
ETH Library

Intrinsic Fault Tolerance of Multi
Level Monte Carlo Methods

Report

Author(s):
Pauli, Stefan; Arbenz, Peter ; Schwab, Christoph

Publication date:
2012-08

Permanent link:
https://doi.org/10.3929/ethz-a-010387066

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
SAM Research Report 2012-24

Funding acknowledgement:
247277 - Automated Urban Parking and Driving (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-1501-3176
https://doi.org/10.3929/ethz-a-010387066
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂ Eidgenössische

Technische Hochschule

Zürich

Ecole polytechnique fédérale de Zurich

Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Intrinsic fault tolerance of multi level

Monte Carlo methods

St. Pauli, P. Arbenz and Ch. Schwab

Research Report No. 2012-24

August 2012

Revised: November 2013

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

Intrinsic Fault Tolerance of Multi Level Monte Carlo Methods

Stefan Pauli, a,b,1,∗, Peter Arbenza, Christoph Schwabb,2

aETH Zürich, Computer Science Department, Universitätsstrasse 6, 8092 Zürich, Switzerland
bETH Zürich, Seminar for Applied Mathematics, Rämistrasse 101, 8092 Zürich, Switzerland

Abstract

Monte Carlo (MC) and Multilevel Monte Carlo (MLMC) methods applied to solvers for Partial
Differential Equations with random input data are proved to exhibit intrinsic failure resilience.
Sufficient conditions are provided for non-recoverable loss of a random fraction of MC samples
not to fatally damage the asymptotic accuracy vs. work of an MC simulation. Specifically, the
convergence behavior of MLMC methods on massively parallel hardware with runtime faults is
analyzed mathematically and investigated computationally. Our mathematical model assumes
node failures which occur uncorrelated of MC sampling and with general sample failure statistics
on the different levels and which also assume absence of checkpointing, i.e., we assume irrecoverable
sample failures with complete loss of data. Modifications of the MLMC with enhanced resilience
are proposed. The theoretical results are obtained under general statistical models of CPU failure
at runtime. Particular attention is paid to node failures with so-called Weibull failure models on
massively parallel stochastic Finite Volume computational fluid dynamics simulations are discussed.

Keywords: Multilevel Monte Carlo, fault tolerance, failure resilience, exascale parallel computing

1. Introduction

Monte Carlo (MC) methods estimate statistical moments of random variables (such as means or
so-called “ensemble averages”) by sample averages [6]. The goal can, for instance, be to determine
the expected solution of a partial differential equation (PDE) with random initial or boundary
conditions that follow some statistical law [12–14]. Then each sample is the solution of the PDE
for a random input (such as, in the context of hyperbolic systems of conservation laws, a particular
initial/boundary condition). The statistical independence of the input data makes it possible to
execute the simulations corresponding to each sample in parallel. The slow convergence of Monte
Carlo methods (M−1/2 for M draws of input data) entails large numbers of samples. This, in
turn, implies good parallel scalability of MC methods to large numbers of processors. Mostly,
the simulations take a similar amount of time such that a distribution among large numbers of
processors with a balanced load is achieved quite easily. In a parallel setting the only serious
problem is to guarantee the statistical independence of the random input draws (e.g. [19]).

∗Corresponding author
Email addresses: stefan.pauli@inf.ethz.ch (Stefan Pauli), arbenz@inf.ethz.ch (Peter Arbenz),

schwab@sam.math.ethz.ch (Christoph Schwab)
1The work of this author has been funded by the ETH interdisciplinary research grant CH1-03 10-1.
2CS acknowledges partial support by the European Research Council under grant ERC AdG 247277-STAHDPDE.

Preprint submitted to Journal of Parallel and Distributed Computing November 4, 2013

Multilevel Monte Carlo (MLMC) methods were recently proposed in [7, 12] in order to improve
the convergence versus work. They can be used for efficient numerical simulations of stochastic
ordinary or partial differential equations. Unlike MC methods where samples are only computed
on one discretization, MLMC methodes use a hierarchy of discretization levels hence computations
are done on many different discretizations. Based on the expected solution computed on the
coarsest discretization level, the expected difference from this level to the next finer one is added,
until the required finest discretization level is reached. In MLMC methods the expected difference
from two consecutive discretization levels is computed using the MC method. Hence, in this
paper the difference of a realization computed on two consecutive discretization levels is referred
to as a MLMC sample of a certain “level”. A “level” does, therefore, in this paper, not denote a
discretization level but a level related to a MLMC sample. It is by now known (see, eg., [2, 7, 12–
14]) that under rather general assumptions, MLMC methods converge faster than MC, in terms
of overall computational work, i.e., cumulated execution time. The cumulated execution time and
memory consumption of the computation of samples depends on the levels and differ considerably:
the computation of an MLMC sample of a ‘finer’ level may require much more compute resources
(execution time, memory space, number of cores) than sample of a ‘coarser’ level. The load of an
MLMC simulation is therefore not as easy to balance [25] as in MC, as there are only few samples
on the fine levels. Nevertheless, in the context of partial differential equations with random inputs,
the MLMC to allow the approximation of ensemble averages of the solution with accuracy versus
complexity analogous to that necessary for one numerical solution of the deterministic problem on
the finest mesh [2, 12].

The present study is based on the following assumptions: a) in large scale simulations on
emerging, massively parallel computing platforms processor failures at runtime are inevitable [4, 5],
and occur, in fact, with increasing frequency as the number of processors increases, respectively the
quality of processors decreases; b) processor failures at runtime can, in general, not be predicted,
but occur randomly and should therefore be modelled as stochastic processes; c) processor failures
at runtime are not checkpointed and not recoverable; d) the algorithm of interest has redundancy
by design in order to “survive” a certain number of (non-checkpointed) failure events with random
arrivals.

Assumptions c) and d) exclude a large number of currently used standard algorithms, for which
any loss of data entails abortion of execution. We mention only standard Gaussian Elimination with
loss of one pivot element. Other algorithms may, however, tolerate partial loss of data at runtime.
We think of iterative solvers of large, linear systems which may converge even if one or several
iterates are “lost” due to hardware failures and so satisfy assumption d); interestingly, assumption
b) implies that the convergence results of deterministic algorithms for deterministic problems on
random hardware will necessarily be probabilistic in nature. Here, we consider the case when the
algorithm under consideration is stochastic by design, such as Monte Carlo (MC) methods. As
we argue in the present paper, MC methods, being probabilistic in nature, are intrinsically fault
tolerant: as we prove in the present paper, the loss of (a “subcritical” fraction of) information by
failed samples does not render the whole simulation useless as is the case, e.g., in many matrix
computations, such as Gaussian Eliminiation. MC samples which were lost due to node failures
at runtime can be repeated since new, independent samples can be generated to replace the failed
ones.

We provide a mathematical argument predicting that the convergence behavior of MC is not
affected substantially if the failed samples are simply disregarded, provided there are “not too

2

many” (made precise in the mathematical analysis, and corroborated in the numerical experiments)
of these failures.

Specifically, in the present paper we analyze the performance of both MC and MLMC PDE
solvers in the presence of hardware failures at runtime. In particular, we investigate the con-
vergence behavior of these methods if processors fail according to a stochastic failure model; the
presently developed mathematical analysis accomodates rather general failure models. Naturally,
to arrive at a theory which is amenable to rigorous mathematical treatment, a number of simpli-
fying assumptions had to be made. In particular, in our analysis we do not distinguish among
different reasons of processor failure. So, we do not distinguish between node, program, network,
or any other type of failure. We assume that the complete MC sample is lost if one of the (maybe
multiple) processors fails that are used for its simulation. We disregard all samples affected by a
failure and compute the results with the ‘surviving’ ones.

While in MC all samples are from the (single) finest level (or grid), MLMC gets its statistics
also from samples corresponding to coarser grids. (The resolution of the finest level is determined
by the required discretization error.) By using information on multiple levels MLMC needs much
fewer samples on the finest level than ordinary MC to attain the same quality of answer. MLMC
turns out to be much more efficient than MC. To get the optimal MLMC convergence rate (wrt.
work), it is crucial to choose properly the numbers M` of samples on level `.

In the presence of failures without checkpointing MC samples on all levels might be irrevocably
lost. The larger (in the sense that they are defined on finer meshes) samples of the finer levels are
more vulnerable than the (larger number of) smaller samples on the coarser levels. With very high
failure rates it might not be feasible that sufficiently many samples survive on the finer levels. In
general, the error components of faulty levels increase and the overall convergence rate is reduced.
With a sufficiently high failure rate all samples on a particular level may get lost. In this case, the
attainable error is bounded from below by the discretization error of that level.

Our main mathematical results are as follows: we prove convergence of MC and MLMC for
the first moment (sample average) provided that sufficiently many samples survive on average.
We compute the effect of failures according to existing failure models. Numerical experiments of
MLMC for hyperbolic PDE’s coupled with the Weibull failure model validate our theory. We further
investigate the failure resilience of two and three dimensional time-dependent grid applications,
like finite elements, finite differences, or finite volumes. These results are obtained by MLMC
simulations treating the sample sizes M` as random variables.

We also discuss FT-issues regarding MPI. In the present standard MPI-3.0 [15], failure of a
single MPI process is fatal for the entire MLMC simulation. For our method to work, MPI would
have to be extended by a mechanism to survive losses of MPI processes at runtime, and continue
with the remaining ones. Based on this paper the proposed fault tolerant MLMC was already
implemented [18] using the User Level Failure Mitigation (ULFM) [3], a fault tolerant version of
MPI. We compare the error bound with the measured results from this implementation.

The paper is organized as follows: In Sections 2 and 3 we give error bounds for MC and MLMC,
respectively, in the presence of a statistical loss of samples. In Section 4 we discuss the Weibull
failure model. In Section 5 we conduct a number of numerical experiments to investigate how
convergence is affected by failure. We consider two and three dimensional problems with different
convergence rates of the PDE solver.

3

2. MC with a random number of samples

We first introduce a fault tolerant MC (FT-MC) method. Starting from there the fault tolerant
technique used in MLMC is derived.

We are interested in the expected value E[X] of a random variable (RV) X in the probability
space (Ω,A ,P), with sample space Ω, σ-algebra A and probability measure P [17]. If the 2nd
moments of X exist the Monte Carlo method can be used to estimate E[X]. Given a fixed number
M of independent, identically distributed samples Xi, i = 1, 2, . . . ,M , the MC approximation of
E[X] is defined by

EM [X] :=
1

M

M∑
i=1

Xi. (1)

The mean square error in the estimator (1) is known to be (see, e.g., [12, 24])

‖E[X]− EM [X]‖L2(Ω;L1(Rd)) ≤M−1/2‖X‖L2(Ω;L1(Rd)) := M−1/2
√
E[‖X‖2

L1(Rd)
]. (2)

The “embarassingly parallel” evaluation of (1) across a possibly large number of nodes is a common
approach to reduce wall clock time in MC simulations. In the present work, we highlight and
capitalize on a second feature of the MC estimator (1): software or hardware failures at runtime
may cause nodes to fail or even crash, such that some samples get lost. We will give sufficient
conditions on the node failure statistics to prove that

1. it is reasonable to continue the MC simulation without checkpointing,

2. that no recovery of samples from failed nodes is required,

3. that the statistical quality of the MC simulation is unaffected provided “node failures at run-
time do not occur too frequently”, and

4. that there is a certain critical node failure intensity above which the MC simulation does
deterioriate, almost surely.

Let us now be more specific about the mathematical model from which these assertions are
deduced.

In the presence of system failures at runtime, the sample size M in (1) is not a fixed number
anymore, but becomes itself a random variable M̂ . We denote the probability space for the failures
by (Ω′,A ′,P′) and the respective expectation by E′[·]. We assume throughout the paper that the
node failures at runtime occur with statistics that are independent of the realizations of X. This
implies that the runtime to compute a solution of a realization of X is independent of e.g., the
realization. In particular, we furthermore assume in the sequel that the surviving samples are
statistically independent. The N -out-of-M strategy suggested by Li and Mascagni [10] has been
designed in such a way that the random numbers generated by any N out of M random number
streams are independent random numbers. The pseudo-random number generators in [11, 21]
incorporate this strategy.

For fixed M the approximation EM [X] is a RV over Ω. For M̂ considered as RV over Ω′ this
approximation becomes

EM̂ [X] :=
1

M̂

M̂∑
i=1

Xi,

4

Therefore, it is a RV over the product probability space (Ω×Ω′,A ⊗A ′,P⊗ P′). Since (Ω,A ,P)
and since (Ω′,A ′,P′) are finite measure spaces, there exists (see, e.g., [24] and the references there)
a unique product probability measure P̂ = P⊗ P′ on A ⊗A ′ such that

P̂(A⊗A′) = P(A)P′(A′), ∀A ∈ A , A′ ∈ A ′ .

Theorem 2.1. The MC error estimate with a random number of samples is given by

‖E[X]− EM̂ [X]‖2
L2(Ω̂;L1(Rd);P̂)

≤ E′
[
M̂−1/2

]
‖X‖2L2(Ω;L1(Rd)) . (3)

Proof. We substitute the RV M̂ for M in equation (2) and integrate over (Ω′,A ′,P′) to obtain∫
Ω′
‖E[X]− EM̂ [X]‖2L2(Ω;L1(Rd))P

′(dω′) ≤
∫

Ω′
M̂−1/2‖X‖2L2(Ω;L1(Rd))P

′(dω′)

= E′
[
M̂−1/2

]
‖X‖2L2(Ω;L1(Rd)) .

Theorem I.3.17. in [23] then shows that

L2(Ω′;L2(Ω;L1(Rd))) ∼= L2(Ω× Ω′;L1(Rd);P⊗ P′),

which leads to the claimed error estimate (3).

Once a particular statistical distribution for the node failures has been adopted (and calibrated
to the hardware platform of interest), the term E′[M̂−1/2] can be computed and hence using
Theorem 2.1, the a priori error bound for the fault tolerant MC (FT-MC) method as well. The
intuition behind Theorem 2.1 is that all failures are accounted for in the error bound of the FT-
MC. The number of failures occurring in a FT-MC simulation varies according to a known failure
distribution, nevertheless the a priori error bound in Theorem 2.1 remains valid, regardless of the
number of failures. Knowing the failure distribution allows to compute an error bound before the
number of failures and the number of surviving samples is known.

The condition M̂(ω′) = 0 means that no samples remain. If the probability of this event is
positive, then obviously E′[M̂−1/2] tends to infinity and the FT-MC error bound becomes mean-
ingless. We therefore assume that P′({M̂ = 0}) = 0 in the ensuing analysis. In practice, this
means that the MC estimation has to be restarted from scratch in the event that all samples are
lost at runtime.

3. Abstract Multilevel Monte Carlo with sample losses

3.1. Review of the Multilevel Monte Carlo method

In this section we consider random variables X that are solutions of problems with random
inputs that can be solved only approximately. Prominent examples are PDEs with random initial
or boundary conditions as they arise in uncertainty quantification (UQ) in engineering applications.
The solutions of these PDEs typically are obtained numerically by a discretization method like the
finite element, finite difference, or finite volume method. We assume that we have available a
hierarchy of discretizations that is indicated by a measure, e.g., the grid spacing.

In contrast to ordinary Monte Carlo methods, Multilevel Monte Carlo (MLMC) methods can
exploit this hierarchy of discretizations. If implemented properly, MLMC provides estimates E(X)
of higher accuracy than MC for the same amount of work measured in floating point operations.

5

A hierarchy of discretizations is given for instance under the assumption that the computational
domain is rectangular and is discretized by a hierarchy of regular grids with grid spacings (or
“meshwidths”)

h0 > · · · > hL, hi = 2hi+1. (4)

Such hierarchies are available to most simulations in engineering. Similar to the derivation of
Giles [7], the difference between X(·, ω) of the original problem and its discretization Xh(·, ω) on
the mesh of width h, i.e., the discretization error, is assumed to converge with order α

‖E[X −Xh`]‖B = O(hα`), α > 0, (5)

where ‖ · ‖B denotes a norm in the Banach space B. We also assume a convergence order β for

‖Xh` −Xh`−1
‖L2(Ω;B) = O(hβ`−1), β, ` > 0, (6)

and assume that
‖Xh0‖L2(Ω;B) = O(1). (7)

The first equality is a consequence of the bounded variation of X and of the consistency of the
discretization scheme, given the almost sure regularity of the sample paths; the latter equality can
always be achieved by a scaling of the data. Furthermore it is assumed that the work needed to
compute Xh` satisfies

W` = O(h−γ`) , γ > 0 . (8)

As explained e.g. in [7, 12–14], the MLMC method is based on the following telescopic sum,

E[XhL] = E[Xh0] +
L∑
`=1

E[Xh` −Xh`−1
] , (9)

that allows to estimate E[X] levelwise,

E[XhL] = EM0 [Xh0] +

L∑
`=1

EM`
[Xh` −Xh`−1

] . (10)

On level ` we use an ordinary MC method with M` samples (Xi
h`
− Xi

h`−1
), i = 1, . . . ,M`, to

approximate E[Xh` − Xh`−1
]. Note, that in this paper a sample on level ` comprises a difference

between the same realization Xi computed on two consecutive discretization levels h` and h`−1. In
order to form this difference the realizations Xi

h`
and Xi

h`−1
have to be computed with the same ω.

On the coarsest level we estimate E[Xh0] with M0 samples Xi
h0

, i = 1, . . . ,M0,. The MLMC error
‖E[X] − E[XhL]‖L2(Ω;B) is the norm of the difference of the true expectation E[X] in (9) and the
MLMC estimate E[XhL] in (10),

‖E[X]− E[XhL]‖L2(Ω;B) ≤ ‖E[X]− E[XhL]‖B + ‖E[XhL]− E[XhL]‖L2(Ω;B)

≤ ‖E[X]− E[XhL]‖B + ‖E[Xh0]− EM0 [Xh0]‖L2(Ω;B)

+
L∑
`=1

‖E[Xh` −Xh`−1
]− EM`

[Xh` −Xh`−1
]‖L2(Ω;B)

(2)

≤ ‖E[X]− E[XhL]‖B +M
−1/2
0 ‖Xh0‖L2(Ω;B)

+
L∑
`=1

M
−1/2
` ‖Xh` −Xh`−1

‖L2(Ω;B).

(11)

6

With (6) and (7) this bound becomes

‖E[X]− E[XhL]‖L2(Ω;B) = O(hαL) +M
−1/2
0 O(1) +

L∑
`=1

M
−1/2
` O(hβ`−1). (12)

This result is valid for any numbers L and M`. However, to benefit from MLMC, a clever choice is
crucial. One may balance the expected error terms on the right side of (12) [12] or minimize the
computational work with respect to the expected error, see [7]. In either case, when expressed in
terms of work, the convergence rates of MLMC are always as good as the ones from standard MC
methods. Giles [7] shows that for α ≥ 1/2 and any ε < e−1 there is an L and values M`, 0 ≤ ` ≤ L,
such that the MLMC (discretization and sampling) error is bounded by

‖E[X]− E[XhL]‖L2(Ω;B) < ε.

with the total work for computing E[XhL] being given by

work =

O(ε−2), β > 1,
O(ε−2(log ε)2), β = 1,

O(ε−2−(1−β)/α), 0 < β < 1.

3.2. Sample losses in MLMC

In the previous section 2 we considered the MC method with a random number of samples,
given the realistic assumption that at least one MC-sample survives. Within each level of the
MLMC method a standard MC simulation is executed. This allows to reuse most parts of the FT-
MC approach in the FT-MLMC method. In the FT-MLMC method, in contrast to the FT-MC
method, it is feasible to compute an MLMC estimate even in the case that all samples of one level
` ∈ [0, L] are lost. A level ` of mesh-refinement on which all MC samples are lost will be referred
to as a lost level. In MLMC M̂` = 0 on some level ` should not lead to an infinite error bound.
Therefore, the MLMC error bound has to be modified such that it can handle lost levels.

3.3. MLMC error bound with lost levels

We derive an MLMC error bound under assumption that M` ≥ 0, and hence M` = 0 might
appear. We shall refer to this case as an “entirely lost level”. In the discussion of this section, the
number of samples M` are not random.

The MLMC estimate (10) is modified such that lost levels (M` = 0) are not taken into account,

E[XhL] = EM0 [Xh0] +
L∑
`=1

EM`
[Xh` −Xh`−1

], EM`
[·] = 0 if M̂` = 0. (13)

The error bound
‖E[X]− E[XhL]‖L2(Ω;B)

is analyzed.
In the following derivation we use a bound for a MC simulation with M = 0 when nothing is

computed (EM [X] = 0, M = 0):

‖E[X]− E0[X]‖L2(Ω;B) = ‖E[X]‖L2(Ω;B) =
√
‖E[X]‖2B ≤

√
E[‖X‖2B] = ‖X‖L2(Ω;B) (14)

7

Following the derivation (11) provides a error bound for the MLMC method where levels might
be lost (M` = 0)

‖E[X]− E[XhL]‖L2(Ω;B) ≤ ‖E[X]− E[XhL]‖B + ‖E[XhL]− E[XhL]‖L2(Ω;B)

≤ ‖E[X]− E[XhL]‖B + ‖E[Xh0]− EM0 [Xh0]‖L2(Ω;B)

+
L∑
`=1

‖E[Xh` −Xh`−1
]− EM`

[Xh` −Xh`−1
]‖L2(Ω;B)

(2),(14)

≤ ‖E[X]− E[XhL]‖B + min(1,M
−1/2
0)‖Xh0‖L2(Ω;B)

+
L∑
`=1

min(1,M
−1/2
`)‖Xh` −Xh`−1

‖L2(Ω;B) .

(15)

This inequality admits to bound the MLMC error where some levels might be lost.

Theorem 3.1. The Multilevel Monte Carlo error with lost levels (i.e. when M` ≥ 0) is bounded
by

‖E[X]− E[XhL]‖L2(Ω;B) ≤ ‖E[X]− E[XhL]‖B + min(1,M
−1/2
0)‖Xh0‖L2(Ω;B)

+
L∑
`=1

min(1,M
−1/2
`)‖Xh` −Xh`−1

‖L2(Ω;B),

or, with assumptions (5), (6) and (7),

‖E[X]− E[XhL]‖L2(Ω;B) ≤ O(hαL) + min(1,M
−1/2
0)O(1) +

L∑
`=1

min(1,M
−1/2
`)O(hβ`−1) .

Losing a level (M` = 0) increases the MLMC error bound in Theorem 3.1 substantially. This
applies particularly for the low levels where costs of losing them are highest, since losing level `
leads to an error O(hβ`−1). Remark that higher levels than the lost one will not improve the order
of the error anymore.

3.4. Fault Tolerant MLMC error bound with random failures

As in the fault tolerant MC method we work under the “all or nothing paradigm”, i.e., a sample
is either correctly computed or irrecoverably lost when nodes fail at runtime. We do not distinguish
between node, program, network, or any other cause of failure at runtime. We discard all samples
affected by a failure, and compute the result with the remaining ones. Then M` the number of
samples per level is not a fixed number anymore, but a random number M̂`.

In accordance with Section 2 the probability space for the random solution X is denoted as
(Ω,A ,P). The probability space to model runtime failures is denoted as (Ω′,A ′,P′). Evidently,
the number of MC samples per level M̂` depends on the runtime failures. Hence M̂` is a measurable
mapping

M̂` : (Ω′,A ′,P′)→ (N0, 2
N0).

8

We derive an error bound for an MLMC sample average estimate which is computed based
on a random numbers of samples which models the MLMC in the presence of failures at runtime.
Specifically, the following fault tolerant MLMC (FT-MLMC) estimator is used:

Ê [XhL] = EM̂0
[Xh0] +

L∑
`=1

EM̂`
[Xh` −Xh`−1

] , EM̂`
[·] = 0 if M̂` = 0.

Theorem 3.2. The FT-MLMC error under influence of failure is bounded by

‖E[X]− Ê[XhL]‖L1(Ω′;L2(Ω;B)) ≤ ‖E[X]− E[XhL]‖B + E′[min(1, M̂
−1/2
0)]‖Xh0‖L2(Ω;B)

+
L∑
`=1

E′[min(1, M̂
−1/2
`)]‖Xh` −Xh`−1

‖L2(Ω;B),

or given the assumptions (5), (6) and (7)

‖E[X]− Ê[XhL]‖L1(Ω′;L2(Ω;B)) ≤ O(hαL) + E′[min(1, M̂
−1/2
0)]O(1) +

L∑
`=1

E′[min(1, M̂
−1/2
`)]O(hβ`−1) .

Proof. By Theorem 3.1 we have

‖E[X]− Ê[XhL]‖L2(Ω;B) ≤ ‖E[X]− E[XhL]‖B + min(1, M̂
−1/2
0)‖Xh0‖L2(Ω;B)

+
L∑
`=1

min(1, M̂
−1/2
`)‖Xh` −Xh`−1

‖L2(Ω;B),

Both sides are integrated over the probability space (Ω′,A ′,P′) leading to∫
Ω′
‖E[X]− Ê[XhL]‖L2(Ω;B)P′(dω′)

≤
∫

Ω′
‖E[X]− E[XhL]‖B + min(1, M̂

−1/2
0)‖Xh0‖L2(Ω;B)

+

L∑
`=1

min(1, M̂
−1/2
`)‖Xh` −Xh`−1

‖L2(Ω;B)P′(dω′) .

With the linearity of the mathematical expectation the error estimate becomes∫
Ω′
‖E[X]− Ê[XhL]‖L2(Ω;B)P′(dω′)

≤
∫

Ω′
‖E[X]− E[XhL]‖BP′(dω′) +

∫
Ω′

min(1, M̂
−1/2
0)P′(dω′)‖Xh0‖L2(Ω;B)

+
L∑
`=1

∫
Ω′

min(1, M̂
−1/2
`)P′(dω′)‖Xh` −Xh`−1

‖L2(Ω;B) .

9

We derived a general fault tolerant MLMC method. Regarding the implementation some as-
pects should be considered. A (single level) MC method is used to estimate E[Xh` − Xh`−1

] by

EM̂`
[Xh` −Xh`−1

] =
∑M̂`

i=1(Xi
h`
−Xi

h`−1
), where Xi

h`
and Xi

h`−1
approximate the same realization

Xi with two different discretization parameters h` and h`−1. This implies a strong statistical cor-
relation between Xi

h`
and Xi

h`−1
(in general the same random numbers are used in Xi

h`
and Xi

h`−1
).

Failures influence the random number of samples per level M̂`. It is emphasized that a sample on
a level always consists of the difference between the two computed solutions (Xi

h`
− Xi

h`−1
). In

other words whenever a Xi
h`−1

is lost due to a failure, it is required that the corresponding Xi
h`

is disregarded as well, and vice versa. We propose therefore to do all computations for a sample
Xi
h`
−Xi

h`−1
on a single unit. A failure in this unit leads automatically to a loss of both Xi

h`
and

Xi
h`−1

. Only entirely computed samples Xi
h`
−Xi

h`−1
are accumulated or communicated to other

units. This procedure has the slight disadvantage that two different discretizations have to be
computed on the same unit.

4. Statistical model of node failure at runtime

System failures can interfere with the computation of the MLMC estimate. They can be due to
errors in software, hardware or network but also due to environmental effects. These failures are
manifestations of various types of errors which can be roughly classified as permanent, transient,
or silent [5]. Permanent errors do not disappear, whereas transient errors are short term errors.
Silent errors are undetected (permanent or transient) errors, and hence they may lead to undetected
erroneous results. Other classifications into hard and soft errors are conceivable and for instance
described in [8].

In the previous section we have extended the MLMC theory to cover random numbers of
samples. This allows to disregard all samples affected by detected errors (permanent or transient,
soft or hard). Our fault tolerant MLMC method simply ignores these lost samples and tries to
make the best out of the surviving ones. Silent (undetected) errors however are not covered by
this theory.

To specify the error bound of the FT-MLMC method the statistics of failures leading to sample
losses has to be known. At present only rather rough failure models are available and the devel-
opment of more detailed, and realistic models is needed, in our opinion. For new HPC systems
first empirical statistical failure studies [16, 22] are available. Schroeder and Gibson [22] derived a
somewhat realistic failure model that has been adopted in the present paper. The authors studied
the failures which occurred over 9 years in more than 20 different systems at Los Alamos National
Laboratory. Their raw data [27] contains an entry for any failure that required the attention of
a system administrator. The authors conclude that the time interval between two failures of an
individual node, as well as for the entire system is well fitted by the Weibull distribution with the
Weibull shape parameter k between 0.7 and 0.8. The probability density function of the Weibull
random variable x is given by (e.g. [17])

f(x;λ, k) =

{
k
λ

(
x
λ

)k−1
e−(x/λ)k , if x ≥ 0,

0, if x < 0,

where λ > 0 is the scale parameter and k > 0 is the shape parameter. Schroeder and Gibson
also found the failure rates to be roughly proportional to the number of processors in the system.

10

Therefore, we use the Weibull distribution to model the time between two consecutive failures on
one node. This model assumes that node failures are statistically independent. This is one of the
rather rough approximations made. The data of Schroeder and Gibson [22] also gives evidence
of a correlation between the failure rate and the type and intensity of the workload running on a
machine, as the failure rate is considerably lower during the night and the weekend. However, we
had to idealize, since more accurate node failure data and models are hard to come by, at least at
presence. Nevertheless we point out that our theory accomodates also other, more sophisticated
parametric failure models, as long as they satisfy the general assumptions in the present paper,
and we hope that failure models with better quantitative accuracy will become available in the
near future.

4.1. Time to next failure in a renewal process

When a new simulation on a computer is started, generally we do not know the last time of
failure of this computer. Thus, when applying the failure model from Section 4, we are not only
interested in the time between two failures but also in the distribution of the time from the start
of the computation until the first failure on a node. This time is modeled with an ordinary renewal
process (RP). An ordinary RP is a sequence of i.i.d. nonnegative RVs Y1, Y2, In the model
applied these RVs are the time intervals between two failures, hence they are Weibull distributed.
After a failure the failed component is assumed to be renewed within a negligible time. Therefore,
the time to the next failure is again Weibull distributed. This ordinary RP is started at t = 0. We
are interested in the so called forward recurrence time till the next failure. Ft is the time from t
up to and including the moment of the next failure. The MLMC computation is started at time
t. Rinne [20] states that, as long as t is finite, Ft can only be evaluated numerically. In the case
t→∞ however [20, eq. (4.41a)] provides the analytic distribution function of F∞.

A procedure to draw realizations of the forward recurrence time F∞ is given in [26]:

1. Generate the random variable S from S = Γ(1 + 1
k , λ

k), where λ and k are the Weibull scale
and shape parameter, respectively.

2. Compute the random variable V as V = S1/k.

3. Generate the random variable F∞ from F∞ = Uniform(0, V).

4.2. Estimate the number of samples per level with MC

One instance of the number of samples M̂` on level ` is drawn by generating a realization of

the first failure F∞ on a node where samples of level ` are computed. The term E′[min(1, M̂
−1/2
`)]

is then estimated by MC, i.e., by averaging over different realizations of M̂`.

4.3. Calibration of parameters

The two Weibull scale and shape parameters λ and k are used in the above drawing of the
forward recurrence times F∞. They depend on the machinery the FT-MLMC method runs on.
In [20] several methods are presented to estimate both Weibull parameters.

In our analysis we use the parameters given in [22], k ≈ 0.7 and λ ≈ 7.6 · 105 for a single
node. Note that k ≈ 0.7 is explicitly given in [22] for an individual node. λ is estimated from [22,
Fig. 6(b)]. The time between failures, such that the cumulative distribution function is equal
to 0.5, is given approximatively by x ≈ 4.5 · 105s. Therefore, λ can be approximated by 0.5 ≈
1− e−(4.5·105/λ)k , yielding λ ≈ 7.6 · 105.

11

These parameters lead to a mean time between failure (MTBF) of approximately 11 days for a
typical node. We use nodes with 128 cores, as in [22] a node has 80–128 cores. Whenever a node
is hit by a failure, results of all involved 128 cores are assumed to be irrevocably lost.

5. Numerical experiments

All MLMC methods satisfying assumptions (5)–(8) are suited for the FT-MLMC method. We
assess the quality of our FT-MLMC error bounds by means of the grid-based finite volume code
ALSVID-UQ [1] for solving hyperbolic systems of conservation laws. We set α = β = s in eqs. (5)–
(6). With this choice, the work to compute a sample Xi

h`
−Xi

h`−1
on level ` is

W` = 2d+1W`−1 = 2(d+1)`W0, ` ≥ 0, (16)

where the exponent originates from d space and 1 time dimensions. Note that samples on low
levels require only a small fraction of the execution time of samples on high levels. The same holds
for memory space. Memory usage of a grid-based PDE solver is given by

mem` = 2dmem`−1 = 2d`mem0, ` ≥ 0. (17)

As suggested in [12] for s < (d+ 1)/2, the number of samples M` on level `, is set to be

M` = 2−2sM`−1 = 22(L−`)sML, ` ≥ 0. (18)

On the finest level, we chose a moderate number of samples, e.g., ML = 8.
We parallelize our simulation level-wise and across levels. A core deals with samples of only

one level, i.e, it computes solutions on two resolutions used for a sample Xi
h`
−Xi

h`−1
on level `.

In our implementation we choose an intermediate level b on which individual samples are
executed on a single core. This level is somewhat arbitrary. It is determined typically based on
memory requirements or execution times of a sample. The subdomains are chosen large enough
such that the communication over subdomain-interfaces plays a miner role. On levels ` > b, a
single sample is executed in parallel on multiple cores. The number of cores is determined by the
memory requirement of the sample, as given in equation (17). On levels ` ≤ b samples are executed
sequentially. So, the number N` of cores invested for a sample on level ` is

N` = d2d(`−b)e, ` ≥ 0. (19)

We collect samples in tasks of equal execution times. Tasks are the units of work that are submitted
to the compute nodes. A sample of the finest level forms a task. Tasks of coarser levels consist of
multiple samples. On very coarse levels, all respective samples are included in a single task that
may have a shorter execution time than (most) other tasks. Tasks of the same level are always
computed on independent nodes. Any single node may compute tasks from different levels.

In Fig. 1 a 3D example is given with 4 levels, b = 1, ML = 4, and s = 1/2. The MLMC
estimate is computed in parallel on 293 cores. The 4 samples of level L are each computed in a
task of 64 cores. Hence, 256 cores are involved in the computation of this level. On level b = 1 the
number of cores in a task is one. This number increases by 8 towards the finer levels, according
to (19). On level 0, one core deals with a single task that comprises all 32 samples of this level.
The execution time of this task is approximately half of that of the others, causing a small load
imbalance.

12

start end

levelL=3
4x64cores

4 x
4 samples

t

wall clock time

level2
4x8cores

4 x
8 samples1sample

2
−d 22 s

1sample1sample

1sample

level1
(4x)1core

4 x
16samples1s.

2
−d

1s. 1s. 1s.

22 s

level 0
(1x)1core

1x

32samples

1 22 s

idle time
32 samples

2
−1

2−d−1

2
−1

Figure 1: Computing an MLMC estimate with parameters L = 3, ML = 4, d = 3, s = 1/2 and only one core per
task on levels 0 and 1.

As mentioned in Section 3.4 it is crucial that samples (Xi
h`
−Xi

h`−1
) are lost as a whole, i.e.,

it must never happen that one part (either Xi
h`

or Xi
h`−1

) survives and is used in the end result

while the other part is lost. This is achieved by computing a whole sample (Xi
h`
− Xi

h`−1
) on

cores belonging to the same node. In case of node failure the whole sample is lost. Large samples
however use many cores such that multiple nodes have to be used to compute them. In case of node
failure, the processes running on unaffected cores have to realize that they should stop computing
their part of the sample. How this is solved is implementation dependent. In our FT-MLMC
implementation [18] we used User Level Failure Mitigation (ULFM) [3], a fault tolerant extension
of MPI. With ULFM a MPI process trying to communicate with a failed one is notified about the
failure. This process can then prohibit any further communication on the communicator used for
the computation of the affected sample. This insures that the information of failures is received
by all involved MPI processes. Further details are available in [18].

5.1. Lowering risk of level loss

A high probability of losing all samples on one level increases the FT-MLMC error bound in
Theorem 3.2 substantially. This applies particularly to the coarse levels where the impact of a loss
is highest. Two different ways of computing the samples are investigated. Both lower the risk of
losing all samples on coarse levels:

• “late save/4 tasks”: The samples of a level are split into at least four tasks each of which is
computed on independent nodes. The samples are stored only after the completion of the
whole task. So, according to our assumptions, a failure at runtime of a task leads to the total
loss of all its samples. In the example shown in Fig. 1 only level 0 is affected as all other
levels already run on at least four cores, see Fig. 2. This strategy reduces the risk of losing
all samples on level 0 by reducing the execution time of a task as well as by using multiple
tasks. The execution time of the now 4 tasks is reduced by 4 compared to the original one
which increases load imbalance.

13

level 0
4x1cores

4 x

32samplesidle time8 s.

Figure 2: The “late save/4 tasks” strategy requests at least 4 tasks per level. In the example of Fig. 1 this leads to
a large number of very small tasks on level 0.

• “immediate save”: Immediately after the completion of a sample, it is safely stored, and
hence will not get lost anymore.

The two strategies have a different behavior in case of failure. In the “immediate save” strategy,
a larger part of the data on a node survives the failure of the node, leading to higher failure
resilience. This advantage is offset by higher communication overhead. In the “late save” strategy
the statistical quality of the remaining samples is equivalent to the N -out-of-M strategy suggested
by Li and Mascagni [10]. How to get statistical independence of the remaining samples in the
“immediate save” strategy is to our knowledge an open question. Then only the first entries (up
to the failure) of a random number stream are used. Also the resilience of massive parallel RNG
(such as WELL [9]) in the presence of partial loss of streams remains to be addressed.

5.2. Euler equation of gas dynamics (New a section on its own)

We show results for the finite volume method (FT-MLMC-FVM) that solves the Euler equations
of gas dynamics. Following [13, 25], the d-dimensional Euler equations of gas dynamics are given
by

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + pID) = 0,

Et + div((E + p)u) = 0,

in D = (0, 1)d, with outflow boundary conditions, where ρ is the density and u the velocity vector.
The pressure p and the total energy E are related by the equation of state of an ideal gas, ie.

E :=
p

γ − 1
+

1

2
ρ|u|2,

with γ the ratio of specific heats. The RV of interest is X(x, t, ω) = {ρ(x, t, ω), u(x, t, ω), p(x, t, ω)},
computed at t = .6 s. In [13] an MLMC Finite Volume Method (MLMC-FVM) approach is proposed
to estimate E[X(·, t)]. A MLMC-FVM error bound is shown for scalar solutions in [12] and assumed
to hold for nonlinear hyperbolic systems of conservation laws in [13, 14] by

‖E[X(·, t)]− EL̂[X(·, t)]‖L2(Ω;L1(Rd)) ≤ C1h
s
L + C2M̂

∗− 1
2

0 + C3

{
L∑
`=1

M̂
∗− 1

2
` hs`−1

}
, (20)

which corresponds to the error bound (12). We set the constants as 10 · C1 = C2 = 10 · C3 = .5.
The convergence rate

‖E[X(·, t)]− EL[X(·, t)]‖L2(Ω;L1(Rd)) .W−s/(d+1) · log(W), s < (d+ 1)/2,

is empirically shown in [13]. Here, W =
∑
W`M` is the total work. Sample errors on level ` are

bounded by [12–14]
‖X`(·, t)−X`−1(·, t)‖L2(Ω;L1(Rd)) ≤ C4h

s
`−1. (21)

This bound is related to assumption (6). The bounds (20) and (21) imply the validity of Theo-
rems 3.1 and 3.2 for the FT-MLMC-FVM method.

14

5.3. Assessment of the FT-MLMC error bound

The error bound is compared with the measured error of a FT-MLMC implementation. In [18]
we report on the implementation of a MPI-parallelized FT-MLMC method in ALSVID-UQ [1].
In this implementation we used the User Level Failure Mitigation (ULFM) [3], a fault tolerant
extension of MPI. A failure generator is used to simulate MPI process failures. For this purpose
a timed asynchronous interrupt is set, which kills the MPI process using the exit system call.
This assures that failures can happen at any time, during the computation, the communication, or
while ULFM is recovering from previous failures. Our implementation in [18] demonstrates that
the FT-MLMC algorithm proposed in this paper can be successfully implemented.

In [18] we computed the FT-MLMC results on Brutus, a large compute cluster at ETH Zurich,
where we used one node with four 12-core AMD Opteron 6174 CPUs and 64 GB of RAM. Due
to incompatibility of the ULFM developer implementation with the batch system of Brutus it is
currently not possible to run the code on multiple nodes. We used a modified version of the failure
model in Section 4 where failures do not affect a whole node but only a process. Otherwise the
failure model remains the same.

The exact parameters used for the simulation are described in [18] and are summarized in
Table 1. All measurements are averages over multiple FT-MLMC runs. In the current paper we
used 100 runs for 6 s < MTBF < 100 s, otherwise 30 runs where used. The error is computed
using a MLMC reference solution E[Xref] with L = 8, ML = 8 and hL = 2−11, the absolute

FT-MLMC error is measured as
√
E30; 100[‖E[XhL]− E[Xref]‖2L1]. In contrast to the “immediate

save” strategy described in Section 5.1 we implemented an “intermediate save” strategy, where
the intermediate results of a process are sent to other processes computing samples of the same
level, up to four times during the computation. Additionally in both the “intermediate save” and
the “late save” strategy the samples of a level are split into at least two tasks, each of which is
computed on independent cores.

ML 2
d; s 2; 1/2
cells on level 0 (∝ 1/h0) 24

intermediate save 4 times, using 2 tasks
late save using 2 tasks
W5 (time for one sample) 16 × 94 s=1504 s
simulations with levels L = 5
one core per task b = 3
Weibull parameters λ; k variable; 0.5

Table 1: The parameters used in Fig. 3.

In Fig. 3 we compare the measurements from a FT-MLMC implementation with the In Fig. 3 we
compare the measurements from a FT-MLMC implementation with the derived FT-MLMC error
bound. The same FT-MLMC problem was simulated with different mean time between failures
(MTBF), by varying the Weibull scale parameter λ of the failure model. In order to save computing
time rather large failure rates (small MTBFs) where used. We determine the entry failure rate,
the failure rate from which on fault tolerance is useful. This point is reached when at least 10% of
all FT-MLMC runs encounter a failure, and hence 10% of all non fault tolerant implementations
(using standard MPI-3.0) would terminate without a result. This is measured by the “at least a

15

100 101 102 103 104 105

mean time between failure [s]

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Failure probabilities

at least a failure

(a) Failure probabilities of the 2D FT-MLMC bound.

100 101 102 103 104 105

mean time between failure [s]

10-1

100 Bound for the L1 (L1)-error

intermediate_save
late_save

(b) 2D FT-MLMC error bound.

100 101 102 103 104 105

mean time between failure [s]

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Failure probabilities
at least a failure
process failure

(c) Measured failure probabilities of the 2D FT-
MLMC implementation [18].

100 101 102 103 104 105

mean time between failure [s]
10-2

10-1

100
re

la
tiv

e
er

ro
r

Relative L1 (L1)-error
intermediate_save
late_save
fault_free

(d) Measured relative errors of the 2D FT-MLMC im-
plementation [18].

Figure 3: Behavior of the 2D FT-MLMC-FVM with different parameters under Weibull distributed failures.

failure” probability, shown in Fig. 3(a) for the theory derived in this paper and in Fig. 3(c) for
the measured FT-MLMC implementation [18]. In both subfigures the entry failure rate is around
MTBF=103 s for the given problem. Fig. 3(c) additionally presents the measured “process failure”
probability, which shows that in average 20% of all started processes fail at MTBF≈ 6 s. However,
at the entry failure rate (MTBF=103 s) the process failure probability is still small.

In Fig. 3(b) and 3(d) the FT-MLMC error bound and the measured relative FT-MLMC error
respectively are shown for the “intermediate save” and the “late save” strategies. Additionally we
present the measured reference error from the fault free ALSVID-UQ [1] in Fig. 3(d). We measure
the critical failure rate, the failure rate from which on the FT-MLMC method does not perform
well anymore. In the FT-MLMC implementation, shown in Fig. 3(d), the critical failure rate is
at MTBF ≈ 40 s. In the FT-MLMC error bound, shown in Fig. 3(b), the critical failure rate
is similar. There the “intermediate save” strategy provides a small benefit over the “late save”
strategy, whereas in the measurement this benefit is negligible. At MTBF ≈ 40 s the “intermediate
save” strategy performs even slightly better compared to the “late save” strategy. This artifact
appears since we are only averaging over 100 FT-MLMC runs.

16

It is observed in both the FT-MLMC implementation as well as in the FT-MLMC error bound
that the error only increases slightly between the entry failure rate and the critical failure rate. In
our opinion, this is a fundamental insight, as one could also expect a “gradual” loss of performance,
rather than a range of failure intensities where only a minor degradation is to be observed. Only
after the critical failure rate is reached, the error strongly increases and the numerical quality of
the simulation results is lost.

The rate of failure explosion after the critical failure rate does not match well when comparing
the error bound and the measured relative error. One reason is that the constants C1, C2, and
C3 in the error bound are unknown or can only be estimated very conservatively. In reality
many additional constants are implicitly contained in the three constants C1, C2, and C3. As in

E′[min(1, M̂
−1/2
0)] with certain implicitly problem dependent constants C ′ and C ′′. It would be

more precise to instead write, with 1A denoting the indicator function of the set A

E′[C ′1M`=0 + C ′′M̂
−1/2
0 1M`>0)] .

This can be seen in the derivation of the bound with lost levels, in eq. (15), where the part M̂
−1/2
0

comes from the two inequalities (2) and (14) which imply two unknown constants C ′ ≥ 1 and
C ′′ ≥ 1.

This constant C ′ describes the error in case a level is lost while C ′′ describes the error when
samples are computed. Levels are mostly lost for small MTBFs. Hence choosing a large constant
C ′ would mainly influence the error bound for small MTBFs, hence leading to a steeper rate of
failure explosion after the critical failure rate for the error bound. Several other implied parameters
could be used to tune the error bound towards the measured error. However, without tuning the
parameters we get a error bound which shows good qualitative agreement with the measured error.

Also keep in mind, that we are comparing two different things, a possibly pessimistic asymptotic
error bound with an actual discretiation, resp. sampling error.

5.4. Analysis of FT-MLMC error bounds

Four error bounds with different parameters are analyzed, see Table 2. The error bounds from
the 2 dimensional problem are shown in Fig. 4 and the three dimensional once in Fig. 5. Two
plots are shown for each case. In the left the problem solved is scaled, but the failure rate (Weibull
parameter λ) remains the same and vice versa in the right one. The run is exactly the same in
both plots, and its results are in either plot marked with a yellow rhombus.

Fig. 4(a,b) Fig. 4(c,d) Fig. 5(a,b) Fig. 5(c,d)

ML 8 8 8 8
d; s 2; 1/2 2; 1 3; 1/2 3; 1
cells on level 0 (∝ 1/h0) 32× 32 16× 16 8× 8× 8 4× 4× 4
W0 (time for one sample) 0.05 s 0.04 s 0.01 s 0.007 s
simulations with levels L = 5, . . . , 13 L = 5, . . . , 13 L = 4, . . . , 11 L = 4, . . . , 11
one core per task b = 4 b = 3 b = 4 b = 3
Weibull parameters λ; k 7.6 · 105; 0.7 7.6 · 105; 0.7 7.6 · 105; 0.7 7.6 · 105; 0.7

Table 2: The parameters used in Fig. 4 and 5 (a)–(c).

We determine the entry failure rate and the critical failure rate in all the measurements of
Figs. 4(b,d) and 5(b,d). In all these cases the entry failure rate is at around λ = 5 · 107 and the

17

105 106 107 108 109 1010 1011

cumulated runtime [s]

10-3

10-2

10-1

Er
ro

r b
ou

nd

FT-MLMC convergence analysis

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
(a) 2D FT-MLMC with parameters from Table 2.

103 104 105 106 107 108 109 1010

MTBF per Node [s]

10-3

10-2

10-1

Er
ro

r b
ou

nd

FT-MLMC analysis

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

(b) 2D FT-MLMC with parameters from Table 2.

105 106 107 108 109 1010 1011

cumulated runtime [s]

10-5

10-4

10-3

10-2

Er
ro

r b
ou

nd

FT-MLMC convergence analysis

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

(c) 2D FT-MLMC with parameters from Table 2.

103 104 105 106 107 108 109 1010

MTBF per Node [s]

10-5

10-4

10-3
Er

ro
r b

ou
nd

FT-MLMC analysis

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

(d) 2D FT-MLMC with parameters from Table 2.

immediate save
late save / 4 cores

reference
at least a failure

lose finest sample

Figure 4: Behavior of the 2D FT-MLMC with different parameters under Weibull distributed failures.

critical failure rate at around λ = 105. Again we observe that between the entry failure rate and
the critical failure rate the error bound only increases slightly. Hence, this desirable property is
found also in large runs, and in multiple dimensional runs. Only after the critical failure rate the
error explodes.

Similar to the entry failure rate, the failure rate from which on fault tolerance is useful, there is
a entry problem size, the problem size from which on fault tolerance is useful, when operating on a
given computer. Again we define this point as reached when 10% of all FT-MLMC runs encounter
a failure. The entry problem size is at a total execution time of around 5 · 106 s for Figs. 4(a)
and 5(a,c). In Fig. 4(c) the entry problem size is around 5 ·105 s. Similar to the critical failure rate,
we use the term of critical problem size in Figs. 4(a,c) and 5(a,c). This problem size is reached in
our measurements at around 109 s. Also in these figures we observe that the convergence behavior
of FT-MLMC is only negligibly affected by failures between the entry problem size and the critical
problem size. After the critical problem size however, the FT-MLMC method experiences many

18

104 105 106 107 108 109 1010 1011 1012

cumulated runtime [s]

10-2

10-1

Er
ro

r b
ou

nd

FT-MLMC convergence analysis

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
(a) 3D FT-MLMC with parameters from Table 2.

103 104 105 106 107 108 109 1010

MTBF per Node [s]

10-2

10-1

100

Er
ro

r b
ou

nd

FT-MLMC analysis

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

(b) 3D FT-MLMC with parameters from Table 2.

104 105 106 107 108 109 1010 1011 1012

cumulated runtime [s]

10-4

10-3

10-2

Er
ro

r b
ou

nd

FT-MLMC convergence analysis

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

(c) 3D FT-MLMC with parameters from Table 2.

103 104 105 106 107 108 109 1010

MTBF per Node [s]

10-3

10-2

10-1
Er

ro
r b

ou
nd

FT-MLMC analysis

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

(d) 3D FT-MLMC with parameters from Table 2.

immediate save
late save / 4 cores

reference
at least a failure

lose finest sample

Figure 5: Behavior of the 3D FT-MLMC with different parameters under Weibull distributed failures.

sample losses, such that the performance drops significantly. This is apparent by the increasing
disparity between the two FT-MLMC graphs “late save/4 tasks” and “immediate save” with the
fault-free MLMC “reference” graph. Hence, when using the failure distribution of Section 4 the
FT-MLMC method allows to solve problems which use more than two orders of magnitude more
runtime compared to the largest problem solved with a standard MLMC implementation.

The “late save/4 tasks” error does not only stop decreasing but grows again after the critical
problem size, Fig. 4(a,c) and 5(a). At first this may surprise. As the number of levels increases
the runtime of all tasks increases. This allows to compute more and more samples of a fixed level
in the same task. Hence the failure probability of this task increases. In the “late save/4 tasks”
mode failures lead to the loss of all samples of a task. Therefore the probability of level losses not
only increase for the high levels, but even for medium and low levels.

In Fig. 4(a,c) and 5(a,c) it is further observed that the performance of the FT-MLMC method
drops significantly as soon as the probability of losing all samples on the finest level approaches

19

values close to one. This can be expected, since then much of the computational work is used by
the attempt to compute samples, of which in the end only very few to none survive. This leads to
a high error to work ratio, or, in other words, to a poor FT-MLMC performance.

5.5. Practical applicability

To employ the theoretical error bounds derived in this paper, it is essential to have an accurate,
parametric statistical node failure model of the compute platform used. Once such a model has
been verified and calibrated to the particular hardware of interest, the computational work could
be redistributed among nodes and cores in order to minimize the overall impact of node failures
on the accuracy of the computation. Finally, based on a statistical node failure model of the
type considered here, a FT-MLMC error bound can be computed, which allows to infer precise
statements on the contributions to the overall error stemming from failures, and on whether the
problem of interest can be solved using FT-MLMC or plain MLMC on the given system.

The weak point of the presently proposed approach is that accurate and detailed, validated
statistical failure models and the data to calibrate them

are currently not available. Hopefully, the situation will improve over time, as the awareness
of faults grows. For the time being we opted to use failure models that allow to determine rough
estimates of the entry failure rate, critical failure rate, entry problem size, and critical problem
size.

We expect that in practice the entry problem size and the entry failure rate are not computed
with a known failure distribution, but rather we expect that users will be bothered when failures
terminate the application prematurely in at least 10% of the runs, which coincides with the men-
tioned quantities. Only then fault tolerance appears to become an issue for the user (this figure
might, however, be problem and application dependent). It is however not practical for the user
to decide when the performance of FT-MLMC deteriorates, i.e., the critical problem size and the
critical failure rate cannot be determined without some knowledge of the failure distribution. In
our measurements we observed that there is a range between the entry failure rate and the crit-
ical failure rate, and a range between the entry problem size and the critical problem size where
the performance of FT-MLMC appears to be unaffected by faults. In our problems, obviating
checkpointing in this observed fault tolerance extends the range of applicability by two orders
of magnitude: on a given computer the FT-MLMC method is applicable to problems that take
around 100 times longer compared to the “plain” fault-free MLMC method, or, equivalently, a
given problem can be solved on a computer with around 100 times smaller MTBF thanks to fault
tolerance.

We are aware that this estimated range may be specific to our assumptions, and may change
when other failure distributions and problems are considered. We are however confident that for a
number of applications, the potential range of improvement on Monte Carlo methods is large.

Our failure model does not take in to account that random node failures may be correlated
among different nodes in practice. This has adverse effects on the error bound. For large samples,
running on multiple nodes, correlated node failures could be beneficial in the following sense: as
soon as one node of a sample failed, the computation of this sample is stopped anyway, hence it does
not matter if additional nodes fail simultaneously. For most problems which occur in engineering
practice, and in particular for the Finite Volume simulations considered in the present paper, MC
Samples on low levels easily fit on a single node. In the “late save/4 tasks” strategy at least 4
cores on different nodes are used to compute samples of this level. Node failure correlation might
increase the risk of losing all 4 involved nodes simultaneously, which has a clearly negative effect

20

on the error bound. But we do not see any parameter which would ruin the nice property that the
error only increases slightly between the entry failure rate and the critical failure rate, and between
the entry problem size and the critical problem size and that there is a considerable large range
where FT-MLMC is applicable.

The measurement of the number of failures in one single FT-MLMC run on a computer with
unknown failure distribution does not provide any statistical information: it is not possible to
estimate the range of applicability of the FT-MLMC method with a single run. The same holds
for attempts to estimate the constants in the a priori error estimate from data obtained with one
single run.

6. Conclusions and future work

We introduced and analyzed a checkpoint-free and fault-tolerant Multi Level Monte Carlo
strategy, termed FT-MLMC. The approach is based on disregarding all samples affected by a node
failure at run-time. It is assumed that MPI is extended such that processes unaffected by a failure
can continue working and communicating. The MLMC estimate is computed with the remaining
samples. By incorporating general statistical models of sample losses into the mathematical failure
model and into the error bound of the FT-MLMC method a new MLMC error bound conditional
on prescribed node-failure statistics is derived.

The principal conclusion of the present analysis is that up to a certain rate of node failures per
sample the FT-MLMC error bound and, hence, the performance of the FT-MLMC, is provably of
the same type as that of the standard, fault-free MLMC. We therefore conclude that in this range
of failure rates, in MC and MLMC PDE simulations there is no need for additional fault tolerance
strategies such as, e.g., checkpoint/restart or re-computation of lost samples.

Due to the increasing likelihood of node-failures at run-time in emerging massive parallel hard-
ware, obviation of checkpointing may afford substantial increases in parallel efficiency and scalabil-
ity. In our analysis, we paid particular attention to the case when failures are Weibull distributed.
We considered, exemplarily, the case that the samples were computed with the Finite Volume
Method (FVM). We emphasize, however, that neither the Weibull distribution nor the FVM are
essential for the principal conclusions about the performance of the FT-MLMC method.

We compared the derived FT-MLMC error bound with measured errors of a fault tolerant
implementation [18]. We showed by a number of examples that the FT-MLMC method compared
to the standard MLMC method can solve, on a given hardware platform, considerably larger and
more time-consuming problems as compared to the standard fault-free MLMC method.

The proposed approach of simply discarding samples affected by a node failure at run-time
has the additional benefit that failures do not extend the run-time as does for instance check-
point/restart, or the re-computation of lost samples. This leads to a bounded run-time, even if
failures occur.

We conclude with the need for further research to develop better and more realistic stochastic
and/or deterministic failure models for massively parallel (in particular, exascale) computing plat-
forms. It would be very useful to know the failure distribution of the computer one is using. In
the best case a failure model would be provided by hardware vendors, ideally with failure inten-
sity parameters. Another line of research is the development of effective self-calibrating statistical
failure models which, when run on a given computing platform, would “probe” a given hardware
for failures and accumulate estimates of failure parameters at runtime.

21

The presently proposed models and their analysis completely disregard silent-errors. In a
further work we may cover some silent-errors by detecting them by statistical means [10].

We further emphasize that the presently proposed failure models are uncorrelated across the
hardware platform: in the presently proposed models, failures occur independently of relative
position of the node within the compute platform. There is, however, evidence that the ‘ageing’
of hardware as well as the time of day and the day of the week can affect fault arrival intensity
parameters, and it is plausible that spatial correlation (e.g. due to overheating) can play a role as
well.

Further work also includes investigations of the resilience of parallel random number generators.
This includes the preservation of statistical quality with partial loss of streams. Once realistic and,
ideally, self-calibrating fault models are in place, adaptive processor load distribution at runtime to
minimize impacts of faults on numerical simulation quality would be a major milestone.

Acknowledgment

The authors thank Jonas Šukys for the support with ALSVID-UQ, and the anonymous review-
ers for their valuable comments and suggestions that improved the quality of the paper.

References

[1] ALSVID-UQ. avalable from http://mlmc.origo.ethz.ch/, Aug. 2012.
[2] A. Barth, Ch. Schwab, and N. Zollinger. Multi-level Monte Carlo finite element method for elliptic pdes with

stochastic coefficients. Numer. Math., 119(1):123–161, 2011.
[3] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. Dongarra. An evaluation of user-level failure

mitigation support in MPI. In J. L. Träff, S. Benkner, and J. Dongarra, editors, Recent Advances in the Message
Passing Interface, pages 193–203. Springer, 2012. (Lecture Notes in Computer Science, 7490).

[4] F. Cappello. Fault tolerance in petascale/exascale systems: Current knowledge, challenges and research oppor-
tunities. Int. J. High Perform. Comput. Appl., 23(3):212–226, 2009.

[5] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward exascale resilience. Int. J. High
Perform. Comput. Appl., 23(4):374–388, 2009.

[6] G. S. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York, 5th edition, 2003.
[7] M. B. Giles. Multilevel Monte Carlo path simulation. Operations Research, 56(3):607–617, 2008.
[8] M. Hoemman and M. Heroux. Fault-tolerant iterative methods via selective reliability. Technical Report

SAND2011-3915 C, Sandia National Laboratories, Albuquerque NM, 2011.
[9] P. L’Ecuyer and F. Panneton. Fast random number generators based on linear recurrences modulo 2: overview

and comparison. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joine, editors, Proceedings of the
2005 Winter Simulation Conference, pages 110–119, 2005.

[10] Y. Li and M. Mascagni. Analysis of large-scale grid-based Monte Carlo applications. Int. J. High Perform.
Comput. Appl., 17:369–382, 2003.

[11] M. Mascagni, D. Ceperley, and A. Srinivasan. SPRNG: A scalable library for pseudorandom number generation.
ACM Trans. Math. Softw., 26:436–461, 2000.

[12] S. Mishra and Ch. Schwab. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conser-
vation laws with random initial data. Math. Comp., 81(280):1979–2018, 2012.

[13] S. Mishra, Ch. Schwab, and J. Šukys. Multi-level Monte Carlo finite volume methods for nonlinear systems of
conservation laws in multi-dimensions. J. Comput. Phys., 231(8):3365–3388, 2012.

[14] S. Mishra, Ch. Schwab, and J. Šukys. Multi-level monte carlo finite volume methods for shallow water equations
with uncertain topography in multi-dimensions. SIAM J. Sci. Comput., 34(6), pp. B761–B784, 2012.

[15] MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.0, October 2013. available at: http:

//www.mpi-forum.org (Oct. 2013).
[16] D. Nurmi, J. Brevik, and R. Wolski. Modeling machine availability in enterprise and wide-area distributed

computing environments. In J. Cunha and P. Medeiros, editors, Euro-Par 2005. Parallel Processing, volume
3648 of Lecture Notes in Computer Science, pages 432–441. Springer, Berlin, 2005. doi:10.1007/11549468 50.

22

http://mlmc.origo.ethz.ch/
http://www.mpi-forum.org
http://www.mpi-forum.org

[17] A. Papoulis and S.U. Pillai. Probability, random variables, and stochastic processes. McGraw-Hill electrical and
electronic engineering series. McGraw-Hill, 2002.

[18] S. Pauli, M. Kohler, and P. Arbenz. A fault tolerant implementation of Multi-Level Monte Carlo methods.
Proceedings of the international conference on parallel computing (ParCo 2013), Munich, Germany, 2013.

[19] W. P. Petersen and P. Arbenz. Introduction to Parallel Computing. Oxford University Press, Oxford, 2004.
[20] H. Rinne. The Weibull Distribution: A Handbook. CRC Press, 2009.
[21] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. Parallel random numbers: as easy as 1, 2, 3.

In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC’11, pages 16:1–16:12, New York, NY, USA, 2011. ACM.

[22] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-performance computing systems. In
Proceedings of the International Conference on Dependable Systems and Networks, pages 249–258, Washington,
DC, USA, 2006. IEEE Computer Society.

[23] Ch. Schwab. Numerical analysis of stochastic partial differential equations. Lecture notes, 2010.
[24] Ch. Schwab and C. J. Gittelson. Sparse tensor discretizations of high-dimensional parametric and stochastic

PDEs. Acta Numer., 20:291–467, 2011.
[25] J. Šukys, S. Mishra, and Ch. Schwab. Static load balancing for multi-level Monte Carlo finite volume solvers.

In R. Wyrzykowski et al., editors, Parallel Processing and Applied Mathematics (PPAM 2011), pages 245–254,
Berlin, 2012. Springer. (Lecture Notes in Computer Science, 7203).

[26] Y. Zhao. Parametric inference from window censored renewal process data. PhD thesis, The Ohio State Uni-
versity, Columbus, Ohio, 2006.

[27] The raw data and more information is available at the two URLs http://www.pdl.cmu.edu/FailureData/ and
http://www.lanl.gov/projects/computerscience/data/.

23

http://www.pdl.cmu.edu/FailureData/
http://www.lanl.gov/projects/computerscience/data/

Research Reports

No. Authors/Title

12-24 St. Pauli, P. Arbenz and Ch. Schwab

Intrinsic fault tolerance of multi level Monte Carlo methods

12-23 V.H. Hoang, Ch. Schwab and A.M. Stuart

Sparse MCMC gpc Finite Element Methods for Bayesian Inverse

Problems

12-22 A. Chkifa, A. Cohen and Ch. Schwab

High-dimensional adaptive sparse polynomial interpolation and applica-

tions to parametric PDEs

12-21 V. Nistor and Ch. Schwab

High order Galerkin approximations for parametric second order elliptic

partial differential equations

12-20 X. Claeys, R. Hiptmair, and C. Jerez-Hanckes

Multi-trace boundary integral equations

12-19 Šukys, Ch. Schwab and S. Mishra

Multi-level Monte Carlo finite difference and finite volume methods for

stochastic linear hyperbolic systems

12-18 Ch. Schwab

QMC Galerkin discretization of parametric operator equations

12-17 N.H. Risebro, Ch. Schwab and F. Weber

Multilevel Monte-Carlo front tracking for random scalar conservation

laws

12-16 R. Andreev and Ch. Tobler

Multilevel preconditioning and low rank tensor iteration for space-time

simultaneous discretizations of parabolic PDEs

12-15 V. Gradinaru and G.A. Hagedorn

A timesplitting for the semiclassical Schrödinger equation

12-14 Ph. Grohs and G. Kutyniok

Parabolic molecules

12-13 V. Kazeev, O. Reichmann and Ch. Schwab

Low-rank tensor structure of linear diffusion operators in the TT and

QTT formats

12-12 F. Müller, P. Jenny and D.W. Meyer

Multilevel Monte Carlo for two phase flow and transport in random het-

erogeneous porous media

