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Abstract

Distributing spatially located heterogeneous workloads is an important problem in parallel scientific
computing. We investigate the problem of partitioning such workloads (represented as a matrix of
non-negative integers) into rectangles, such that the load of the most loaded rectangle (processor) is
minimized. Since finding the optimal arbitrary rectangle-based partition is an NP-hard problem, we
investigate particular classes of solutions: rectilinear, jagged and hierarchical. We present a new class of
solutions called m-way jagged partitions, propose new optimal algorithms for m-way jagged partitions and
hierarchical partitions, propose new heuristic algorithms, and provide worst case performance analyses
for some existing and new heuristics. Moreover, the algorithms are tested in simulation on a wide set of
instances. Results show that two of the algorithms we introduce lead to a much better load balance than
the state-of-the-art algorithms. We also show how to design a two-phase algorithm that reaches different
time/quality tradeoff.

Keywords: Load balancing; spatial partitioning; optimal algorithms; heuristics; dynamic program-
ming; particle-in-cell; mesh-based computation; jagged partitioning; rectilinear partitioning; hierarchical
partitioning

1 Introduction

To achieve good efficiency when using a parallel platform, one must distribute the computations and the
required data to the processors of the parallel machine. If the computation tasks are independent, their
parallel processing falls in the category of pleasantly parallel tasks. Even in such cases, when computation
time of the tasks are not equal, obtaining the optimal load balance to achieve optimum execution time
becomes computationally hard and heuristic solutions are used [22]. Furthermore, most of the time some
dependencies exist between the tasks and some data must be shared or exchanged frequently, making the
problem even more complicated.

A large class of application see its computations take place in a geometrical space of typically two or
three dimensions. Different types of applications fall into that class. Particle-in-cell simulation [33, 17] is an
implementation of the classical mean-field approximation of the many-body problem in physics. Typically,
thousands to millions of particles are located in cells, which are a discretization of a field. The application
iteratively updates the value of the field in a cell, based on the state of the particles it contains and the value
of the neighboring cells, and then the state of the particles, based on its own state and the state of the cell it

∗This work was supported in parts by the U.S. DOE SciDAC Institute Grant DE-FC02-06ER2775; by the U.S. National
Science Foundation under Grants CNS-0643969, OCI-0904809 and OCI-0904802.
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belongs to. Direct volume rendering [20] is an application that use rendering algorithm similar to raycasting
in a scene of semi-transparent objects without reflection. For each pixel of the screen, a ray orthogonal to
the screen is cast from the pixel and color information will be accumulated over the different objects the ray
encounters. Each pixel therefore requires an amount of computation linear to the number of objects crossed
by the ray and neighboring pixels are likely to cross the same objects. Partial Differential Equation can be
computed using mesh-based computation. For instance [16] solves heat equation on a surface by building a
regular mesh out of it. The state of each node of the mesh is iteratively updated depending on the state of
neighboring nodes. For load balancing purpose, [27] maps the mesh to a discretized two dimensional space.
An other application can be found in 3D engines where the state of the world is iteratively updated and
where the updates on each object depends on neighboring objects (for instance, for collision purpose) [1].
Linear algebra operations can potentially also benefit from such techniques [37, 30, 36].

In this work, our goal is to balance the load of such applications. In the literature, load balancing
techniques can be broadly divided into two categories: geometric and connectivity-based. Geometric methods
(such as [5, 29]) leverages the fact that computations which are close by in the space are more likely to share
data than computations that are far in the space, by dividing the load using geometric properties of the
workload. Methods from that class often rely on a recursive decomposition of the domain such as octrees [9]
or they rely on space filling curves and surfaces [2, 3]. Connectivity-based methods usually model the load
balancing problem through a graph or an hypergraph weighted with computation volumes on the nodes and
communication volumes on the edges or hyper edges (see for instance [35, 8]). Connectivity-based techniques
lead to good partitions but are usually computationally expensive and require to build an accurate graph
(or hypergraph) model of the computation. They are particularly well-suited when the interactions between
tasks are irregular. Graphs are useful when modeling interactions that are exactly between two tasks,
and hypergraph are useful when modeling more complex interactions that could involve more than two
tasks [7, 15].

When the interactions are regular (structured) one can use methods that takes the structure into account.
For example, when coordinate information for tasks are available, one can use geometric methods which leads
to “fast” and effective partitioning techniques. In geometric partitioning, one prefers to partition the problem
into connex and compact parts so as to minimize communication volumes. Rectangles (and rectangular
volumes) are the most preferred shape because they implicitly minimize communication, do not restrict
the set of possible allocations drastically, are easily expressed and allow to quickly find which rectangle a
coordinate belongs to using simple data structures. Hence, in this work, we will only focus partitioning into
rectangles.

In more concrete terms, this paper addresses the problem of partitioning a two-dimensional load matrix
composed of non-negative numbers into a given number of rectangles (processors) so as to minimize the load
of the most loaded rectangle; the most loaded rectangle is the one whose sum of the element it contains is
maximal. The problem is formulated so that each element of the array represents a task and each rectangle
represents a processor. Computing the optimal solution for this problem has been shown to be NP-Hard [13].
Therefore, we focus on algorithms with low polynomial complexity that lead to good solutions.

The approach we are pursuing in this work is to consider different classes of rectangular partitioning.
Simpler structures are expected to yield bad load balance but to be computed quickly while more complex
structures are expected to give good load balance but lead to higher computation time. For each class, we
look for optimal algorithms and heuristics. Several algorithms to deal with this particular problem which
have been proposed in the literature are described and analyzed. One original class of solution is proposed
and original algorithms are presented and analyzed.

The theoretical analysis of the algorithms is accompanied by an extensive experimentation evaluation
of the algorithms to decide which one should be used in practice. The experimentation is composed of
various randomly generated datasets and two datasets extracted from two applications, one following the
particle-in-cell paradigm and one following the mesh-based computation paradigm.

The contributions of this work are as follows:

• A classical P ×Q-way jagged heuristic is theoretically analyzed by bounding the load imbalance it
generates in the worst case.
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• We propose a new class of solutions, namely, m-way jagged partitions, for which we propose a fast
heuristic as well as an exact polynomial dynamic programming formulation. This heuristic is also
theoretically analyzed and shown to perform better than the P×Q-way jagged heuristic.

• For an existing class of solutions, namely, hierarchical bipartitions, we propose both an optimal poly-
nomial dynamic programming algorithm as well as a new heuristic.

• The presented and proposed algorithms are practically assessed in simulations performed on synthetic
load matrices and on real load matrices extracted from both a particle-in-cell simulator and a geo-
metric mesh. Simulations show that two of the proposed heuristics outperform all the tested existing
algorithms.

• Algorithmic engineering techniques are used to create hybrid partitioning scheme that provides slower
algorithms but with higher quality.

This work extends [34] by providing the following main contributions: tighter bounds in the theoretical
guarantee of an m-way jagged partitioning heuristic, new heuristics for m-way jagged partitioning, experi-
mental results of proposed algorithms with detailed charts, and hybrid algorithms.

Several previous work tackles a similar problem but they usually presents only algorithms from one
class with no experimental validation or a very simple one. These works are referenced in the text when
describing the algorithm they introduce. Kutluca et al. [20] is the closest related work. They are tackling the
parallelization of a Direct Volume Rendering application whose load balancing is done using a very similar
model. They survey rectangle based partition but also more general partition generated from hypergraph
modeling and space filling curves. The experimental validation they propose is based on the actual runtime
of the Direct Volume Rendering application.

Similar classes of solutions are used in the problem of partitioning an equally loaded tasks onto heteroge-
neous processors (see [21] for a survey). This is a very different problem which often assumes the task space
is continuous (therefore infinitely divisible). Since the load balance is trivial to optimize in such a context,
most work in this area focus on optimizing communication patterns.

The rest of the paper is organized as follows. Section 2 presents the model and notations used. The
different classes of partitions are described in Section 3. This section also presents known and new polynomial
time algorithms either optimal or heuristic. The algorithms are evaluated in Section 4 on synthetic dataset
as well as on dataset extracted from two real simulation codes. Section 5 presents a two-phase technique,
namely hybrid algorithms, to generate partitions. Conclusive remarks are given in Section 6.

2 Model and Preliminaries

2.1 Problem Definition

Let A be a two dimensional array of n1 × n2 non-negative integers representing the spatially located load.
This load matrix needs to be distributed on m processors. Each element of the array must be allocated to
exactly one processor. The load of a processor is the sum of the elements of the array it has been allocated.
The cost of a solution is the load of the most loaded processor. The problem is to find a solution that
minimizes the cost.

In this paper we are only interested in rectangular allocations, and we will use ’rectangle’ and ’processor’
interchangeably. That is to say, a solution is a set R of m rectangles ri = (x1, x2, y1, y2) which form a partition
of the elements of the array. Two properties have to be ensured for a solution to be valid:

⋂
r∈R = ∅ and⋃

r∈R = A. The first one can be checked by verifying that no rectangle collides with another one, it can
be done using line to line tests and inclusion test. The second one can be checked by verifying that all the
rectangles are inside A and that the sum of their area is equal to the area of A. This testing method runs
in O(m2). The load of a processor is L(ri) =

∑
x1≤x≤x2

∑
y1≤y≤y2

A[x][y]. The load of the most loaded
processor in solution R is Lmax = maxri L(ri). We will denote by L∗max the minimal cost achievable. Notice

that L∗max ≥
∑

x,y A[x][y]

m and L∗max ≥ maxx,y A[x][y] are lower bounds of the optimal maximum load. In
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term of distributed computing, it is important to remark that this model is only concerned by computation
times and not by communication times.

Algorithms that tackle this problem rarely consider the load of a single element of the matrix. Instead,
they usually consider the load of a rectangle. Therefore, we assume that matrix A is given as a 2D prefix
sum array Γ so that Γ[x][y] =

∑
x′≤x,y′≤y A[x′][y′]. That way, the load of a rectangle r = (x1, x2, y1, y2) can

be computed in O(1) (instead of O((x2 − x1)(y2 − y1))), as L(r) = Γ[x2][y2]− Γ[x1 − 1][y2]− Γ[x2][y1 − 1] +
Γ[x1 − 1][y1 − 1].

An algorithm H is said to be a ρ-approximation algorithm, if for all instances of the problem, it returns a
solution which maximum load is no more than ρ times the optimal maximum load, i.e., Lmax(H) ≤ ρL∗max.
In simulations, the metric used for qualifying the solution is the load imbalance which is computed as Lmax

Lavg
−1

where Lavg =
∑

x,y A[x][y]

m . A solution which is perfectly balanced achieves a load imbalance of 0. Notice
that the optimal solution for the maximum load might not be perfectly balanced and usually has a strictly
positive load imbalance. The ratio of most approximation algorithm are proved using Lavg as the only lower
bound on the optimal maximum load. Therefore, it usually means that a ρ-approximation algorithm leads
to a solution whose load imbalance is less than ρ− 1.

2.2 The One Dimensional Variant

Solving the 2D partitioning problem is obviously harder than solving the 1D partitioning problem. Most of
the algorithms for the 2D partitioning problems are inspired by 1D partitioning algorithms. An extensive
theoretical and experimental comparison of those 1D algorithms has been given in [31]. In [31], the fastest
optimal 1D partitioning algorithm is NicolPlus; it is an algorithmically engineered modification of [27],
which uses a subroutine proposed in [14]. A slower optimal algorithm using dynamic programming was
proposed in [23]. Different heuristics have also been developed [25, 31]. Frederickson [11] proposed an O(n)
optimal algorithm which is only arguably better than O((m log n

m )2) obtained by NicolPlus. Moreover,
Frederickson’s algorithm requires complicated data structures which are difficult to implement and are likely
to run slowly in practice. Therefore, in the remainder of the paper NicolPlus is the algorithm used for
solving one dimensional partitioning problems.

In the one dimensional case, the problem is to partition the array A composed of n positive integers into
m intervals.

DirectCut (DC) (called ”Heuristic 1” in [25]) is the fastest reasonable heuristic. It greedily allocates

to each processor the smallest interval I = {0, . . . , i} which load is more than
∑

i A[i]

m . This can be done in
O(m log n

m ) using binary search on the prefix sum array and the slicing technique of [14]. By construction,

DC is a 2-approximation algorithm but more precisely, Lmax(DC) ≤
∑

i A[i]

m + maxiA[i]. This result is

particularly important since it provides an upper bound on the optimal maximum load: L∗max ≤
∑

i A[i]

m +
maxiA[i].

A widely known heuristic is Recursive Bisection (RB) which recursively splits the array into two
parts of similar load and allocates half the processors to each part. This algorithm leads to a solution such

that Lmax(RB) ≤
∑

i A[i]

m + maxiA[i] and therefore is a 2-approximation algorithm [31]. It has a runtime
complexity of O(m log n).

The optimal solution can be computed using dynamic programming [23]. The formulation comes from
the property of the problem that one interval must finish at index n. Then, the maximum load is either
given by this interval or by the maximum load of the previous intervals. In other words, L∗max(n,m) =
min0≤k<n max{L∗max(k,m− 1), L({k + 1, . . . , n})}. A detailed analysis shows that this formulation leads to
an algorithm of complexity O(m(n−m)).

The optimal algorithm in [27] relies on the parametric search algorithm proposed in [14]. A function
called Probe is given a targeted maximum load and either returns a partition that reaches this maximum
load or declares it unreachable. The algorithm greedily allocates to each processor the tasks and stops when
the load of the processor will exceed the targeted value. The last task allocated to a processor can be found
in O(log n) using a binary search on the prefix sum array, leading to an algorithm of complexity O(m log n).

4



(a) A (5× 4) rectilinear partition (b) A P×Q-way (5×3) jagged partition (c) A m-way (15) jagged partition

(d) A hierarchical bipartition (e) A spiral partition (f) Another partition

Figure 1: Different structures of partitions.

[14] remarked that there are m binary searches which look for increasing values in the array. Therefore, by
slicing the array in m parts, one binary search can be performed in O(log n

m ). It remains to decide in which
part to search for. Since there are m parts and the searched values are increasing, it can be done in an
amortized O(1). This leads to a Probe function of complexity O(m log n

m ).
The algorithm proposed by [27] exploits the property that if the maximum load is given by the first

interval then its load is given by the smallest interval so that Probe(L({0, . . . , i})) is true. Otherwise, the
largest interval so that Probe(L({0, . . . , i})) is false can safely be allocated to the first interval. Such an
interval can be efficiently found using a binary search, and the array slicing technique of [14] can be used
to reach a complexity of O((m log n

m )2). Recent work [31] showed that clever bounding techniques can be
applied to reduce the range of the various binary searches inside Probe and inside the main function leading
to a runtime improvement of several orders of magnitude.

3 Algorithms

This section describes algorithms that can be used to solve the 2D partitioning problem. These algorithms
focus on generating a partition with a given structure. Samples of the considered structures are presented
in Figure 1. Each structure is a generalization of the previous one.

Table 1 summarizes the different algorithms discussed in this paper. Their worst-case complexity and
theoretical guarantees are given.

3.1 Rectilinear Partitions

Rectilinear partitions (also called General Block Distribution in [4, 24]) organize the space according to a
P×Q grid as shown in Figure 1(a). This type of partitions is often used to optimize communication and
indexing and has been integrated in the High Performance Fortran standard [10]. It is the kind of partition
constructed by the MPI function MPI Cart. This function is often implemented using the RECT-UNIFORM
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algorithm which divides the first dimension and the second dimension into P and Q intervals with size n1

P
andn2

Q respectively. Notice that RECT-UNIFORM returns a näıve partition that balances the area and not the
load.

[13] implies that computing the optimal rectilinear partition is an NP-Hard problem. [4] points out
that the NP-completeness proof in [13] also implies that there is no (2− ε)-approximation algorithm unless
P=NP. We can also remark that the proof is valid for given values of P and Q, but the complexity of the
problem is unclear if the only constraint is that PQ ≤ m. Notice that, the load matrix is often assumed to
be a square.

[27] (and [24] independently) proposed an iterative refinement heuristic algorithm that we call RECT-NICOL
in the remaining of this paper. Provided the partition in one dimension, called the fixed dimension,
RECT-NICOL computes the optimal partition in the other dimension using an optimal one dimension par-
titioning algorithm. The one dimension partitioning problem is built by setting the load of an interval of
the problem as the maximum of the load of the interval inside each stripe of the fixed dimension. At each
iteration, the partition of one dimension is refined. The algorithm runs until the last 2 iterations return
the same partitions. Each iteration runs in O(Q(P log n1

P )2) or O(P (Q log n2

Q )2) depending on the refined

dimension. According to the analysis in [27] the number of iterations is O(n1n2) in the worst case; however,
in practice the convergence is faster (about 3-10 iterations for a 514x514 matrix up to 10,000 processors).
[4] shows it is a θ(

√
m)-approximation when P = Q =

√
m.

The first constant approximation algorithm for rectilinear partitions has been proposed by [19] but neither
the constant nor the actual complexity is given. [4] claims it is a 120-approximation that runs in O(n1n2).

[4] presents two different modifications of RECT-NICOL which are both a θ(
√
p)-approximation algorithm

for the rectilinear partitioning problem of a n1 × n1 matrix in p × p blocks which therefore is a θ(m1/4)-
approximation algorithm. They run in a constant number of iterations (2 and 3) and have a complexity of
O(m1.5(log n)2) and O(n(

√
m log n)2). [4] claims that despite the approximation ratio is not constant, it is

better in practice than the algorithm proposed in [19].
[12] provides a 2-approximation algorithm for the rectangle stabbing problems which translates into

a 4-approximation algorithm for the rectilinear partitioning problem. This method is of high complexity
O(log(

∑
i,j A[i][j])n10

1 n
10
2 ) and heavily relies on linear programming to derive the result.

[26] considers resource augmentation and proposes a 2-approximation algorithm with slightly more
processors than allowed. It can be tuned to obtain a (4 + ε)-approximation algorithm which runs in
O((n1 + n2 + PQ)P log(n1n2)).

3.2 Jagged Partitions

Jagged partitions (also called Semi Generalized Block Distribution in [24]) distinguish between the main
dimension and the auxiliary dimension. The main dimension will be split in P intervals. Each rectangle of
the solution must have its main dimension matching one of these intervals. The auxiliary dimension of each
rectangle is arbitrary. Examples of jagged partitions are depicted in Figures 1(b) and 1(c). The layout of
jagged partitions also allows to easily locate which rectangle contains a given element [36].

Without loss of generality, all the formulas in this section assume that the main dimension is the first
dimension.

3.2.1 P×Q-way Jagged Partitions

Traditionally, jagged partition algorithms are used to generate what we call P×Q-way jagged partitions in
which each interval of the main dimension will be partitioned in Q rectangles. Such a partition is presented
in Figure 1(b).

An intuitive heuristic to generate P ×Q-way jagged partitions, we call JAG-PQ-HEUR, is to use a 1D
partitioning algorithm to partition the main dimension and then partition each interval independently. First,
we project the array on the main dimension by summing all the elements along the auxiliary dimension. An
optimal 1D partitioning algorithm generates the intervals of the main dimension. Then, for each interval,
the elements are projected on the auxiliary dimension by summing the elements along the main dimension.

7



An optimal 1D partitioning algorithm is used to partition each interval. This heuristic have been proposed
several times before, for instance in [36, 30].

The algorithm runs in O((P log n1

P )2 + P (Q log n2

Q )2). Prefix sum arrays avoid redundant projections:

the load of interval (i, j) in the main dimension can be simply computed as L(i, j, 1, n2).
We now provide an original analysis of the performance of this heuristic under the hypothesis that all

the elements of the load matrix are strictly positive. First, we provide a refinement on the upper bound of
the optimal maximum load in the 1D partitioning problem by refining the performance bound of DC (and
RB) under this hypothesis.

Lemma 1. If there is no zero in the array, applying DirectCut on a one dimensional array A using m

processors leads to a maximum load having the following property: Lmax(DC) ≤
∑

A[i]
m (1 + ∆m

n ) where

∆ = maxi A[i]
mini A[i] .

Proof. The proof is a simple rewriting of the performance bound of DirectCut: Lmax(DC) ≤
∑

i A[i]

m +

maxiA[i] ≤
∑

i A[i]

m (1 + ∆m
n ).

JAG-PQ-HEUR is composed of two calls to an optimal one dimensional algorithm. One can use the perfor-
mance guarantee of DC to bound the load imbalance at both steps. This is formally expressed in the following
theorem.

Theorem 1. If there is no zero in the array, JAG-PQ-HEUR is a (1+∆ P
n1

)(1+∆ Q
n2

)-approximation algorithm

where ∆ =
maxi,j A[i][j]
mini,j A[i][j] , P < n1, Q < n2.

Proof. Let us first give a bound on the load of the most loaded interval along the main dimension, i.e., the
imbalance after the cut in the first dimension. Let C denote the array of the projection of A among one

dimension: C[i] =
∑

j A[i][j]. We have: L∗max(C) ≤
∑

i C[i]

P (1 + ∆ P
n1

). Noticing that
∑

i C[i] =
∑

i,j A[i][j],

we obtain: L∗max(C) ≤
∑

i,j A[i][j]

P (1 + ∆ P
n1

)
Let S be the array of the projection of A among the second dimension inside a given interval c of

processors: S[j] =
∑

i∈cA[i][j]. The optimal partition of S respects: L∗max(S) ≤
∑

j S[j]

Q (1 + ∆ Q
n2

). Since

S is given by the partition of C, we have
∑

j S[j] ≤ L∗max(C) which leads to L∗max(S) ≤ (1 + ∆ P
n1

)(1 +

∆ Q
n2

)
∑

i,j A[i][j]

PQ

It remains the question of the choice of P and Q which is solved by the following theorem.

Theorem 2. The approximation ratio of JAG-PQ-HEUR is minimized by P =
√
mn1

n2
.

Proof. The approximation ratio of JAG-PQ-HEUR can be written as f(x) = (1 + ax)(1 + b/x) with a, b, x > 0
by setting a = ∆

n1
, b = ∆m

n2
and x = P . The minimum of f is now computed by studying its derivative:

f ′(x) = a − b/x2. f ′(x) < 0 ⇐⇒ x <
√
b/a and f ′(x) > 0 ⇐⇒ x >

√
b/a. It implies that f has one

minimum given by f ′(x) = 0 ⇐⇒ x =
√
b/a.

Notice that when n1 = n2, the approximation ratio is minimized by P = Q =
√
m.

Two algorithms exist to find an optimal P ×Q-way jagged partition in polynomial time. The first
one, we call JAG-PQ-OPT-NICOL, has been proposed first by [30] and is constructed by using the 1D algo-
rithm presented in [27]. This algorithm is of complexity O((PQ log n1

P log n2

Q )2). The second one, we call

JAG-PQ-OPT-DP is a dynamic programming algorithm proposed by [24]. Both algorithms partition the main
dimension using a 1D partitioning algorithm using an optimal partition of the auxiliary dimension for the
evaluation of the load of an interval. The complexity of JAG-PQ-OPT-DP is O(n1 log n1(P + (Q log n2

Q )2)).
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3.2.2 m-way Jagged Partitions

We introduce the notion of m-way jagged partitions which allows jagged partitions with different numbers of
processors in each interval of the main dimension. Indeed, even the optimal partition in the main dimension
may have a high load imbalance and allocating more processor to one interval might lead to a better load
balance. Such a partition is presented in Figure 1(c). We propose four algorithms to generate m-way jagged
partitions. The first one is JAG-M-HEUR, a heuristic extending the P×Q-way jagged partitioning heuristic.
The second algorithm generates the optimal m-way jagged partition for given intervals in the main dimen-
sion, leading to JAG-M-HEUR-PROBE. Then, the third algorithm, called JAG-M-ALLOC, generates the optimal
m-way jagged partition for a given number of interval provided the number of processor inside each interval
is known. Finally, we present JAG-M-OPT, a polynomial optimal dynamic programming algorithm.

We propose JAG-M-HEUR which is a heuristic similar to JAG-PQ-HEUR. The main dimension is first parti-
tioned in P intervals using an optimal 1D partitioning algorithm which define P stripes. Then each stripe S
is allocated a number of processors QS which is proportional to the load of the interval. Finally, each interval
is partitioned on the auxiliary dimension using QS processors by an optimal 1D partitioning algorithm.

Choosing QS is a non trivial matter since distributing the processors proportionally to the load may
lead to non integral values which might be difficult to round. Therefore, we only distribute proportionally

(m − P ) processors which allows to round the allocation up: QS =
⌈
(m− P )

∑
i,j∈S A[i][j]∑
i,j A[i][j]

⌉
. Notice that

between 0 and P processors remain unallocated. They are allocated, one after the other, to the interval that

maximizes
∑

i,j∈S A[i][j]

QS
.

An analysis of the performance of JAG-M-HEUR similar to the one proposed for JAG-PQ-HEUR that takes
the distribution of the processors into account is now provided.

Theorem 3. If there is no zero in A, JAG-M-HEUR is a ( m
m−P + m∆

Pn2
+ ∆2m

n1n2
)-approximation algorithm where

∆ =
maxi,j A[i][j]
mini,j A[i][j] , P < n1.

Proof. Let C denote the array of the projection of A among one dimension: C[i] =
∑

j A[i][j]. Similarly to

the proof of Theorem 1, we have: L∗max(C) ≤
∑

A[i][j]
P (1 + ∆ P

n1
)

Let S denote the array of the projection of A among the second dimension inside a given interval c of an
optimal partition of C. S[j] =

∑
i∈cA[i][j]. We have

∑
j S[j] ≤ L∗max(C). Then, the number of processors

allocated to the stripe is bounded by:
(m−P )

∑
j S[j]∑

i,j A[i][j] ≤ QS ≤
(m−P )

∑
j S[j]∑

i,j A[i][j] + 1. The bound on
∑

j S[j] leads

to QS ≤ m−P
P (1 + ∆P

n1
) + 1.

We now can compute bounds on the optimal partition of stripe S. The bound from Lemma 1 states:

L∗max(S) ≤
∑

j S[j]

QS
(1+ ∆QS

n2
). The bounds on

∑
j S[j] and QS imply L∗max(S) ≤

∑
A[i][j]
m ( m

m−P + m
P

∆
n2

+ ∆2m
n1n2

).

The load imbalance (and therefore the approximation ratio) is less than ( m
m−P + m

P
∆
n2

+ ∆2m
n1n2

).

This approximation ratio should be compared to the one obtained by JAG-PQ-HEUR which can be rewritten

as ((1 + ∆ P
n1

) + ∆m
Pn2

+ ∆2m
n1n2

). Basically, using m-way partitions trades a factor of (1 + P∆
n1

) to the profit of
a factor m

m−P .
We can also compute the number of stripes P which optimizes the approximation ratio of JAG-M-HEUR.

Theorem 4. The approximation ratio of JAG-M-HEUR is minimized by P =

√
∆2(m2−1)−n2−∆m

n2−∆ .

Proof. We analyze the function of the approximation ratio in function of the number of stripes: f(P ) =

( m
m−P + m

P
∆
n2

+ ∆2m
n1n2

). Its derivative is: f ′(P ) = m
(m−P )2 −

m∆
n2P 2 . The derivative is negative when P tends

to 0+, positive when P tends to +∞ and null when (n2 −∆)P 2 + 2m∆P −∆m2 = 0. This equation has a

unique positive solution: P =

√
∆2(m2−1)−n2−∆m

n2−∆ .
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This result is fairly interesting. The optimal number of stripes depends of ∆ and depends of n2 but not
of n1. The dependency of ∆ makes the determination of P difficult in practice since a few extremal values
may have a large impact on the computed P without improving the load balance in practice. Therefore,
JAG-M-HEUR will use

√
m stripes. The complexity of JAG-M-HEUR is O((P log n1

P )2 +
∑

S(QS log n2

QS
)2) which

in the worst case is O((P log n1

P )2 + (m log n2

m )2)

We now explain how one can build the optimal jagged partition provided the partition in the main
dimension is given. This problem reduces to partitioning P one dimensional arrays using m processors in
total to minimize Lmax. [14] states that the proposed algorithms apply in the presence of multiple chains
but does not provide much detail. We explain how to extend NicolPlus [31] to the case of multiple one
dimensional arrays.

We now first explain the algorithm PROBE-M for partitioning multiple arrays that test the feasibility of a
given maximum load Lmax.

The main idea behind PROBE-M is to compute for each one dimensional array how many processors are
required to achieve a maximum load of Lmax. For one array, the number of processors require to achieve a
load of Lmax is obtained by greedily allocating intervals maximal by inclusion of load less than Lmax. The
boundary of these intervals can be found in O(log n) by a binary search. Across all the arrays, there is no
need to compute the boundaries of more than m intervals, leading to an algorithm of complexity O(m log n).

[14] reduces the complexity of the one dimensional partitioning problem to O(m log n
m ) by slicing the

array in m chunks. That way, one has first to determine in which chunk the borders of the intervals are, and
then perform a binary search in the chunk. Provided there are m intervals to generate, the cost of selecting
the right chunk is amortized. But it does not directly apply to the multiple array partitioning problem.
Indeed, slicing the array in such a manner will lead to a complexity of O(m log n

m + Pm). However, slicing

the arrays in chunk of size nP
m leads to having at most m+ P chunks. Therefore, PROBE-M has a complexity

of O(m log nP
m +m+ P ) = O(m log nP

m ).
Notice that the engineering presented in [31] for the single array case that use an upper bound and a

lower bound on the position of each boundary can still be used when there are multiple arrays with PROBE-M.
When the values of Lmax decreases, the ith cut inside one array is only going to move toward the beginning
of the array. Conversely, when Lmax increase, the ith cut inside one array is only going to move toward the
end of the array. One should notice that the number of processors allocated to one array might vary when
Lmax varies.

With PROBE-M, one can solve the multiple array partitioning problem in multiple way. An immediate one
is to perform a binary search on the values of Lmax. It is also possible to reuse the idea of NicolPlus which
rely on the principle that the first interval is either maximal such that the load is an infeasible maximum load
or minimal such that the load is a feasible maximum load. The same idea applies by taking the intervals
of each array in the same order PROBE-M considers them. The windowing trick still applies and leads to
an algorithm of complexity O((m log nP

m )2). Given the stripes in the main dimension, JAG-M-PROBE is the
algorithm that applies the modified version of NicolPlus to generate an m-way partition.

Other previous algorithms apply to this problem. For instance, [6] solves the multiple chains problem on
host-satellite systems. One could certainly use this algorithm but the runtime complexity is O(n3m log n).
Another way to solve the problem can certainly be derived from the work of Frederickson [11].

JAG-M-HEUR-PROBE is the algorithm that uses the stripes obtained by JAG-M-HEUR and then applies
JAG-M-PROBE.

Given a number of stripes P and the number of processors QS inside each stripe, one can compute the
optimal m-way jagged partition. The technique is similar to the optimal P ×Q-way jagged partitioning
technique shown in [30]. NicolPlus gives an optimal partition not only on one dimensional array but on
any one dimension structure where the load of intervals are monotonically increasing by inclusion. When
NicolPlus needs the load of an interval, one can return the load of the optimal QS-way partition of the
auxiliary dimension, computed in O((QS log n2

QS
)2).

To generate the m-way partition, one needs to modify NicolPlus to keep track of which stripe an in-
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terval represents to return the load of the optimal partition of the auxiliary dimension with the proper
number of processors. This modification is similar to using NicolPlus to solve the heterogeneous array
partitioning problem [32]. Let us call this algorithm JAG-M-ALLOC. The overall algorithm has a complexity
of O((P log n1

P maxS QS log n2

QS
)2).

We provide another algorithm, JAG-M-OPT which builds an optimal m-way jagged partition in polynomial
time using dynamic programming. An optimal solution can be represented by k, the beginning of the last
interval on the main dimension, and x, the number of processors allocated to that interval. What remains
is a (m − x)-way partitioning problem of a matrix of size (k − 1) × n2. It is obvious that the interval
{(k − 1), . . . , n1} can be partitioned independently from the remaining array. The dynamic programming
formulation is:

Lmax(n1,m) = min
1≤k≤n1,1≤x≤m

max{Lmax(k − 1,m− x), 1D(k, n1, x)}

where 1D(i, j, k) denotes the value of the optimal 1D partition among the auxiliary dimension of the [i, j]
interval on k processors.

There are at most n1m calls to Lmax to evaluate, and at most n2
1m calls to 1D to evaluate. Evaluating

one function call of Lmax can be done in O(n1m) and evaluating 1D can be done in O((x log n2

x )2) using
the algorithm from [27]. The algorithm can trivially be implemented in O((n1m)2 + n2

1m
3(log n2

m )2) =
O(n2

1m
3(log n2

m )2) which is polynomial.
However, this complexity is an upper bound and several improvements can be made, allowing to gain up

to two orders of magnitude in practice. First of all, the different values of both functions Lmax and 1D can
only be computed if needed. Then the parameters k and x can be found using binary search. For a given x,
Lmax(k − 1,m− x) is an increasing function of k, and 1D(k, n1, x) is a decreasing function of k. Therefore,
their maximum is a bi-monotonic, decreasing first, then increasing function of k, and hence its minimum can
be found using a binary search.

Moreover, the function 1D is the value of an optimal 1D partition, and we know lower bounds and an
upper bound for this function. Therefore, if Lmax(k − 1,m − x) > UB(1D(k, n1, x)), there is no need to
evaluate function 1D accurately since it does not give the maximum. Similar arguments on lower and upper
bound of Lmax(k − 1,m− x) can be used.

Finally, we are interested in building an optimal m-way jagged partition and we use branch-and-bound
techniques to speed up the computation. If we already know a solution to that problem (Initially given by a
heuristic such as JAG-M-HEUR or found during the exploration of the search space), we can use its maximum
load l to decide not to explore some of those functions, if the values (or their lower bounds) Lmax or 1D are
larger than l.

3.3 Hierarchical Bipartition

Hierarchical bipartitioning techniques consist of obtaining partitions that can be recursively generated by
splitting one of the dimensions in two intervals. An example of such a partition is depicted in Figure 1(d).
Notice that such partitions can be represented by a binary tree for easy indexing. We present first HIER-RB,
a known algorithm to generate hierarchical bipartitions. Then we propose HIER-OPT, an original optimal
dynamic programming algorithm. Finally, a heuristic algorithm, called HIER-RELAXED is derived from the
dynamic programming algorithm.

A classical algorithm to generate hierarchical bipartition is Recursive Bisection which has originally been
proposed in [5] and that we call in the following HIER-RB. It cuts the matrix into two parts of (approximately)
equal load and allocates half the processors to each sub-matrix which are partitioned recursively. The
dimension being cut in two intervals alternates at each level of the algorithm. This algorithm can be
implemented in O(m log max(n1, n2)) since finding the position of the cut can be done using a binary search.

The algorithm was originally designed for a number of processors which is a power of 2 so that the number
of processors at each step is even. However, if at a step the number of processors is odd, one part will be
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allocated
⌊
m
2

⌋
processors and the other part

⌊
m
2

⌋
+ 1 processors. In such a case, the cutting point is selected

so that the load per processor is minimized.
Variants of the algorithm exist based on the decision of the dimension to partition. One variant does not

alternate the partitioned dimension at each step but virtually tries both dimensions and selects the one that
lead to the best expected load balance [37]. Another variant decides which direction to cut by selecting the
direction with longer length.

We now propose HIER-OPT, a polynomial algorithm for generating the optimal hierarchical partition. It
uses dynamic programming and relies on the tree representation of a solution of the problem. An optimal
hierarchical partition can be represented by the orientation of the cut, the position of the cut (denoted x or
y, depending on the orientation), and the number of processors j in the first part.

The algorithm consists in evaluating the function Lmax(x1, x2, y1, y2,m) that partitions rectangle (x1, x2, y1, y2)
using m processors.

Lmax(x1, x2, y1, y2,m) = min
j

min
{

(1)

min
x

max{Lmax(x1, x, y1, y2, j), (2)

Lmax(x+ 1, x2, y1, y2,m− j)}, (3)

min
y

max{Lmax(x1, x2, y1, y, j), (4)

Lmax(x1, x2, y + 1, y2,m− j)}
}

(5)

Equations 2 and 3 consider the partition in the first dimension and Equations 4 and 5 consider it in
the second dimension. The dynamic programming provides the position x (or y) to cut and the number of
processors (j and m− j) to allocate to each part.

This algorithm is polynomial since there are O(n2
1n

2
2m) functions Lmax to evaluate and each function

can näıvely be evaluated in O((x2−x1 + y2− y1)m). Notice that optimization techniques similar to the one
used in Section 3.2.2 can be applied. In particular x and y can be computed using a binary search reducing
the complexity of the algorithm to O(n2

1n
2
2m

2 log(max(n1, n2)))).

Despite the dynamic programming formulation is polynomial, its complexity is too high to be useful
in practice for real sized systems. We extract a heuristic called HIER-RELAXED. To partition a rectangle
(x1, x2, y1, y2) on m processors, HIER-RELAXED computes the x (or y) and j that optimize the dynamic pro-
gramming equation, but substitutes the recursive calls to Lmax() by a heuristic based on the average load:

That is to say, instead of making recursive Lmax(x, x′, y, y′, j) calls, L(x,x′,y,y′)
j will be calculated. The values

of x (or y) and j provide the position of the cut and the number of processors to allocate to each part respec-
tively. Each part is recursively partitioned. The complexity of this algorithm is O(m2 log(max(n1, n2)))).

3.4 More General Partitioning Schemes

The considerations on Hierarchical Bipartition can be extended to any kind of recursively defined pattern
such as the ones presented in Figures 1(e) and 1(f). As long as there are a polynomial number of possibilities
at each level of the recursion, the optimal partition following this rule can be generated in polynomial time
using a dynamic programming technique. The number of functions to evaluate will keep being in O(n2

1n
2
2m);

one function for each sub rectangle and number of processors.. The only difference will be in the cost of
evaluating the function calls. In most cases if the pattern is composed of k sections, the evaluation will take
O((max(n1, n2)m)k−1).

This complexity is too high to be of practical use but it proves that an optimal partition in these classes
can be generated in polynomial time. Moreover, those dynamic programming can serve as a basis to derive
heuristics similarly to HIER-RELAXED.

A natural question is “given a maximum load, is it possible to compute an arbitrary rectangular parti-
tion?” [18] shows that such a problem is NP-Complete and that there is no approximation algorithm of ratio
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better than 5
4 unless P=NP. Recent work [28] provides a 2-approximation algorithm which heavily relies on

linear programming.

4 Experimental Evaluation

4.1 Experimental Setting

This section presents an experimental study of the main algorithms. For rectilinear partitions, both the
uniform partitioning algorithm RECT-UNIFORM and RECT-NICOL algorithm have been implemented. For P×Q-
way and m-way jagged partitions, the following heuristics and optimal algorithms have been implemented:
JAG-PQ-HEUR, JAG-PQ-OPT-NICOL, JAG-PQ-OPT-DP, JAG-M-HEUR, JAG-M-HEUR-PROBE and JAG-M-OPT. Each
jagged partitioning algorithm exists in three variants, namely -HOR which considers the first dimension
as the main dimension, -VER which considers the second dimension as the main dimension, and -BEST

which tries both and selects the one that leads to the best load balance. For hierarchical partitions, both
recursive bisection HIER-RB and the heuristic HIER-RELAXED derived from the dynamic programming have
been implemented. Each hierarchical bipartition algorithm exists in four variants -LOAD which selects the
dimension to partition according to get the best load, -DIST which partitions the longest dimension, and
-HOR and -VER which alternate the dimension to partition at each level of the recursion and starting with
the first or the second dimension.

The algorithms were tested on the BMI department cluster called Bucki. Each node of the cluster has
two 2.4 GHz AMD Opteron(tm) quad-core processors and 32GB of main memory. The nodes run on Linux
2.6.18. The sequential algorithms are implemented in C++. The compiler is g++ 4.1.2 and -O2 optimization
was used.

The algorithms are tested on different classes of instances. Some are synthetic and some are extracted
from real applications. The first set of instances is called PIC-MAG. These instances are extracted from
the execution of a particle-in-cell code which simulates the interaction of the solar wind on the Earth’s
magnetosphere [17]. In those applications, the computational load of the system is mainly carried by particles.
We extracted the distribution of the particles every 500 iterations of the simulations for the first 33,500
iterations. These data are extracted from a 3D simulation. Since the algorithms are written for the 2D
case, in the PIC-MAG instances, the number of particles are accumulated among one dimension to get a 2D
instance. A PIC-MAG instance at iteration 20,000 can be seen in Figure 2(a). The intensity of a pixel is
linearly related to computation load for that pixel (the whiter the more computation). During the course of
the simulation, the particles move inside the space leading to values of ∆ varying between 1.21 and 1.51.

The SLAC dataset (depicted in Figure 2(b)) is generated from the mesh of a 3D object. Each vertex of
the 3D object carries one unit of computation. Different instances can be generated by projecting the mesh
on a 2D plane and by changing the granularity of the discretization. This setting match the experimental
setting of [27]. In the experiments, we generated instances of size 512x512. Notice that the matrix contains
zeroes, therefore ∆ is undefined.

Different classes of synthetic squared matrices are also used, these classes are called diagonal, peak,
multi-peak and uniform. Uniform matrices (Figure 2(f)) are generated to obtain a given value of ∆: the
computation load of each cell is generated uniformly between 1000 and 1000 ∗∆. In the other three classes,
the computation load of a cell is given by generating a number uniformly between 0 and the number of cells
in the matrix which is divided by the Euclidean distance to a reference point (a 0.1 constant is added to
avoid dividing by zero). The choice of the reference point is what makes the difference between the three
classes of instances. In diagonal (Figure 2(c)), the reference point is the closest point on the diagonal of
the matrix. In peak (Figure 2(d)), the reference point is one point chosen randomly at the beginning of the
execution. In multi-peak (Figure 2(e)), several points (here 3) are randomly generated and the closest one
will be the reference point. Those classes are inspired from the synthetic data from [24].

The performance of the algorithms is given using the load imbalance metric defined in Section 2. For

synthetic dataset, the load imbalance is computed over 10 instances as follows:
∑

I Lmax(I)∑
I Lavg(I) − 1. The exper-

iments are run on most square number of processors between 16 and 10,000. Using only square numbers
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(a) PIC-MAG (b) SLAC (c) Diagonal

(d) Peak (e) Multi-peak (f) Uniform

Figure 2: Examples of real and synthetic instances.

allows us to fix the parameter P =
√
m for all rectilinear and jagged algorithms.

4.2 Jagged algorithms

The jagged algorithms have three variants, two depending on whether the main dimension is the first one or
the second one and the third tries both of them and takes the best solution. On all the fairly homogeneous
instances (i.e., all but the mesh SLAC), the load imbalance of the three variants are quite close and the
orientation of the jagged partitions does not seem to really matter. However this is not the same in m-way
jagged algorithms where the selection of the main dimension can make significant differences on overall load
imbalance. Since the m-way jagged partitioning heuristics are as fast as heuristic jagged partitioning, trying
both dimensions and taking the one with best load imbalance is a good option. From now on, if the variant
of a jagged partitioning algorithm is unspecified, we will refer to their BEST variant.

We proposed in Section 3.2.2 a new type of jagged partitioning scheme, namely, m-way jagged, which
does not require all the slices of the main dimension to have the same number of processors. This constraint
is artificial in most cases and we show that it significantly harms the load balance of an application.

Figure 3 presents the load balance obtained on PIC-MAG at iteration 30,000 with heuristic and opti-
mal P ×Q-way jagged algorithms and m-way jagged algorithms. On less than one thousand processors,
JAG-M-HEUR, JAG-PQ-HEUR, JAG-PQ-OPT and JAG-M-HEUR-PROBE produce almost the same results (hence the
points on the chart are super imposed). Note that, JAG-PQ-HEUR and JAG-PQ-OPT obtain the same load im-
balance most of the time even on more than one thousand processors. This indicates that there is almost no
room for improvement for the P×Q-way jagged heuristic. JAG-M-HEUR-PROBE usually obtains the same load
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Figure 3: Jagged methods on PIC-MAG iter=30,000.

imbalance that JAG-M-HEUR or does slightly better. But on some cases, it leads to dramatic improvement.
One can remark that the m-way jagged heuristics always reaches a better load balance than the P×Q-way
jagged partitions.

Figure 4 presents the load imbalance of the algorithms with 6,400 processors for the different iterations
of the PIC-MAG application. P×Q-way jagged partitions have a load imbalance of 18% while the imbalance
of the partitions generated by JAG-M-HEUR varies between 2.5% (at iteration 5,000) and 16% (at iteration
18,000). JAG-M-HEUR-PROBE achieves the best load imbalance of the heuristics between 2% and 3% on all
the instances.

In Figure 3, the optimal m-way partition have been computed up to 1,000 processors (on more than
1,000 processors, the runtime of the algorithm becomes prohibitive). It shows an imbalance of about 1% at
iteration 30,000 of the PIC-MAG application on 1,000 processors. This value is much smaller than the 6%
imbalance of JAG-M-HEUR and JAG-M-HEUR-PROBE. It indicates that there is room for improvement for m-way
jagged heuristics. Indeed, the current heuristic uses

√
m parts in the first dimension, while the optimal is

not bounded to that constraint. Notice that an optimal m-way partition with a given number of columns
could be computed optimally using dynamic programming. Figure 5 presents the impact of the number of
stripes on the load imbalance of JAG-M-HEUR on a uniform instance as well as the worst case imbalance of the
m-way jagged heuristic guaranteed by Theorem 3. It appears clearly that the actual performance follows the
same trend as the worst case performance of JAG-M-HEUR. Therefore, ideally, the number of stripes should
be chosen according to the guarantee of JAG-M-HEUR. However, the parameters of the formula in Theorem 4
are difficult to estimate accurately and the variation of the load imbalance around that value can not be
predicted accurately.

The load imbalance of JAG-PQ-HEUR, JAG-PQ-OPT, JAG-M-HEUR and JAG-M-HEUR-PROBE make some waves
on Figure 3 when the number of processors varies. Those waves are caused by the imbalance of the par-
titioning in the main dimension of the jagged partition. Even more, these waves synchronized with the
integral value of n1√

m
. This behavior is linked to the almost uniformity of the PIC-MAG dataset. The same

phenomena induces the steps in Figure 5.
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Figure 4: Jagged methods on PIC-MAG with m = 6400.

4.3 Hierarchical Bipartition

There are four variants of HIER-RB depending on the dimension that will be partitioned in two. In general
the load imbalance increases with the number of processors. The HIER-RB-LOAD variant achieves a slightly
smaller load balance than the HIER-RB-HOR, HIER-RB-VER and HIER-RB-DIST variants. The results are
similar on all the classes of instances and are omitted.

There are also four variants to the HIER-RELAXED algorithm. Figure 6 shows the load imbalance of the
four variants when the number of processors varies on the multi-peak instances of size 512. In general the load
imbalance increases with the number of processors for HIER-RELAXED-LOAD and HIER-RELAXED-DIST. The
HIER-RELAXED-LOAD variant achieves overall the best load balance. The load imbalance of the HIER-RELAXED-VER
(and HIER-RELAXED-HOR) variant improves past 2,000 processors and seems to converge to the performance
of HIER-RELAXED-LOAD. The number of processors where these variants start improving depends on the size
of the load matrix. Before convergence, the obtained load balance is comparable to the one obtained by
HIER-RELAXED-DIST. The diagonal instances with a size of 4,096 presented in Figure 7 shows this behavior.

Since the load variant of both algorithm leads to the best load imbalance, we will refer to them as HIER-RB
and HIER-RELAXED.

We proposed in Section 3.3, HIER-OPT, a dynamic programming algorithm to compute the optimal
hierarchical bipartition. We did not implement HIER-OPT since we expect it to run in hours even on small
instances. However, we derived HIER-RELAXED, from the dynamic programming formulation. Figure 6 and 7
include the performance of HIER-RB and allow to compare it to HIER-RELAXED. It is clear that HIER-RELAXED
leads to a better load balance than HIER-RB in these two cases. However, the performance of HIER-RELAXED
might be very erratic when the instance changes slightly. For instance, on Figure 8 the performance of
HIER-RELAXED during the execution of the PIC-MAG application is highly unstable.
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Figure 5: Impact of the number of stripes in JAG-M-HEUR on a 514x514 Uniform instance with ∆ = 1.2 and
m = 800.

4.4 Execution time

In all optimization problems, the trade-off between the quality of a solution and the time spent computing it
appears. We present in Figure 9 the execution time of the different algorithms on 512x512 Uniform instances
with ∆ = 1.2 when the number of processors varies. The execution times of the algorithms increase with
the number of processors.

All the heuristics complete in less than one second even on 10,000 processors. The fastest algorithm is
obviously RECT-UNIFORM since it outputs trivial partitions. The second fastest algorithm is HIER-RB which
computes a partition in 10,000 processors in 18 milliseconds. Then comes the JAG-PQ-HEUR and JAG-M-HEUR

heuristics which take about 106 milliseconds to compute a solution of the same number of processors. Notice
that the execution of JAG-M-HEUR-PROBE takes about twice longer than JAG-M-HEUR. The running time of
RECT-NICOL algorithm is more erratic (probably due to the iterative refinement approach) and it took 448
milliseconds to compute a partition in 10,000 rectangles. The slowest heuristic is HIER-RELAXED which
requires 0.95 seconds of computation to compute a solution for 10,000 processors.

Two algorithms are available to compute the optimal P×Q-way jagged partition. Despite the various
optimizations implemented in the dynamic programming algorithm, JAG-PQ-OPT-DP is about one order of
magnitude slower than JAG-PQ-OPT-NICOL. JAG-PQ-OPT-DP takes 63 seconds to compute the solution on
10,000 processors whereas JAG-PQ-OPT-NICOL only needs 9.6 seconds. Notice that using heuristic algorithm
JAG-PQ-HEUR is two order of magnitude faster than JAG-PQ-OPT-NICOL, the fastest known optimal P×Q-way
jagged algorithm.

The computation time of JAG-M-OPT is not reported on the chart. We never run this algorithm on a large
number of processors since it already took 31 minutes to compute a solution for 961 processors. The results
on different classes of instances are not reported, but show the same trends. Experiments with larger load
matrices show an increase in the execution time of the algorithm. Running the algorithms on matrices of
size 8,192x8,192 basically increases the running times by an order of magnitude.
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Figure 6: HIER-RELAXED on 512x512 Multi-peak.

Loading the data and computing the prefix sum array is required by all two dimensional algorithms.
Hence, the time taken by these operations is not included in the presented timing results. For reference, it
is about 40 milliseconds on a 512x512 matrix.

4.5 Which algorithm to choose?

The main question remains. Which algorithm should be chosen to optimize an application’s performance?
From the algorithm we presented, we showed that m-way jagged partitioning techniques provide better

solutions than an optimal P×Q-way jagged partition. It is therefore better than rectilinear partitions as well.
The computation of an optimal m-way jagged partition is too slow to be used in a real system. It remains
to decide between JAG-M-HEUR-PROBE, HIER-RB and HIER-RELAXED. As a point of reference, the results
presented in this section also include the result of algorithm generating rectilinear partitioning, namely,
RECT-UNIFORM and RECT-NICOL.

Figure 10 shows the performance of the PIC-MAG application on 9,216 processors. The RECT-UNIFORM

partitioning algorithm is given as a reference. It achieves a load imbalance that grows from 30% to 45%.
RECT-NICOL reaches a constant 28% imbalance over time. HIER-RB is usually slightly better and achieves a
load imbalance that varies between 20% and 30%. HIER-RELAXED achieves most of the time a much better
load imbalance, rarely over 10% and typically between 8% and 9%. JAG-M-HEUR-PROBE outperforms all the
other algorithms by providing a constant 5% load imbalance.

Figure 11 shows the performance of the algorithms while varying the number of processors at iteration
20,000. The conclusions on RECT-UNIFORM, RECT-NICOL and HIER-RB stand. Depending on the number of
processors, the performance of JAG-M-HEUR-PROBE varies and in general HIER-RELAXED leads to the best
performance, in this test.

Figure 12 presents the performance of the algorithms on the mesh based instance SLAC. Due to the
sparsity of the instance, most algorithms get a high load imbalance. Only the hierarchical partitioning
algorithms manage to keep the imbalance low and HIER-RELAXED gets a lower imbalance than HIER-RB.
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Figure 7: HIER-RELAXED on 4096x4096 Diagonal.

The results indicate that as it stands, the algorithms HIER-RELAXED and JAG-M-HEUR-PROBE, we proposed,
are the one to choose to get a good load balance. However, we believe a developer should be cautious when
using HIER-RELAXED because of the erratic behavior it showed in some experiments (see Figure 8) and
because of its not-that-low running time (up to one second on 10,000 processors according to Figure 9).
JAG-M-HEUR-PROBE seems much a more stable heuristic. The bad load balance it presents on Figure 11 is
due to a badly chosen number of partitions in the first dimension.

5 Hybrid partitioning scheme

The previous sections show that we have on one hand, heuristics that are good and fast, and on the other
hand, optimal algorithms which are even better but to slow to be used in most practical cases. This section
presents some engineering techniques one can use to obtain better results than using only the heuristics while
keeping the runtime of the algorithms reasonable.

Provided, in general the maximum load of a partition is given by the most loaded rectangle and not by
the general structure of the partition, one idea is to use the optimal algorithm to be locally efficient and leave
the general structure to a faster algorithm. We introduce the class of HYBRID algorithms which construct a
solution in two phases. A first algorithm will be used to partition the matrix A in P parts. Then the parts
will be independently partitioned with a second algorithm to obtain a solution in m parts. This section
investigates the hybrid algorithms and try to answer the following questions: Which algorithms should be
used at phase 1 and phase 2? In how many parts the matrix should be divided in the first phase (i.e., what
should P be)? How to allocate the m processors between the P parts? And most importantly, is there any
advantage in using hybrid algorithms?

Between the two phases, it is difficult to know how to allocate the m processors to the P parts without
doing a deep search. We choose to allocate the parts proportionally according to the rule used in JAG-M-HEUR,

i.e., each rectangle r will first be allocated Qr = d L(r)
L(A) (m − P )e parts. The remaining processors are
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Figure 8: Hierarchical methods on PIC-MAG with m = 400.

distributed greedily.
We conducted experiments using different PIC-MAG instances. All the values of P were tried be-

tween 2 and m
2 . We will denote the HYBRID algorithm using ALGO1 for phase 1 and ALGO2 for phase 2 as

HYBRID(ALGO1/ALGO2).
The first round of experiments mainly showed three observations. (No results are shown since similar

results will be presented later.) First, HYBRID is too slow to use JAG-M-OPT at the second phase for studying
the performance (e.g., partitioning PIC-MAG at iteration 5000 on 1024 processors using P = 17 takes 78
seconds). Second, the performance shows ”waves” when P varies which are correlated with the values of
dm−PP e. Finally HYBRID can obtain load imbalances better than JAG-M-HEUR and HIER-RELAXED on some
configuration confirming that HYBRID might be useful.

To make the algorithm faster, we introduce the notion of fast and slow algorithms at phase 2. The
fast algorithm is first run on each part and the parts are sorted according to their maximum load. The
slow algorithm is run on the part of higher maximum load. If the solution returned by the slow algorithm
improves the maximum load of that part, the solution is kept and the parts are sorted again. Otherwise, the
algorithm terminates. This modification increased the speed of the algorithm up to an order of magnitude.
(Using JAG-M-HEUR-PROBE as the fast algorithm in phase 2 allows to run PIC-MAG at iteration 5000 on
1024 processors using P = 17 in 38 seconds, halving the computation time.) Detailed timing on PIC-MAG
at iteration 5000 using 1024 processors can be found in Figure 13. The HYBRID(JAG-M-HEUR/JAG-M-OPT)

curve is the original implementation of HYBRID using JAG-M-HEUR at phase 1 and JAG-M-OPT at phase 2.
The HYBRID-F(JAG-M-HEUR/JAG-M-OPT) curve presents the timing obtained with the use of fast and slow
algorithm. The HYBRID algorithm using JAG-M-OPT at both phase is given as a point of reference. All the
implementation used JAG-M-HEUR-PROBE as the fast algorithm. Figure 13 shows that using fast and slow
algorithms makes the computation about one order of magnitude faster. Using JAG-M-OPT at phase 1 is
typically orders of magnitude slower than using another algorithm.

This improvement allows to run more complete and detailed experiments. In particular, using JAG-M-OPT

at phase 2 runs quickly. This allow us to study the performance of HYBRID using an algorithm that get good
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Figure 9: Runtime on 512x512 Uniform with ∆ = 1.2.

load balance at phase 2. The load imbalance obtained on PIC-MAG 5000 on 512 are shown in Figure 14.
Two HYBRID variants that use JAG-M-OPT or HIER-RELAXED at phase 1 are presented. For reference, three
horizontal lines present the performance obtained by JAG-M-HEUR, HIER-RELAXED and JAG-M-OPT on that
instance. A first remark is that a large number of configurations lead to load imbalances better than
JAG-M-HEUR. A significant number of them get load imbalances better than HIER-RELAXED and sometimes
comparable to the performance of JAG-M-OPT. Then, the load imbalance significantly varies with P : it
is decreasing by interval which happen to be synchronized with the values of dm−PP e. Finally, the load
imbalance is better when the values of P are low. This behavior was predictable since the lower P is the
more global the optimization is. However, one should notice that some low load imbalances are found with
high values of P .

Good load imbalance could obviously be obtained by trying every single value of P . However, such a
procedure is likely to take a lot of time. Provided the phase 2 algorithm takes a large part of the computation
time, it will be interesting to predict the performance of the second phase without having to run it. We
define the expected load imbalance as the load imbalance that would be obtained provided the second phase

balances the load optimally, i.e., eLI = maxr
L(r)
Qr

. Figure 15 presents for each solution its expected load
imbalance and the load imbalance obtained once the second phase is run for different values of P . The
solutions are presented for two hybrid variants, one using JAG-M-HEUR at phase 2 and the other one using
JAG-M-OPT. For similar expected load imbalance, the load imbalance obtained using JAG-M-HEUR are spread
over an order of magnitude. However, the load imbalance obtained by JAG-M-OPT are much more focused.
The expected load imbalance and obtained load imbalance are well correlated when JAG-M-OPT is used at
phase 2.

The previous experiments show two things. The actual performance are correlated with expected perfor-
mance at the end of phase 1 if JAG-M-OPT is used in phase 2. The load imbalance decreases in an interval
of values of P synchronized with the values of dm−PP e. Therefore, we propose to enumerate the values of P
at the end of such intervals. For each of these value, the phase 1 algorithm is used and the expected load
imbalance is computed. The phase 2 is only applied on the value of P leading to the best expected load
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Figure 10: Main heuristics on PIC-MAG with m = 9216.

imbalance. Obviously the best expected load imbalance will be given by the non-hybrid case P = 1, but
it will lead to a high runtime. The tradeoff between the runtime of the algorithm and the quality of the
solution should be left to the user by specifying a minimal P .

Figure 16 presents the load imbalance obtained on the PIC-MAG datasets at iteration 10000 using
√
m

as minimal P . The HYBRID algorithm obtains a load balance usually better than JAG-M-HEUR-PROBE and
often better than HIER-RELAXED. The algorithm leading to the best load imbalance seems to depend on
the number of processors. For instance, Figure 17 shows the load imbalance of the algorithms on 7744
processors. JAG-M-HEUR-PROBE leads constantly to better results than HIER-RELAXED. And HYBRID typically
improve both by a few percents.

However, on 6400 processors (Figure 18), HYBRID almost constantly improves the result of HIER-RELAXED
by a few percents but does not achieve better load imbalance than JAG-M-HEUR-PROBE. Figure 4 showed
that JAG-M-HEUR is significantly outperformed by JAG-M-HEUR-PROBE in that configuration. Recall that the
main difference between these heuristics is that the former distributes the processors among the stripes only
based on the load of each stripe while the latter use the minimum number of processors per stripe to obtain
the minimum load balance. The same idea could be applied to HYBRID algorithms looking for the minimum
number of processors to allocate to each part without degrading the load imbalance and use these processors
on the parts that lead to the maximum load. This modification will improve the load imbalance but will
also increase the running time significantly.

The runtime of the algorithm is presented in Figure 19. It shows that the HYBRID algorithm is two or three
orders of magnitude slower than the heuristics but one to two orders of magnitude faster than JAG-M-OPT.
However, HYBRID algorithms are likely to parallelize pleasantly.

Some more engineering techniques could be applied to HYBRID. Different time/quality tradeoff could be
obtained by stopping the use of the slow algorithm in phase 2 when the improvement become smaller than a
given threshold. Using a 3-phase HYBRID mechanism could be another way of obtaining different trade-offs.

HYBRID is not the only option for algorithm engineering. One idea that might lead to interesting
time/quality tradeoff would be to avoid running dynamic programming algorithms all the way through.
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Figure 11: Main heuristics on PIC-MAG iter=20,000.

Early termination can be decided based on a time allocation or a targeted maximum load.
Finally, different kind of iterative improvement algorithms could be designed. For instance, on m-way

jagged partition, JAG-M-PROBE provides the optimal number of processors to use in each stripe provided the
partition in the main dimension, and JAG-M-ALLOC provides the optimal partition in the main dimension
provided the number of processors allocated to each stripe. Applying JAG-M-PROBE and JAG-M-ALLOC the
one after the other as long as the solution improves would be one interesting iterative algorithm.

6 Conclusion

Partitioning spatially localized computations evenly among processors is a key step in obtaining good per-
formance in a large class of parallel applications. In this work, we focused on partitioning a matrix of
non-negative integers using rectangular partitions to obtain a good load balance. We introduced the new
class of solutions called m-way jagged partitions, designed polynomial optimal algorithms and heuristics for
m-way partitions. Using theoretical worst case performance analyses and simulations based on logs of two
real applications and synthetic data, we showed that the JAG-M-HEUR-PROBE and HIER-RELAXED heuristics
we proposed get significantly better load balances than existing algorithms while running in less than a
second. We showed how HYBRID algorithms can be engineered to achieve better load balance but use signifi-
cantly more computing time. Finally, if computing time is not really a limitation, one can use more complex
algorithm such that JAG-M-OPT.

Showing that the optimal solution for m-way jagged partitions, hierarchical bipartitions and hierarchical
k-partitions with constant k can be computed in polynomial time is a strong theoretical result. However, the
runtime complexity of the proposed dynamic programming algorithm remains high. Reducing the polynomial
order of these algorithms will certainly be of practical interest.

We only considered computations located in a two dimensional field but some applications, such as PIC-
MAG and SLAC, might expose three or more dimensions. A simple way of dealing with higher dimension
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Figure 12: Main heuristics on SLAC.

would be to project the space in two dimensions and using a two dimensional partitioning algorithm, as we
have done in some of the applications. But this choice is likely to be suboptimal since it drastically restrict the
set of possible allocations. An alternative would be to extend the classes of partitions and algorithm to higher
dimension. For instance, a jagged partitioning algorithm would partition the space along one dimension and
perform a projection to obtain planes which will be partitioned in stripes and projected to one dimensional
arrays partitioned in intervals. All the presented algorithms extend in more than two dimensions, therefore
the problems will stay in the same complexity class. However, the guaranteed approximation is likely to
worsen, the time complexity is likely to increase (especially for dynamic programming based algorithms).
Memory occupation is also likely to become an issue and providing cache efficient algorithm should be
investigated. However, the increase of the size of the solution space will provide better load balance than
partitioning the two dimensional projection.

We are also planning to integrate the proposed algorithms in a distributed particle in cell simulation code.
To optimize the application performance, we will need to take into account communication into account while
partitioning the task. Dynamic application will require rebalancing and the partitioning algorithm should
take into account data migration cost. Finally, to keep the rebalancing time as low as possible, it might useful
not to gather the load information on one machine but to perform the repartitioning using a distributed
algorithm.
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Figure 17: HYBRID algorithm on PIC-MAG on 7744 processors

Figure 18: HYBRID algorithm on PIC-MAG on 6400 processors
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[8] U. V. Çatalyürek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and L. Fisk. A repartitioning hyper-
graph model for dynamic load balancing. Journal of Parallel and Distributed Computing, 69(8):711–724,
2009.

[9] J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H. Ziantz. Adaptive
local refinement with octree load-balancing for the parallel solution of three-dimensional conservation
laws. Journal of Parallel and Distributed Computing, 47:139–152, 1997.

[10] H. P. F. Forum. High performance FORTRAN language specification, version 2.0. Technical Report
CRPC-TR92225, CRPC, Jan. 1997.

[11] G. N. Frederickson. Optimal algorithms for partitioning trees and locating p-centers in trees. Technical
Report CSD-TR-1029, Purdue University, 1990, revised 1992.

[12] D. R. Gaur, T. Ibaraki, and R. Krishnamurti. Constant ratio approximation algorithms for the rectangle
stabbing problem and the rectilinear partitioning problem. Journal of Algorithms, 43(1):138–152, 2002.

[13] M. Grigni and F. Manne. On the complexity of the generalized block distribution. In Proc. of IRREG-
ULAR ’96, pages 319–326, 1996.

[14] Y. Han, B. Narahari, and H.-A. Choi. Mapping a chain task to chained processors. Information
Processing Letter, 44:141–148, 1992.

[15] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing. Parallel Computing,
26:1519–1534, 2000.

[16] V. Horak and P. Gruber. Parallel numerical solution of 2D heat equation. In Parallel Numerics ’05,
pages 47–56, 2005.

[17] H. Karimabadi, H. X. Vu, D. Krauss-Varban, and Y. Omelchenko. Global hybrid simulations of the
earth’s magnetosphere. Numerical Modeling of Space Plasma Flows, Dec. 2006.

[18] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle tiling and packaging. In
Proc. of the 19th SODA, pages 384–393, 1998.

29



[19] S. Khanna, S. Muthukrishnan, and S. Skiena. Efficient array partitioning. In Proc. of ICALP ’97, pages
616–626, 1997.

[20] H. Kutluca, T. Kurc, and C. Aykanat. Image-space decomposition algorithms for sort-first parallel
volume rendering of unstructured grids. Journal of Supercomputing, 15:51–93, 2000.

[21] A. L. Lastovetsky and J. J. Dongarra. Distribution of computations with constant performance models
of heterogeneous processors. In High Performance Heterogeneous Computing, chapter 3. John Wiley &
Sons, 2009.

[22] J. Y.-T. Leung. Some basic scheduling algorithms. In J. Y.-T. Leung, editor, Handbook of Scheduling,
chapter 3. CRC Press, 2004.

[23] F. Manne and B. Olstad. Efficient partitioning of sequences. IEEE Transactions on Computers,
44(11):1322–1326, 1995.

[24] F. Manne and T. Sørevik. Partitioning an array onto a mesh of processors. In Proc of PARA ’96, pages
467–477, 1996.

[25] S. Miguet and J.-M. Pierson. Heuristics for 1d rectilinear partitioning as a low cost and high quality
answer to dynamic load balancing. In Proc. of HPCN Europe ’97, pages 550–564, 1997.

[26] S. Muthukrishnan and T. Suel. Approximation algorithms for array partitioning problems. Journal of
Algorithms, 54:85–104, 2005.

[27] D. Nicol. Rectilinear partitioning of irregular data parallel computations. Journal of Parallel and
Distributed Computing, 23:119–134, 1994.

[28] K. Paluch. A new approximation algorithm for multidimensional rectangle tiling. In Proc. of ISAAC,
2006.

[29] J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform structured workloads with
spacefilling curves. IEEE Transactions on Parallel and Distributed Systems, 7(3):288–300, 1996.

[30] A. Pınar and C. Aykanat. Sparse matrix decomposition with optimal load balancing. In Proc. of HiPC
1997, 1997.

[31] A. Pınar and C. Aykanat. Fast optimal load balancing algorithms for 1D partitioning. Journal of
Parallel and Distributed Computing, 64:974–996, 2004.

[32] A. Pınar, E. Tabak, and C. Aykanat. One-dimensional partitioning for heterogeneous systems: Theory
and practice. Journal of Parallel and Distributed Computing, 68:1473–1486, 2008.

[33] S. J. Plimpton, D. B. Seidel, M. F. Pasik, R. S. Coats, and G. R. Montry. A load-balancing algorithm
for a parallel electromagnetic particle-in-cell code. Computer Physics Communications, 152(3):227 –
241, 2003.
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