arXiv:1109.3561v1 [cs.DC] 16 Sep 2011

Universal adaptive self-stabilizing traversal
scheme: random walk and reloading wave

Thibault Bernard Alain Bui Devan Sohier
November 1, 2018

Abstract

In this paper, we investigate random walk based token circulation in
dynamic environments subject to failures. We describe hypotheses on the
dynamic environment that allow random walks to meet the important
property that the token visits any node infinitely often. The random-
ness of this scheme allows it to work on any topology, and require no
adaptation after a topological change, which is a desirable property for
applications to dynamic systems. For random walks to be a traversal
scheme and to answer the concurrence problem, one needs to guarantee
that exactly one token circulates in the system. In the presence of tran-
sient failures, configurations with multiple tokens or with no token can
occur. The meeting property of random walks solves the cases with mul-
tiple tokens. The reloading wave mechanism we propose, together with
timeouts, allows to detect and solve cases with no token. This traversal
scheme is self-stabilizing, and universal, meaning that it needs no assump-
tion on the system topology. We describe conditions on the dynamicity
(with a local detection criterion) under which the algorithm is tolerant to
dynamic reconfigurations. We conclude by a study on the time between
two visits of the token to a node, which we use to tune the parameters of
the reloading wave mechanism according to some system characteristics.

1 Introduction

Concurrence control is one of the most important requirements in distributed
systems and have been investigated for 40 years. The emergence of peer-to-peer
networks, of wireless mobile networks has renewed the context of the design
of protocols used in distributed applications. These networks require a new
modeling and new solutions to take into account their intrinsic dynamicity.

In this paper, we focus on token circulation based solutions: the concurrent
access to the shared resource is managed by a “token” message that circulates in
the distributed system. We present a self-stabilizing universal traversal scheme
based on a random walk, with a particular focus on dynamic systems.

In distributed computing, a random walk is implemented by a Token message
that is sent from node to node in a random fashion: each time a node receives

a Token message, it executes a code that only the token owner is allowed to
execute, and then forwards the token to one of its neighbor chosen at random.
Properties of random walks allow to design a traversal scheme using only
local information |JAKLT79]|: such a scheme is not designed for one particular
topology and need no adaptation to fit other ones. Moreover, random walks offer
the interesting property to adapt to the insertion or deletion of nodes or links in
the network without modifying any of the functioning rules. With the increas-
ing dynamicity of networks, these features are becoming crucial: redesigning a
new browsing scheme at each modification of the topology is impossible, and
flooding-based solutions can lead to the congestion of the network.

An important result of this paradigm is that the token will eventually visit
(with probability 1) all the nodes of a system, even if it is impossible to capture
an upper bound on the time required to visit all the nodes of the system.

Random walks based traversal schemes have be used in many theoretical
distributed computing problems: mutual exclusion [IJ90], spanning tree con-
struction [BIZ89], or at applicative level: decentralized recommender system
[KLMTT0] and concurrence management in Grid computing [CiuI0].

The random walk traversal scheme can be affected by different errors. In this
paper, we manage them in a self-stabilizing fashion, as introduced by Dijkstra in
[Dij74]. After a fault, a self-stabilizing system is led to an arbitrary configuration
but eventually recovers a normal behavior and then satisfies the specification of
the problem.

Related works

The token circulation can be affected by only 2 errors:
e the absence of tokens;
e the presence of more than one token.

Both faults are violations of global properties of the system. However, the
second fault may entail (and in our algorthim, will eventually entail) the local
property that a node holds several tokens at once. Then this node can remove
all of them but one, which leads, when all duplicate tokens are removed, to a
correct configuration. The first fault has no locally checkable certificate, so that
a global mechanism (meaning a mechanism involving all nodes) has to be put in
place. This fault is of communication deadlock nature: all nodes are waiting for
messages and there are no messages on the communication links. The solution
proposed by [GM91] is to use timeout: when a node has not seen the token for
a long time, it creates a new one. In [Var(QQ], the author proposes a message
passing adaptation of Dijkstra algorithm [Dij74]. In particular, a self-stabilizing
token circulation algorithm on an undirected ring is presented. Communication
deadlock is solved by a timeout process in a distinguished node called the root.
Nevertheless, duplication of tokens may occur.

To solve this problem, the author introduces the counter flushing paradigm
and designs a self-stabilizing token circulation algorithm. The idea of counter

flushing is used in numerous papers dealing with self-stabilization in message
passing model, as in [CWO05| [HV0I]. This idea is based on a bound on the time
between two successive receptions of the token, which we cannot have with a
random walk. Starting from a configuration in which there is a single token,
eventually a token is created unnecessarily, which violates the specification.

In [DSW06], the authors use random circulating tokens (they call agents)
to broadcast information in communication groups. To cope with the situation
where no agent exists in the system, the authors use a timer based on the
cover time of an agent (k x n3). They precise as a concluding remark “The
requirements will hold with higher probability if we enlarge the parameter k for
ensuring the cover time[...]”. In our case the obtention of a single token is a
strong requirement, and the use of a parameter k which increases the probability
to reach a legitimate configuration cannot be used.

Works have been led on the random walk token circulation paradigm (see
[Cooll]), in particular to reduce the average time between two successive visits
by the token or to attain a given stationary distribution of the token locations
(IKOY02, NOSY1Q]).

Contribution

Our random walk based solution is self-stabilizing: it tolerates transient failures.
If there is no token in the system, upon timeout the missing token is recreated.
Our solution is decentralized (no distinguished node) and only the expected time
for a random walk based token to cover the system can be captured. Each node
is candidate to regenerate the token, and even the choice of an arbitrary timeout
period implies that the system could never stabilize: an infinite production of
unnecessary tokens can occur.

No node can ascertain that the token does not exist, due to the way the
token moves. However, the longer a node has not seen the token, the more
probable it is that no token exists. Thus, upon a timeout, a node should create
a new token. To avoid this creation in cases when a token already exists, tokens
periodically inform nodes of their existence, which inhibits tokens creation. We
call this process a reloading wave. FEach node that has been previously visited
by this token receives the reloading wave, resets its timer and is thus forbidden
to create a duplicated token for the next period. The only case when a node
creates a new token after the timeout period, corresponds to a situation in which
the node has never been visited by the token.

The reloading wave information should be broadcast efficiently and reliably
through the network. The reloading wave is defined in connection with the
token. We only use the information collected and stored by the token through
its traversal. Thus there is no additional protocol. In such a token, called a
circulating word, a dynamic self-stabilizing tree is maintained, through which
the information is broadcast.

The reloading wave propagation is periodical. The tree used to broadcast the
wave is adaptive: it evolves with the moves of the token. Thus, two propagations
of the reloading wave will likely use different propagation trees.

Outline

In section 2, we present our model of distributed system and some prelimi-
nary notions about random walks and self-stabilizing systems. In section 3, we
propose a token circulation scheme in a dynamic environment. We prove that
this scheme guarantees the specification of token circulation as long as topol-
ogy changes are independent of the token moves. In section 4 we introduce the
reloading wave mechanism to design a self-stabilizing version of the previous
algorithm. This new mechanism is proved to work in a static environment. The
case of a dynamic environment is discussed in section 5. A criterion on the
mobility pattern to make the algorithm robust against topological reconfigura-
tions is determined. In the last section, we propose to optimize a parameter
(timeout) of our algorithm to accelerate the convergence of our algorithm to a
configuration where the specification of the problem is satisfied.

2 Model and Preliminaries

2.1 Distributed systems

We consider a distributed system as an undirected connected graph G = (V, E),
where V' is a set of nodes with |V| = n and F is the set of bidirectional com-
munication links with |E| = m. A node is composed of a computing unit and
a message queue. A communication link (4,7) exists if and only if ¢ and j are
neighbors. Every node i maintains a set of its neighbors ids (denoted by N;).
The degree of 4 is the number of neighbors of ¢, i.e. |N;| (denoted by deg(i)).
We consider a distributed system in which all nodes have distinct identities. We
assume an upper bound A on the number of nodes in the network, an upper
bound on the delay to deliver a message and an upper bound on the process-
ing time for each node. The sum of these two bounds corresponds to the time
for receiving and treating a message. In the sequel, we take this as time unit.
Moreover, we assume reliable channels during and after the stabilization phase.

2.2 Model

A configuration of the system is an instance of the nodes states and a multi-set
of messages in transit in the links. Token, is the set of all token messages
in transit in the network at the configuration v, and Token (i) is the set of
the Token messages heading toward node ¢ at configuration v. A computation
e of the system is a sequence of configurations 1,72, ..., 7k, - .- such that the
configuration 741 is reached from 7, denoted by (yx — Yx+1) by a single step,
a step being an atomic process of one message in the system. A configuration
0 is said reachable from v and denoted by v —* ¢ if there exists a sequence
such that v = v9 = 71 — ...7%-1 — Y = 0. Let C be the set of possible
configurations of the system and &€ be the set of all possible computations of the
system. The set of computations starting with the configuration -y is denoted by

&,. The set of computations of £ whose initial configurations are all elements
of A C Cis denoted by €4 =, &5
The only nodes variables in our algorithm is a timeout.

Remark 1 Since the algorithm we design is random, it would be more accurate
to describe a computation as a random process £ (w) = (y1(w), v2(w), .. .), with
vt w € Q — v;(w) random variables. Then, the random choice of a neighbor to
which the token is sent would make a random walk of the sequence of vertices to
which a given token is sent, which is enough to establish the properties required
to prove the algorithm. Thus, to avoid overly unwieldy notations, we skip the
w in the sequel and explicitly use the relevant properties of random walks when
required.

2.3 Failures and self-stabilization

A transient fault is a fault that causes the state of a process (its local state,
program counter, and variables) and of a channel (arbitrary messages may be re-
moved and added) to change arbitrarily without further affecting the behavior of
the algorithm. An algorithm is called self-stabilizing if it is resilient to transient
failures in the sense that, when initiated in an arbitrary system configuration,
and no other transient faults occur, the algorithm converges to a legitimate con-
figuration after which it performs its task correctly (see [Dij74, [Dol00]). Thus,
a self-stabilizing system experiencing any transient failure, eventually recovers
its normal behavior.

As we work with random walks, we cannot ascertain the time at which
a property will be true, but we can know with high probability that it will
be. “With high probability” (in the sequel, “whp”) means that the probability
that this event never occurs is zero, in the sense that nothing forbids that this
event does not occur (one can find an infinite execution without the occurrence
of this event), but as times goes by, it is less and less likely that the event
has not occurred. Thus, most of the properties we will prove are whp, and
the convergence times will be expected times (no deterministic bound can be
provided).

C being the set of all configurations of the system, an algorithm is self-
stabilizing if there is a set of legitimate configurations £C such as:

1. the system eventually reaches a legitimate configuration (convergence prop-
erty);

2. starting from any legitimate configuration, the system remains in £C (clo-
sure property);

3. starting from any legitimate configuration, the execution of the algorithm
verifies the specifications of the problem (correctness property).

More formally, in this paper we use the notion of attractor to define the
self-stabilization concept.

Definition 1 (Attractor) Let B C C and A C B, A is an attractor of B if
and only if:

e convergence ¥(y1,72,...) €Ep,Fi > 1,1, € A

e closure V(y1,72,...) €€, € A= Vi, €A

Definition 2 (Probabilistic attractor) Let B C C and A C B, A is a prob-
abilistic attractor of B if and only if:

e convergence V(y1,72,...) € Ep, i > 1,7, € A whp.

e closure V(y1,7v2,...) € E,m1 € A= Vi,y; € A.

This means that starting from any configuration in B, the system eventually
reaches a configuration in A whp: an execution can be built in which the system
never reaches A, but such an execution requires a sequence of decisions that are
less and less likely as time goes by. For instance, it can be imagined that one
never wins at head or tail, but the longer one plays, the less probable it is. Once
the system has reached a configuration in A, it (deterministically) remains in

A.
Definition 3 (Specification) A specification is a predicate on a computation.

Definition 4 (Self-stabilization) A system is self-stabilizing if and only if
there exists a non-empty set LC C C such that

e LC is an attractor for C.

e FEvery e in LC meets the problem specification.

Definition 5 (Probabilistic self-stabilization) A system is probabilistically
self-stabilizing if and only if there exists a non-empty set LC C C such that

e LC is a probabilistic attractor for C.

e FEvery e in LC meets the problem specification.

Thus, a probabilistically self-stabilizing algorithm is such that the longer
one waits, the less likely the algorithm does not meet the specification. This
probability can be bounded by a quantity that tends to 0.

2.4 Random walks properties

A random walk is a sequence of vertices visited by a token that starts at ¢
and visits other vertices according to the following transition rule: if the token
is owned by ¢ at time ¢ then at time t 4+ 1, it will be owned by one of its
neighbors, this neighbor being chosen uniformly at random among all of them
[Lov93, IAKL™79).

Algorithm 1 Random walk circulation algorithm on site 4

RO: Upon reception of a message (Token)
Choose i uniformly at random in N;
Send Token to i

To compute the complexity of a random walk based distributed algorithm,
we use three main quantities:

e The hitting time is the average time to reach a node j starting from a
node %, and is denoted by h;;. It is defined as the conditional expectation
of the random number of transitions before entering j for the first time
knowing that the token starts from 4. It has been proven in [Lov93| that
hi; is bounded by s-n®. In [IKOY02, INOSY10], authors provide a local
mechanism to reduce this value to n?.

e The cover time is the expected time for a random walk starting at i to
visit all the nodes of the system and is denoted by C;. So, the cover time
of a graph is C' = max{C;/i € V} and it was proven in [Fei95b [Fei95a]
that, depending on the topology of G, O(nlnn) < C < O(n?).

e Finally, the meeting time is the expected time for several random walks
to meet on an arbitrary node and is denoted by M. The meeting time is
bounded by O(n?) [TW91].

2.5 Problem Specifications

The specification we are willing to meet is the following, to ensure a consistent
token circulation:

e at each step, exactly one Token message circulates in the system:;
e any node will receive the token message infinitely often whp.

Since we suppose the treatment of messages is atomic, and take the successive
configurations of the system when the considered node has finished with its local
treatment, we need not consider the case when the token is being treated.

We note T'oken., the set of token messages at configuration v, and T'oken., (i)
the set of token messages heading to a node i

Definition 6 (Problem Specification) We say a computation & = (y1,72,...)
satisfies specification ProbTokCirc of Probabilistic Token Circulation if:

o Vk,|Token,,| =1 (there exists exactly one token in the system);

o Vk,Vi, 3 > k,|Token,, ()] = 1 whp (any node will receive the token in-
finitely often).

Our contribution is to design a solution that eventually satisfy these speci-
fications in a dynamic and faulty environment.

3 Dealing with topology changes

We show in this section that a random walk on a dynamic graph has the same
properties that a random walk on a static graph. A random walk is well adapted
to dynamically evolving graphs. Indeed, its traversal is based only on local
information, and it has not to be redesigned after a topological change. We
prove in this section that if the node mobility is independent from the token
moves (in particular, if no daemon picking the random moves of the token is
behaving as an adversary), desirable properties hold:

e any node is visited in finite time;

e we can compute the average time it takes to hit a given node, or to visit
all nodes.

Consider a dynamic graph on a static set of nodes, with dynamic edges
Gy = (V, E;), with ¢t a continuous time index. We model the disconnection of a
node by all its link being removed. We suppose in the sequel that:

e the evolution of the graph is an homogeneous Markov process (ie the
evolution of the system topology only depends on its current state);

e it is independent from the choices of the random walk (this avoids cases
with the system behaving as an opponent to the walk).

The homogeneity assumption means that the token evolves much faster than
the system. Clearly, in most concrete applications, the system evolution is driven
by some daily cycle. If the evolution is weak at a time scale of below one minute,
and that the hitting time is itself below one minute, then, this assumption is
realistic in the following computations.

Thus, if the system is considered at each reception of the token, the evolution
of the graph is discretized. In the sequel, we consider the discretization G,
which is a Markov chain by independence of the token movements and of the
graph evolution.

Given the graphs G and G’, we note pg_,c the probability that at a step
the dynamic graph is G and at the next step, it is G’. A step corresponds to a
time unit (cf. Section . If the graph evolves as a markovian process, then
this discretization is a Markov chain.

We note p;;(G) the probability that, in G, node ¢ sends the token to j. h;;(G)
is the average time it takes to the walk, starting on 7, to reach j, knowing that at
the beginning of the walk, the system is in the state described by G. Finally, the
system being described as an homogeneous Markov chain with a non-bipartite
finite state space, it has a stationary distribution we note m. The state space
is non-bipartite, since the opposite would mean that edges blink at the exact
same pace as the token moves. A stationary distribution means that if we look
at the system at a certain time, then with probability 7(G), its topology is G.

Note pi; = > 7(G)pij(G) the average probability that the token being on
1, it is sent to j.

Theorem 1 [The hitting time of a random walk on a dynamic graph is such
that hij =1+ Zk Mh}gj, and h“‘ =0.

Proof We state that:

hij(G) =Y pir(G) <1 + ZPGAG’hkj(G/)>
B G

This means that the token being in ¢ and the system being described by G,
with probability p;x(G), the token is sent to k. When sent to k, it takes one step
and then, the token has to go from k to j, the system topology having evolved
to G’ (with probability pg_,¢/) in the meantime. The hitting time from ¢ is one
step to send the token to one neighbor, plus the expectation over the chosen
neighbor of the average time it takes to the token to go from it to j. This hitting
time from k to j is the average hitting time over the possible system states G'.

We are interested in the hitting time from node 7 to node j. If we have no
information on the system state at the beginning of the process, we take the
average hitting time over all possible system states: h;; = >, 7(G)hi;(G).

hij = Z 7(G)h;j(G) by definition

m(Q) Zpik(G) (1 + Zpg_%;/hkj(G’)> according to the previous equation
VT
D w(@pin(@) + > 7DD pin(G) D paarhi(G)
G i [
D w1 (@pin(@) + YD Y 1 @paoapin(G)hr ()
G

k G G
ZW(G)pGaG/pik (G)hij(G") by definition of p;z
G

(ik + Z 7(G)pa—a pik(G)hi; (G')>
G

i 4 Z hii (G') Z W(G)pGHG/pik(G)>

G’ G

(m +) (G (Z W(G)pGaG/> (Z W(G)pik(G)) >

G G

The last equality comes from the independence of the system evolution and
the token moves. Indeed,) . 7(G)pg—apir(G) is the expectation over the
system states of the probability that the system evolves to a given state G’
times the probability that the token moves to k. Since these quantity are inde-
pendent, the expectations of their product is the product of their expectations,

Q2 am(G)pc-acr) Qg m(G)pik(G)).

Thus, since Y, 7(G)pa—a = 7(G’) (by definition of a stationary distribu-
tion) and), 7(G)pik(G) = Pi, (by definition):

hﬁ::§:<?m_k§:hmuy)<§:W«”pG%G> <§:W«DMk«n>>
k G’

G G

= Z (pzk + Z hi; (G")m p,k> by definition of D%

=S (1 +> hkj(G’)w(G’)>
k G’
=D D1+ hugy)

k

Now, p;; is a transition probability:

Zj:pw ZZ)pis (G

c
%:Zw)pij (G
Zw(G Zp”

G
=Z7T(G) =1
G

Finally, hi; = 14+, Dirhkj, and h;; = 0, which is the very equation followed
by the hitting time of a random walk on a weighted graph G = (E,E x E,w),
with w(i, j) = D;;. O

Corollary 1 Random walks on dynamic graphs verify the hitting, cover, and
(if the graph is not bipartite) meeting properties.

Proof The computation of the hitting time at theorem implies that it is finite.
Thus the hitting property is verified for any node. The cover property follows
from the hitting property. (]

Corollary 2 Algorithms in [BSOT] that compute hitting and cover times apply.

However, w(i,j) and w(j,4) can be different, which would make the graph
directed. Classical bounds on hitting times and cover times may not apply.

4 A self-stabilizing token maintenance mecha-
nism

4.1 Principles

In this section, we focus on the token maintenance mechanism. For the sake
of clarity, we assume in this section that the number of nodes in the system is

10

exactly n. We will discuss in the next section how to relax this assumption.
We consider a token that circulates through the system using a random walk
scheme, thus by corollary |1} all nodes are visited infinitely often (satisfying the
first part of the specification, cf. Definition @ The system can be erroneously
initiated: configuration with no token, or with several tokens can occur. To
solve the absence of token, we introduce a content in the token. As the designed
solution is self-stabilizing, we have to deal with arbitrary initiated token content.

4.1.1 Dealing with the absence of token

The lost token situation is solved by a decentralized timeout procedure: each
processor indistinctly has the possibility of producing a new token. Each node
maintains a timer. Each timer is set at a value T}, time units. (The way to tune
the values of T;,, will be discussed in Section @ Each node measures the time
since the last token visit. If this time is greater than T,,, then a new token is
created. No upper bound is available on the time the token returns to a node 4,
which makes it impossible to use solutions like the one in [Var00], consisting in
setting a timeout on each node, at the expiration of which, if no token has been
received, a new one is created. The following impossibility result proves this.

Proposition 1 (Impossibility result) Whatever the timers values of each
node in the system, the closure property is not satisfied whp.

Proof Let ¢ be a node in G, with (at least) two neighbors j and k (in a connected
graph with more than two nodes, such a node exists). Consider a legitimate con-
figuration with the token on ¢ and a timer T on k. Note d = max{deg(j), deg(i)}.
Considering the case when the token is on 4, with probability greater than 4,
it goes to j. Then, with probability greater than é, it goes to ¢. Then, with
probability greater than d% > 0, the token does not hit k for T steps, leading
to its timeout being triggered, and an unnecessary token creation. Thus, whp,
the system spontaneously leaves a legitimate configuration. O

To avoid unnecessary token creation, we propose a solution with the following
mechanisms:

1. A local mechanism for monitoring the last visit time of the token to a
node 4.

2. A mechanism for detecting that some timers are about to expire. This
mechanism is maintained by the node which is the current token holder.

3. A mechanism maintaining a spanning tree, which is rooted at the current
token holder.

4. A distributed mechanism that propagates messages on this tree in order
to reset the timers.

The first two items correspond to the decentralized timeout procedure. The
last two items correspond to the reloading wave.

11

(3) Reloading wave definition A reloading wave is defined regarding a
token identity.

When a node i receives reloading wave message, 7 is notified that a token is
still circulating in the system, and it resets its timer. Thus, the reloading wave
prevents node i from creating a copy of token ¢.

The reloading wave is broadcast through an adaptive (spanning) tree. There
is no additional protocol, since we use token ¢ content. The token collects and
stores the identities of each node during its random walk traversal. This content
is based on the history of the token’s moves. Such a token is called a circulating
word. Since the token is circulating continuously through the network, the
induced tree is perpetually updated taking into account the possible network
topology changes.

A token t contains the following data structures:

e A counter, t.hop that represents the number of edges visited during the
traversal.

e An array, t.table. Each time the token moves from a node j to a node 1,
the token sets t.table[j] = 4, and t.table[i] = i.

Each time a node ¢ receives the token ¢, a tree rooted on i can be locally
computed by 7 using the topological information stored in the token. The
tree induced by t.table is (V, Er) where Er = {(k,t.table(k)),k € Vand k #
t.table(k)}.

Example 1 From the following sequence of the token’s moves < 1,3,5,4,3 >
the token is at mode 3 and t.table is (L represents the value “undefined”):
1121814156
31 L8] 3] 4
The forest induced by t.table is (V, Ex) where V. = {1,3,4,5} U {2} and
Er={(1,3),(4,3),(5,4)}.
If the next token moves are < 2,1,2,3,1 > the token table is updated to
j i f é j and the tree induced by t.table is now {V = {1,2,3,4,5}
and Er ={(3,1),(2,3),(4,3),(5,4)}}.

(4) The reloading wave mechanism The reloading wave is broadcast un-
der the following conditions: the token maintains the counter ¢.hop which is
incremented at each hop. The counter is set to 0 at token creation. This value
is compared to the timeout value T}, minus the time to achieve a wave propaga-
tion. When this counter value is superior or equal to the latter value, the node
that holds the token launches the wave and the token counter t.hop is reset to
0. When a node receives the wave from the token, it reloads its timer to T5,.

4.1.2 Configurations with multiple tokens

To design a self-stabilizing solution, starting from any initial configuration, the
system must converge to a correct behavior: exactly one random walk based

12

token circulates through the system. The previous section deals with the way
to produce at least a token when a communication deadlock occurs. Faulty
configurations with several tokens are possible (due to duplication for instance).

Various articles [LJ90, [TW9I1] have dealt with the multiple token situation
in case of a random walk scheme. The authors propose to use the meeting
property (cf. Corollary [I|) of random walks to reduce the number of token to 1:
each time a node receives several tokens, it discards all of them but one. Thus,
in finite time, a single token remains in the network.

Two strategies are possibles:

e remove all tokens but one;
e merge the content of all tokens in a new one.

We propose to merge all the topological information before discarding any
token. This strategy entails more computation, but accelerates the construction
of a spanning tree inside a token. Once all the sub-trees contained in the different
tokens have been merged (cf. Procedure , the resulting sub-tree is stored in
the remaining token (the one that is not discarded, cf. Rule R1.b Algorithm.

Procedure 1 Procedure: merge_tokens(t1l: token, t2: token) on node 4
for k=0 to N do
if (t1.table[k] = L) A (t2.tablek] # L) then
tl.table[k] «— t2.table[k]
end if
end for
t1.hop +— max(t1.hop, t2.hop)

13

0‘:0

Network token t1

03020
Q 6’

token t2 Resulting token

Figure 1: Example of two merged tokens

4.1.3 Configuration with arbitrary token content

Transient failures can produce erroneous token content: a node j may be regis-
tered as father of node i in the reloading wave tree while they are not neighbors.
Then, when 7 is hit by the token, its father is set to itself, and the error is cor-
rected.

4.2 The algorithm

The algorithm is written according 4 events on a node:

e Node i receives one or several tokens (R1). Each token is updated and its
consistency is checked (R1.a). In case of multiple tokens, they are merged
into one (R1.b). If the condition to launch the reloading wave is satisfied,
the node begins the propagation of the reloading wave (Rl.c). Finally
the token is forwarded to a neighbor chosen at random (R1.d) and the
node resets its timer (R1.e).

e The timer of node i expires (R2). A new empty token is created (R2.a)
and forwarded to a neighbor chosen at random (R2.b). The node resets
its timer (R2.c).

e Node i receives a reloading wave message (R3). The node continues the
reloading wave propagation (R3.a) and resets its timer (R3.b).

e Node i’s clock ticks (R4). The node decrease its timer.

14

This algorithm has four rules R1 to R4, that are split into sections. All
sections in a rule are executed in sequence, and the rule is executed atomically.

15

Algorithm 2 Algorithm on site 4

R1: Upon reception of a set T" of Token messages
a: Tokens update
for allt € T do
t.table[i] «— i
t.table[t.emitter] <— i
t.hop «— t.hop + 1
end for
b: Tokens merge
choose ¢t in T
T +— T\{t}
t—1t
while T # () do
choose ty in T
merge_tokens(t', to)
T +— T\{t2}
end while
c: Possible Reloading Wave propagation
if t".hop > T,;, — (n+ 1) then
for all j such that ¢'.table[j] =i A j € N; do
send reload, t' .table to j
end for
t'.hop <— 0
end if
d: Token circulation
Send t’ to j chosen randomly in NV;
e: Node update
timer «+— T,,

R2: Upon a release of timer
a: Token Creation
for j =0to N do
t'.table[j] «— L
end for
t'.table[i] +— i
t'.hop +— 0
b: Token Circulation
Send t’ to j chosen randomly in NV;
¢: Node update
timer «+— T,,

R3: Upon a reception of message (reload,table)
a: Reloading Wave propagation
table[i] +— L {to ensure that the reloading wave terminates}
for all j such that table[j] =i A j € N; do
send reload, table to j
end for
b: Node update 16
timer <— T,

R4: Upon a clock tick
timer <— timer — 1

4.3 Proofs

We present in this section the correctness proofs of the algorithms. We show that
our algorithm is self-stabilizing and achieve a token circulation: the execution
of our algorithm starting in an arbitrary configuration will reach a legitimate
configuration (the set LC of configurations).

4.3.1 Preliminaries
A configuration +y is characterized by:

e the graph G, = (V,, E,); in this section, no topological change is assumed,
so that this graph is constant G, = G = (V, E);

e the value of variables:
— the value of all timers timer;(y) for all ¢ € V,
e the multi-set of messages, composed of:

— Token., the multiset of token messages, in E x VV x [0;T,]: t =
((4,), tables, hopy) € Token. means that there is (at least) one to-
ken t sent from ¢ and pending reception by j with table table; and hop
counter hopy; we note Token (i) = {((j,1),tables, hops) € Token,}
the set of all token messages pending reception by 4; for ¢t = ((4, 1), table, hop) €
Token., we note t.emitter = j, t.recipient = i, t.table = table and
t.hop = hop;

— Wave, the multiset of reloading wave messages, in E x VvV w =
((¢,7), table,,) € Wave, means that there is (at least) one reloading
wave message w sent from ¢ and pending reception by j with table
table,,.

We consider that the execution of an algorithm is atomic.

First, we define what we call a token, and then we prove that the reloading
wave has the intended effect: no token can be created by a node that has already
received a token. Finally, we prove that the algorithm provides a self-stabilizing
traversal scheme.

Consider two configurations v F 4/ (the execution being supposed atomic,
such a step involves that a message has been received and treated to reach +'
from). If 4/ is the result of the application of Rk (1 < k < 4) by node ¢
we note v FRE(®) »/ The execution of all algorithms being supposed atomic, if
~ F 4/, we have the following possibilities:

1. v FRY® 4/ then, v is such that 3((k,i),t) € T C Token,, and 7' is
obtained from ~ by:
(a) t'.hop = max{t.hop/t € T} +1 mod (T,, — (n + 1));

(b) Vk # i,5,(3t € T,t table[k] = t.table[k] # L)V (Vt € T, t.table[k] =
L1); t'.tableli] = t' .table[j] = i;

17

(c) if t'.hop = 0, Wave,, = Wave, U{((4,7),t .table)/t' table[j] =iNj €
Ni};
(d) Token, = Token,\T U{((i,j),t')}, with j € Ny;

(e) timerlw) =Tpn;
2. v FR2() ~/: then, v is such that timerlm)

by:

= 0, and v’ is obtained from ~

(a) Vj #14,t table[j] = L; t'.table[i] = i;
(b) Token, = Token, U {((z,7),t')} with j € N(i);
(c) tz‘merl(’yl) =T;

3. v FR3G) /. then, v is such that there is ((k,4),w) € Wave,, and ' is
obtained from + by:

(a) Wavey = Wave, \{((k,7),w)} U {((4,7),w")/w.table[j] = i N j €
N;,Vk,w' table[k] = w.tablelk],w’ table[i] = L};

(b) timerlw) =Tm;

4. FR4() 4/: then, ~ is such that there is timerlm > 0, and 7/ is obtained
from v by:
=)

g

(a) timer;’ ' = timerl@) —1.

In item [T} 7" represents the set of tokens that are received by . T' contains at
least one token, but may contain several of them, in which case they are merged
into one token noted ¢’ in the sequel. is the update of the hop counter: the
hop counter is decreased by one, and if it reaches 0, a wave is propagated
and the hop counter reset (hence the mod T, — (n + 1)). Node ¢ resets its
timer . is the computation of the new table: 7 is the root, and the father
of the sender, the remaining of the tree is obtained by picking for each node of
the tree its father in one of the received trees.

At the timer expiration on node i, it sends a newly created token. is the
creation of a tree consisting of the single node i. At[2d the timeout is reset. 25|
states that, at some edge neighboring i, the new token is added.

In node ¢ receives a Wave message w and sends Wave messages w to all
its children as indicated in w.table. It resets its timer .

At each clock tick, node i decrements its timer .

Between two successive applications of R4 by a given node, all nodes that
can apply R3, R1 and R2 apply them. In rules R1 and R2, node j is chosen
at random.

Definition 7 (Token and state of a token) From R1, we say that any to-
ken in T has become t'. Fort in T, we will note t(V) — t(0),

18

Definition 8 A node i is said to receive a token at step v — ' if there exists
a token t in an edge to i at configuration vy, with t — t', and t' is in an edge
from 1.

All tokens follow a random walk. In particular, the hitting and cover prop-
erties are verified, so that, for any node ¢ and any token ¢ in a configuration ~,
there exists a configuration 4 in &, such that t() is in an edge coming from i.

4.3.2 All tokens are eventually correct

This step needs no synchronism. Basically, the only needed property is that
the random walk covers the system, ie that the random numbers generators are
independent.

Definition 9 We say that a token t is correct and we note correct(t) if
Vk € V,t.table[k] # L = (k,t.table[k]) € E
Lemma 1 A; = {y € C/Vt € Token., correct(t)} is an attractor of C

Proof Note inc(y) = {(t,7) € Tokeny x V/(i # t.emmiter A t.table[i] # L A
(i,t.tableli]) ¢ E)V (i = t.emitter A t.table[i] # i)}. A token is correct if and
only if it does not appear in this set. We will show that eventually, inc(y) = 0.
First, we show that it is non-increasing, and then that, if it is greater than 0,
then it eventually decreases.

R3 and R4 do not affect Token.,, and in consequence inc(7y).

R2 creates a new empty token t. This token is correct: for all j # t.emitter,
t.table[j] = L, so that (¢,7) ¢ inc(y). Since other tokens are left unchanged,
|ine(vy)| does not increase.

Consider the case when R1 is applied by node i to a set of tokens T'. Then,
Token, = Token, \T U {t'} with t'.table[i] = i, ¥j # i,3t € T,t table[j] =
t.table[j]. Thus, each inconsistency in ¢’ comes from an inconsistency in a token
in T: if (t',7) € inc(y), there exists (at least) a token ¢ in T such that (¢,7) €
inc(y). Thus, inc(y’) C inc(y). Now, if t € T is such that (¢,i) € inc(y),
t'.table[i] = i, and (¥',i) ¢ inc(y’), so that inc(y’) € inc(y) (note that by
merging several tokens, some other inconsistencies may be corrected).

Thus, inc(y) does not increase. Now, consider a configuration + such that
inc(y) # 0. Then, there exists (¢,7) € inc(y). The hitting property entails that
t will eventually hit 7 at configuration ', and then inc(y") C inc(y)\{(¢,7)}.

Thus, if inc(y) # 0, it eventually decreases. Eventually, it reaches), and
then, all tokens are correct. O

4.3.3 There is eventually a correct token (at least) in the system

This step requires that if a single rule is enabled, it is eventually triggered.

Lemma 2 Ay = {y € C,|Token,| > 1} is an attractor of C

19

Proof First, we show that if there is a token in the system, it cannot disappear.
Consider a configuration v such that Token., #) and v — ~'. If y —R30) 4/ or
v —R40) o/ then Token., = Token, # 0. If v =®20) ~/ Token., O Token., #
0. Last, if v —B10) A/ Token. contains the token put at R1.d, and is not
empty.

Suppose Token, = (). First, we show that Wave, is eventually empty.
Since Token, = 0, if R2 is triggered, a token is created and Token, is no
longer empty. Aside R2, the only rules that can be triggered are R3 and R4.
R4 does not modify Wave. Consider a message ((¢,7), w) € Wave, received at
step v = 7. Wavey = Wave, \{((k,9)w)} U {((¢,7),w")/w.table[j] =i ANj €
N;,VE, w' .table[k] = w.table[k],w’.table[i] = L}. Thus, since a wave message v
is sent to ¢ only by wv.table[i], i cannot receive any more message triggered by
w. Thus, all sites can receive at most one wave message for each wave message
present in Wave,. Thus, eventually, Wave, = 0.

Now, the only rules that apply are R2 and R4. The continuing application
of R4 leads to a timeout (or even all of them, leaving R2 the only activated
rule) to reach 0, so that R2 is triggered, and a token created. O

Corollary 3 A; N Ay is an attractor of C.

4.3.4 No visited node can create a token — Reloading wave and
synchronicity

To verify this property, we need synchronicity assumptions: all nodes timers
must be decremented at most once in the time it takes to a token to be re-
ceived, treated, and sent again. We also need the cover property to be true, so
independent random numbers generators on the nodes.

We consider an arbitrary configuration vy € A; N As. All the following
properties are about £,, = (70,71,...). We consider a configuration ~; in &,
and a token t in ;. We consider the set A;(¢t) of all nodes that have received
the token t since vo: Ag(t) = 0.

Lemma 3 t('”).tab\Ai(t) represents a spanning tree of (A;(t), E N A;(t)?).

Proof Obviously, t(W).tab\Ao(t) = () is a spanning tree of Ay(t) = 0.

The application of R3 and R4 entails no change on either A; or the token
messages. Thus, we only consider the application of R1 and R2

Consider a step t(V) — t0") at which a node i receives the token ¢ from 7,
and suppose that t(V).tab\Ai(t) is a spanning tree of A4;(t).

Then at the next step, t0F+Y tablj] = i, tO) tabi] = i and tO) tablk] =
tO) tab[k] for any other k in A;(t). Since t(V).tab\Ai(t) represents a spanning
tree of (Ai(t), V N Ai(t)?), for any k # i,7, (k,t0) tablk]) = (k,tO).tab[k]) is
an edge of (A;(t),V N Ai(t)?) and internal_test will not remove k from this
array. Since i has received the token from j, (j,t0").tab[j]) = (4,) is an edge of
(Aig1(t), V0 A (1)?).

20

If several tokens are pending reception by j, they may be merged: tﬁ” — (")

and ty) — 0, Then, since t; and t, are correct, t is also correct, and thus,
t() tab is a spanning tree of (A;(t), E N A;(t)?).

Now two case can occur: either 7 is in A;(¢), or not. In both cases, setting
i as the root of the tree and the father of j, while leaving the remaining of the
tree unchanged, gives a tree.

Thus, t('V).tab\Ai(t) represents a spanning tree of (A4;(t), E N A;(t)?). O

A node may belong to several spanning tree, if it has been visited by several
tokens.

Lemma 4 The propagation of a reloading wave takes at most n time units.

Proof A time unit is the time taken by message sent to be received and treated.
Now, the reloading wave is broadcast on a tree, of height at most A/. Thus, this
propagation takes at most A/ time units. O

Theorem 2 A node in A;(t) cannot create a token.

Proof Each time the token counter reaches T, — (n+ 1), a wave is propagated.
The two lemma above guarantee that this wave hits any node in A;(t) in at
most n time units. Now, since it is in A;, either this node has already received
a reloading wave message, or it has received a token since the last wave was
propagated. In both cases, it has reset its timeout to T}, since the last wave
initiation, ie during the last T, — (n + 1) time units. Thus, this timeout, at
the initiation of the wave, is at least at n + 1. Then, when the wave reaches
the node, its timeout is > 1, which makes it impossible for it to create a token
between to successive waves, or between a token visit and the subsequent wave.
Finally, no node in A; can create a token. (]

Note that the cover property ensures that eventually, A;(t) = V whp, so
that:

Lemma 5 A3 = {y € A1 N A/, Ai(t) = V'} is a probabilistic attractor of
A1 N As. In Az, rule R2 can never be applied.

4.3.5 There is eventually exactly one token

The key assumption to verify this is that the meeting property of random walks
hold: independent random numbers generators are needed. Also, when several
tokens are headed to a same node, this node has to be able to detect it with
probability > 0, which is the case if the local treatment time is not negligible
before the transmission time, or if messages are buffered for some non-negligible
time before being treated.

Definition 10 A legitimate configuration is a configuration with a single token
t, the table of which represents a spanning tree of the system, and in which all
nodes are hit by a reloading wave before their timers reach the value 0.

LC = {v € As/|Token,| =1}

21

The following theorem proves that £C matches the specification of RandT okC'irc.

Theorem 3 A configuration v of LC is such that any execution (vo = ¥, v1,Y2, - - -)
starting at vy verifies

o Vk,|Tokeny, | =1;
o Vk,Vi, 3 > k,|Token., (i)] = 1 whp.

Proof The closure property of LC, that will be proved in the sequel, proves the
first item. The second item comes from the fact that the successive positions
of the random walk constitute a random walk, and thus verifies the hitting
property. O

Lemma 6 LC is a probabilistic attractor of As

Proof Consider a step v — v'.

If v =B34/ or v R4 o/ Token., = Token.. Now, according to theorem
R2 cannot be activated.

If v =R 4/ Token, = Token,\T U {t}, with |T| > 1.

Thus, 1 < |Token.:| < |Token| (this is greater than 1 according to attractor
A2), which ensures closure of £C. Now, if |[T'oken.| > 1, meeting property of
random walks ensure that at some configuration 7' € E,, several tokens are
headed toward a same node. Then, if the treatment time is not negligible
before the transmission time, another token is received with probability > 0
during the treatment of the first token, and those token are merged. Thus, whp,
there is some configuration 4" € E, such that |Token.| < |Token,|.

Finally, eventually, a configuration ¢ is reached with |Tokens| = 1. O

From Lemmas and [6]

Theorem 4 (Convergence and closure) The Algorithm, starting in an ar-
bitrary configuration, converges to a configuration satisfying LC whp.

5 The impact of mobility

The token circulation algorithm presented above is self-stabilizing. Thus, from
any arbitrary configuration occurring because of a topological change, the algo-
rithm eventually resumes its normal behavior if no further topological change
occurs. If the time between two topological reconfigurations is greater than K
times the convergence time, then the system spends % of the time in a correct
configuration.

The token circulation itself is robust to topological changes, as shown in
corollary However, we introduced mechanisms to ensure self-stabilization
that can be affected by a topological change. Indeed, the reloading wave is
based on a spanning tree computed in the course of the token circulation. This
spanning tree can contain edges that have failed. In this case, the reloading

22

wave cannot be propagated to all nodes. The timer of a node not receiving the
reloading wave will then expire, leading to an undue token creation.

In this section, we study the probability that a topological change entails
such an error. We also define a locally checkable criterion that ensures that no
€rTor OCccurs.

The only non-local topological information used by the algorithm is the
spanning tree contained in the token and in the reloading wave messages. Thus,
a topological modification has an impact only if it makes those trees inconsistent
with the topology. The tree used in reloading wave messages is a subtree of the
tree in the token at the time when the reloading wave is launched (algorithm
rule Rl.c).

Now, the tree in the token is updated each time the token hits a node (algo-
rithm 2] rule R1.a). After a topological change, a configuration is illegitimate
if an edge that is in the token tree or in a reloading wave message is removed.
This represents less than 2n — 2 edges in m. The walk of the token corrects the
tree when the token hits the son of this edge in the tree. Thus, if no reloading
wave is broadcast between the time at which the topological change occurs and
the time at which the token hits this node, then the specification is met.

Thus, a single link disconnection has a probability % not to affect the
algorithm. If the algorithm reaches an illegitimate configuration, it still has a
probability P[H;; < T'/2] to hit the son of the disconnected link before and
correct the tree it contains before it launches a wave (Hj; being the observed
time, starting at node j to reach node j). Thus, after a topological change, with
probability ™=22+2 P[H,; < T/2] (see the computations of this quantity in the
next section), the algorithm continuously meets the specification.

An edge is in the tree if and only if it is the last link through which a node
sent the token. If each node stores the link through which it sent the token
last, the son in the tree of an link that has been disconnected can detect an
illegitimate configuration. The configuration is illegitimate as long as the link
through which a node sent the token is not present: from the link disconnection
to the next visit of the token to the son of the link in the tree (see figure [2} @
sends the token to j, that is its father until ¢ receives the token again).

Thus by replacing the statement in algorithm

Send Token to j chosen randomly in N (%)

with:

Choose j at random in N (%)
Send Token to j
father; «— j

a wave propagation can be unsuccessful if and only if a node i is such that
father; ¢ N;, which ¢ can detect.

23

(iv)

Figure 2: Local detection of an illegitimate state

Thus, we have:

Property 1 With probability %P[Hij < T/2], after a link disconnection,
the algorithm continuously respects the specification. If the system reaches an
llegitimate configuration, a node in the system is aware of that.

6 Timeout tuning

To solve the communication deadlock problem, the algorithm uses a decentral-
ized timeout procedure: each processor indistinctly can produce a new token.
To guarantee the stabilization property, a new mechanism, the reloading wave,
is introduced. The role of this wave, periodically triggered, is to prevent the
creation of unnecessary tokens.

Whatever the value proposed for T, as soon as this value is greater than n,
the algorithm works correctly. But if T}, is close to n, the reloading wave will
be broadcasted too often, and if T, is too long, an absence of token will take
a great amount of time before being corrected. We address in this section the
problem to compute a good value for this timeout.

No bound can be given on the time a random walk takes to reach a given
node (only results on expected times are available). However, as time goes by,
it becomes improbable that the walk has not reached a node. We first provide
a probabilistic analysis of the waiting time. More precisely, we give a bound on
the probability for a processor to wait for the token more than a certain amount
of time. Then, we provide a criterion to decide a timeout value, based on the
probability that the token is lost knowing that it has not been seen during a
certain amount of time. This quantity depends on the probability that the token
is lost during a transmission.

24

6.1 Waiting times

The waiting time is the average time a node is waiting for the token. It can be
defined as the return time h;; (= ﬁ"&.), see [Lov93]), i.e. the expected number
of steps for the token, starting at node i, to return to node i for the first time.

It is interesting to measure the probability that a token has returned to a
node after a given time. The probability that the token takes less than a given
number of steps ¢t to come back to the node i is defined by P[H;; < t] (Hy
being the observed return time: H,;; > t means that it has been more than ¢
steps since node i has last seen the token). The following results give a more
accurate and comprehensive insight in the time a node will wait for the token
after having released it. In the sequel, we provide a bound on this value.

For the sake of simplicity, we will first study P[H;; > t] =1— P[H;; < t+1].

Notation Let o[H;;] denote the standard deviation of H;; (the number of
steps to reach a node j from ¢ for the first time), and V[H,;] the variance of
Hij'

The Chebyshev’s inequality states that for any a:

Lemma 7 (Chebyshev’s inequality)

1
P[H;; > hi; + a.o[Hy)] < pel

Thus we are led to compute the standard deviation of the hitting time. By
deﬁnition, O'[Hm] =/ V[H“} with V[H“] = E[(H, — h”)Q]

In the sequel, we present an algorithm to compute the variances of the return
times on a graph, which is necessary to compute the Chebyshev bounds.

In order to compute the variance of the return time, we need to know the
variances of all hitting times. First, we state the following result:

Lemma 8 (Variance of the number of steps to reach a node)

VIHG + 03 = Y pin(V[Hi] + (hij +1)%) (1)
kEN (7)

Proof h;; is the average length of the path a random walk starting from 7 takes
until it reaches j. Thus, since the probability that the random walk reaches j
is 1, the probability of an infinite random path not reaching j is 0, and

c€Cij

with C;_,; the set of all paths from ¢ to j, p(c), the probability that a random
walk follows the path ¢ (p(c) = [[Peyerys), and I(c) the length of c.

25

VIH; = > ple)(i(c) = hij)?
c€Cisj
= Z pe)l(c)? — hfj according to a well-known identity
c€Ciyj

— Z Peoerp(cica ..)(I(crea..) +1)% — h?j

c€Ciyj

= Z Dik Z)% +21(c) +)_h?j
kEN(’L) Ceckﬂj

= Y pin(VI[Hj] + hiij + 2he; + 1) — 1,
keN (i)

= Y pin(V[Hj] + (haj + 1)?) — b,
kEN (i)

O

The system is linear, and depends on the hitting times. In [BS07], we

have proposed an efficient algorithm to compute the hitting times, with one

matrix inversion. In order to solve the system and obtain the variances, we
have to compute the inverse of a matrix.

Let M (j) the matrix defined by:

o Ma(j) =pi = gy it i # Land i # j ;
y=-1ifi#j;

0ifi#j;

o Mii(j
hd sz(])
M;;(j) =

Let v(j) a vector defined by v;(j) = h; = D ken(i) Pir(hij + 1)2 for i # j
and v;(j) = 0, thus Lemma § I can be rowrltten

M(G)VIH ;] = v(j)

M (4) being inversible, we can compute the variances by finding its inverse.
From Lemmal 7] we have

Corollary 4 Given a time t:

V[H;;]
PH; <t]>1— ——= 2
Given a probability e:
Play < hy+ ZHul] oo (3)

NG

26

Expression , provide a bound on the probability that the token has come
back before a given time t. With , we can have a time after which we are
sure at a given confidence level 1 — € that the token has come back.

Figure 3: Graph example G

To illustrate the meaning of the previous corollaries, consider the above
graph. The return time is 5 for node 1.

We use the corollary [4] to obtain a good value for timeout. The variance of
Hi1 in the previous example is 51. Thus, for ¢ = 50, the probability that the
node 1 waits less than 50 steps to receive the token after having released it is
more than 1 — % =1- % ~ 97,5%. To be 99% sure that the token has

—hiy 4
returned to 1, we will have to wait h11 + 10 x o[Hq1] < 77 steps.

6.2 On timeout for deadlock communication

We take into account possible transient failures which may remove the token
from the network. In this subsection, we give a mean for the nodes to detect at
any confidence level the loss of the token. We provide a way to choose the best
timeout value.

The longer a node has been waiting for the token, the more likely the token
has disappeared. The suspicion that the token is lost increases with the time
elapsed since it has seen the token for the last time. A node will have to check
if the token has disappeared and then create a new token if necessary.

We model the possibility that the token disappears by introducing a proba-
bility p that the token disappears at each step: if the token exists at time ¢, at
time t + 1, the probability that it has disappeared is p and the probability that
it still exists is 1 — p.

6.2.1 Measuring the probability that the token is lost

We denote L; the event “at time t, the token is lost”. We know, when the token
cannot be lost, the probability that it comes back before a given time knowing
that it still exists. We now want to compute the probability P[L.|H;; > ¢] that
the token is lost knowing that a node has not seen it in a given time.

27

Theorem 5 The probability that the token is lost, knowing that node i has not
seen it in the last t steps, is:

V[Hii]2t+1(1 _ p)t+1(1 + p)

P|L|H;; >t|>1-—
[Li|Hiz > 1] = 2(1 — p)t+1e2 + pt22t+1

where V[Hy;) is the variance of Hy;;, the number of steps before returning to i
for the first time.

Proof Using the Bayes theorem, we obtain:

P[_‘Lt N {H“ > t}]
P[H; > 1]
P[-L: N {H;; > t}|P[~L4]
P[H” > t]P[_‘Lt]
P[Hy > t|~L,]P[-Li]
P[H” > t]

=1-

=1-

V[H;;i]

2 -
m is a bound on the probability that the token goes forth and back
between two nodes during ¢ steps.

We also have: P[H; > t] > (1 —p)tm +py_i(—p)km =

According to the previous section, P[H;; > t|-Li] <

t 1 1-(1-p)' ¢ t1 1—(1-p)' 5%
(1 - p) min{deg}t +p 1—(1—p)§t Z (1 - p) 2t +p 1—(1—p)§t :
Thus,
V[Hii](l _)t+1
3 >1_ 2 p
PlL|Hi > 1] 2 1 —(-p) &

1
(L =P)ar +pot
) Yl —) (1 - 152)

Z t 1 t+1_1 ¢t 1
(1=p)tgr — (L =p)*lgmr +p(1 — (1 —p)tsr)
Y- p) -)

(I=p)ttig — (1 —p)+isds +p
VI[H;i] t+1 1-p
(1 -p) (1= 52)

=1 (1 —p)t+t Qtili»l +p

-1_ VIHu]2T (1 = p) (1 - 152)

(1 _ p)t+1t2 + pt22t+1

28

1-¢=0.95 =

e ———
T [
///// | —

p=1/1000,

p=1/10000

Figure 4: Probability that the token is lost on graph G according the elapsed
time on a node and a probability p that the token is lost during a step

The figure above represents the graph ¢ = f(t) = V[H(ll]i;%;ﬂ;;;:l%),
with V[H;;] = 51, and p = 0.1,0.2,..., 1. To be 95% sure that the token is lost,
we look for the intersection of the curve with 1 —e = 0.95. If p = 0.1, we can
see that we will have to wait for 23 steps, if p = 0.5, 38 steps, and if p = 0.9, 75
steps.

6.2.2 Choosing timeout values
Choosing ¢ so that

VIH 21—) (1 = 152)
(1 — p)t+1e2 + pt22t+1 =

provides a time after which, if a node has not seen the token, the probability
that it has disappeared is greater than 1 — e.

Theorem 6 (Timeout value) Choosing a timeout greater than

log Vg] + log(1552) —loge +2

—log(1 —p)

ensures that the token is lost with probability 1 — .

Proof

29

VIHG 2" (1 - p) =52
(1—p) e +p22tt - =
(1— p)t+Le2 4 pt22t+1 V[Hy](1 - Lop)

2
= 2t+1(1 _p)t+1 = e
1—
o et VIHal(-5
2t+1 (1 7p)t+1 - €
o P V[H](1 - 57
(1 _p)t—‘rl - €

@(1 —p)t S 2ep(1 —p)

<2logt — tlog(l —p) > log (

VI[H;i](p + 1))
2ep(1 —p)

When focusing only on ¢t > hy;: logt > log h;; and if ¢ is such that
2log hi; — tlog(l —p) > log C

then the probability that the token is lost is less than 1 — €.
O
In the above example, with p = 0.1 and ¢ = 1%, we have to set the timeout
to 33. With € = 10%, the timeout is to be set at 23.

7 Conclusion

We have proposed a self-stabilizing token circulation algorithm with no assump-
tion on the topology of the distributed system. This algorithms can manage all
events related to mobility, most of them without even requiring any conver-
gence. The (average) convergence time is computed, and the trade-off between
the number of messages and the convergence time is explained.

We now plan on working on the scalability of such solutions, with a quanti-
tative assessment of the dynamicity of the considered systems.

References

[AKL™79] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, and C. Rackoff. Ran-
dom walks, universal traversal sequences and the complexity of maze
problems. In 20th Annual Symposium on Foundations of Computer
Science, pages 218-223, 1979.

[BIZ89] Judit Bar-Tlan and Dror Zernik. Random leaders and random span-
ning trees. In WDAG89, pages 1-12. Springer-Verlag, 1989.

30

[BS07]

[Ciul0]

[Cool1]

[CWO5]

[Dij74]

[Dol00]

[DSW06]

[Fei95al

[Fei95b]

[GM91]

[HVO1]

[1J90]

[IKOY02]

A. Bui and D. Sohier. How to compute times of random walks
based distributed algorithms. Fundamenta Informaticae, 10S Press,
80(4):363-378, 2007.

Augusto Ciuffoletti. The wandering token: Congestion avoidance of
a shared resource. Future Generation Computer Systems, 26:473—
478, 2010.

Colin Cooper. Random walks, interacting particles, dynamic net-
works: Randomness can be helpful. In 18th International Collo-
quium on Structural Information and Communication Complezity,
Gdansk, Poland, June, 2011, volume 6796 of Lecture Notes in Com-
puter Science, pages 1-14. Springer, 2011.

Yu Chen and Jennifer L. Welch. Self-stabilizing dynamic mutual
exclusion for mobile ad hoc networks. J. Parallel Distrib. Comput.,
65(9):1072-1089, 2005.

Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Commun. ACM, 17(11):643-644, 1974.

Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

S. Dolev, E. Schiller, and J. L. Welch. Random walk for self-
stabilizing group communication in ad hoc networks. IEEFE Trans.
Mob. Comput., 5(7):893-905, 2006.

Uriel Feige. A tight lower bound on the cover time for random walks
on graphs. Random Struct. Algorithms, 6(4):433-438, 1995.

Uriel Feige. A tight upper bound on the cover time for random walks
on graphs. Random Struct. Algorithms, 6(1):51-54, 1995.

Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communi-
cation protocols. IEEE Trans. Computers, 40(4):448-458, 1991.

Rachid Hadid and Vincent Villain. A new efficient tool for the
design of self-stabilizing l-exclusion algorithms: The controller. In
Ajoy Kumar Datta and Ted Herman, editors, WSS, volume 2194 of
Lecture Notes in Computer Science, pages 136-151. Springer, 2001.

Amos Israeli and Marc Jalfon. Token management schemes and
random walks yield self-stabilizing mutual exclusion. In PODC,
ACM, pages 119-131, 1990.

Satoshi Ikeda, Izumi Kubo, Norihiro Okumoto, and Masafumi Ya-
mashita. Fair circulation of a token. IEEE Trans. Parallel Distrib.
Syst., 13(4):367-372, 2002.

31

[KLMT10] Anne-Marie Kermarrec, Vincent Leroy, Afshin Moin, and Christo-

[Lov93]

pher Thraves. Application of random walks to decentralized rec-
ommender systems. In Chenyang Lu, Toshimitsu Masuzawa, and
Mohamed Mosbah, editors, Principles of Distributed Systems - 14th
International Conference, OPODIS 2010, Tozeur, Tunisia, Decem-
ber 14-17, 2010, volume 6490 of Lecture Notes in Computer Science,
pages 48—63. Springer, 2010.

L. Lovasz. Random walks on graphs : A Survey. In T. Szonyi ed.,
D. Miklos, and V. T. Sos, editors, Combinatorics : Paul Erdos is
Eighty, volume 2, pages 353-398. Janos Bolyai Mathematical Soci-
ety, 1993.

[NOSY10] Yoshiaki Nonaka, Hirotaka Ono, Kunihiko Sadakane, and Masafumi

[TW91]

[Var00]

Yamashita. Note: The hitting and cover times of metropolis walks.
Theoretical Computer Science, 411:1889-1894, March 2010.

Prasad Tetali and Peter Winkler. On a random walk problem arising
in self-stabilizing token management. In PODC, pages 273-280,
1991.

George Varghese. Self-stabilization by counter flushing. SIAM J.
Comput., 30(2):486-510, 2000.

32

	1 Introduction
	2 Model and Preliminaries
	2.1 Distributed systems
	2.2 Model
	2.3 Failures and self-stabilization
	2.4 Random walks properties
	2.5 Problem Specifications

	3 Dealing with topology changes
	4 A self-stabilizing token maintenance mechanism
	4.1 Principles
	4.1.1 Dealing with the absence of token
	4.1.2 Configurations with multiple tokens
	4.1.3 Configuration with arbitrary token content

	4.2 The algorithm
	4.3 Proofs
	4.3.1 Preliminaries
	4.3.2 All tokens are eventually correct
	4.3.3 There is eventually a correct token (at least) in the system
	4.3.4 No visited node can create a token — Reloading wave and synchronicity
	4.3.5 There is eventually exactly one token

	5 The impact of mobility
	6 Timeout tuning
	6.1 Waiting times
	6.2 On timeout for deadlock communication
	6.2.1 Measuring the probability that the token is lost
	6.2.2 Choosing timeout values

	7 Conclusion

