visits. The above procedure is followed until
a measure is reached. Note here that, since adjacent dwarf nodes
belong to overlay neighbors, the answer to any point or group-by
query is discovered within at most d overlay hops. This happens
because adjacent dwarf nodes may actually reside on the same
peer.

From the above description, it is clear that the system requires
an entry point, meaning that query initiators should be aware
of Nioot, Where the resolution of any query starts from. This can
be achieved through an advertising mechanism, invoked by N;qo¢
upon allocation. The existence of a single entry-point for BD, which
constitutes a single point of failure, is tackled by our replication
strategy, thoroughly described in the following sections.

Back to our example, let us consider the query S;ALLP,.
Beginning the search from (1), and consulting the child value
corresponding to S;, we end up at (2). There, since the second
dimension value is ALL, the query follows the path indicated by
the third entry of the hint table, thus visiting (5). P, narrows the
possible options down to the second entry of the hint table, namely
$70.

3.3. Incremental updates

The procedure of incremental updates is similar to the insertion
process, only now the longest common prefix between the new
tuple and existing ones must be discovered following overlay links.
Once the network node that stores the last common attribute is
discovered, underlying nodes are recursively updated. This means
that nodes are expanded to accommodate new cells for new
attribute values and that new dwarf nodes are allocated when

Fig. 4. Example of mirroring.

Algorithm 2 mirror

Require: dng: dwarf node to be replicated
N: network node that hosts dng
N sends hint table of dng to N’ € NSy
N’ informs parents and mirrors of dn;

necessary. Moreover, the insertion of new tuple to an existing BD
affects the ALL cells of dwarf nodes associated with the updated
nodes.

Assuming u = (uq,uy...uy) is the tuple to be added to an
existing BD, the incremental update procedure starts from the root
of the structure following the path designated by u1, u, etc. Once
the dwarf node containing the last attribute that is already present
u; is discovered, a new entry for u;; 1 must be registered to the node
where the child of u; points to. The following attributes (5 . . . ug)
will trigger the creation of new dwarf nodes. The special ALL cells
are recursively updated for all nodes affected by the change.

It is obvious that the update procedure is bandwidth-costly,
since the insertion of new tuples trigger the updating of multiple
dwarf nodes and cells, therefore we assume it is invoked when
several batches of updates are collected.

3.4. Mirroring

In order to ensure availability and eliminate single points
of failure, especially in the case of N that represents the
single entry point for queries in our system, we assume a global
replication parameter k. This parameter defines the degree of data
redundancy in the system: During the insertion phase, each dwarf
node is stored in k + 1 network nodes instead of just one. Thus, in
its initial state, the system hosts k + 1 instances (mirrors) of each
dwarf node. The query forwarding algorithm is now amended: a
node that receives a query randomly chooses from a list of mirrors
the one to forward the query to.

To achieve correct behavior after a mirroring operation, the
parent, children and mirror nodes of the original node(s) must be
informed of this creation: parents must know of the new node in
order to include it in the forwarding process. The mirror node must
be informed of the peers that it precedes according to BD as well
as its parent(s). Finally, the children must be informed of this new
parent. Fig. 4 describes this process pictorially: node B chooses to
replicate one of its dwarf nodes to B, invoking mirror (Algorithm
2). B’ receives the hint table of B regarding the specific dwarf node
and is thus informed of A as well as C, D and E, creating overlay
links to them accordingly (parent and children). Node A is informed
of the new child, adding B’ to its list of children for this dwarf node.
Moreover, parent links are also updated (shown in dotted lines).
With the exchange of hint tables between B and B, the latter is
able to discover all other mirrors and notify them of its existence.

From that point on, the system is responsible for preserving
the number of each dwarf nodes’ mirrors above k. To validate their
(un)availability, mirrors periodically ping each other. This is also
achieved through normal queries, when forwarding to a node that
fails to reply. If a network node perceives that the mirror of a

1438 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 1434-1446

dwarf node it hosts is unavailable (because of a network failure
for example), it initiates the mirroring operation for that dwarf
node through invocation of themirror function: the node chooses
another peer in order to replicate the dwarf node to it. The node to
receive the replica can be chosen either from the pool of locally
known peers or using another independent service. It is important
to note here that the whole process does not affect the behavior of
the system, as all queries continue to be normally resolved.

In the event of updates over replicated nodes, the following
strategy is adopted: during the insertion of a new tuple, only one
mirror of each affected node is updated. The rest are updated
asynchronously through the pinging process, where updated
nodes propagate their changes to their mirrors. Since data are read-
only, updates generally translate to the addition of new (currAttr,
child) pairs, therefore the merging of updates between two mirrors
of the same dwarf node is trivial. The only case where the child
of an existing currAttr changes is when a suffix redundancy is
destroyed. In this case, the mirrors resolve any conflict by choosing
the change with the latest timestamp. This scheme offers eventual
consistency, which we prefer for our target applications over a
more strict and costly scheme that synchronously updates all
mirrors.

3.5. Handling node failures and query skew

A basic requirement for every distributed application is fault-
tolerance. Node clusters typically consist of commodity, failure-
prone hardware. Especially in the case of data analysis, where
complex workloads can take hours to complete, the probability
of a failure occurring becomes higher. Apart from node churn,
data skew is another factor that stresses the system'’s ability to
operate smoothly, as it can degrade the performance of overloaded
nodes, having a disproportionate effect on total query latency. In
BD, we utilize a replication scheme adaptive to both skew and node
churn to address both issues in a unified way, expanding popular
or unavailable elements of the structure and shrinking others that
receive few requests.

3.5.1. Node churn

When a node wishes to leave the system, it initiates the
graceful-depart function, given in Algorithm 3: for each of
the dwarf nodes it stores, the respective parents and children are
notified to revise their links. The same is true for the list of mirror
nodes. Messages can be grouped per recipient since, in the majority
of cases, we anticipate that some nodes will be parents for multiple
dwarf nodes or both parents and children.

Given this process, we may now describe how random depar-
tures or node failures are handled. A departed node is discov-
ered either through the periodic ping procedure, or through query
routing. In the first case, the mirror node receives no acknowledg-
ment from the departed node within a period of time, considering
it unavailable. It then initiates graceful-depart with the failed
node’s NID as a parameter. In the second case, the departed node is,
at some point, selected during the routing process. The parent node
will be informed of this failure after a timeout occurs. The parent
then forwards the current query along with a graceful-depart
request to another child, mirror of the departing node (relative to
the queried dwarf node). Besides processing the query, this mirror
initiates graceful-depart with the failed node’s NID as a pa-
rameter. In the end, all of the failed node’s parents, children and
mirrors will be notified of this event and update their links.

3.5.2. Load-driven mirroring

In BD, network nodes utilize adaptive mirroring according to the
load received on a per-dwarf node basis. A network node hosting
an overloaded dwarf node can create additional mirrors through
the expansion process. The node to receive the new mirror can be

Algorithm 3 graceful-depart

Require: dn,: dwarf node to be deleted
N: network node that initiates deletion
N informs parents, children and mirrors of dng
N deletes hint table of dng

Algorithm 4 BD Adaptive Mirroring
DNy : the set of dwarf nodes that network node N hosts
k: the replication degree, r5: number of mirrors for dng
for all dny; € DNy do
I;(t) the current load for dn;
if [;(t) > Limitt Vv r; < k then

exp
for i = 1 to max(Hs(t)/LimitZXpL k —r5) do
mirror(dng)
end for

else if [;(t) < Limit}, A s > k + 1then
graceful-depart(dns)
end if
end for

chosen from the node’s NS either randomly, or following some
more advanced policy, which takes into account parameters like
storage, utilization and load. Such a policy could, for instance,
dictate the selection of the most underloaded peer, or the peer with
the largest amount of free disk space. The newly created mirror
will be used by the parent node(s) in order to receive some of the
requests. In the opposite case, an underloaded dwarf node can be
deleted from the system through the shrink process, as long as the
total number of its mirrors remains over k.

These procedures require that each peer participating in BD
monitors the incoming load for each of the dwarf nodes dng, s €
(i,i4+ 1,...,])), it hosts. Let I;(t) be the current load for dns. The
two procedures can be described as follows:

Expansion: As load increases due to incoming requests, some
dwarf nodes reach their self-imposed limits, which we assume
are expressed by parameter Limitixp: it represents the maximum
number of requests that dwarf node dng can accept per time unit.
When this limit is exceeded, the hosting node invokes mirror
in order to replicate it according to its demand and relative to
Limit;, . Specifically, each node dns, with Is(t) > Limitg,, will be
replicated [l(t)/Limit;,,] times. This mechanism allows for
adaptive expansion of the network-wide storage according to
demand and helps overloaded nodes to offload part of their
workload to other server instances.

Shrink: Temporal changes in workload may result in the
creation of mirror nodes which eventually become underutilized.
The system should be able to delete such nodes, provided that their
deletion will not result in less than k+ 1 mirrors. Assuming Limit3 .
is the limit, under which dn; is considered underloaded, and r; is
the number of the mirrors of dn; that the storing node is aware of,
then each dn, with l;(t) < Limit},, and rs > k + 1 will be deleted,
through graceful-depart. To ensure that the deletion of dn,
will not cause the overloading of its mirrors, we estimate Limit}, .
using the following rationale: when deleting a replica, we get from
1s to rs — 1 mirrors. Estimating the total load for dns to be gl (t), we
require that I;(t") >~ rds(t)/(rs — 1) < Limitsexp. Thus we choose
Limitg, = Limitg,, - r5/(rs + ¢), where c is a positive constant.

In essence, Limitey, and Limitgy,, relative to the context and
values that are assigned to them, implement the application’s
policy with respect to the quality of service. Indeed, they regulate
how reactive (and thus query-efficient) we want the application
to be at the cost of more or less storage and data transfers. A more
formal description of the adaptive mirroring algorithm can be seen
in Algorithm 4.

K. Doka et al. /]. Parallel Distrib. Comput. 71 (2011) 1434-1446 1439

4. Optimizations—discussion

BD utilizes a series of optimizations to enhance its performance
by reducing communication costs.

4.1. Query performance optimization

In general, we expect the number of dwarf nodes created to
be much larger than the number of participating hosts, with each
peer hosting multiple dwarf nodes. This fact, along with the load-
driven expansion and shrink of the system may result in individual
peers hosting dwarf nodes that are connected in the logical level (a
dwarf node and some of its children’s mirrors). In this case, a query
resolution that follows a random path from a dwarf node to one of
its children may result in unnecessary message exchange between
peers. Alternatively, upon reception of a query, the peer can choose
from the list of children the one that resides in the same node, thus
reducing the network messages needed.

4.2. Dimension grouping optimization

This optimization intends to reduce the communication cost
between network nodes during all the operations of BD. Instead of
storing the data structure at the dwarf node granularity, the system
chooses to group related dwarf nodes and store them together
as an entity. Due to the lack of an a priori knowledge of the
graph (since it is constructed and distributed on the fly) and the
distributed nature of our system, we employ a simple heuristic:
starting from the leaf nodes of the structure, we create groups that
contain sub-graphs of height h, h < d. This practically means that
a dwarf node dn and all its descendants of depth h reside at the
same physical node. Nevertheless, this might not be the case for
dwarf nodes along an aggregate path, since an ALL cell might point
to an existing dwarf node that belongs to a different group.

Both data load and update procedures are now affected, since
a group, rather than an individual dwarf node, is assigned to a
network node. During querying, the number of network hops until
the answer is reached is significantly reduced. For point queries,
the number of hops is |—% , while for aggregate queries it may

range from [%] to d at most. Replication takes great benefit from
this enhancement as well, since the memory needed for statistics
as well as the overall replication cost is reduced. However, it
must be noted that such grouping may also reduce the effect of
decentralization and thus the potential of the system to exploit
parallelization (relative to the choice of h and the structure of the
dwarf graph). This approach is deemed most beneficial for high-
dimensional datasets with the value of h set significantly smaller
than that of d.

4.3. Consistency issues

The expand-shrink scheme raises some consistency issues
relating to the precision of the information that each node has of
the available mirrors. Obviously, an almost concurrent creation of
two or more mirror nodes or a series of expansions and shrinks
at different parts of the overlay may result in nodes with different
and incomplete knowledge of both the number and the identities
of available mirrors. Yet, these inconsistencies are temporary.
The higher the query rate that triggers such occurrences, the
larger the probability that newly created or unavailable replicas
are discovered through the query forwarding process. Moreover,
it is reasonable to assume that, for our target applications, we
do not expect a high churn rate from participating peers and
that some nodes (possibly the initial ones) will be more stable,
server-like nodes that rarely disconnect. The granularity of the
replication scheme as well as its consistency guarantees under
various conditions are also issues that concern BD'’s performance
and are subjects of future work.

5. Experimental results

We now present a comprehensive evaluation of BD. The system
is developed entirely in Java, using the socket API for inter-node
communication and deployed in an actual test-bed of N = 16
commodity nodes (dual core, 2.0 GHz, 2 GB main memory), which
act as the storage/computation infrastructure. We assume that the
NS of each node is set to 15, which practically means that all
network nodes are aware of each other. The centralized approach
has also been implemented for direct comparison.

In our experiments, we use both synthetic and real datasets
consisting of a fact table representing multidimensional data
with numerical facts. The synthetic datasets have been generated
with our own and the APB-1 benchmark generator [5]. Our
generator creates the tuples from combinations of the different
dimension values (cardinality), plus a random numerical fact.
Furthermore, we may choose to create tuples that combine
dimension values uniformly or with bias (creating 80/20, 90/10
and 99/1 distributions and zipfian distributions with & = 0.95).
The aggregate function used in the results is sum. The real and the
APB datasets are described in the corresponding sections.

For the application workloads, we include both point and
aggregate queries with varying proportions/distributions as well
as batch updates. We either query the available dimension values
uniformly or with skew, following the zipfian distribution with
various 6 values.

5.1. Cube creation

In the first set of experiments, we evaluate the creation of the
distributed BD structure in terms of construction time, storage and
communication. We also prove the fairness of the data distribution
over various datasets and local neighborhood information.

5.1.1. Varying the number of dimensions

Assuming no replication (i.e., k = 0), we construct BD and
Dwarf cubes with variable number of dimensions d (5 up to 25),
with cardinalities equal to 1 k values. The datasets consist of
10 k tuples, following uniform, self-similar (80-20) and zipfian
(6 = 0.95) distributions. For the BD evaluation, the experiments
are conducted in our distributed testbed, consisting of 16 LAN
nodes. Storage consumption and insertion times are presented in
Table 2.

Our system exhibits impressively faster creation compared to
the centralized method, due to the fact that BD allows for over-
lapping of the store process (each peer stores its part of the cube
independently). The acceleration is more apparent as the num-
ber of dimensions and the skew grows, since such datasets result
in larger cubes. For instance, BD inserts the 25-d skewed cubes up
to 3.5 times faster than Dwarf. The acceleration factor of course is
not directly proportional to the number of participating nodes. The
cube calculation remains serial and network communication intro-
duces latencies. Experimenting in WAN environments with various
latencies as well as parallelizing the cube calculation process is a
subject of future work.

Note that the total cube size is always bigger than the fact
table by a factor that increases with dimensionality and skew
(152 times for the central and 195 times for BD for the worst
case). This observation confirms previous findings documenting
that Dwarf blows up the size of some datasets. In addition to
that, BD induces a small storage overhead. This overhead is mainly
attributed to the mapping between the UIDs (set to 4 bytes each
in our implementation) that every Dwarf node needs to keep in
order to be accessible by network peers and Dwarf node IDs, as well
as the parent list for the mirror process. This also explains why
the overhead slightly increases with the number of dimensions.
Nevertheless, this overhead is shared among the participating

1440 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 1434-1446

Table 2
Storage requirements and creation time for Dwarf and Brown Dwarf data cubes of various dimensionalities.
d Fact Tbl. (MB) Uniform 80-20 Zipf
Size (MB) Time (s) Size (MB) Time (s) Size (MB) Time (s)
Dwarf BD Dwarf BD Dwarf BD Dwarf BD Dwarf BD Dwarf BD
5 0.2 1 1 4 4 1 1 8 7 1 1 3 4
10 0.4 4 5 31 10 4 5 28 14 6 7 54 21
15 0.6 7 9 63 29 10 13 96 43 22 27 226 74
20 0.8 13 17 122 55 18 23 352 82 54 69 543 204
25 1.0 18 23 198 88 29 37 729 196 152 195 1206 535
Table 3 faster than their calculation. On the other hand, larger number of
Creation time (in s) for Brown Dwarf data cubes of various nodes induce bigger total communication costs, as shown in the
dimensionalities varying the k parameter. included graph. Still, the total number of messages per insertion
d k shows similar behavior to that of the insertion time. Even though
0 1 2 4 the communication cost increases, the overhead per network node
5 4 5 6 3 decreases as messages are scattered among more peers.
10 10 13 19 23
15 29 36 49 76 5.1.3. Varying the number of tuples
;g gg Jg }gg ;gé We now examine how the BD cube behaves when scaling the
number of tuples in the fact table. Keeping a constant d = 5
dimensions and all cardinalities equal to 100, we create datasets
:?fble" . . of 10 k, 100 k, 1 M and 10 M tuples. Table 4 summarizes the
ect of various dataset sizes on 5-d cubes. . . .
- - results. As the number of tuples increases, this leads to higher
#Tuples Size (MB) Time () acceleration factors for our insertion method. While the insertion
Dwarf BD Dwarf BD of the 10 k dataset lasts the same in both systems, the 10 M dataset
10k 12 15 4 4 is inserted almost 36 times faster. We observe that our system
100k 4.8 5.9 71 20 maintains roughly the same storage overhead for all dataset sizes,
M 78.2 964 259 79 since the increase in the number of tuples results in an increase in
10M 402.9 482.1 18188 498
storage for both Dwarf and BD cubes.
Table 5 . .
Effect of various densities on 5-d cubes. 5.1.4. Varying the dgnszty of the cube .
Dens (%) Size (MB) Time (5) . We now examine how the density of the data cube affects
Dwarf m Dwarf 0 its insertion in the BD system. We create §—d datgsets of 100 k
tuples following a uniform distribution, with variable densities
0.01 5.4 6.6 54 13 ranging from 0.01% to 10%. We document the amount of storage
(1)'(1) ‘3"3 gg ?g 2 allotted by each network node for Dwarf and BD and present it in
100 14 16 s 3 Table 5. Our system remains faster in creating and distributing the

nodes. Thus, the big advantage of BD is the fact that it can
store almost N times as much data as Dwarf (for k = 0), using
N computers similar to the central case.

Table 3 presents the cube insertion times for the uniform
datasets when the replication parameter k ranges from 0 to
4. Although the cube is inserted k + 1 times and the storage
consumption as well as the communication cost sustain a k-fold
increase, the increase in the total insertion time is not proportional
to k. Once again, parallel disk I/O operations alleviate the impact of
the linear increase in the size of the data to be stored, resulting in
anaverage 2-2.5 factor increase in insertion times in the worst case
(comparing k = 0 and k = 4).

5.1.2. Varying the number of participating nodes

To examine the gains in insertion time caused by the
parallelization of the storage process and to analyze the evolution
of the communication cost, we vary the number of participating
commodity nodes. As input data, we use two 5-d, uniformly
distributed cubes, consisting of 100 k and 500 k tuples respectively.
Cardinalities for all dimensions are set to 100.

The graphs in Fig. 5 reveal on one hand that the increase in the
number of participating nodes enhances the system performance
(over 5 times faster insertion times). However, the speedup is not
linear and there is a point beyond which no dramatic improvement
is demonstrated. This is due to the fact that the serial nature of
the cube creation algorithm poses a limit in the parallelization
of the storage process itself, since Dwarf nodes cannot be stored

structure by a constant factor of about four. The next observation
is that the lower the density, the larger the total amount of storage
for the BD, since sparse cubes leave little room for redundancies,
thus resulting in larger Dwarf structures. Therefore the denser the
cubes, the less noticeable the difference in storage between Dwarf
and BD.

5.2. Updates

In this section, we observe the behavior of BD when update
batches are to be inserted to the distributed structure using our
real testbed of 16 nodes. Utilizing the same 10 k-tuple datasets of
varying dimensions described before, we present measurements
for two different settings. In the first setting, we apply 1%
incremental updates which follow the uniform and the self-similar
(80-20) distribution. In the second setting, we apply increments of
sizes from 0.1% up to 10% to the 10-d cube. These increments are
of two types, consisting of tuples generated either by combining
existing dimension values (old), or by adding new values to the
dimensions’ domains (fresh). For both types, we record the total
update time as well as the number of messages required per
individual update. We present the results for these two settings
in Tables 6 and 7 respectively.

Taking advantage of the inherent parallelization that updates
(similar to insertions) exhibit, BD is up to 2.3 times faster in the
high-dimensional sets. Dimensionality plays a big role in both
the time and the cost of updates. This observation is clearly
documented: the more the dimensions, the larger the BD created,
thus the more Dwarf nodes and cells are affected (see Table 6). As

K. Doka et al. /]. Parallel Distrib.

400

o—o 500K tuples
=---u |00K tuples

300 [

Insertion Time (sec)
[
[=1
(=]
T

100 F

12 4 8 16
Nodes

Comput. 71 (2011) 1434-1446 1441

5

| e—e 500K tuples
=--m 100K tuples

total msgs / insertion

messages / node / insertion

Nodes

Fig. 5. Time and incoming messages per network node for various network sizes and data cubes.

Table 6
Effect of 1% increments over various dimensions.
d Uniform 80-20
Time (s) msg/upd Time (s) msg/upd
Dwarf BD BD Dwarf BD BD
5 7.1 7.2 14.6 7.5 6.4 13.7
10 17.7 143 50.8 213 144 49.8
15 30.8 218 111.0 434 31.2 120.4
20 48.6 27.9 193.3 104.1 65.8 200.2
25 89.1 39.1 300.7 172.1 103.6 305.7
Table 7
Effect of various update types and sizes on the 10-d dataset.
Size (%) Time (s) msg/upd
old Fresh Oold Fresh
0.1 19 1.8 495 40.2
1.0 14.3 116 50.8 415
10.0 127.2 78.0 61.2 56.6
Table 8
Query resolution times and communication cost over various 1 k querysets.
d Uniform Zipf
Time (s) msg/query Time (s) msg/query
Dwarf BD BD Dwarf BD BD
5 52 4.0 5.8 1.9 1.7 55
10 30.1 2.6 10.9 29 1.2 10.6
15 65.2 29 15.6 55.4 1.2 15.5
20 102.1 3.0 20.8 88.3 15 20.3
25 182.5 13.2 259 1721 9.2 25.6

observed in the case of cube creation, skewed datasets take longer
to update, due to the fact that updates in a dense part of the cube
affects more Dwarf nodes and cells, thus slowing down the process
and creating larger network traffic.

Table 7 shows that the size of the update over the original
cube has negligible effect on the communication cost per update.
However, it is interesting to note that while fresh updates over the
original cube create more nodes and cells in the structure, yet the
cost is inversely proportional. The number of update messages per
update are almost 20% less compared to old updates. This is due
to the fact that the fresh batch contains new attribute values and
fails to find redundancies with the originally inserted BD structure.
This results in more new nodes, yet less recursive updates of the
affected ALL values, hence less messages.

5.3. Query processing

In this section we investigate the query performance of BD
compared to that of Dwarf and examine the effect of adaptive
mirroring on the load distribution among the system nodes.

5.3.1. Varying the number of dimensions

Using the same datasets as in the insertion and update
experiments, we pose two 1 k querysets that follow the uniform
and zipfian (6 = 0.95) distributions respectively, with the ratio
of point queries set to 0.5. Moreover, P4, which we define as the
probability of dimension i not participating in a query (i.e., g =
ALL),is set to 0.3. Table 8 summarizes the results. It should be noted
that the Dwarfindex does not remain in memory for either method,
thus I/0 is performed for every query.

We first notice that, in all cases, BD resolves the workload
noticeably faster than the centralized version. While the query
response times rise with the dimensionality for Dwarf, BD times
remain almost constant and only the 25-d workloads cause a slight
slowdown. The resolution of each dimension of the query is an
atomic operation that may be performed by separate peers. Thus,
having 16 nodes perform I/O operations in parallel instead of just
one significantly boosts performance. Especially in the case of
biased and high dimensional workloads, where there is more room
for parallelization, BD exhibits impressive acceleration factors,
performing up to 60 times faster than the original Dwarf. It is thus
apparent, that BD is able to handle a significantly (by orders of
magnitude) larger request rate than its centralized version.

Moreover, the number of messages per query is in all cases
bound by d+1: d messages to forward the query to the Dwarf nodes
along the path toward the answer and one to send the response
back to the initiator.

5.3.2. Varying the number of nodes

For the 20-d dataset of the previous experiment, we plot the
response times and the per query communication when scaling the
number of network nodes from 1 (centralized) to 16. Apart from
the uniform workload of 1 k queries used before, we also pose a
workload of 10 k queries with the same characteristics, to further
stress the system. Fig. 6 pictorially presents the results.

The first graph plots total query response times. As observed,
an initial increase in nodes dramatically accelerates responses. The
performance gains become smaller as the size grows. This is due to
the fact that, depending on the specific dataset and its dimensions,
the parallelization ability of BD is saturated after a certain number
of nodes. Yet, larger overlays with more than a single entry point
(i.e., using mirroring for Nyo) Will scale better in the case of high-
rate workloads. The second graph presents the average number
of messages needed to answer a query for both workloads. We
notice that as the number of peers increases, the communication
cost increases too, but not uncontrollably, since it converges to
d+ 1 messages per query. Furthermore, the cost is scattered among
peers, resulting in less load per network node.

5.4. Benchmarks and real datasets

Next, we examine the behavior of BD with more realistic input
sets. We utilize 6 different datasets. Using the APB-1 data generator

1442 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 1434-1446
150 10
.) | e—e 10K queries . F 3
By o—e 10K queries o =--m 1K queries 5 20[e =]
2 =-—-n |K queries g 8r = /// 7
) o & I 11
£ 100 > g 10 E
= =2 6 = 1
2] e L 1
= =]
2 2 4L i
g sol g
5 £ 2f 1
(@] he I+
0 T \l 7777777777 T T 0 T T T T
12 4 8 16 2 4 8 16
Nodes # Nodes
Fig. 6. Resolution time and messages per network node for various network sizes and query workloads.
Table 9
Measurements for various APB datasets.
Density #Tuples (M) F.Tbl size Size (MB) Time (s) Qu.time (s)
Dwarf BD Dwarf BD Dwarf BD
0.1 12 24 MB 17 20 42 16 40 12
0.5 6.2 131 MB 84 98 314 48 93 13
1 12 240 MB 167 195 612 89 107 14
5 62 1.3GB 821 965 3204 247 135 14
Table 10
Measurements for the real datasets.
Dataset Size (MB) Time (s) A(s) B(s) C(s)
Dwarf BD Dwarf BD Dwarf BD Dwarf BD Dwarf BD
Weather 9.3 114 120 23 234 11 165 12 114 12
Forest 8.0 9.8 66 20 144 11 111 11 70 12

and different densities, we produce 4 datasets (d = 4) with dimen-
sion cardinalities 9000, 900, 9 and 24 and one measure attribute.
The other 2 datasets are subsets of the Weather [36] and Forest 7]
datasets (10 k tuples each). The forest dataset has 10 dimensions
with cardinalities as reported in [11], while the weather dataset
has 9 dimensions, corresponding to truncated ocean weather mea-
surements for Sept. 1984.

We use the APB query generator to produce 1 k query
workloads, both point and aggregate ones. For the real datasets,
in order to produce our workloads, we first order the tuples and
then use the zipfian distribution to select those that will form 10 k
querysets. We vary 6 from 0 (uniform distribution) to 2, producing
three workloads (denoted as A, B and C respectively). The ratio of
point queries is set to 0.5, while for aggregate ones Py = 0.3.

The results, presented in Tables 9 and 10, are in line with
the findings of the previous experiments. First, we notice that
the Dwarf algorithm can, depending on the input data, perform
efficient compression of the cube. The storage overhead is at most
144 MB (for the APB dataset of 1.3 GB), a steady 17% increase
compared to the centralized case. Nevertheless, the cube is now
shared among each of the 16 peers participating in the system.
For the construction times, BD is obviously faster than Dwarf.
Our results show that the distributed version is 13 times faster
compared to the centralized run, giving impressive cube creation
times (about 4 min for the APB dataset of 62 million tuples). Query
response times are up to 20 times faster for BD, which is able to
handle almost 1 k queries per second.

5.5. Adaptive mirroring

Using a 10-d cube with 10 k tuples (uniformly distributed) and
pose 5 k query-sets, following the uniform and the zipfian (with
various 6 values) distributions respectively, with the ratio of point
queries set to 0.5 and P; = 0.3. Queries arrive at an average
rate of A = 100 queries/s. Fig. 7 displays the number of the created
replicas as well as the induced system-wide communication

overhead over time for different query-set distributions and for
Limit},; = 10.

In aﬁ cases, our scheme increases the number of replicas at over-
loaded parts of the structure through its expansion mechanism in
order to bring the system to a balance and eliminate the instances
of overloaded Dwarf nodes. The more skewed the query-set, the
more replicas BD produces. This is natural since, as we showed
before, overloaded Dwarf nodes for skewed distributions have sub-
stantially higher load. The rate at which replicas are created de-
creases with time and reaches a steady state where the number
of mirrors remains almost constant. It is worth noticing that BD
reaches the steady state fairly quickly (within a few seconds—less
than 10 in our experiments), due to the ability of the expansion
mechanism to create multiple mirrors according to the amount
of overload. However, until steady state is reached, we observe a
short period of fluctuation in the number of replicas, which is more
apparent for workloads of high skew. The simultaneous initiation
of the mirror process leads to temporary inconsistencies with re-
gard to which mirror each node knows of. In this case, it takes some
time until all mirrors discover each other, creating an uneven load
distribution among them. It is also very important to stress that
the mirroring process diminishes substantial load inequalities with
minimal storage overhead. About 100 replicas are created at most
in an initial BD structure of 130 k Dwarf nodes, which translates to
less than 0.1% of extra storage consumption.

The second graph of Fig. 7 depicts the total number of control
messages in the course of time. These are the messages required to
inform parent, children and mirror nodes of the creation of a new
replica or the deletion of an existing one, as well as the insertion
message itself in case an expansion occurs. As expected, expansion
and shrink comes with a certain communication cost and the more
the replicas created or deleted, the more the control messages
required. However, this message burst lasts only for a short period
of time, until the system reaches a steady state. Moreover, the
communication cost is shared among the resources.

K. Doka et al. /]. Parallel Distrib. Comput. 71 (2011) 1434-1446 1443
200 [~ — 1000 —
—— Zipf2.0 — Zipf2.0
————— Zipf 1.5 300 | ----- Zipf 1.5
150 - Zipf 1.0 8 - Zipf 1.0
Uniform %“ Uniform
g 5 600
£ 100 = |
= - 2 2
- g - - £ 400 J)
3
50 tf i
' S— . * 200
0 l Il Il Il 1 O C P = b= en b N
10 20 30 40 50 20 30 40 50
Time (sec) Time (sec)
Fig. 7. Number of replicas over time and control message overhead for different query distributions (adaptive mirroring, with Limitixp = 10).
200 T T T T T T T T T L — 200 N
. —— T=1sec . — Zipf2.0
5 T=5sec . L e Zipf 1.5
o - .
< 5ol Tfloseci 150 7——le‘f1A0 j
g Uniform
— 100 - q =
3 3
=9
S
g 50 ’ 7
>
<
O 1 | | | | | | | | | | | | |
123456738 9101112131415 Time (sec)
Node NID
Fig.9. Number of replicas over time for a pulse-like query rate with Limit‘;Xp =10.
Fig. 8. Load distribution before, during and after mirroring (Zipf 6 = 1.5,

LimitS,, = 10).

To further examine the behavior of our system under stress
conditions and sudden changes in load, we conduct another series
of experiments. Using the same workloads and an initial query
rate of 10 queries/s, we suddenly increase the query rate by a
factor of ten (A reaches 100 queries/s) after 20 s of querying
time. After another 20 secs, the rate decreases again to its initial
value. We evaluate the efficiency of the expansion as well as the
shrink mechanisms to perceive the change and adapt the number
of replicas accordingly, in order to perform as required with
minimum storage consumption.

Fig. 9 presents the number of existing replicas over time
throughout the simulation for Limit;,, = 10. Almost immediately
after the increase in A, the number of replicas increase rapidly, al-
most 10 times as much. After the end of the pulse, the shrink mech-
anism erases underloaded Dwarf nodes, freeing up disk space.
Again, we observe how quickly BD manages to detect the change in
load. Within a few seconds, the mirrors decrease dramatically and
keep decreasing gradually, tending to reach the state that existed
before the pulse was applied. However, the more biased the work-
load, the more the steady state before and after the pulse differs.

Fig. 8 also shows that BD moves toward a more balanced load
distribution with each step. A load snapshot of a skewed workload
(6 = 1.5) at the beginning, the middle and a random point in the
steady state show that our method manages to decrease disparity
between node loads. That is its main advantage compared to static
mirroring. The system gradually moves toward states where more
server instances will be involved in query processing and less
overloaded Dwarf nodes exist.

5.6. Node failures

Our system relies on the cooperation of commodity nodes
forming an unstructured P2P overlay. It is likely that failures will
occur throughout the execution of a workload, making it important
to examine the impacts of such occurrences on our system. Using
the 10-d dataset (with k = 3) and a uniformly distributed queryset
of 5 k queries that arrive at a rate of 10 queries/s, we enforce

node failures as follows: every Tg sec, a subset Ngy;; of the online
peers fails in a circular way, while previously offline nodes are
reinserted to the network. Note that, by failing we mean that nodes
depart ungracefully, without informing any other peer. Starting
from |Ngj| = 1 we gradually increase it up to the value of 4 (since
each Dwarf node exists in k + 1 = 4 different network nodes),
aiming to test BD’s fault tolerance and examine its performance
under volatile conditions. The adaptive mirroring mode is turned
off, in order to better interpret the results. It is worth noticing that
the parameters used in these experiments are far more pessimistic
than the reported ones. Google, for instance, experiences failures
in 0.76% of the average number of machines allocated for an
analysis job, with Tg,; being almost 500 s on average [10]. Table 11
summarizes our findings. Note that the query time column
represents the absolute time for a single query to be resolved (not
the average completion time of many queries run in batch mode).

We observe that the system maintains the theoretical guarantee
that for any failure level below the replication no data/query loss
will occur (see lines with |Ng,;| < 4). Even when 25% of the nodes
fail a very small portion of the queries has to be restarted (less
than 5% in the worst case). This happens because, for a query all
the replicas of at least one the respective Dwarf nodes that reside
on the answering path must be offline in order for the query to
fail. Because of the automatic replenishment of the replica-set
whenever a Dwarf node falls below k + 1 copies, query loss is
very small. The number of messages needed per query now tops
d due to the redirections needed for some requests. Redirections
and mostly the induced timeouts increase the average response
time by a factor of roughly 13 compared to the no-failures run. Still,
this number does not incorporate the query resolution speed-up
BD exhibits when many queries are sent in batches.

In Fig. 10, we plot the total number of replicas in the system over
time, for the various |Ng,;|. We observe that the number of mirrors
remains stable, despite of the random node departures and very
close to the initial value for k = 3 (represented by the horizontal
red line). In fact, the number of replicas is somewhat larger than
the theoretical value. This happens because more than one peers
might initiate a mirroring process at the same time, thus produc-
ing more replicas. This becomes more obvious as the ratio of failing

1444 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 1434-1446

M

_qg 800K ;

: L

£ 600K |

<

2

5 400K |

! S E
””” al =

200K Nfail = 1

Il Il Il Il

100 200 300 400 500

Time (sec)
Fig. 10. Number of replicas over time with various numbers of failing nodes.
Table 11

Implications on data and query processing for increasing number of failures and
different Ty, values.

| Neait| Ttait (S) Query loss(%) Total redir msg/q g.time (ms)
0 - 0 0 9.8 57
1 90 0 11 9.8 79
2 90 0 204 104 257
4 90 29 841 111 734
1 60 0 21 9.9 107
2 60 0 258 10.5 304
4 60 43 894 11.2 812

nodes increases. The small fluctuations are due to the deletion of
mirrors as nodes fail.

5.7. Effect of dimension grouping

Here we evaluate the impact of dimension grouping on
performance as well as fairness in both storage and load. Using the
20-d dataset and varying the h parameter from 1 to 10, we apply
a batch of 20 k updates in an existing BD structure of 100 k tuples.
Afterward, we pose 1 k uniformly distributed queries. We measure
the time and communication cost of the operations, as well as the
value of the Gini coefficient G for both the storage consumption and
the produced load (Table 12). G is a summary statistic that serves
as a measure of inequality in a population. It is calculated as the
sum of the differences between every possible pair of individuals,
divided by the mean size. Its value ranges between 0 and 1,
where 0 corresponds to perfect equality. Assuming our population
comprises of the size of the stored data and the number of received
requests by each node, we calculate the value of G as an index of
storage and load distribution among servers respectively.

As h increases the communication cost of all operations
noticeably decreases, since paths of h nodes reside in the same
host, consequently reducing the operation times. Naturally, as the
grouping becomes more coarse grained it causes imbalance in both
storage and load. Although the effect on storage is much more
severe, the load remains more balanced among servers, even in the
exaggerated case of h = 10. This experiments proves the trade-off
between performance gain and balance, suggesting a choice of h
much smaller than d.

6. Related work

Brown Dwarf is a system for addressing the analytics of
modern, network-centric enterprises. It extends traditional, well-
established approaches to analytics and combines them with P2P
techniques, being therefore relevant to several diverse fields of
related works.

The sharing of relational data using both structured and
unstructured P2P overlays is addressed in a number of papers.
PIER [17] proposes a distributed architecture for relational
databases supporting operators such as join and aggregation of
stored tuples. A DHT-based overlay is used for query routing.

On top of the DHT overlay, a Prefix Hash Tree (PHT) is built for
secondary indexing. The PIER platform is also used along with a
Gnutella overlay in [22] for common file-sharing. The unstructured
overlay is used for locating popular items while the PIER search
engine favors the publishing and discovery of rare items. In
GrouPeer [19], SP] queries are sent over an unstructured overlay in
order to discover peers with similar schemas. Peers are gradually
clustered according to their schema similarity. PeerDB [25] also
features relational data sharing without schema knowledge. Query
matching and rewriting is based on keywords provided by the
users. GridVine [1] hashes and indexes RDF data and schemas, and
pSearch [31] represents documents as well as queries as semantic
vectors. A work by Vaisman et al. [34] stressing the need for P2P
OLAP mainly focuses on answering OLAP queries over a network
of data warehouses that do not share the same schema. All these
approaches offer significant and efficient solutions to the problem
of sharing structured and heterogeneous data over P2P networks.
Nevertheless, they do not deal with multidimensional data and
aggregate queries over voluminous datasets.

Gray et al. introduced the data cube operator in 1997 [15]. The
data cube generalizes many useful operators, namely aggregation,
group by, roll-ups, drill-downs, histograms and cross-tabs. It con-
sists of several independent attributes grouped into dimensions
and some dependent attributes which are called measurements.
A basic problem related to the data cube is the complexity of its
computation and the corresponding storage requirements, since
the number of possible views increases exponentially to the num-
ber of dimensions. Materialization is commonly used in order to
speed-up query processing. This approach fails in a fully dynamic
environment where the queries are not known in advance or when
the number of possible queries becomes very large.

Several indexing schemes have been presented for storing
data cubes [21,35,30]. Another approach is the DC-Tree [13],
a fully dynamic index structure for data warehouses modeled
as data cubes. In this work, the attributes of a dimension are
partially ordered with respect to the valid hierarchy schema for
each dimension. The DC-tree stores one concept hierarchy per
dimension and assigns an ID to every attribute value of a data
record that is inserted. These approaches are efficient in answering
both point and aggregate queries over various data granularities
but do so in a strictly centralized and controlled environment.

Closest to our distributed system are works that have proposed
multiple cooperating data-warehouses. In [18], the authors
consider a number of DWs and peers, forming an unstructured
P2P overlay for caching OLAP views. Views are divided in chunks
and peers retrieve cached chunks from the network and the DW
if needed. In the work of [4], the authors define the distributed
data warehouse as a structure that consists of multiple local data
warehouses adjacent to data collection points, and of a coordinator
site, responsible for interacting with each of the local sites and
for correlating and aggregating query results. A similar approach
is described in [9], where a two-layered architecture consisting
of multiple local data warehouses and a global one is proposed.
WebContent [2] describes a P2P platform for managing distributed
repositories of XML and semantic Web data, where various data
processing building blocks are integrated as Web services. All
these approaches perform some hybrid query processing model by
allowing requests to route to different cites. Yet, unlike BD, they do
not distribute the warehouse structure itself, with the processing
cites remaining centralized.

Recently, effort has been made to exploit parallel processing
techniques for data analysis by integrating query constructs from
the database community into MapReduce-like software. This new
class of analytics engines leverages the recent innovation in the in-
dustry around large-scale data management. Deployed on shared-
nothing, commodity hardware architectures, they cover the newly
added requirement for scalability, robustness and availability at
low cost. The Pig project at Yahoo [26], the SCOPE project at Mi-
crosoft [8] and the open-source Hive project [33] mainly focus on

K. Doka et al. /]. Parallel Distrib. Comput. 71 (2011) 1434-1446 1445
Table 12
Measurements for various values of h using the 20-d dataset.
h Storage G Update Querying
Time/update (ms) msg/update G Time/query (ms) msg/query G
1 0.01 153 35.6 0.05 109 17.2 0.05
2 0.20 148 30.3 0.13 38 8.6 0.08
5 0.39 102 23.4 0.29 15 39 0.18
10 0.61 91 20.8 0.30 13 2.3 0.32

language issues, addressing the creation of SQL interfaces on top
of Hadoop [16]. HadoopDB [3] proposes a system-level hybrid ap-
proach, where MapReduce and parallel DBMSs are combined. SQL
queries are translated with the use of Hive into MapReduce jobs,
which are eventually executed on a single node, running a DBMS.
However, such technologies are inherently batch-oriented, as they
can provide large amount of processing power, but do not guaran-
tee per tuple processing nor real-time responses like BD does.

To conclude with relative solutions, parallel database solu-
tions [27,32] offer great efficiency at the cost of elasticity and ro-
bustness in failures [28]. Indeed, resources cannot be automatically
allocated (nor released) according to demand and the addition of
new machines to the system requires significant effort as well as
downtime. Lastly, parallel databases do not operate on heteroge-
neous environments. Contrarily, based on a shared nothing archi-
tecture, BD guarantees resilience as well as scalability on top of the
advantages that a distributed storage offers, without compromis-
ing query and update efficiency. Its load-driven replication mech-
anism ensures data availability despite node failures.

7. Conclusions

In this paper we presented Brown Dwarf, a system that
distributes a data cube across peers in an unstructured P2P overlay.
To our knowledge, this is a unique approach that enables users to
pose group-by queries and update multidimensional bulk datasets
on-line, without the use of any proprietary tool.

Our system employs many plausible features required by an
application and its respective hardware: it is scalable, as it can
use an unbounded number of cooperating nodes, distributing
computation and storage; it provides data availability through the
adaptive replication scheme according to both workload and node
failures; it efficiently answers all point and aggregate queries in a
bounded number of steps; finally it is cost-effective, as it uses only
commodity hardware, while with its expand-shrink scheme each
dataset takes up only the necessary amount of storage.

Our evaluation shows that the data cube is evenly distributed
across a number of cooperating peers. Both creation and querying
times are significantly reduced (often by an order of magnitude)
due to the parallel paths taken in the overlay. Moreover, it expands
popular parts of the structure using local only load measurements
while constantly monitoring the whole set to remain above
an acceptable replication threshold. Finally, it minimizes node
overloads and query processing times even in very demanding and
dynamic workload/churn conditions.

References

[1] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, T. VanPelt, Gridvine: building
internet-scale semantic overlay networks, Lecture Notes in Computer Science
(2004) 107-121.

[2] S. Abiteboul, T. Allard, P. Chatalic, G. Gardarin, A. Ghitescu, F. Goasdoué,

I. Manolescu, B. Nguyen, M. Ouazara, A. Somani, N. Travers, G. Vasile,

S. Zoupanos, Webcontent: efficient P2P warehousing of web data, VLDB'08,

in: Proceedings of the 34th International Conference on Very Large Data Bases,

vol. 1, VLDB Endowment, 2008, pp. 1428-1431.

A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, A. Rasin,

HadoopDB: an architectural hybrid of Map-Reduce and DBMS technologies for

analytical workloads, in: Proceedings of the 35th International Conference on

Very Large Data Bases, VLDB’09, VLDB Endowment, 2009, pp. 1084-1095.

M. Akinde, M. Bohlen, T. Johnson, L. Lakshmanan, D. Srivastava, Efficient OLAP

query processing in distributed data warehouses, Information Systems 28

(1-2)(2003) 111-135.

3

[4

[5] OLAP Council APB-1 OLAP Benchmark.

[6] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, 1. Stoica, M. Zaharia, Above the clouds: a Berkeley
view of cloud computing, Tech. Rep. UCB/EECS-2009-28, EECS Department,
University of California, Berkeley, February 2009.

[7] J.A.Blackard, The Forest CoverType dataset. ftp://ftp.ics.uci.edu/pub/machine-
learning-databases/covtype.

[8] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, J. Zhou,
SCOPE: easy and efficient parallel processing of massive data sets, VLDB'08,
in: Proceedings of the 34th International Conference on Very Large Data Bases,
vol. 1, VLDB Endowment, 2008, pp. 1265-1276.

[9] Q. Chen, U. Dayal, M. Hsu, A distributed OLAP infrastructure for e-commerce,
in: Proceedings of the 4th IFCIS International Conference on Cooperative
Information Systems, IEEE Computer Society, 1999, pp. 209-220.

[10] J.Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,
Communications of the ACM 51 (1) (2008) 107.

[11] J. Dittrich, L. Blunschi, M. Salles, Dwarfs in the rearview mirror: how big are
they really?, VLDB'08, in: Proceedings of the 34th International Conference on
Very Large Data Bases, vol. 1, VLDB Endowment, 2008, pp. 1586-1597.

[12] K. Doka, D. Tsoumakos, N. Koziris, Online querying of d-dimensional
hierarchies, Journal of Parallel and Distributed Computing 71 (3) (2011)
424-437. http://dx.doi.org/DOI:10.1016/].jpdc.2010.10.005.

[13] M. Ester, J. Kohlhammer, H. Kriegel, The DC-tree: a fully dynamic index
structure for data warehouses, in: Proceedings of the 16th International
Conference on Data Engineering, ICDE'00, IEEE Computer Society Press, 2000,
pp. 379-388.

[14] Gnutella File-sharing and Distribution Network, 2003.
http://rfc-gnutella.sourceforge.net/.

[15] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, H. Pirahesh, Data cube: a relational aggregation operator generaliz-
ing group-by, cross-tab, and sub-totals, Data Mining and Knowledge Discovery
1(1)(1997) 29-53.

[16] Hadoop Web Page. http://hadoop.apache.org/core/.

[17] R.Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker, I. Stoica, Querying the
internet with PIER, in: Proceedings of the 29th International Conference on
Very Large Data Bases, VLDB’03, VLDB Endowment, 2003, p. 332.

[18] P.Kalnis, W. Ng, B. Ooi, D. Papadias, K. Tan, An adaptive peer-to-peer network
for distributed caching of OLAP results, in: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, SIGMOD’02, ACM,
New York, NY, USA, 2002, pp. 25-36.

[19] V. Kantere, D. Tsoumakos, T. Sellis, N. Roussopoulos, GrouPeer: dynamic
clustering of P2P databases, Information Systems 34 (1) (2009) 62-86.

[20] E. Knorr, Dealing with the Data Explosion, Infoworld, 2009. http://www.
infoworld.com/d/storage/dealing-data-explosion-690.

[21] L. Lakshmanan,]. Pei, Y. Zhao, QC-trees: an efficient summary structure
for semantic OLAP, in: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD’03, ACM, 2003, p. 75.

[22] B. Loo, J. Hellerstein, R. Huebsch, S. Shenker, I. Stoica, Enhancing P2P
file-sharing with an internet-scale query processor, in: Proceedings of the
30th International Conference on Very Large Data Bases, VLDB'04, VLDB
Endowment, 2004, p. 443.

[23] S.Melnik, A. Gubarev, J. Long, G. Romer, S. Shivakumar, M. Tolton, T. Vassilakis,
Dremel: interactive analysis of web-scale datasets, VLDB'10, in: Proceedings
of the 36th International Conference on Very Large Data Bases, vol. 3, VLDB
Endowment, 2010.

[24] C. Monash, The 1-petabyte Barrier is Crumbling. http://www.networkworld.
com/community/node/31439.

[25] W.S. Ng, B.C. Ooi, K.L. Tan, A. Zhou, Peerdb: a P2P-based system for distributed
data sharing, ICDE’03, in: Proceedings of the 19th International Conference on
Data Engineering, vol. 1063, IEEE Computer Society Press, 2003, pp. 633-644.

[26] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a not-so-
foreign language for data processing, in: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’'08, ACM, 2008,
pp. 1099-1110.

[27] Oracle Exadata. http://www.oracle.com.

[28] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden, M. Stonebraker,
A comparison of approaches to large-scale data analysis, in: Proceedings of
the 2009 ACM SIGMOD International Conference on Management of Data,
SIGMOD’09, ACM, 2009.

[29] L. Siegele, Let it Rise, 2008. http://www.economist.com/node/12411882.

[30] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, Y. Kotidis, Dwarf: shrinking the
petacube, in: Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, SIGMOD’02, ACM, 2002, pp. 464-475.

[31] C. Tang, Z. Xu, S. Dwarkadas, Peer-to-peer information retrieval using
self-organizing semantic overlay NSetworks, in: Proceedings of the 2003
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, ACM, 2003, pp. 175-186.

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype
http://dx.doi.org/DOI:10.1016/j.jpdc.2010.10.005
http://rfc-gnutella.sourceforge.net/
http://hadoop.apache.org/core/
http://www.infoworld.com/d/storage/dealing-data-explosion-690
http://www.infoworld.com/d/storage/dealing-data-explosion-690
http://www.infoworld.com/d/storage/dealing-data-explosion-690
http://www.infoworld.com/d/storage/dealing-data-explosion-690
http://www.infoworld.com/d/storage/dealing-data-explosion-690
http://www.infoworld.com/d/storage/dealing-data-explosion-690
http://www.infoworld.com/d/storage/dealing-data-explosion-690
http://www.networkworld.com/community/node/31439
http://www.networkworld.com/community/node/31439
http://www.networkworld.com/community/node/31439
http://www.networkworld.com/community/node/31439
http://www.networkworld.com/community/node/31439
http://www.networkworld.com/community/node/31439
http://www.networkworld.com/community/node/31439
http://www.oracle.com
http://www.economist.com/node/12411882

1446 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 1434-1446

[32] Teradata. http://www.teradata.com/.

[33] A.Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,
R. Murthy, Hive—a warehousing solution over a Map-Reduce framework,
VLDB’09, in: Proceedings of the 35th International Conference on Very Large
Data Bases, vol. 2, VLDB Endowment, 2009, pp. 1626-1629.

[34] A.Vaisman, M. Espil, M. Paradela, P2P OLAP: data model, implementation and
case study, Information Systems 34 (2) (2009) 231-257.

[35] W. Wang, H. Lu,]J. Feng, J. Yu, Condensed cube: an effective approach to
reducing data cube size, in: Proceedings of the 18th International Conference
on Data Engineering, ICDE’02, IEEE Computer Society Press, 2002.

[36] Kx Systems. http://www.kx.com/.

Katerina Doka is a post-doctoral researcher at the
Computing Systems Laboratory of the Department of
Electrical and Computer Engineering of the National
Technical University of Athens (NTUA), involved in several
European and National R&D projects. She received her
Diploma in Electrical and Computer Engineering in 2005
and her Ph.D.in 2011 from NTUA. Her research interests lie
in the fields of Data Management in Large Scale Distributed
Systems, Peer-to-Peer Technologies and Cloud Computing
and she has contributed to 13 academic publications in
international conferences and journals. She is a member of
the IEEE Computer Society, the ACM SIGMOD and the Technical Chamber of Greece.
More information can be found in http://www.cslab.ece.ntua.gr/doka/.

Dimitrios Tsoumakos holds an academic position in the
| Department of Informatics of the lonian University. He
is also a senior researcher at the Computing Systems
Laboratory of the Department of Electrical and Computer
Engineering of the National Technical University of
Athens (NTUA). He received his Diploma in Electrical and
Computer Engineering from NTUA in 1999, joined the
graduate program in Computer Sciences at the University
of Maryland in 2000, where he received his M.Sc. (2002)
| and Ph.D. (2006). His research interests lie in the area of
“ distributed systems/algorithms, particularly in designing

and implementing adaptive, scalable and bandwidth-efficient schemes for data
storage, retrieval and dissemination. Applications over Peer-to-Peer systems, Grid
and Cloud Computing are considered. He is also actively involved in Database
research, especially in designing distributed indexing schemes for shared databases,
distributed RDF and datacube stores and open-linked data.

Diploma in Electrical Engineering from the National
Technical University of Athens (NTUA) and his Ph.D. in
= Computer Engineering from NTUA (1997). He joined the
Computer Science Department, School of Electrical and
Computer Engineering at the National Technical Univer-
sity of Athens in 1998. His research interests include par-
allel architectures, loop code optimizations, interaction
between compilers, OS and architectures, communication
architectures for clusters (OS and compiler support), OS
virtualization, large scale computer and storage systems,
cloud infrastructures, distributed systems and algorithms, distributed data man-
agement. Nectarios Koziris has co-authored more than 100 research papers in in-
ternational refereed journals (including TPDS, TACO, JPDC, ParCO, JSC etc.) and in
the proceedings of international conferences and workshops (including IPDPS, SC,
PPoPP, ICPP, etc.). From 2002 he has been involved in the organization of more than
50 international conferences as Chair/co-Chair, Program Chair, Program Commit-
tee Member, Publicity Chair, including SPAA, IPDPS, ACM Supercomputing, ICPP,
PDSEC & CAC workshops etc. He has also published two Greek textbooks “Mapping
Algorithms into Parallel Processing Architectures”, and “Computer Architecture and
Operating Systems”. Nectarios Koziris is the recipient of the IEEE IPDPS 2001 best
paper award for the paper “Minimising Completion Time for Loop Tiling with Com-
putation and Communication Overlapping” (held at San Francisco, California). He
has been a project coordinator/key researcher in numerous EU (FP5, FP6 and FP7)
and national Research Programmes, in the area of high performance computing and
large scale computer systems. He is a member of the IEEE Computer Society, mem-
ber of IEEE-CS TCPP and TCCA (Technical Committees on Parallel Processing and
Computer Architecture), Senior Member of the ACM and chairs the Greek IEEE Chap-
ter Computer Society. He also serves as the Vice-Chairman of the Board of Directors
for the Greek Research and Education Network (GRNET-www.grnet.gr) and Vice-
Chairman of the Board of Directors in EEL/LAK (Free/Libre/Open Source Software
non-profit organization-www.ellak.gr), founded by the Greek Universities and Re-
search Centers.

\" Nectarios Koziris, Associate Professor, received his

http://www.teradata.com/
http://www.kx.com/
http://www.cslab.ece.ntua.gr/doka/
http://www.grnet.gr
http://www.ellak.gr

	Brown Dwarf: A fully-distributed, fault-tolerant data warehousing system
	Introduction
	The centralized Dwarf and overview of the Brown Dwarf
	The Brown Dwarf system
	Insertion
	Query resolution
	Incremental updates
	Mirroring
	Handling node failures and query skew
	Node churn
	Load-driven mirroring

	Optimizations---discussion
	Query performance optimization
	Dimension grouping optimization
	Consistency issues

	Experimental results
	Cube creation
	Varying the number of dimensions
	Varying the number of participating nodes
	Varying the number of tuples
	Varying the density of the cube

	Updates
	Query processing
	Varying the number of dimensions
	Varying the number of nodes

	Benchmarks and real datasets
	Adaptive mirroring
	Node failures
	Effect of dimension grouping

	Related work
	Conclusions
	References

