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Abstract

In rendezvous, two agents traverse network edges in synchronous rounds and have to meet at some
node. In treasure hunt, a single agent has to find a stationary target situated at an unknown node of the
network. We study tradeoffs between the amount of information (advice) available a priori to the agents
and the cost (number of edge traversals) of rendezvous and treasure hunt. Our goal is to find the smallest
size of advice which enables the agents to solve these tasks at some cost C in a network with e edges.
This size turns out to depend on the initial distance D and on the ratio e

C
, which is the relative cost gain

due to advice. For arbitrary graphs, we give upper and lower bounds of O(D log(D · e
C

) + log log e) and
Ω(D log e

C
), respectively, on the optimal size of advice. For the class of trees, we give nearly tight upper

and lower bounds of O(D log e
C

+ log log e) and Ω(D log e
C

), respectively.

Keywords: rendezvous, treasure hunt, advice, deterministic algorithm, mobile agent, cost.

1 Introduction

1.1 Model and problems

Rendezvous and treasure hunt are two basic tasks performed by mobile agents in networks. In rendezvous,

two agents, initially located at distinct nodes of the network, traverse network edges in synchronous rounds

and have to meet at some node. In treasure hunt, a single agent has to find a stationary target (called

treasure) situated at an unknown node of the network. The network might model a labyrinth or a system of

corridors in a cave, in which case the agents might be mobile robots. The meeting of such robots might be

motivated by the need to exchange previously collected samples, or to agree how to share a future cleaning

or decontamination task. Treasure hunt might mean searching a cave for a resource or for a missing person

after an accident. In other applications we can consider a computer network, in which the mobile entities

are software agents. The meeting of such agents might be necessary to exchange data or share a future task

of checking the functionality of network components. Treasure hunt in this case might mean looking for

valuable data residing at some node of the network, or for a virus implanted at some site.

The network is modeled as a simple undirected connected graph whose nodes have distinct identities. Ports

at a node of degree d are numbered 0, . . . , d − 1. The agents are anonymous, i.e., do not have identifiers.

∗Partially supported by NSERC discovery grant and by the Research Chair in Distributed Computing at the Université du
Québec en Outaouais.
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Agents execute a deterministic algorithm, such that, at each step, they choose a port at the current node.

When an agent enters a node, it learns the entry port number, the label of the node and its degree. The cost

of a rendezvous algorithm is the total worst-case number of edge traversals performed by both agents until

meeting. The cost of a treasure hunt algorithm is the worst-case number of edge traversals performed by

the agent until the treasure is found. If the agents have no information about the network, the cost of both

rendezvous and treasure hunt can be as large as Θ(e) for networks with e edges. This is clear for treasure

hunt, as all edges (except one) need to be traversed by the agent to find the treasure in the worst case. The

same lower bound for rendezvous follows from Proposition 2.1 in the present paper. On the other hand, if

D is the distance between the initial positions of the agents, or from the initial position of the agent to the

treasure, a lower bound on the cost of rendezvous and of treasure hunt is D.

In this paper, we study tradeoffs between the amount of information available a priori to the agents and

the cost of rendezvous and treasure hunt. Following the paradigm of algorithms with advice [1, 14, 16, 21,

26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 44, 49], this information is provided to the agents at the start of

their navigation by an oracle that knows the network, the starting positions of the agents and, in the case of

treasure hunt, the node where the treasure is hidden. The oracle assists the agents by providing them with

a binary string called advice, which can be used by the agent during the algorithm execution. In the case of

rendezvous, the advice given to each agent can be different. The length of the string given to the agent in

treasure hunt and the sum of the lengths of strings given to both agents in rendezvous is called the size of

advice.

1.2 Our results

Using the framework of advice permits us to quantify the amount of information needed for an efficient

solution of a given network problem (in our case, rendezvous and treasure hunt) regardless of the type of

information that is provided. Our goal is to find the smallest size of advice which enables the agents to solve

rendezvous and treasure hunt at a given cost C in a network with e edges. This size turns out to depend on

the initial distance D (between the agents in rendezvous, and between the agent and the treasure in treasure

hunt) and on the ratio e
C , which is the relative cost gain due to advice. For arbitrary graphs, we give upper

and lower bounds of O(D log(D · eC ) + log log e) and Ω(D log e
C ), respectively, on the optimal size of advice.

Hence our bounds leave only a logarithmic gap in the general case. For the class of trees, we give nearly

tight upper and lower bounds of O(D log e
C + log log e) and Ω(D log e

C ), respectively. Our upper bounds are

obtained by constructing an algorithm for all graphs (respectively, for all trees) that works at the given cost

and with advice of the given size, while the lower bounds are proved by exhibiting networks for which it is

impossible to achieve the given cost with smaller advice.

1.3 Related work

Treasure hunt, network exploration and rendezvous in networks are interrelated problems that have received

much attention in recent literature. Treasure hunt has been investigated in the line [13, 35], in the plane

[9] and in other terrains [41]. Treasure hunt in anonymous networks (without any information about the

network) has been studied in [48, 50] with the goal of minimizing cost.
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The related problem of graph exploration by mobile agents (often called robots) has been intensely studied

as well. The goal of this task is to visit all of the nodes and/or traverse all of the edges of a graph. A lot

of research considered the case of a single agent exploring a labeled graph. In [2, 19] the agent explores

strongly-connected directed graphs. In a directed graph, an agent can move only in the direction from tail to

head of an edge, not vice-versa. In particular, [19] investigated the minimum time of exploration of directed

graphs, and [2] gave improved algorithms for this problem in terms of the deficiency of the graph (i.e., the

minimum number of edges that must be added to make the graph Eulerian). Many papers, e.g., [22, 24, 45]

studied the scenario where the graph to be explored is labeled and undirected, and the agent can traverse

edges in both directions. In [45], it was shown that a graph with n nodes and e edges can be explored in

time e+O(n). In some papers, additional restrictions on the moves of the agent were imposed, e.g., it was

assumed that the agent is tethered, i.e., attached to the base by a rope or cable of restricted length [24]. In

[47], a log-space construction of a deterministic exploration for all graphs with a given bound on size was

shown.

The problem of rendezvous has been studied both under randomized and deterministic scenarios. In the

framework of networks, it is usually assumed that the nodes do not have distinct identities. An extensive

survey of randomized rendezvous in various models can be found in [5], cf. also [3, 4, 6, 11]. Deterministic

rendezvous in networks has been surveyed in [46]. Several authors considered geometric scenarios (rendezvous

in an interval of the real line, e.g., [11, 12], or in the plane, e.g., [7, 8]). Gathering more than two agents was

studied, e.g., in [27].

For the deterministic setting, many authors studied the feasibility and time complexity of rendezvous of

synchronous agents, i.e., agents that move in rounds. In [43] the authors studied tradeoffs between the time

of rendezvous and the number of edge traversals by both agents. In [22], the authors presented a rendezvous

algorithm whose running time is polynomial in the size of the graph, the length of the shorter label and

the delay between the starting times of the agents. In [39, 48], rendezvous time is polynomial in the first

two of these parameters and independent of the delay. The amount of memory required by the agents to

achieve deterministic rendezvous was studied in [17] for general graphs. The amount of memory needed for

randomized rendezvous in the ring was discussed, e.g., in [40]. Several authors investigated asynchronous

rendezvous in the plane [15, 27] and in network environments [10, 18, 20, 23].

Providing nodes or agents with information of arbitrary type that can be used to perform network tasks

more efficiently has been proposed in [1, 14, 16, 21, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 42, 44, 49]. This

approach was referred to as algorithms with advice. The advice is given either to nodes of the network or to

mobile agents performing some network task. Several of the authors cited above studied the minimum size

of advice required to solve the respective network problem in an efficient way.

In [38], given a distributed representation of a solution for a problem, the authors investigated the number of

bits of communication needed to verify the legality of the represented solution. In [29], the authors compared

the minimum size of advice required to solve two information dissemination problems using a linear number

of messages. In [31], it was shown that a constant amount of advice enables the nodes to carry out the

distributed construction of a minimum spanning tree in logarithmic time. In [26], the advice paradigm was

used for online problems. In [28], the authors established lower bounds on the size of advice needed to beat

time Θ(log∗ n) for 3-coloring a cycle and to achieve time Θ(log∗ n) for 3-coloring unoriented trees. In the

case of [44], the issue was not efficiency but feasibility: it was shown that Θ(n log n) is the minimum size of
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advice required to perform monotone connected graph clearing. In [36], the authors studied radio networks

for which it is possible to perform centralized broadcasting with advice in constant time. They proved that

O(n) bits of advice allow to obtain constant time in such networks, while o(n) bits are not enough. In [33],

the authors studied the problem of topology recognition with advice given to nodes. In [21], the authors

considered the task of drawing an isomorphic map by an agent in a graph, and their goal was to determine

the minimum amount of advice that has to be given to the agent for the task to be feasible.

Among the papers using the paradigm of advice, [16, 30, 42] are closest to the present work. Both [16, 30]

concerned the task of graph exploration by an agent. In [16], the authors investigated the minimum size

of advice that has to be given to unlabeled nodes (and not to the agent) to permit graph exploration by

an agent modeled as a k-state automaton. In [30], the authors established the size of advice that has to

be given to an agent completing exploration of trees, in order to break competitive ratio 2. In [42], the

authors studied the minimum size of advice that must be provided to labeled agents, in order to achieve

rendezvous at minimum possible cost, i.e., at cost Θ(D), where D is the initial distance between the agents.

They showed that this optimal size of advice for rendezvous in n-node networks is Θ(D log(n/D)+log logL),

where the labels of agents are drawn from the set {1, . . . , L}. This paper differs from the present one in two

important aspects. First, as opposed to the present paper, in [42], agents get identical advice, and nodes of

the network are unlabeled. Second, instead of looking at tradeoffs between cost and the size of advice, as we

do in the present paper, the focus of [42] was on the size of advice sufficient to achieve the lowest possible

cost.

2 Preliminaries

In this section we show that, in the context of advice, treasure hunt and rendezvous are essentially equivalent.

More precisely, the following proposition shows that the minimum advice sufficient to solve both problems

at a given cost in the class of graphs with Θ(e) edges and with the initial distance Θ(D) is the same, up to

constant factors. Throughout the paper a graph means a simple connected undirected graph. The number

of nodes in the graph is denoted by n, and the number of edges is denoted by e. All logarithms are to base

2.

Proposition 2.1. Let D ≤ e be positive integers.

1. If there exists an algorithm TH that solves treasure hunt at cost C with advice of size A in all graphs with

e edges and with initial distance D between the agent and the treasure, then there exists an algorithm

RV that solves rendezvous at cost C with advice of size A+ 2 in all graphs with e edges and with initial

distance D between the agents.

2. If there exists an algorithm RV solving rendezvous at cost C with advice of size less than A in all graphs

with 2e + 1 edges and with initial distance 2D + 1 between the agents, then there exists an algorithm

TH that solves treasure hunt at cost at most C with advice of size at most A in all graphs with e edges

and with initial distance D between the agent and the treasure.

Proof. Part 1. Consider a graph G with e edges, and two agents, a and b, that have to meet. Suppose that

a and b start at nodes v and w in graph G, and that D is the distance between v and w. Let α be the
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advice string of size A that enables an agent starting at v to find the treasure located at w at cost C using

algorithm TH. Give advice string (0) to agent b and advice string (1α) to agent a. The sum of the lengths of

these strings is A+ 2. The rendezvous algorithm RV is the following. With advice string (0) stay inert; with

advice string (1α) execute algorithm TH using advice α. By the correctness of TH, this rendezvous algorithm

is correct and its cost is C.

Part 2. Consider a graph G with e edges and with initial distance D between the agent (initially located

at v) and the treasure (initially located at w). We construct the following graph G′. It consists of two

disjoint copies H0, H1 of G with the respective nodes w in each copy joined by an additional edge f . The

graph G′ has 2e+ 1 edges. Label nodes of the graph G′ as follows. If some node of G has label `, then the

corresponding node in H0 has label 2` and the corresponding node in H1 has label 2`+ 1. Place two agents

in G′, each at the node v of a different copy of graph G. Hence, the initial positions of the agents are at

distance 2D + 1 in G′. Let α0 and α1 be the advice strings (whose lengths sum to less than A) that are

provided to the agents starting in H0 and H1, respectively, in the execution of RV in G′. In this execution,

at least one of the agents has to traverse edge f , and, hence, it has to reach the node w in its copy Hi

of G. Therefore it travels from v to w in Hi with an advice string αi of size less than A, at cost at most

C. Algorithm TH for treasure hunt in G is given the advice string αi with the single bit i appended. The

algorithm consists of the solo execution of RV where the agent transforms the label ` of each visited node to

2`+ i.

In view of Proposition 2.1, in the rest of the paper we can restrict attention to the problem of treasure hunt.

All of our results, both the upper and the lower bounds, also apply to the rendezvous problem (with the

provision that, if treasure hunt can be solved at cost C with no advice, then rendezvous can be solved at

cost C with constant advice). Notice that the equivalence of rendezvous and treasure hunt depends on the

fact that, in rendezvous, the oracle can give different pieces of advice to the two agents. If the oracle was

forced to give the same advice to both agents, then symmetry could not be broken in all cases since agents

are anonymous, and rendezvous would be impossible in some networks.

3 Treasure Hunt in Arbitrary Graphs

In this section, we proceed to prove upper and lower bounds on the advice needed to solve treasure hunt in

arbitrary graphs. These bounds are expressed in terms of D, which is the distance between the treasure and

the initial position of the agent, and in terms of the ratio e
C , where e is the number of edges in the graph

and C is an upper bound on the cost of the algorithm. This ratio is the relative cost gain due to advice.

We first provide an algorithm that solves treasure hunt using O(D log(D · eC ) + log log e) bits of advice, and

then prove that any deterministic algorithm for this task uses at least Ω(D log e
C ) bits of advice.

3.1 Algorithm

Consider an n-node graph G and a node s of G, which is the initial position of the agent. Let P = (v0, . . . , vD)

be a shortest path from s to the treasure, where vi is the node at distance i from s along path P . Let

LogSum =
∑D−1
i=0 dlog(deg(vi))e. Intuitively, LogSum is an upper bound on the total number of bits needed to
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fully describe the sequence of ports leading from s to the treasure. For any fixed integer ` ∈ {1, . . . ,LogSum},
we describe a binary advice string of length O(`+ logD + log log e) and an algorithm that uses this advice

when searching for the treasure. We do not consider values of ` greater than LogSum since we will show

that, when ` = LogSum, our algorithm has optimal cost D.

To construct the advice, the idea is to use ` bits to produce D advice substrings to guide the agent along

path P . In particular, the first ` bits of advice consist of D binary substrings A0, . . . , AD−1. For each

i ∈ {0, . . . , D − 1}, the substring Ai is created by considering the node vi on path P that is at distance i

from s in G. The length of Ai is dictated by the ratio of the number of bits needed to describe the degree of

vi to the total number of bits needed to describe the degrees of all nodes on path P . The set of ports at vi is

partitioned into numbered sectors (i.e., subintervals) of size at most ddeg(vi)/2
|Ai|e. In fact, at most one of

the sectors can have size smaller than this value. The substring Ai is taken to be the binary representation

of the number of the sector containing the port that leads to the next node vi+1 on path P towards the

treasure.

Below, we provide pseudocode that describes how the advice is created. First, Algorithm 1 finds a shortest

path P from s to the treasure. The path consists of node/port pairs (vi, pi) for each i ∈ {0, . . . , D−1}, where

v0 = s and, for each i ∈ {0, . . . , D−1}, port pi leads from node vi to node vi+1. The sum
∑D−1
i=0 dlog(deg(vi))e

is calculated and stored in LogSum. For ease of notation, we define β = `/LogSum. Each pair (vi, pi) is

passed to the subroutine described in Algorithm 2, along with β. This subroutine uses β and the degree

of vi to determine the appropriate number zi of advice bits via the formula zi = bdlog (deg(v))e · βc, then

divides the set of ports at vi into numbered sectors, determines to which sector port pi belongs, and outputs

the binary representation of this sector number as a zi-bit string Ai.

The resulting sequence of substrings (A0, . . . , AD−1), along with the binary string LS representing the

value of LogSum, is encoded into a single advice string to pass to the algorithm. More specifically, these

strings are encoded by doubling each digit in each substring and putting 01 between substrings. This

permits the agent to unambiguously decode the original sequence, to calculate the value of D by look-

ing at the number of separators 01, and to calculate the value of ` by looking at the lengths of the

first D advice substrings. Denote by Concat(A0, . . . , AD−1, LS) this encoding and let Decode be the in-

verse (decoding) function, i.e. Decode(Concat(A0, . . . , AD−1, LS)) = (A0, . . . , AD−1, LS). As an example,

Concat((01), (00)) = (0011010000). Note that the encoding increases the total number of advice bits by a

constant factor. The advice string, calculated by Algorithm 1 using the strings Ai supplied by Algorithm 2,

is A = Concat(A0, . . . , AD−1, LS). The advice string A is given to the agent.

Algorithm 1 CreateAdvice(G,s,`)

1: Find a shortest path P = {v0, . . . , vD−1, vD} in G from node s to the node containing the treasure.

2: LogSum ←∑D−1
i=0 dlog(deg(vi))e

3: β ← `/LogSum
4: for i = 0, . . . , D − 1 do
5: pi ← port number leading from vi to node on path P at distance i+ 1 from s
6: Ai ← EncodeSectorNumber(vi, pi, β)
7: end for
8: LS ← binary representation of LogSum
9: Output Concat(A0, . . . , AD−1, LS)
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Algorithm 2 EncodeSectorNumber(v, port , β)

1: z ← bdlog (deg(v))e · βc
2: SectorSize ← ddeg(v)/2ze
3: SectorNumber ← bport/SectorSizec
4: // port is contained in the range {SectorNumber · SectorSize, . . . , (SectorNumber + 1) · SectorSize − 1}
5: return the z-bit binary representation of SectorNumber

Lemma 3.1. The advice string A = Concat(A0, . . . , AD−1, LS) has size O(`+ logD + log log e).

Proof. Each of the strings Ai has length
⌊
dlog (deg(vi))e

LogSum · `
⌋
, and the sum of these lengths is at most `. The

string LS is the binary encoding of the sum
∑D−1
i=0 dlog(deg(vi))e. This sum is maximized when all vi have

the same degree, hence it is O(D(log(e/D) + 1)). It follows that the length of LS is O(logD + log log e).

Therefore, the length of A is in O(`+ logD + log log e).

Next, we describe the algorithm FindTreasure, which is the agent’s algorithm given an advice string A =

Concat(A0, . . . , AD−1, LS). For the purpose of description only, we define the trail of the agent, which is

a stack of edges that it has previously traversed. The stack gets popped when the agent backtracks. The

agent performs a walk in G starting at node s. In each step of the algorithm, the agent chooses an edge to

add to the trail, or it backtracks along the trail edge that it added most recently. The number of edges in

the agent’s trail will be used to measure the agent’s progress. In particular, when the agent is located at a

node v and there are i edges in the agent’s trail, we will say that the agent is at progress level i. The agent

keeps track of its current progress level by maintaining a counter that is incremented when it adds a trail

edge and decremented when it backtracks.

The agent maintains a table containing the labels of the nodes that it has visited, and, for each node label,

the smallest progress level at which the agent visited the node so far. When the agent arrives at a node v

from a lower progress level and does not find the treasure, it checks if its current progress level i is lower

than the progress level stored in the table for node v. If this is not the case, or if i = D, then the agent

backtracks by going back along the edge it just arrived on. Also, the agent backtracks immediately if it sees

that the degree of v does not “match” the size of Ai in the following sense: using `, the value of LogSum that

is encoded in LS, and the degree of v, the agent checks if |Ai| is equal to the number of bits that the oracle

would have provided if v was indeed on the path from s to the treasure, i.e., if |Ai| = bdlog (deg(v))e · βc.
Otherwise, if the agent has determined that it should not backtrack immediately, then it uses the advice

substring Ai in the following way: it divides the set of port numbers at v into sectors (i.e., intervals of

port numbers) of size ddeg(v)/2|Ai|e, gives numbers to the sectors, and then interprets Ai as the binary

representation of an integer that specifies one of these sectors. For each port number in the specified sector,

the agent takes the port and arrives at some neighbour w of v. The agent terminates if it finds the treasure

at node w, or, otherwise, repeats the above at node w. If, after trying all ports at node v in the specified

sector, the treasure has not been found, the agent backtracks.

Note that the advice was created with the goal of ‘steering’ the agent in the right direction, i.e., along path

P , but we can only guarantee that this will happen when the agent is located at nodes on path P . In fact,

an even stronger condition must hold: for any node v on path P at distance i from s, we can only guarantee

that the advice will be helpful if the agent is located at node v at progress level i, since this is when the

7



agent reads the advice substring Ai. In other words, it is possible that the agent visits a node v on P at

the ‘wrong’ progress level, in the sense that it won’t use the advice that was created specifically for v. This

is why it is not sufficient to simply have the agent backtrack whenever it arrives at a previously-visited

node, since during its previous visit, it may have used the wrong advice. Moreover, we must ensure that

the algorithm gracefully deals with the situation where the agent is at a node w at progress level j, but

the advice substring Aj specifies ports that do not exist at w. In our algorithm, the agent ignores any port

numbers that are greater than or equal to the current node’s degree.

To summarize, in our algorithm, the agent searches for the treasure in a depth-first manner, but it cannot

perform DFS (even only to distance D) because the cost would be too large. Instead, the agent takes only

a fraction of ports at each node, but may possibly have to pay for it by traversing the same edge several

times (while in DFS every edge is traversed at most twice). As our analysis will show, this gives an overall

decrease of the total cost, especially when the advice is large.

The pseudocode of the search conducted by algorithm FindTreasure is described by Algorithm 3. It shows

how the agent takes a step in the graph, i.e., for each i ∈ {0, . . . , D−1}, how it uses Ai to move from a node

at progress level i to a node at progress level i+ 1. In order to initiate the search, this algorithm is called at

node s with progress level 0 (and prev = s). Algorithm 4, used as a subroutine in Algorithm 3, shows how

the agent decodes substring Ai to obtain a range of port numbers. We assume that we have two functions

related to the agent-maintained table of visited nodes: UpdateTable(v, i) that writes i into the entry for

node v as the smallest progress level at which the agent has ever visited node v, and CurrentMin(v) that

reads the entry of the table for node v. Each table entry is initialized to ∞.

Algorithm 3 TakeStep(A,v,i,prev)
A is the advice string, v is the node where the agent is currently located, i is the current progress level,
prev is the node from which the agent arrived

1: if treasure is located at v then
2: Stop
3: end if
4: if (i < D) AND (i < CurrentMin(v)) then
5: UpdateTable(v, i)
6: (A0, . . . AD−1, LS)← Decode(A)

7: `←∑D−1
i=0 |Ai|

8: LogSum ← integer value encoded in binary string LS
9: β ← `/LogSum

10: if |Ai| = bdlog (deg(v))e · βc then
11: sector ← GetSector(v,Ai)
12: for each port p in sector do
13: if p < deg(v) then
14: take port p
15: w ← the node reached after taking port p
16: call TakeStep(A, w, i+ 1, v)
17: end if
18: end for
19: end if
20: end if
21: Return to node prev

8



Algorithm 4 GetSector(v,SectorNumberEncoding)

1: z ← number of bits in SectorNumberEncoding

2: SectorSize ←
⌈
deg(v)

2z

⌉
3: SectorNumber ← integer value of SectorNumberEncoding
4: return {SectorNumber · SectorSize, . . . , (SectorNumber + 1) · SectorSize − 1}

3.2 Analysis

In what follows, let P be the path from s to the treasure that is used to create the advice string A =

Concat(A0, . . . , AD−1, LS). Suppose that P consists of the nodes v0, . . . , vD, where, for each i ∈ {0, . . . , D},
vi is at distance i from s, and the treasure is located at node vD. Also, for each i ∈ {0, . . . , D− 1}, let pi be

the port at node vi that leads to node vi+1.

To prove the correctness of the algorithm, we first consider an arbitrary node vi on path P and suppose

that the agent is at progress level i. Clearly, this occurs at least once during the execution of FindTreasure

since the agent is initially located at v0 at progress level 0. One of the ports at vi that are specified by the

advice substring Ai leads to node vi+1, but the agent may try some other of these ports first. We show that

either the agent finds the treasure by recursively calling TakeStep after taking one of these other ports, or,

the agent eventually takes the port that leads to node vi+1.

Lemma 3.2. For any i ∈ {0, . . . , D − 1}, consider the first time that the agent is located at node vi at

progress level i. During the execution of TakeStep(A, vi, i, w), for some node w, either:

1. the agent moves to node vi+1 at progress level i+ 1, or,

2. there is a node v 6= vi+1 such that the agent moves to node v at progress level i+1, calls TakeStep(A, v, i+
1, vi), and, during its execution, the treasure is found by the agent.

Proof. Since we are considering the agent’s first visit to node vi at progress level i, and it is not possible for

the agent to visit vi at a progress level less than i, it follows that CurrentMin(vi) > i. So, the if condition

on line 4 evaluates to true. Further, since node vi was used in the creation of the advice substring Ai, it

follows that |Ai| = bdlog (deg(vi))e · βc, so the if condition on line 10 evaluates to true. Suppose that the

treasure is not found during any execution of TakeStep(A, v, i + 1, vi) with v 6= vi+1. By the choice of Ai,

port pi is located in the range of port numbers returned by GetSector. Since taking port pi at node vi leads

to node vi+1, there exists an iteration of the loop in TakeStep such that the agent moves to node vi+1 and

increments its progress level to i+ 1.

Using induction, we extend Lemma 3.2 to show that the agent eventually reaches node vD.

Lemma 3.3. For any i ∈ {0, . . . , D − 1}, consider the first time that the agent is located at node vi at

progress level i. During the execution of TakeStep(A, vi, i, w), for some node w, the agent finds the treasure.

Proof. The proof proceeds by induction on D − i. In the base case, D = i, and the agent finds the treasure

when it is first located at node vD at progress level D since the treasure is located at vD. As induction

9



hypothesis, assume that, for some D − i ∈ {0, . . . , D − 1}, when the agent is first located at node vi at

progress level i, the agent finds the treasure during the execution of TakeStep. Now, consider the first time

that the agent is located at node vi−1 at progress level i − 1. Note that, by the induction hypothesis, the

agent was not previously located at node vi at progress level i, since otherwise, during the execution of

TakeStep at the first such visit, the agent would have found the treasure and terminated.

By Lemma 3.2, when the agent is first located at node vi−1 at progress level i− 1, either:

1. the agent moves to node vi at progress level i, or,

2. there is a node v 6= vi such that the agent moves to node v at progress level i, calls TakeStep(A, v, i, vi−1),

and, during its execution, the treasure is found by the agent.

In the first case, the induction hypothesis implies that the agent finds the treasure. In the second case, the

treasure is found by the agent, so we are done.

By Lemma 3.3 with i = 0, the agent finds the treasure during the first execution of TakeStep, hence

FindTreasure is correct. Next, we consider the cost of algorithm FindTreasure. Our analysis considers the

cases ` = LogSum and ` < LogSum separately. We proceed to find upper bounds on the cost of algorithm

FindTreasure in terms of a fixed upper bound on the amount of advice provided. To prove the upper

bounds, we first give upper bounds on the size of the sector returned by GetSector.

In the first case, we show that when ` = LogSum (i.e. β = 1) the cost of algorithm FindTreasure is optimal.

Lemma 3.4. Suppose that β = 1. For all i ∈ {0, . . . , D − 1}, if the agent is located at node vi at progress

level i, then the size of the sector returned by GetSector(vi, Ai) is exactly 1.

Proof. By the advice construction, |Ai| = bdlog(deg(vi))e·βc. Since β = 1, it follows that |Ai| = dlog(deg(vi))e.
Hence, in the execution of GetSector(vi, Ai), the value of SectorSize is a positive integer ddeg(vi)/2

|Ai|e =

ddeg(vi)/2
dlog(deg(vi))ee ≤ deg(vi)/deg(vi) = 1, as required.

Lemma 3.5. Suppose that β = 1. When provided with advice Concat(A0, . . . , AD−1, LS), the algorithm

FindTreasure has cost D.

Proof. By Lemma 3.4, for each i ∈ {0, . . . , D − 1}, when the agent is located at node vi at progress level i,

the execution of GetSector(vi, Ai) returns exactly 1 port number p leading to node vi+1. Since the agent

starts at node v0 at progress level 0, it follows that the agent takes exactly D steps to find the treasure.

Therefore, when β = 1, algorithm FindTreasure has cost exactly D.

In the second case, we assume that ` < LogSum (i.e. β < 1).

Lemma 3.6. Suppose that β < 1. For all i ∈ {0, . . . , D−1}, the size of the sector returned by GetSector(v,Ai)

is at most 2deg(v)

2|Ai|
.

10



Proof. Note that, when GetSector(v,Ai) is executed, it must be the case that line 10 evaluated to true, i.e.,

that |Ai| = bdlog (deg(v))e · βc. In the execution of GetSector(v,Ai), the variable SectorSize is assigned the

value
⌈
deg(v)

2|Ai|

⌉
. Note that

deg(v)

2|Ai|
=

deg(v)

2bdlog (deg(v))e·βc ≥
deg(v)

2dlog (deg(v))e·β ≥
deg(v)

2(log (deg(v))+1)·β =
deg(v)

(deg(v))β · 2β =
21/βdeg(v)

(deg(v))β
.

Since β < 1, it follows that 21/β > 1 and (deg(v))β ≤ deg(v), so 21/βdeg(v)
(deg(v))β

> 1. Therefore, we have shown

that deg(v)

2|Ai|
> 1, which implies that ddeg(v)

2|Ai|
e ≤ 2deg(v)

2|Ai|
, as required.

We are now ready to calculate an upper bound on the cost of algorithm FindTreasure. We denote by

m ∈ {0, . . . , D − 1} an index such that |Am| = maxi{|Ai|}.

Lemma 3.7. Suppose that β < 1. When provided with advice Concat(A0, . . . , AD−1, LS), the algorithm

FindTreasure has cost at most 16De1+β

2|Am| .

Proof. It suffices to count the total number of times that line 14 of TakeStep is called and multiply this

value by 2. This is because the cost incurred by backtracking (i.e., line 21 of TakeStep) is at most 1 for each

execution of TakeStep, which amounts to an overall multiplicative factor of at most 2. So, we consider the

number of times that line 14 of TakeStep is called at an arbitrary node v. The number of times that the

for loop at line 12 is iterated is at most 2deg(v)/2|Ai| when v is visited at progress level i, since, by Lemma

3.6, this is an upper bound on the size of the range returned by GetSector. Since line 5 ensures that the

condition on line 4 is true at most once at each progress level i ∈ {0, . . . , D − 1}, it follows that the total

number of times that line 14 is executed is bounded above by
∑D−1
i=0 2deg(v)/2|Ai|. Taking the sum over all

nodes, the total number of calls to TakeStep is bounded above by

∑
v

D−1∑
i=0

2deg(v)/2|Ai| = 2

D−1∑
i=0

∑
v deg(v)

2|Ai|
≤ 4e

D−1∑
i=0

1

2|Ai|
=

4e

2|Am|

D−1∑
i=0

2|Am|−|Ai| ≤ 4e

2|Am|

D−1∑
i=0

2|Am|.

Next, since |Am| = bdlog (deg(vm))e · βc ≤ (log (deg(vm)) + 1) · β, it follows that

4e

2|Am|

D−1∑
i=0

2|Am| =
4De

2|Am|
· 2|Am| ≤ 4De

2|Am|
2log (deg(vm))·β2β =

4De

2|Am|
(deg(vm))β2β ≤ 4De

2|Am|
(e)β2β .

Since β < 1, it follows that
4De

2|Am|
(e)β2β <

8De1+β

2|Am|
.

Finally, we fix an upper bound C on the cost of FindTreasure and re-state Lemmas 3.5 and 3.7 to obtain

an upper bound on the amount of advice needed to solve treasure hunt at cost C.

Theorem 3.1. Let G be any graph with e edges, and let 3 ≤ D ≤ e be the distance from the initial position

of the agent to the treasure. Let C be any integer such that D ≤ C ≤ e. The amount of advice needed to

solve treasure hunt at cost at most C is at most O(D log(D · eC ) + log log e) bits.
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Proof. First, consider the case where β = 1. In this case, C = D (by Lemma 3.5) and ` = LogSum ∈
O(D(log(e/D) + 1)) ⊆ O(D log De

C ). Next, consider the case where β < 1. By Lemma 3.7, Algorithm

FindTreasure solves treasure hunt with cost C ≤ 16De1+β

2Am| . It follows that 2|Am| ≤ 16De1+β

C , so |Am| ≤
log
(

16De1+β

C

)
. Since |Am| ≥ |Ai| for each i ∈ {0, . . . , D − 1}, it follows that ` = |A0| + · · · + |AD−1| ≤

D log
(

16De1+β

C

)
∈ O(D log De

C ). Therefore, regardless of the value of β, we have shown that ` ∈ O(D log(DeC )).

By Lemma 3.1, the size of advice is O(`+ logD + log log e) = O(D log De
C + log log e).

3.3 Lower Bound

The following lower bound follows immediately from Theorem 4.2, which is proven by constructing a tree

for which treasure hunt requires Ω(D log e
C ) bits of advice. This theorem will be proven in Section 4.

Theorem 3.2. Let D ≤ C ≤ e. There exists a graph G with Θ(e) edges, and a position of the treasure at

distance D from the initial position of the agent, such that treasure hunt at cost C requires Ω(D log e
C ) bits

of advice.

The gap between the upper bound given by Theorem 3.1 and the lower bound given by Theorem 3.2 is at

most a factor logarithmic in D. Moreover, it should be noted that our bounds differ only by an additive

term O(log log e) whenever D is polynomial in the gain e
C .

4 Treasure Hunt in Trees

We now proceed to prove upper and lower bounds on the advice needed to solve treasure hunt in trees.

Unlike in the case of arbitrary graphs, where our upper and lower bounds may differ by a logarithmic factor,

for trees our bounds differ only by an additive term O(log log e). Again, our bounds will be expressed in

terms of D, which is the distance between the treasure and the initial position of the agent, and in terms

of the ratio e
C = (n − 1)/C, where e is the number of edges in the tree, n is the number of nodes, and C

is an upper bound on the cost of the algorithm. Also, for any two nodes a, b, we will denote by d(a, b) the

distance between a and b in the tree, i.e., the number of edges in the simple path between them.

4.1 Upper Bound

To obtain our upper bound, we will use algorithm FindTreasure that was defined and proven correct in

Section 3.1 for arbitrary graphs. In this section, we provide an analysis of the algorithm specifically for the

case of trees, which gives a strictly better upper bound. We start with the following technical lemma, which

shows that, if we take the agent’s initial position as the root of the tree, the agent’s progress level and the

agent’s current depth in the tree (i.e., its current distance from the root) do not differ. Essentially, this

is because there is only one simple path from the agent’s initial position to each node, and the algorithm

ensures that the agent’s trail does not contain the same edge multiple times.

Lemma 4.1. Consider algorithm FindTreasure executed in any tree. Suppose that, for some neighbouring

nodes v and prev, TakeStep(A, v, i, prev) is executed at node v. If line 4 evaluates to true, then progress

12



level i = d(s, v).

Proof. We proceed by induction on the agent’s progress level. In the base case, consider progress level i = 0.

Since the first call to TakeStep has i = 0, and every subsequent call increments the current progress level,

the agent must be located at node s. Next, assume that, for some progress level i ∈ {0, . . . , D − 1} and any

neighbouring nodes v and prev, in the execution of TakeStep(A, v, i, prev), if line 4 evaluates to true, then i =

d(s, v). Now, for some neighbouring nodes v′ and prev′, consider the execution of TakeStep(A, v′, i+1, prev′).

TakeStep was executed at node prev′ at progress level i and line 4 of this execution evaluated to true. By

the induction hypothesis, it follows that i = d(prev′, s).

Next, consider the value of d(v′, s). In a tree, there is only one simple path from s to v′ and one simple path

from s to prev′. Since v′ and prev′ are neighbours, either v′ is on the path from s to prev′ (in which case

d(prev′, s) = d(v′, s) + 1) or prev′ is on the path from s to v′ (in which case d(v′, s) = d(prev′, s) + 1). If line

4 of the execution of TakeStep(A, v′, i+ 1, prev′) evaluates to true, then i+ 1 < CurrentMin(v′), i.e., v′ was

not previously visited at a progress level less than i+2. It follows that v′ is not located on the path from s to

prev′. Therefore, it must be the case that d(v′, s) = d(prev′, s) + 1, so i+ 1 = d(prev′, s) + 1 = d(v′, s).

Next, we proceed to find an upper bound on the cost of algorithm FindTreasure in trees in terms of a fixed

upper bound on the amount of advice provided. The proof is analogous to the proof of Lemma 3.7, the main

difference being that we do not need to multiply by a factor of D in order to account for the different paths

that the agent could use to reach a given node. As before, we denote by m ∈ {0, . . . , D − 1} an index such

that |Am| = maxi{|Ai|}.

Lemma 4.2. Suppose that β < 1. When provided with advice Concat(A0, . . . , AD−1, LS), the algorithm

FindTreasure has cost at most 16e1+β

2|Am| .

Proof. As in Lemma 3.7, it suffices to count the total number of times that line 14 of TakeStep is called

and multiply this value by 2. So, we consider the number of times that line 14 of TakeStep is called at an

arbitrary node v. Since line 14 is only executed if line 4 evaluates to true, then, by Lemma 4.1, it follows

that i = d(s, v) at line 14. By Lemma 3.6, the for loop at line 12 is iterated at most 2deg(v)/2|Ad(s,v)| times.

Taking the sum over all nodes, the total number of calls to TakeStep is bounded above by∑
v

2deg(v)

2|Ad(s,v)|
=

2

2|Am|
∑
v

deg(v) · 2|Am|−|Ad(s,v)| ≤ 2

2|Am|
∑
v

deg(v) · 2|Am|.

Next, since |Am| = bdlog (deg(vm))e · βc ≤ (log (deg(vm)) + 1) · β, it follows that

2

2|Am|
∑
v

deg(v) · 2|Am| ≤ 2

2|Am|
∑
v

deg(v) · 2log (deg(vm))·β2β =
2

2|Am|
∑
v

deg(v) · (deg(vm))β · 2β .

Since deg(v) ≤ e and β < 1, it follows that

2

2|Am|
∑
v

deg(v) · (deg(vm))β · 2β ≤ 21+βeβ

2|Am|
∑
v

deg(v) ≤ 22+βe1+β

2|Am|
<

8e1+β

2|Am|
.
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Finally, we fix an upper bound C on the cost of FindTreasure and re-state Lemmas 3.5 and 4.2 as an upper

bound on the amount of advice needed to solve treasure hunt in trees at cost C.

Theorem 4.1. Let 3 ≤ D ≤ C ≤ e = n− 1. The amount of advice needed to solve treasure hunt on trees of

size n with cost at most C is at most O(D log e
C + log log e) bits.

Proof. First, consider the case where β = 1. In this case, C = D (by Lemma 3.5) and ` = LogSum ∈
O(D(log(e/D) + 1)) ⊆ O(D log e

C ). Next, consider the case where β < 1. By Lemma 4.2, Algorithm

FindTreasure solves treasure hunt with cost C ≤ 16e1+β

2|Am| . It follows that 2|Am| ≤ 16e1+β

C , so |Am| ≤
log
(

16e1+β

C

)
. Since |Am| ≥ |Ai| for each i ∈ {0, . . . , D − 1}, it follows that ` = |A0| + · · · + |AD−1| ≤

D log
(

16e1+β

C

)
∈ O(D log e

C ). Therefore, regardless of the value of β, we have shown that ` ∈ O(D log( eC )).

By Lemma 3.1, the size of advice is O(`+ logD + log log e) = O(D log e
C + log log e).

4.2 Lower Bound

We now set out to prove a lower bound on the amount of advice needed to solve treasure hunt at cost at

most C.

We consider a collection T (D, k) of caterpillar trees, each constructed as follows. Take a path graph P

consisting of D + 1 nodes v0, . . . , vD, where vi and vi+1 are adjacent, for every i ∈ {0, . . . D − 1}. Place the

treasure at node vD. For each i ∈ {0, . . . , D − 1}, add k − 1 nodes to the graph such that each of them has

degree 1 and is adjacent only to node vi. The resulting graph is a tree on Dk+ 1 nodes. For each node v in

this tree, the ports at v are labeled with the integers {0, . . . , deg(v)− 1} so that, for each i ∈ {0, . . . , D− 2},
the port numbers at both ends of the edge {vi, vi+1} are equal. Finally we fix node labels as follows. For

each i ∈ {0, . . . , D − 1}, node vi has label i(k + 2), and each leaf adjacent to vi has label i(k + 2) + j + 1,

where the port number at vi leading to it is j. Notice that all labels are distinct.

For each i ∈ {0, . . . , D − 1}, let pi be the port number at vi corresponding to the edge {vi, vi+1}. The trees

in T (D, k) are in one-to-one correspondence with the sequences (p0, . . . , pD−1) because the label of each leaf

is determined by the port number (at the adjacent node vi) leading to it. It follows that the number of

distinct caterpillar trees in T (D, k) (taking into consideration the placement of the treasure) is kD. Figure

1 gives a diagram of a caterpillar tree in T (D, k) and shows how nodes are labeled.

Consider any fixed caterpillar tree G ∈ T (D, k). We set the starting node of the agent to be v0. To find

the treasure, the agent must traverse the D edges of path P . Suppose that, for some i ∈ {0, . . . , D − 1},
the agent is located at node vi. If the agent takes port pi, it will arrive at node vi+1, and we say that this

edge traversal is successful. We may assume that the agent does not return to node vi, i.e., away from the

treasure, because such a move would only increase the cost of the algorithm. Further, the agent can detect

when it has found the treasure and terminate immediately.

When an agent’s step is not successful (that is, when located at node vi, it chooses a port other than pi) it

arrives at a leaf adjacent to vi. In this case, we say that the agent misses. After a miss, the agent’s next

step is to return to node vi. Let missi,G be the number of times that the agent takes a port other than pi

when located at node vi in G. The cost at node vi, denoted by costi,G, is 2missi,G + 1, since there are two

edge traversals for each miss and one successful edge traversal. This implies the following fact.
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{
k − 1
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k − 1
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k − 1

v0 v1 vD−1 vD
p0 p1p0 pD−2 pD−1

i(k+2)+jk−1+1

i(k+2)+j2+1

i(k+2)+j1+1

pi−1

pi

j1

j2

jk−1

i(k+2)

(b)(a)

0

Figure 1: (a) A caterpillar tree in T (D, k) with ports on path P labeled. (b) The labels of the k − 1 added
leaves adjacent to vi are shown. Node vi is labeled i(k + 2).

Fact 4.1. For any G ∈ T (D, k), the total cost of any treasure hunt algorithm in G is
∑D−1
i=0 costi,G =

D + 2
∑D−1
i=0 missi,G.

We now prove a lower bound on the size of advice needed to solve treasure hunt for the class of caterpillar

trees.

Theorem 4.2. Let D ≤ C ≤ e = n − 1. There exists a tree of size Θ(n), and a position of the treasure at

distance D from the initial position of the agent, such that treasure hunt at cost C requires Ω(D log e
C ) bits

of advice.

Proof. Consider any algorithm A that solves treasure hunt at cost at most C using b bits of advice. Let

k = dn/De.

Let S be a set of maximum size consisting of trees from T (D, k) such that, for all trees in S, the agent is

given the same advice string. By the Pigeonhole Principle, it follows that |S| ≥ |T (D,k)|
2b

= kD

2b
. We proceed

to find an upper bound on the size of such a set S.

Consider any two different trees G,G′ ∈ T (D, k) such that the agent is given the same advice string for both

of them. Let i be the smallest index such that the port at vi leading to vi+1 is different in G and G′. Then

the behaviour of the agent prior to visiting vi for the first time is the same in G and in G′. Hence, missi,G′ 6=
missi,G. By Fact 4.1, we know that C ≥ D + 2

∑D−1
i=0 missi,G, so

∑D−1
i=0 missi,G ≤ (C −D)/2. Therefore,

the number of trees in S is bounded above by the number of distinct integer-valued D-tuples of non-negative

terms whose sum is at most (C −D)/2. (These tuples correspond to sequences (miss0,G, . . . ,missD−1,G).)

If (C − D)/2 < 1, then there is only one such D-tuple, i.e., the tuple with all entries equal to 0. It

follows that |S| = 1. Recall that S was chosen as a set of maximum size such that, for all trees in S, the

same advice is given to the agent. It follows that, for each tree in T (D, k), the agent is given a different

advice string. Therefore, the number of different advice strings is kD, so the size of advice is at least

log(kD) = D log k = D logdn/De. Since C ≥ D, and (C −D)/2 < 1 implies that C < D + 2, it follows that

D logdn/De ∈ Ω(D log e
C ), as required.

So, we proceed with the assumption that (C − D)/2 ≥ 1. The following claim will be used to obtain an
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upper bound on the number of distinct integer-valued D-tuples of non-negative terms whose sum is at most

(C −D)/2. In the sequel, D-tuples with integer coordinates will be called integer points.

Claim 4.1. Fix any M,D ≥ 1. Let P be the set of integer-valued D-tuples of non-negative terms whose sum

is at most M . Then, |P | ≤ (6M)D

D! .

To prove the claim, we note that |P | is the number of integer points in the simplex X = {(x0, . . . , xD−1) ∈
RD |

D−1∑
i=0

xi ≤M and 0 ≤ xi ≤M for all i ∈ {0, . . . , D − 1}}. LetXM denote the simplex {(M+x0, . . . ,M+

xD−1) ∈ RD |
D−1∑
i=0

xi ≤ (D + 1)M and 0 ≤ xi ≤ M for all i ∈ {0, . . . , D − 1}}. Since XM is a translation

of the points in X by M in every coordinate, it follows that |P | is also the number of integer points

in the simplex XM . For each integer point p in XM , we construct a small D-dimensional box centered

at p. More specifically, for each p = (p0, . . . , pD−1) ∈ XM such that p0, . . . , pD−1 ∈ Z, we construct

Bp = {(p0 + α0, . . . , pD−1 + αD−1) | − 1/4 ≤ αi ≤ 1/4 for each i ∈ {0, . . . , D − 1}}. Note that, for any

two distinct integer points p, p′ ∈ XM , the boxes Bp and Bp′ are disjoint. Further, the volume of each

such Bp is (1/2)D. Finally, we wish to find an upper bound on the volume of the union of all boxes Bp

where p is an integer point in XM . To this end, we define a simplex Y (a scaled version of X) such

that, for each integer point p ∈ XM , the box Bp is completely contained in Y . In particular, we define

Y = {(y0, . . . , yD−1) ∈ RD |
D−1∑
i=0

yi ≤ 3M and 0 ≤ yi ≤ 3M for all i ∈ {0, . . . , D − 1}}. It follows that

|P | · (1/2)D is bounded above by the volume of Y . From [25], the volume of Y is equal to (3M)D

D! , which

implies that |P | ≤ (6M)D

D! . This completes the proof of the claim.

By Claim 4.1 with M = C−D
2 , the number of trees in S is bounded above by 3D(C−D)D

D! . Combined with our

earlier lower bound on the number of trees in S, we have kD

2b
≤ |S| ≤ 3D(C−D)D

D! , which implies that

2
b
D ≥ k · D

√
D!

3(C −D)
≥ k · D

√
D!

3C
.

So,

b ≥ D log

(
k · D
√
D!

3C

)
.

By Stirling’s formula we have D! ≥
√
D(D/e)D, for sufficiently large D. Hence D

√
D! ≥ D1/(2D) · (D/e),

where e is the Euler’s constant. Since the first factor converges to 1 as D grows, we have D
√
D! ∈ Ω(D).

Hence, the above bound on b implies b ∈ Ω
(
D log Dk

C

)
. Since k = dn/De, it follows that b ∈ Ω

(
D log n

C

)
, so

the size of advice is in Ω
(
D log e

C

)
, as required.

5 Conclusion

We established upper and lower bounds on the minimum size of advice sufficient to solve the problems of

rendezvous and of treasure hunt at a given cost. For the class of trees our bounds are almost tight, up to

constant factors and a summand of O(log log n). For the class of arbitrary graphs, our bounds leave a gap of a
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logarithmic factor. Closing these gaps is a natural open problem. It should be noted, however, that, even for

arbitrary graphs, our bounds are asymptotically tight whenever D log e
C is Ω(log log e) and D is polynomial

in the gain e
C . This is the case, for example, when we want to accomplish treasure hunt or rendezvous at cost

Θ(
√
n) in an n-node graph. There are only two special situations when our gap for arbitrary graphs remains

non-constant. One of them is if D is very large with respect to the gain e
C , e.g., for an n-node graph with

Θ(n3/2) edges in which the treasure is located at distance Θ(
√
n) at cost Θ(n3/2/ log n); our (multiplicative)

gap is Θ(log n/ log log n) in this case. The other situation is when both D and e
C are very small with respect

to e, e.g., when the treasure in an n-node graph is located at distance D ∈ O(log log log n) and we want to

do treasure hunt at cost Θ(n/ log log n). In this case we have an additive gap of Θ(log log n).

It should also be noted that, in the context of advice, treasure hunt is not only equivalent to rendezvous

of two agents, as shown in Proposition 2.1, but also to rendezvous of many agents, which is often called

gathering. This task consists in gathering several agents at the same node in the same round. In this case,

the cost should be defined as the maximum number of edge traversals per agent, and the advice size as

the maximum number of bits per agent. The reduction given by the first part of Proposition 2.1 should be

modified as follows. One of the agents, starting at some node w, is given advice string (0) indicating that it

should be inert. Each other agent j is given the advice string (1αj), where αj is the advice enabling agent

j to find a treasure located at w.
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References

[1] S. Abiteboul, H. Kaplan, T. Milo, Compact labeling schemes for ancestor queries, Proc. 12th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), 547–556.

[2] S. Albers and M. R. Henzinger, Exploring unknown environments, SIAM J. Comput. 29 (2000), 1164-

1188.

[3] S. Alpern, The rendezvous search problem, SIAM J. on Control and Optimization 33 (1995), 673-683.

[4] S. Alpern, Rendezvous search on labelled networks, Naval Reaserch Logistics 49 (2002), 256-274.

[5] S. Alpern and S. Gal, The theory of search games and rendezvous. Int. Series in Operations research

and Management Science, Kluwer Academic Publisher, 2002.

[6] E. Anderson and R. Weber, The rendezvous problem on discrete locations, Journal of Applied Proba-

bility 28 (1990), 839-851.

[7] E. Anderson and S. Fekete, Asymmetric rendezvous on the plane, Proc. 14th Annual ACM Symp. on

Computational Geometry (1998), 365-373.

17



[8] E. Anderson and S. Fekete, Two-dimensional rendezvous search, Operations Research 49 (2001), 107-

118.

[9] R.A. Baeza-Yates, J.C. Culberson, G.J.E. Rawlins, Searching in the plane, Information and Computa-

tion 106 (1993), 234252.

[10] E. Bampas, J. Czyzowicz, L. Gasieniec, D. Ilcinkas, A. Labourel, Almost optimal asynchronous ren-

dezvous in infinite multidimensional grids, Proc. 24th International Symposium on Distributed Com-

puting (DISC 2010), 297-311.

[11] V. Baston and S. Gal, Rendezvous on the line when the players’ initial distance is given by an unknown

probability distribution, SIAM J. on Control and Opt. 36 (1998), 1880-1889.

[12] V. Baston and S. Gal, Rendezvous search when marks are left at the starting points, Naval Reaserch

Logistics 48 (2001), 722-731.

[13] P. Bose, J.-L. De Carufel, S. Durocher, Revisiting the problem of searching on a line, Proc. 21st Annual

European Symposium on Algorithms (ESA 2013), 205-216.

[14] S. Caminiti, I. Finocchi, R. Petreschi, Engineering tree labeling schemes: a case study on least common

ancestor, Proc. 16th Annual European Symposium on Algorithms (ESA 2008), 234–245.

[15] M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro, Distributed computing by mobile robots: Gathering,

SIAM J. Comput. 41 (2012), 829-879.

[16] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg, Label-guided graph exploration by a finite

automaton, ACM Transactions on Algorithms 4 (2008).

[17] J. Czyzowicz, A. Kosowski, A. Pelc, How to meet when you forget: Log-space rendezvous in arbitrary

graphs, Distributed Computing 25 (2012), 165-178.

[18] J. Czyzowicz, A. Labourel, A. Pelc, How to meet asynchronously (almost) everywhere, ACM Transac-

tions on Algorithms 8 (2012), article 37.

[19] X. Deng and C. H. Papadimitriou, Exploring an unknown graph, Journal of Graph Theory 32 (1999),

265-297.

[20] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, U. Vaccaro, Asynchronous deterministic

rendezvous in graphs, Theoretical Computer Science 355 (2006), 315-326.

[21] D. Dereniowski, A. Pelc, Drawing maps with advice, Journal of Parallel and Distributed Computing 72

(2012), 132–143.

[22] A. Dessmark, P. Fraigniaud, D. Kowalski, A. Pelc. Deterministic rendezvous in graphs. Algorithmica

46 (2006), 69-96.
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