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Abstract

Based on a modification of the ”Dichotomy Algorithm” (Terekhov, 2010), we propose a parallel procedure
for solving tridiagonal systems of equations with Toeplitz matrices. Taking the structure of the Toeplitz
matrices, we may substantially reduce the number of the ”preliminary calculations” of the Dichotomy
Algorithm, which makes it possible to effectively solve a series as well as a single system of equations. On the
example of solving of elliptic equations by the Separation Variable Method, we show that the computation
accuracy is comparable with the sequential version of the Thomas method, and the dependence of the
speedup on the number of processors is almost linear. The proposed modification is aimed at parallel
realization of a broad class of numerical methods including the inversion of Toeplitz and quasi-Toeplitz
tridiagonal matrices.
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1. Introduction

The realization of many numerical algorithms, such as the Multigrid Line Relaxation [1–3], ADI and
Separation Variable Method [2, 4–6], Cyclic Reduction Method [4, 5] for solving elliptic equations and also
the problems of construction of splines [7, 8] etc. requires solving tridiagonal systems of equations with
Toeplitz matrices [9, 10]

T =















t0 t1 0
t−1 t0 t1

. . .
. . .

. . .

t−1 t0 t1
0 t−1 t0















≡ tridiag{..., t−1, t0, t1, ...}. (1)

Since, in solving modern problems of mathematical modeling, the size and the number of such problems
can reach several tens of thousands, such computations must be performed on a supercomputer.

A lot of versions of parallel Thomas algorithms for general tridiagonal matrices [11–18], as well as for
Toeplitz matrices [19–21], have been worked out as of today. Algorithms have been proposed that take
into account the presence of diagonal dominance[22]. In [23],on the example of the realization of the ADI
method, the approach was considered in which combination of computations and interprocessor exchanges
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makes it possible to increase the paralleling efficiency. In [24], a method called the Dichotomy Algorithm
was proposed for solving a series of problems with a constant matrix and different right-hand sides

AXm = Fm, m = 1, ...,M,

A = tridiag{..., ci, bi, ai, ...}, i = 1, ...N, c1 = aN = 0,
(2)

whereM is the number of problems in the series. The advantage of the Dichotomy Algorithm consists in that
it makes it possible to attain a thousandfold speedup for problem (2) not only in theory but also in practice.
Aiming at a further development of this approach, we, based on a modification of the Dichotomy Algorithm,
will propose a parallel algorithm for solving not only a series but a single system of linear algebraic equations
(SLAE) with Toeplitz matrices.

A sufficient condition for the applicability of the Dichotomy Algorithm is the diagonal dominance of
the matrix of the SLAE. As regards accuracy, the number of arithmetic operations, and the number of
communication interactions, the Dichotomy Algorithm is almost equivalent to the Cyclic Reduction method
[25, 26] However, for comparable data volumes, the real time of interprocessor interactions in the Dichotomy
Algorithm is much smaller. This is explained by the fact that all interprocessor exchanges may be carried
out via a sequence of calls to the collective operation ”All-to-One-Reduce(+)” [27].The account of such
properties as the associativity and commutativity of the operation ”+” taken over the distributed data
makes it possible to reduce the time of communication interactions by optimizing them[28–32].While the
organization of exchanges via a multiple call to the nonblocking1 function ”All-to-One-Reduce(+)” makes
it possible to reduce the time of synchronization of processor elements (PE). Indeed, if, in one group of
processors 2, there exist two free PEs with prepared data then the execution of the collective operation
”(+)” over this group of processors can start to even if the previous call on all processors is not finished.
Thus, the structure of the Dichotomy Algorithm yields ample opportunities for the minimization of the data
transfer time as well as the PE synchronization time. In the cyclic reduction method, the fixed order of
elimination of the unknowns, on the one hand, restricts optimization of communication interactions, and on
the other, requires synchronization of the computations on each reduction order.

The presence of a preliminary step with O(N) arithmetic operations spent, where N is the dimension of
the SLAE, does not make it possible to use the Dichotomy Algorithm effectively for solving one problem.
However, for Toeplitz matrices, an economical preliminary procedure can be constructed with the number
of the arithmetic operations of order O(N/p+ log2 p), where p where is the number of the processors. Thus,
a modification of the preliminary step in the Dichotomy Algorithm enables us to effectively solve not only
a series but a single SLAE with a Toeplitz matrix.

The structure of the article is as follows. In Section 2, we expose the Dichotomy Algorithm for the
general case. In Section 3, we propose an economical preliminary procedure for the inversion of tridiagonal
matrices in the Toeplitz class. We consider the problems of the stability of the dichotomy process and the
accuracy of the so-obtained solution for systems with or without diagonal dominance. In Section 4, we give
the results of numerical experiments. Section 5 is devoted to the summary of the work we have done.

2. The Dichotomy Algorithm

Before starting the exposition of the Dichotomy Algorithm, consider the question of mapping the data
of the problem onto many processors.

2.1. Data decomposition

Let p be the number of the PEs. Partition the vector of the right-hand side and the solution vector F
and X into subvectors Qi, Ui as follows:

1This requirement is necessary for the realization of the Dichotomy Algorithm (see Subsection 2.5)
2A communicator in the terminology of the MPI.
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F = (Q1,Q2, ...,Qp)
T
=

(

f1, f2, ..., fsize{F}−1, fsize{F}
)T
, (3)

X = (U1,U2, ...,Up)
T
=

(

x1, x2, ..., xsize{X}−1, xsize{X}
)T
. (4)

Denoting by size{V} the number of the components of a vector V, require the fulfillment of the following
conditions:

size{Qi} = size{Ui} ≥ 2, i = 1, ..., p,

∑p

i=1 size{Qi} =
∑p

i=1 size{Ui} = size{X}.
Assume that the pair of subvectors (Qi,Ui) belongs to the PE with the number i and the row of the

matrix A having number j belongs to the PE containing the pair of the elements (xj , fj) of (3),(4).
Introduce in addition the following notations:

• Denote the first and the last elements of a vector V by first{V} and last{V}.

• Denote by {A}tl the matrix obtained from a matrix A by throwing off all rows and columns with the
numbers less than l or greater than t.

• Denote by {V}tl the subvector obtained from a vector V by throwing off the components with the
numbers less than l or greater than t.

• Define ek as a coordinate vector in R
n.

2.2. The Dichotomy of a SLAE

The Dichotomy Algorithm is a representative of the class of algorithms known as ”Divide & Conquer”
[17, 33, 34]. On each dichotomy level, the tridiagonal system of equations obtained at the previous step is
partitioned into three independent subsystems of lesser dimensions (Fig. 2) by computing the solutions in
the first{Um}, last{Um} components (Fig. 1 ).

... ... ...

first(U )mlast(U )m-1 first(U )m+1last(U )m

Um-1 Um Um+1

................(X=

(T

Figure 1: The first and last elements of the solution vector.

Thus, on the first dichotomy level, we construct two components of the solution vector

(X)mL
≡ first{Um}, (X)mR

≡ last{Um}, (5)

situated on the mth processor. The calculation of these components makes it possible to replace the initial
system by three independent problems

{AX}mL−1
1 = {F}mL−1

1 − amL−1 (X)mL
eL, (6)

{A}mR−1
mL+1









xmL+1

xmL+2

. . .
xmR−1









=









fmL+1 − cmL+1 (X)mL

fmL+2

. . .
fmR−1 − amR−1 (X)mR









, (7)

{AX}nmR+1 = {F}nmR+1 − cmR+1 (X)mR
eR. (8)
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procs 1:(m-1)

proc m

procs (m+1):p

(U ,U ,...,U )1 2 m-1

T
Um (U ,U ,...,U )m+1 m+2 p

T

Level 1

Level 2

Level 3

Figure 2: Partition of a tridiagonal SLAE into independent subsystems.

eR = (1, 0, 0, ..., 0)
T
, eL = (0, ..., 0, 0, 1)

T
.

On the second dichotomy level, we similarly separate systems (6) and (8). As a result, in ⌈log2 p⌉ steps,
the initial system of equations (2) will split into p independent subsystems of the form (7). The solution
to (7) on each processor may be found independently with the use of any sequential version of the Thomas
algorithm [5, 35] for O(size{X}/p) arithmetic operations.

2.3. The Main Formulas

The process of the calculation of the first{Um} , last{Um} components consists in two steps: a prelim-
inary step carried out once for all right-hand sides of (2) and the dichotomy process at which the solution
is computed for each right-hand side.

At the preliminary step, on the mth processor locally without communication interactions, we compute
two rows of the matrix A−1

ATGL
m = emL

, ATGR
m = emR

, (9)

where mL ,mR are defined in (5) and ek is an ort.
The vectors GR,L

m have the sense of the difference Green’s function [36] for the corresponding three-point
boundary value problem.

Remark 1. In [24], the system of linear algebraic equation with symmetric and asymmetric tridiagonal
matrices were separately considered (Lemma 1 and Section 3.6). However, with allowance for the property
(AT)−1 = (A−1)T, the preliminary procedure can be essentially simplified reducing to the calculation of
the vectors GR,L following (9). This makes possible, on the one hand, not to consider the case with an
asymmetric matrix and, on the other hand, to exclude the situation like overflow, which may take place in
explicit calculation of the inverse matrix entries.

In addition, at the preliminary step, we compute two vectors

ZL
m =

(

zL1 , z
L
2 , ..., z

L
mL−1, 1

)T
,

ZR
m =

(

1, zRmR+1, . . . , z
R
N−1, z

R
N

)T
,

(10)

where the components of the vectors are found as solutions to the systems
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{A}mL−1
1

{

ZL
}mL−1

1
= −amL−1e

L, (11)

{A}NmR+1

{

ZR
}N

mR+1
= −cmR+1e

R. (12)

Thus, the costs of the preliminary computations for the Dichotomy Algorithm will constitute size{ZR,L
m } =

O(N). Therefore, it is appropriate to apply the Dichotomy Algorithm for solving several SLAE with constant
matrix and different right-hand sides. In this case, the preliminary computations may be neglected.

Like in the Partition Algorithm [17, 33], the Dichotomy Algorithm is based on the superposition principle[37].
That is, the components of the solution vector are expressed via the sum of the general solution to the ho-
mogeneous equation and a partial solution to the nonhomogeneous equation. However, in the Dichotomy
Algorithm, this principle is realized in a somewhat different manner.

Suppose that ∀ i 6= m, ‖Qi‖ = 0. Then the components of (5) satisfy the identity [24]

(X)mL
=

mR
∑

j=mL

(F)j
(

GL
m

)

j
, (X)mR

=

mR
∑

j=mL

(F)j
(

GR
m

)

j
. (13)

The remaining components of the solution vector may be determined from the auxiliary vectors ZR,L
m as

follows:

(X)i =







(

ZL
m

)

i
(X)mL

, i ≤ mL

(

ZR
m

)

i
(X)mR

, i ≥ mR.
(14)

If we consider all possible cases m = 1, ..., p when ‖Qm‖ 6= 0 while ∀i 6= m ‖Qi‖ = 0 and then sum up
the so-obtained solutions (14), we come to the formula for computing the first, last– elements

(X)k =







































m−1
∑

j=1

βR
j

(

ZR
j

)

k
+

p
∑

j=m

βL
j

(

ZL
j

)

k
, (X)k = first{Um},

m
∑

j=1

βR
j

(

ZR
j

)

k
+

p
∑

j=m+1

βL
j

(

ZL
j

)

k
, (X)k = last{Um},

(15)

where

βL
m =

mR
∑

j=mL

(F)j
(

GL
m

)

j
, βR

m =

mR
∑

j=mL

(F)j
(

GR
m

)

j
. (16)

Here the indices mR,mL are found locally on each processor by (5).
The vectors um, vm are the solution to the interior difference boundary value problem with respect

to the subvector Um, whereas the vectors ZR,L
m are the solution to the exterior boundary value problem.

This difference is of principle. So, in the realization of the Dichotomy Algorithm, the computation of the
first, last – components is reduced to the calculation of the sums (15), whereas, in the Partition Algorithm,
it is necessary to solve a ”reduced” [17, 33] SLAE of dimension 2p−2 by means of some parallel variant of the
Gauss Elimination Method. Since the computation of the sums on a multiprocessor computing system can
be realized with a greater efficiency then the Gauss elimination method, the Dichotomy Algorithm makes
it possible to reach a greater productivity for the problems of the form (2) than the Partition Algorithm.
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Figure 3: The MPI-realization of the Dichotomy Process.

2.4. MPI realization of the Dichotomy Algorithm

Fig. 3 contains the MPI-realization of (15) for partitioning the system AX = F, size{F} = N .
Assume that the vectors GR,L

m ,ZR,L
m are already defined at the preliminary step. Then, at step 1 of the

Dichotomy Process, by (16) each processor computes two local quantities βR,L
m , where m is the processor

number. The arithmetic costs at this step are O(size{Ui}) for each PE. In the sequel, in the separation of
the systems, the quantities βR,L

m will be recomputed for a number of operations of order O(1).
At the first dichotomy level, consisting of steps 2.1–2.2–2.3, we compute two components of (5) with the

use of (15) as follows.
At step 2.1, by calling the collective function mpi Reduce over the communicators Comm1,Comm2, we

compute the quantities

ξR =
m−1
∑

j=1

βR
j

(

ZR
j

)

mL
, ξL =

p
∑

j=m+1

βL
j

(

ZL
j

)

mR
. (17)

At step 2.2, processor m − 1 sends3 to processor m the quantity ξR and processor m + 1, the quantity
ξL.

Now, the sought components situated on the mth processor may be computed as [24]

(X)mL
= first{Um} = ξR + ξL

(

GL
m

)

mR

(GR
m)mR

+ βL
m,

(X)mR
= last{Um} = ξR

(

GR
m

)

mL

(GL
m)mL

+ ξL + βR
m.

(18)

3This exchange is designated as ”First” in Fig. 2.
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Remark 2. The quantities
(

GR
m

)

mL
/
(

GL
m

)

mL
and

(

GL
m

)

mR
/
(

GR
m

)

mR
make it possible to ”transfer” the

boundary condition from the component first to the component last and vice versa, i.e., inside the vector
Um.

Furthermore, to exclude the thus-found components from the system of equations, processor m sends4

to processor m− 1 the quantity δL =

(

ξL
(GL

m)mR

(GR
m)

mR

+ βL
m

)

(

ZL
m

)

mL−1
and to processor m+ 1, the quantity

δR =

(

ξR
(GR

m)mL

(GL
m)

mL

+ βR
m

)

(

ZR
m

)

mR+1
respectively.

At step 2.3, the vector of the right-hand side of SLAE (6),(7),(8) is modified, and the processors with
numbers m− 1,m+ 1 recompute the quantities

β̂R
m−1 = βR

m−1 + δL, β̂L
m+1 = βL

m+1 + δR,

β̂L
m−1 = βL

m−1 + δL
(GL

m−1)tR
(GR

m−1)tR
, β̂R

m+1 = βR
m+1 + δR

(GR
m+1)qL

(GL
m+1)qL

,
(19)

where (X)tR ≡ last{Um−1}, (X)qL ≡ first{Um+1},
On the next dichotomy level, an analogous separation process is applied to subsystems (6),(8), where

the quantities (19) are used instead of βR,L
m−1,m+1. Moreover, the steps having numbers s.1, s.2, s.3, (where

s = 1, 2, ..., ⌈log2 p⌉ ) are equivalent to steps 2.1, 2.2, 2.3. However, on the sth level, 2s−1 already independent
systems obtained at the previous step are separated independently.

2.5. Optimization of the Communication Costs

Since the number of arithmetic operations at the step of solving the ”reduced” SLAE is relatively small,
the communication cost of the algorithm of solving this subproblem defines the efficiency of the Partition
Algorithm. The ”reduced” system may be solved by the Cyclic Reduction Method [13, 38]. In [24] it was
shown that the estimates of the computation time for the Dichotomy Algorithm and the Cyclic Reduction
coincide in order if, first, the delay time α before the data transfer is insignificant and, second, not one but
several series of problems are solved simultaneously

TDichotomy
p = α [log2(p) + 1] log2(p) + l

(

log2(p)− p−1
p

)

(γ + 2β) ≈

≈ 2 log2(p) (lβ + lγ/2) ,

TCyclicReduction
p = 2 log2(p) (α+ lβ + lγ) ≈ 2 log2(p) (lβ + lγ) .

Here β is the time of transfer of a real number from one PE to another, γ is the time spent on the
operation of addition of two numbers, l is the number of the series of the simultaneously solved SLAEs.

In comparison with the Partition Algorithm + the Cyclic Reduction, the Dichotomy Algorithm gives a
higher speedup coefficient due to lesser time costs for the synchronization of the computations as well as on
the data exchange between the PEs.

The reduction of the communication time is possible due to the fact that the main communication
operation (”+”) of the Dichotomy Algorithm is associative. The architecture of modern supercomputers
is such that the time of pairwise interactions may differ substantially for different processors [39–41]. The
associativity of the computations makes it possible to define the order of the interactions of the PEs on the
level of a communication library or a programming language so as to minimize the time of data exchanges
by taking into account the architecture of the supercomputer.

4This exchange is designated as ”After” in Fig. 2.
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The reduction of the interprocessor exchange time is not a sufficient condition for the efficiency of
the parallel algorithm since it is necessary to take into account the presence of synchronization of the
computations. It often happens that most of the PEs expect the computation results from several PEs,
which leads to the decrease of the total efficiency due to down-time periods of the computational resources.
In the context of the Dichotomy Algorithm, the problem of minimization of the synchronization time is
solved as follows. First, the number of groups of interacting processors increases with the number of
the dichotomy level but the number of processes in each of them decreases; hence, so does the time of
interprocessor exchanges. Second, the Dichotomy Algorithm almost does not require to synchronize the
computations in passing from one dichotomy level to another (especially, on the first levels, where the
number of communications is maximal). Thus, for beginning the process of partitioning the system of
equations on dichotomy level s+ 1, it is first necessary to modify the quantities (19) at step s.3. However,

the processors that do not compute the β̂R,L
m at step s.3 may start the summation of the series (17) at step

(s + 1).1 without waiting for the result of the previous steps. Thus, on a majority of the processors, steps
s.2, s.3, and (s+ 1).1 may be carried out with a high degree of parallelism.

3. The Parallel Dichotomy Algorithm for Toeplitz Matrices

The realization of the Dichotomy Algorithm on a parallel computational system may be regarded as the
solution of two separate subproblems:

1. Minimization of the number of arithmetic operations in the computation of the auxiliary vectors
ZR,L
m , GR,L

m .

2. Minimization of the time of the communications and synchronization in the realization of (15).

Since, at the second step of the Dichotomy Algorithm, the form of the SLAE does not matter, we, in
order to guarantee the possibility of solving not only a series but a single equation with matrix of the form
(1), pose the problem of reducing the number of arithmetic operations at the preliminary step. Note that, in
view of (15),(16) we do not need to determine all components of the auxiliary vectors but only those used.
Thus, we need to find only O(N/p) components of GR,L

m and ⌈log2 p⌉ components of ZR,L
m .

3.1. Optimization of the Preliminary Computations

For a general matrix (2), finding the necessary components zR,L
i , gR,L

i from (9),(10) requires O(N) arith-
metic operations. For Toeplitz matrices, the components of the auxiliary vectors may be found in a lesser
number of operations in accordance with the following theorem.

Theorem 1. [5, 10, 37] Assume that we need to solve a SLAE

TY = F

with matrix (1) of order N . Then the nth component of the solution may be calculated as

yn =

n−1
∑

k=1

(q1q2)
n−k

(

qN+1−n
2 − qN+1−n

1

) (

qk2 − qk1
)

(q2 − q1)
(

qN+1
2 − qN+1

1

) · fk
t1

+

N
∑

k=n

(

qN+1−k
2 − qN+1−k

1

)

(qn2 − qn1 )

(q2 − q1)
(

qN+1
2 − qN+1

1

) · fk
t1
, (20)

q1 =
−t0 +

√

t20 − 4t−1t1
2t1

, q2 =
−t0 −

√

t20 − 4t−1t1
2t1

.

Moreover, the solution does not exist if qN+1
1 = qN+1

2 but q1 6= q2.

Involving the fact that the right-hand sides in (9),(11),(12) may contain a unique nonzero component,
it is easy to prove that, for computing one component of the vectors ZR,L

m ,GR,L
m , by (20) we will need O(1)

arithmetic operations. Therefore, at the preliminary step as well as at the step of the partition of the SLAE,
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it will be necessary to carry out O(N/p+ log2 p) arithmetic operations. Thus, the Dichotomy Algorithm for
Toeplitz matrices may be applied not only to a series but to a single problem.

A similar economic preliminary procedure may be constructed for matrices of a somewhat more general
kind than (1). For example, in [10, 42], explicit expressions are given for computing the elements of the
inverse matrix to a matrix of the form

A =















t0 + ψ t1 0
t−1 t0 t1

. . .
. . .

. . .

t−1 t0 t1
0 t−1 t0 + χ















. (21)

Thus, if, for some tridiagonal matrix, it is possible to compute a separate component of the vectors
ZR,L
m ,GR,L

m for O(1) arithmetic operations then, in this case, it is possible to effectively solve a series as well
as a single problem.

3.2. Inversion of the Operator ∇2

In solving the first boundary value problem for the Poisson equation by such methods as the Multigrid
Line Relaxation, the Variable-Separation Method etc., it is necessary to solve a series of equations of the
form











yi+1 − 2yi + yi−1

h2
+ λkyi = −fi, λk ∈ R 1 ≤ i ≤ N − 1, k = 1, ...,M,

y0 = µ1, yN = µ2.

(22)

Consider an economic algorithm for computing of the components of the vectors ZR,L
m ,GR,L

m for problems
(22). It is known [5, 10, 43] that the solution to (22) is given by (20) and may be written down in the form

yn =
UN−n−1(x)

UN−1(x)

[

µ1 +

n−1
∑

k=1

Uk−1(x)f(k)

]

+
Un−1(x)

UN−1(x)

[

µ2 +

N−1
∑

k=n

UN−k−1(x)f(k)

]

, (23)

where x = 1 − h2λ/2 6= cos kπ
N
, k = 1, 2, ..., N − 1 and Un(x) is the Chebyshev polynomial of the sec-

ond kind of n degree [44, 45].
With (5) taken into account, the solution to (10) on the mth processor has the form

zRi = UN−i−1(x)
UN−mR−1(x)

, mR ≤ i ≤ N,

zLi = Ui−1(x)
UmL−1(x)

, 1 ≤ i ≤ mL.

(24)

The solution to (9) has the form

gLi = UN−i−1(x)
UN−1(x)

UmL−1(x), mL ≤ i ≤ mR,

gRi = Ui−1(x)
UN−1(x)

UN−mR−1(x), mL ≤ i ≤ mR.

(25)

Since the necessary components of GR,L
m are situated successively (16), having computed gR,L

mR,mL
by (25),

it is more economic to compute the remaining components by solving the systems

{

AGR
}mR−1

mL+1
= −t−1g

R
mL

eR − t1g
R
mR

eL, (26)

{

AGL
}mR−1

mL+1
= −t−1g

L
mL

eR − t1g
L
mR

eL. (27)
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3.3. Accuracy analysis

Since the values of Uk(x) outside the interval [−1, 1] begin to increase rapidly with k, we cannot exclude
an overflow-type situation in a program realization of (24),(25) for |x| > 1 [46, 47]. To overcome this
difficulty, we do the following. Let N0 be the degree of the polynomial greater than which the quantity
Uk(x), k > N0, |x| > 1 cannot be computed because the result exceeds the boundary of the admissible
values of the real variable. A Chebyshev polynomial of the second kind admits the representation [44]

Un(x) =
1

2
√
x2 − 1

[

(

x+
√

x2 − 1
)n+1

−
(

x+
√

x2 − 1
)−(n+1)

]

, |x| ≥ 1. (28)

Then the relation
(

x+
√

x2 − 1
)−(n+1)

≪
(

x+
√

x2 − 1
)(n+1)

, (29)

holds ∀n > N0, from which ∀n > N0 we may assume with a good accuracy that

Un(x) ≃
1

2
√
x2 − 1

(

x+
√

x2 − 1
)n+1

. (30)

Now, substituting (30) into (25) and collecting similar summands, we infer

gLi ≃ 1
2
√
x2−1

[

η(mL−i) + η(−2N−i+mL) − η(−2N+mL+i) − η(−mL−i)
]

, mL ≤ i,

gRi ≃ 1
2
√
x2−1

[

η(i−mR) + η(−2N+i−mR) − η(−2N+mR+i) − η(−i−mR)
]

, mR ≥ i,
(31)

where η = x+
√
x2 − 1.

Since the exponents in (31) are at most zero and |x| > 1, the situation of an overflow of variables is
excluded.

Remark 3. In solving tridiagonal systems of dimension less than N0, the computations of the components
of the auxiliary vectors should be performed by (24),(25), (28) so as to avoid loss of accuracy because of a
possible violation of (29).

Remark 4. If |x| < 1 then Uk(x) ≤ k + 1. Hence no overflow of variables arises for x 6= cos kπ
N
, k =

1, 2, ..., N − 1 and reasonable N .

3.4. Stability analysis

It is proved in [24] that a sufficient condition of stability for the Dichotomy Algorithm is given by the
diagonal dominance of the matrix of the SLAE

|bi| ≥ |ai|+ |ci| , i = 2, ..., N − 1, (32)

|b1| ≥ |a1| , |bN | ≥ |cN | , (33)

and at least one of the inequalities is strict.
For problem (22) in the case of λ ≤ 0, the matrix of the SLAE has diagonal dominance, which guar-

antees the stability of the Dichotomy Algorithm. However, for λ > 0, there is no diagonal dominance and
accumulation of roundoff error can happen. This follows from the fact that, by the failure of the maximum
principle [36, 48], the components of the vectors ZR,L

m may have their modulus greater than one (Fig. 4).
In this case, the error of the computation of the first, last-components committed on the sth dichotomy
level passes to s+1 level by means of (19) and is then ”strengthened” by multiplying by

∣

∣ZR,L
m

∣

∣ ≤ γ in (15).
Thus, if the number of the dichotomy levels is great and γ is much greater than 1 then an accuracy loss is
possible.
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Figure 4: The values of the components of ZR
2 for the case N = 8192, p = 4 in solving (22) for different values λ.

If we take the estimate

εi =
l

∏

j=1

∣

∣

∣

(

ZR,L
nj

)

i

∣

∣

∣ ε ≤ γlε, (34)

as the maximal error of the computation of the component (X)i, where l is the number of the dichotomy
step at which the sought component will be computed, ε is the initial error. Then, for example, for p =
4096, l = 12 and γ ≤ 3, the computation error at worst goes six digits to the right, which is acceptable for
many problems. Thus, for γ > 1, we need to perform an a priori (34) as well as an a posteriori check of the
accuracy of the so-obtained solution.

3.5. Inversion of the Operator ∇2 for 3D Case.

For solving the 3D problems, it is necessary to provide the possibility of using a large number of processors
for algorithms efficient with respect to the number of arithmetic actions. From the viewpoint of data
decomposition between the processors, the best choice is the variable directions method (ADI) [5], where at
each step of the iteration process the tridiagonal SLAEs should be solved for all the three directions, which
allows one to use a large number of processors within the limits of one calculation. Unfortunately, compared
to the 2D case, the 3D-ADI algorithm is not efficient because of its low convergence rate [36]. Thus, via the
Fourier transform it is reasonable to solve not a 3D problem but a series of independent 2D problems:

y(l)i+1,j − 2y(l)i,j + y(l)i−1,j

h21
+
y(l)i,j+1 − 2y(l)i,j + y(l)i,j−1

h22
− 4

h23
sin2

(

π(l − 1)

2(N3 − 1)

)

y(l)i,j = −f(l)i,j,

i = 2, ..., N1 − 1, j = 2, ..., N2 − 1, l = 2, ..., N3 − 1.
(35)

For solving the problem (35), we can use the parallel version of the variable separation method [24]. However,
this algorithm drastically limits the number of used processors because the tridiagonal SLAEs are solved only
in one direction and, consequently, only the one-dimensional data decomposition will be efficient because
for other directions it is necessary to use the fast Fourier transform algorithm. In order to overcome the
problems of data decomposition and ensure efficiency of the method in terms of the number of operations,
for solving the problems (35), one should use the 2D-ADI method [24]. The calculation efficiency is achieved
due to the fact that as the value of l increases from 2 to N3 − 1 the condition number for an equation of
the form (35) decreases as well as the necessary number of iterations of the ADI algorithm, Fig. 6.a. Thus,
the hybrid parallel algorithm under consideration is comparable in efficiency with the variable separation
method, however, contrary to the latter, it allows 2D efficient data decomposition between the processors.
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4. Numerical Experiments

For estimating the efficiency of the above-proposed modification of the dichotomy algorithm for Toeplitz
matrices, consider the following boundary value problem

△u = f(x), x ∈ G ⊂ R
α, α = 2, 3, u|Γ = 0. (36)

For solving the difference problem in Fortran−90 with the use of the communication MPI–library, we have
realized the variable separation method following the scheme of [24]. For the 2D problem the approximation
of (36) was carried out with the second order of accuracy on a uniform mesh with the number of the points
N1 = N2 = 2k, k = 13...16 and with the number of the points N1 = N2 = N3 = 2k, k = 9...13 for the 3D
problem. For estimating the cost of the preliminary computations, the calculation of the vectors GR,L

m , ZR,L
m

for problem (36) was realized in two variants: by (9),(10) for an arbitrary symmetric matrix and by (31),(10)
for Toeplitz matrices. Since the matrix of the SLAE is not used at the second stage of the dichotomy
algorithm, one MPI-realization of (15),(16) is enough for these cases. The calculation was performed on
the ”Lomonosov” supercomputer of Moscow State University. The supercomputer comprises Intel Xeon
X5570 four-core processors operating at 2.93 GHz in the Infiniband QDR communication environment.
Each computational node contains two processors and 12 GB of RAM.

For the 2d problem the dependencies of the time of the preliminary computations, the time of the
dichotomy process (TGeneral

Stage1
, TToeplitz

Stage1
, TStage2), and the speedup on the number of the processors are given

in Tables 1 and in Fig. 5. We can see from Tables 1 that the time (TGeneral
Stage1

) necessary for the computation of

the vectors GR,L
m , ZR,L

m for general matrices is independent of the number of processors and is proportional
to the number of unknowns. This is due to the fact that the total dimension of the auxiliary vectors has
order O(N). Thus, if we neglect the fact that the matrices are Toeplitz for (36) then the time costs for the
preliminary computations will be O(N1N2). For Toeplitz matrices, the use of (24),(31), in comparison with
the general case (9),(10) makes possible to decrease the computation time of the auxiliary vectors (TGeneral

Stage1

vs. TToeplitz
Stage1

) by several orders. As a result, it becomes possible to efficiently solve SLAEs with both one and
several right-hand sides because the time needed for the preliminary stage of the dichotomy algorithm for
the Toeplitz matrices becomes comparable to that needed for carrying out the dichotomy process(Fig. ??)
for one right-hand side. For solving a SLAE with one right-hand side, we should take into account the
preliminary dichotomy algorithm costs. In this case, the speedup value will be 1.5− 2.5 times less then that
in solving a SLAE for several right-hand sides, i.e. when the preliminary computations independent of the
number of the right-hand-sides can be neglected.

N1 ×N2 8192x8192 16384x16384 32768x32768 65536x65536

T
General
Stage1

≈ 3.3sec. ≈ 13 sec. ≈ 53 sec. ≈ 246 sec.

num. proc. T
Toeplitz
Stage1

TStage2 T
Toeplitz
Stage1

TStage2 T
Toeplitz
Stage1

TStage2 T
Toeplitz
Stage1

TStage2

32 0.2 3.9e-01 0.75 1.6 - - - -

64 0.1 1.9e-01 0.33 0.84 - - - -

128 5.6e-02 1.0e-01 0.17 0.4 0.81 1.77 - -

256 3.7e-02 4.9e-02 0.12 0.2 0.41 0.89 1.62 3.83

512 3.0e-02 2.6e-02 8.0e-02 0.12 0.24 0.58 0.84 1.92

1024 2.6e-02 1.6e-02 6.5e-02 6.5e-02 0.17 0.28 0.51 1.0

2048 2.6e-02 1.4e-02 5.8e-02 4.2e-02 0.13 0.15 0.36 0.59

4096 2.5e-02 1.6e-02 5.5e-02 6.0e-02 0.12 0.10 0.30 0.35

Table 1: The dependence of the computation time T on the number of processors for the 2D Poisson equation. Here T
Toeplitz
Stage1

,

T
General
Stage1

are the times of the preliminary stage of the dichotomy algorithm for the Toeplitz matrices and general matrices
respectively; TStage2 is the time of the implementation of the dichotomy process for any tridiagonal matrix.

We see that the dichotomy algorithm ensures a speedup close to that linear. For a large number of
processors, no substantial decrease of efficiency occurs because of the predominance of inter-processor ex-
changes. This is ensured by dynamic optimization of the communication interactions. Indeed, calling the
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function MPI Reduce for the first time, we can collect information about the time of the interaction between
the processors, the volume of the data transferred etc. for each communicator. This will make possible to
optimize the processes of data exchange for subsequent calls of MPI Reduce [28? –31]. The dependence
of the computation time on the number of processors in the case of the use of dynamic optimization and
without it is given in Fig. 5.b. For a small number of processors p < 512, dynamic optimization does not
influence the computation time much since, in this case, the computational costs exceed those communica-
tional. However, as the number of the processors increases, the effect caused by optimization becomes more
than substantial. Thus, the high efficiency of the dichotomy algorithm is provided, on the one hand, by the
low costs of the synchronization of the computations, and on the other, by the possibility of reduction for
the data transfer time by static and dynamic optimization of the communication interactions.

For the case of solving the 3D Poisson equation, the dependence of the calculating time and the speedup
on the number of processors is given in Table 2 and in Fig. 6.b. As for the 2D problem, the speedup nearly
linearly depends on the number of processors. Owing to the high scalability of the dichotomy algorithm,
the calculation time, with increasing number of processors, reaches a stationary value and then does not
grow. The use of the efficient modification of the preliminary procedure of the dichotomy algorithm for
the Toeplitz tridiagonal matrices has made it possible to reduce the time of preliminary calculations from
several hours to several fractions of second.

N1 ×N2 ×N3 5123 10243 20483 40963 81923

num. proc. T
Toeplitz

Stage1
TStage2 T

Toeplitz

Stage1
TStage2 T

Toeplitz

Stage1
TStage2 T

Toeplitz

Stage1
TStage2 T

Toeplitz

Stage1
TStage2

64 2.1e-2 0.76 6.5e-2 4.8 - - - - - -

128 1.9e-2 0.42 5.5e-2 2.5 1.6e-1 31.1 - - - -

256 1.8e-2 0.23 4.6e-2 1.3 1.3e-1 7.7 - - - -

512 1.7e-2 0.14 4.2e-2 0.75 1.1e-1 16.6 - - - -

1024 1.5e-2 0.08 3.8e-2 0.44 9.5e-2 3.8 2.3e-1 24 - -

2048 1.5e-2 0.06 3.7e-2 0.28 8.7e-2 2.0 2.2e-1 13.3 - -

4096 1.6e-2 4.6e-2 4.1e-2 0.17 8.6e-2 1.1 2.1e-1 7.1 - -

8192 1.6e-2 3.9e-2 3.3e-2 0.12 8.5e-2 0.72 2.1e-1 3.71 - -

16384 1.6e-2 3.3e-2 3.7e-2 9.8e-2 8.3e-2 0.46 1.8e-1 1.76 0.37 23.9

Table 2: The dependence of the computation time T on the number of processors for solving of the 3D Poisson equation.

Here T
Toeplitz
Stage1

is the time of the preliminary stage of the dichotomy for the Toeplitz matrices; TStage2 is the time of the

implementation of the dichotomy process for any tridiagonal matrix.

5. Conclusions

In this article, we have proposed a parallel algorithm for solving tridiagonal systems of equations with
Toeplitz matrices demonstrating high efficiency including for thousands of processors. The method is based
on the Dichotomy Algorithm devised for solving a series of tridiagonal systems of linear equations with
constant matrix and different right-hand sides. The fact that, for Toeplitz matrices, each component of
the solution vector may be calculated without solving the SLAE makes it possible to substantially reduce
the computation time at the preliminary step of the Dichotomy Algorithm. As a result, it became possible
to effectively solve not only a series but a single system of equations. The reduction of the time for the
preliminary computations is also very important in solving a series of problems with a large number of
unknowns, since, if we disregard the special structure of the matrix, the delay before the direct start of
solving the equation may be substantial.

In some algorithms considered above, the presence of diagonal dominance for the matrix of the SLAE
is taken into account, which enables us to reduce the number of interprocessor exchanges. Sometimes
this imposes the constraint that the size if systems of the form of (7) must be at least some threshold
value; otherwise, we have an accuracy loss [22]. Thus, the maximal number of the processors that may
be used for solving the problem depends on the presence of diagonal dominance. If we use the Dichotomy
Algorithm, such dependencies do not arise, and the solution satisfies (with the computer accuracy in mind)
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0 1024 2048 3072 4096 5120 6144 7168 8192

5

10

15

20

25

30

a)

AD
I-I
te
ra
tio

ns

Harmonic number ( l )

 5123

 10243

 20483

 40963

 81923

Figure 6: a) The number of ADI method iterations versus the harmonic number in solving problems of the form (35). b)
Speedup versus the number of processors in solving the 3D Poisson equation.

the initial system of equations for any number of the processors. As a result, the process of paralleling of the
already existing numerical methods including the inversion procedure of a tridiagonal SLAE is substantially
simplified.

Computational experiments confirm that dynamic optimization on the level of the MPI-library makes it
possible to substantially reduce the time of interprocessor exchanges. The effect caused by optimization is
especially noticeable in computations with the use of a large number of processors. Thus, the above-proposed
algorithm for solving tridiagonal systems of equations with Toeplitz matrices makes it possible to attain a
high computation speed in a wide range of processors and guarantee high transferability of the software.
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