
Reactive Circuits: Dynamic Construction of Circuits for

Reactive Traffic in Homogeneous CMPs

Marta Ort́ın-Obón§, Daŕıo Suárez-Gracia§, Maŕıa Villarroya-Gaudó§,
Cruz Izu∓, and Vı́ctor Viñals§

§Departamento de Informática e Ingenieŕıa de Sistemas, University of Zaragoza, Spain
∓School of Computer Science, University of Adelaide, Australia

Abstract

Networks on Chip (NoCs) have a large impact on system performance,
area, and energy. NoCs convey request and response messages among cores
following the message patterns dictated by the cache banks. Such patterns do
not only guarantee a coherent memory state, but also provide an opportunity
for NoC optimization. Request messages can smartly reserve the resources to
dynamically build a circuit for replies, thus reducing their network latency.
Starting from this simple idea, which we denote Reactive Circuits, we eval-
uate several implementations of the mechanism: with and without sharing
circuits between messages, performing timed reservations, and removing the
implicit coherence messages. A careful implementation of this circuit reser-
vation mechanism in a wormhole router achieves an average 20.8% reduction
in network energy consumption, 5.8% smaller router area and a 4.8% sys-
tem performance increase in a 64-core chip, compared with a conventional
network.

Keywords: Chip Multiprocessor, Interconnection Network, Coherence
Protocol

1. Introduction

Chip multiprocessors (CMPs) are now a common design to improve per-
formance by exploiting thread parallelism. They are built by replicating
simple small cores that share a coherent memory space and are connected
via an interconnection network. All the components of these chips must be
carefully co-designed to achieve the desired performance while maintaining

Preprint submitted to Journal of Parallel and Distributed Computing April 11, 2016

reasonable power consumption. We focus on optimizing the network on-chip
(NoC) by customizing it for the traffic it has to support, keeping in mind that
the most relevant metric we must take care of is latency [1]. The traffic is
generated by the coherence protocol to transport information among caches
located in different nodes, and mostly consists of data requests and replies.
This paper introduces Reactive Circuits, a NoC design that takes advantage
of this reactive nature of traffic. This novel design leverages the predictable
network traffic behaviour to dynamically build virtual circuits for replies.
We evaluate it in a homogeneous chip multiprocessor (CMP) with 16 and 64
cores connected by a mesh.1

Analysing the coherence protocol in a standard wormhole 4-stage pipeline
router, we note that the request-reply pattern dominates over the rest. Ta-
ble 1 shows the relative amount of messages travelling through the network,
classified into requests and reply types (detailed information about the mes-
sages generated by the coherence protocol can be found in Table 3). More
than half of the messages are a reply to another message and, therefore, we
know their source and destination before the message is injected into the net-
work. With this information, routers can reserve in advance crossbar path
and output virtual channel, removing those stages from the critical path of
the router pipeline. To hide the circuit reservation latency, we use the re-
quests to make the reservation at every router in the path. We also observed
that the network is lightly loaded (nodes inject, in average, less than four flits
every 100 cycles), suggesting it will be feasible to keep resources busy for long
periods of time. Nevertheless, we also include a version that optimistically
calculates when the circuit will be needed and reserves only that timeslot.

Reactive Circuits aims to improve state-of-the-art low-latency NoCs by
making the following contributions:

• Implementing a circuit reservation technique with several versions, re-
moving routing and arbitration latency from the router pipeline, and
significantly reducing network latency.

1A short version of this article was published in [2]. The new contributions are: more
comprehensive state of the art review and detailed baseline system architecture descrip-
tion, new diagrams to illustrate the mechanism, new reactive circuit configurations (timed
circuits, timed circuits with slack, timed circuits with slack and delay, and postponed
timed circuits), ideal circuit reservation included for comparison, detailed analysis of cir-
cuits that can or cannot be built and used, network latency results, and performance
results for each application for the best configuration run in 64 cores.

2

Table 1: Percentage of messages that traverse the network (average for all
benchmarks executed in a 64-core chip).

Requests Replies

47.0% 53.0%

L2 Replies
Data from L2 to L1 22.6%

L1 DATA ACK
L2 acknowledges data reception 23.0%

L2 WB ACK
L1 acknowledges write-back reception 4.7%

L1 INV ACK
Invalidation acknowledgement 1.1%

MEMORY
Data from main memory 0.9%

L1 TO L1.
Data from L1 to L1 0.7%

• Reserving the circuit on-demand, but hiding the reservation latency
with the data request and without any extra circuit setup message or
setup network.

• Removing unnecessary buffering from the virtual channel reserved for
circuit construction reducing router area and static power.

• Eliminating some acknowledgement messages that are used to guaran-
tee coherence but are no longer needed when data travels through a
reserved circuit.

We simulate the mechanism with 16 and 64-core chips using a full-system
simulator with realistic workloads. Reactive Circuits reduce network latency,
static power and router area. These results emphasize the importance of
considering the system as a whole and studying how all the elements interact
with each other [3, 1].

The rest of this document is organized as follows: Section 2 presents
the state of the art; Section 3 describes the system architecture; Section 4

3

explains the Reactive Circuits mechanism; Section 5 analyses the simulation
results and Section 6 concludes the paper.

2. State of the art

Several works have proposed hybrid packet-circuit switching techniques
to speed up certain messages. Some proposals suggest separate networks
for packet and circuit switched messages: Palumbo et al. determine if mes-
sages will use the packet or the circuit switched channels depending on their
size [4]; Duato et al. decide at compilation time whether a circuit between two
nodes should be established based on expected communication patterns [5];
Abousamra et al. use the requests to reserve circuits for the replies based
on estimates of circuit utilization times [6]; Abousamra et al. send a circuit
reservation request as soon as a cache hit is detected, though this may not be
enough to completely hide the circuit reservation latency [7]. Other authors
implement a single network that supports both packet and circuit switching:
Enright et al. build circuits on demand and undo them when they conflict
with another circuit [8]; Abousamra et al. configure circuits periodically
based on online communication statistics [9]; Kline et al. reserve circuits on
demand so that flits can traverse multiple hops in a single cycle [10]; Ma-
zloumi et al. reserve a circuit with the request and activate it with a probe
message when the reply is ready [11]; Liu et al. speed up circuit setup in
TDM NoCs by sending parallel probes [12].

A different technique preallocates resources in advance to allow faster
data transmission, either sending control flits through specialized networks
or with tokens that inform neighbouring nodes about their buffer availability
[13, 14, 15].

Most of those mechanisms establish circuits between nodes using dedi-
cated networks or links [8, 10, 11, 12] or at least need to send specific setup
messages [4, 5, 7], and many of them need to wait for the circuit setup de-
lay [14, 12]. One of them introduces complexity at the network interfaces
by forcing them to keep communication statistics [9]. The proposals most
similar to our Reactive Circuits mechanism are [6, 11], using the request to
reserve circuits for the reply, but they do not go as far as removing buffers
to reduce router static power and area or eliminating unnecessary coherence
messages. [6] also does an estimation of the time when the circuit will be
needed, but does not use it to avoid circuit conflicts.

4

Another common approach to reduce network latency involves routers
that speculate by using paths without prior reservation, which only work if
there is no contention [16, 17, 18, 19]. These routers are more complex and
may require reduced network frequency or result in energy and performance
penalties when the implemented shortcuts cannot be used. There are also
several proposals that radically modify the routers to eliminate all buffers
and reduce per-hop latency to one or two cycles, but suffer big penalties
with any level of congestion [20, 21].

Many of the publications we have mentioned do not perform full-system
simulations with real traffic, and therefore, are unable to capture the effect
of realistic traffic patterns on their proposals [4, 5, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21].

The Reactive Circuits proposed in this paper uses some of the same
concepts already introduced by other publications, but combines them to
implement an optimized mechanism that does not require extra networks,
additional management messages, gathering statistics, or modifying the co-
herence protocol. We leverage the memory hierarchy behaviour to efficiently
reserve network resources in advance with minimal changes to the routers,
and completely hiding circuit reservation delay.

3. System architecture

This work focuses on a homogeneous CMP where each tile is composed of
a single-threaded core with private first level cache and a bank of the shared
second-level cache, both connected directly to the router. Some tiles in the
edges of the chip also include a memory controller. Figure 1 depicts the block
diagram of the chip and a tile with memory controller. It also includes the
connections between the elements in the tile and the router. Table 2 presents
the key parameters of the architecture and Table 3 details the messages
exchanged by the coherence protocol. It is a MESI protocol that allows direct
data transfer between L1 caches, as opposed to a simpler version that always
forced to use the L2 as an intermediary. To model the architecture we based
our design on other systems with similar characteristics, both from academia
[22, 23, 24] and industry (Tilera’s TILEPro64 [25], Intel Xeon Phi [26], and
Intel 48-core processor [27]).

The baseline NoC that connects all tiles is built as a mesh with simple
4-stage routers, XY routing and wormhole flow control. Wormhole flow con-
trol was chosen over virtual cut-through and store-and-forward because it

5

minimizes latency and power consumption. Store-and-forward requires all
the flits of a packet to be received at a router before they can be sent to the
following router, thus increasing latency. Virtual cut-through starts sending
flits forward before the whole packet has arrived, but still must allocate re-
sources for the whole packet. Our circuit reservation mechanism can be used
with any of those flow-control strategies, and the obtained speedups would
higher than with wormhole, which is an more efficient baseline. Table 4
shows the detailed configuration of the baseline NoC and Figure 2 depicts
the router architecture.

Memory
channels

 DRAM
Main memory

CORE

L1I L1D

L2
tag&data

Dir

R

MC

CMP Node

 Register files, branch
predictor, ALUs, control, ...

Figure 1: Block diagram including a chip and the components of a tile. MC
stands for memory controller, R is the router, and Dir is the directory, which
is included in the L2 cache bank. This example router has two input and
two output ports connected to neighbouring tiles.

4. Setup, Operation, and Release of Reactive Circuits

This section describes the details of the Reactive Circuits mechanism for
each of the implemented versions: reserving, using, and undoing fragmented
and complete circuits, sharing circuits, eliminating coherence messages, and
building timed circuits.

6

Table 2: Main characteristics of the chip multiprocessor.

Processors 16 y 64, Ultrasparc III Plus, in order, IPC 1, single-threaded,
2GHz frequency

Coherence Directory based, MESI, directory distributed in the L2 banks
Consistency Sequential
L1 cache 32KB data and instruction caches, 4-way assoc, 2-cycle hit,

64B lines, private, pseudo-LRU replacement
L2 cache Distributed, 1 bank/node, 1MB/bank, 16-way assoc, 7-cycle hit,

64B lines, shared, inclusive, pseudo-LRU replacement
Memory 4 memory controllers distributed in the edges of the chip

(for both 16 and 64-node chips), 160-cycle latency

Table 3: Messages generated by the coherence protocol.

Event Sequence of messages

L1 miss
1o Request from L1 to the corresponding L2 bank
2o L2 Replies: Data reply from L2 to L1
3o L1 DATA ACK: ACK from L1 to the L2 bank

L1 miss, another
L1 owns the data
exclusively

1o Request from L1 to the corresponding L2 bank
2o L2 forwards the request to L1 owner
3o L1 To L1: L1 owner sends data to L1 requestor
4o L1 DATA ACK: ACK from L1 requestor to the L2 bank

Invalidation
(write or L2
replacement)

1o Invalidation from L2 to L1 sharers
2o L1 INV ACK: ACK from L1s to the L2 bank

L1 replacement
1o Replacement data from L1 to the corresponding L2 bank
2o L2 WB ACK: ACK from the L2 bank to L1

L2 miss
1o Request from L2 bank to the corresponding
memory controller
2o MEMORY: Data from the memory controller to L2 bank

L2 replacement
1o Replacement data from L2 bank to the corresponding
memory controller
2o MEMORY: ACK from the memory controller to L2 bank

7

Table 4: Main characteristics of the baseline network on chip.

General 2 virtual networks (VN), requests and replies

2 virtual channels (VC) per VN

Routers 4 stages: routing and input buffering, VC allocation, switch allocation,

and switch traversal

round-robin 2-phase VC/switch allocators

5-flit buffers per VC, enough to store a whole message

Links 16B flits, 1-cycle latency

G. R. O. C.

G. R. O. C.

G. R. O. C.

G. R. O. C.

Input Unit

G. R. O. C.

G. R. O. C.

G. R. O. C.

G. R. O. C.

Input Unit

Routing Unit VC Allocator

SW Allocator

Crossbar
VC0: G. I. C.
VC1: G. I. C.
VC2: G. I. C.
VC3: G. I. C.

Output Unit

VC0: G. I. C.
VC1: G. I. C.
VC2: G. I. C.
VC3: G. I. C.

Output Unit

credits

credits

credits

Figure 2: Architecture of the baseline router. VCs at the input units store
global state (G), route (R), output VC (O) and credit count (C). At the
output units, they store global state (G), input VC (I) and credit count (C).

8

4.1. Reserving reactive circuits
As discussed before, when a request reaches its destination, we already

know that a reply is going to be sent back to the source, based on the patterns
introduced in Table 3. A previous approach consists of sending the head
of the message in advance to reserve the resources along the way, building
a circuit for the data in parallel with the L2 access [7]. However, in our
case the L2 hit access is too fast (7 cycles) compared with the average time
needed to set up the circuit (19 cycles in a 16-core chip and 59 in a 64core
system). We overcome this problem by reserving reactive circuit for the reply
as its request travels towards the destination. Using dimension order routing
(DOR), request and reply follow disjoint paths because both messages travel
first in the horizontal direction, and then in the vertical one. In consequence,
we start by modifying the DOR algorithm so that requests and replies use
XY and YX routing, respectively, so the path to and from the destination
match. This change does not generate deadlocks because different message
types use different virtual networks.

Requests go through the four original stages of the router (see Table 4). In
parallel with VC allocation, the reactive circuit is built for the reply. During
that process, the necessary information to identify the circuit is stored in the
router (requestor identifier and cache line address). Since we have two VCs
for replies, we dedicate one to circuits and leave the other for replies that do
not have a circuit. This way, Reactive Circuit routers will support packet
and circuit switching simultaneously. Information of the circuit is also stored
in the network interface where the circuit starts.

Out of the message types in Tables 1 and 3, reactive circuits are built
for data sent from L2 to L1 (L2 Replies), replacement acknowledgements
(L1 WB ACK), and main memory replies (MEMORY), which account for
53.2% of all reply messages. Invalidation acknowledgements (L1 INV ACK)
and direct data transfers between L1 caches (L1 TO L1) are a very small
percentage of the reply messages (only 1.8%). L1 DATA ACK messages are
replies sent from an L1 to an L2 after a request-reply communication to
confirm the reception of the DATA. These messages are essential to maintain
coherence as they guarantee the L2 that the data has been received and
prevent race conditions, and are used both in academia [28, 29] and industry,
e.g. AMD Opteron [30]. L1 DATA ACK messages do not follow the same
path as the request and reply between L1 and L2: the request follows the
XY path from the L1 to the L2 and the reply follows the YX path from L2
to L1 (so it goes through the same routers as the request), but the ACK is a

9

reply that follows the YX path from L1 to L2. Therefore, it is not possible
to use a previous message to build a circuit for them.

The following sections describe specific details of the implementation and
introduce the different versions of the Reactive Circuits mechanism.

4.2. Fragmented versus complete circuits

When trying to build a circuit at a router, the necessary resources might
not be available. In this situation, there are two design alternatives:

• Allow fragmented circuits, keeping the partial path reserved, and at-
tempt to reserve the rest of the path after the next hop.

• Support only complete circuits, so that any lack of resources will force
us to undo the previous reservations.

With fragmented circuits, we need to assure messages can always be stored
in the router in case their circuit has not been completely built. As we already
mentioned, we start by dedicating one VC for replies without a circuit, and
the other one for replies with circuit. In the baseline NoC, VCs are not heavily
used and are rarely blocked. However, keeping VCs reserved for a longer
period of time has a negative effect: there may not be enough resources to
exploit the full potential of the proposal. Therefore, with fragmented circuits
we include an additional VC to increase the number of simultaneous circuits,
ending up with a total of three VCs in the reply virtual network. This extra
VC will mean an increment in router power and area.

Building only complete circuits allows us to implement many simplifica-
tions in the router. We guarantee that a message with a circuit has all the
resources it needs from source to destination. Hence, it will never get blocked
in the network. This has two beneficial effects: first, it allows us to remove
the buffer storage of the VC dedicated for circuits reducing the router area;
second, we can build as many circuits as we want for that VC in every input
port because flits will just go through the router without stopping.

All the complete circuits in the same input port of a router must have the
same source to avoid conflicts: two circuits with different input ports and
the same output port cannot be built at the same time on a router. This is
because if two flits arrived at the same time wanting to use those circuits, one
would have to be dropped because both of them would not be able to leave
through the same output port in the same cycle. We have experimentally
explored the best number of simultaneous circuits built per input and set

10

it to five. This number reduces the probability of failing to build a circuit
due to lack of free storage for circuit information, but it is small enough
to minimize area and power consumption, as we will demonstrate in the
evaluation section. Figure 3 presents the modified router that implements
the reservation of complete circuits.

To clarify the difference between the two alternatives, we show an example
of how circuits are built in Figure 4. To simplify the example, we assume
there is one single VC dedicated to circuits. In both cases, there is a blue
circuit already built from L2A to L1A, and a new request tries to build a
new circuit (green) from L2B to L1B. The request builds the circuit as it is
traversing the network, so the circuit is built starting from its final router
(L1B) and ending in its first router (L2B), in the opposite direction of the
replies that will use it. In Figure 4a, there is one hop in the network where a
conflict is detected (in the router marked as R2), but the fragmented circuit
can be built in all the other routers. In Figure 4b we see that the situation
is very different with complete circuits. When the request tries to build
the circuit in router R1, it detects there is already another circuit using
the needed input port (East port). That circuit that is already completely
reserved has a different source than the one we are trying to build now, which
means that at some point we will need two circuits with different inputs and
the same output in a router (in router R2). Therefore, this circuit cannot be
reserved in all the routers and, since this mechanism only supports complete
circuits, the successful reservations in the downstream routers have to be
undone.

Both fragmented and complete circuits can be implemented with any
deterministic routing, as long as we can force requests and replies to go
through the same routers. With adaptive routing, only the complete circuits
version of the mechanism would work. However, we have not explored an
adaptive alternative because the router overheads to avoid deadlock are high
and would result in longer base latency.

4.3. Using the circuits

When a reply arrives at a router, it checks if there is a circuit built for
it. In that case, it can go straight through the crossbar leaving the router in
just one cycle. When the tail flit of the message leaves the router, it frees the
circuit resources by clearing the B bit. With fragmented circuits, a message
that had a circuit might arrive at a router where there is no built circuit.

11

G. R. O. C.

G. R. O. C.

G. R. O. C.

Input Unit
Routing Unit

VC
Allocator

SW Allocator

VC0: G. I. C.
VC1: G. I. C.
VC2: G. I. C.
VC3: -----

Output Unit

VC0: G. I. C.
VC1: G. I. C.
VC2: G. I. C.
VC3: ----

Output Unit

credits &
undo circuit

Build
Circuit

Circuit Check Crossbar

undo circuit

credits &
undo circuit

credits & undo circuit

B destID line@ outport

G. R. O. C.

G. R. O. C.

G. R. O. C.

Input Unit

Circuit Check

crossbar priority

crossbar priority

B destID line@ outport

B destID line@ outport
B destID line@ outport

Figure 3: Architecture of the router that reserves complete Reactive Cir-
cuits. The modifications with respect to the baseline router are highlighted.
They include “Circuit Check” logic at the Input Units and a “Build Circuit”
module in the VC allocator. In this drawing, two simultaneous circuits can
be built per input port. VCs at the Input Units store global state (G), route
(R), output VC (O) and credit count (C). Circuit information includes built-
circuit bit (B), destination identifier (destID), cache line address (block@)
and output port (outport). Credits may carry undo-circuit information. The
Output Units store global state (G), input VC (I) and credit count (C).

12

L1B

L2A

L1A

L2B

R1 R2

(a) Fragmented circuits

L1B

L2A

L1A

L2B

undo circuit

R1 R2

(b) Complete circuits

Figure 4: Example of how circuits are built with fragmented and complete
circuits, using always one single VC for circuits. In both cases, the blue
circuit has already been built by a request going from L1A to L2A. Then
another request has tried to build the green circuit from L2B to L1B.

When that happens, it will just be stored in the VC and go through the usual
four stages of the router.

Even when there is a circuit built at a router, the ports and links involved
can still be used by other messages. The crossbar prioritises messages with
a circuit, but it grants access to the other virtual channels when the circuit
is not used.

4.4. Undoing circuits before they are used

We must undo a circuit before it gets used under the following situations:

• The coherence protocol lets an L2 cache bank forward a request to an
L1 that owns a cache line exclusively, who will supply the data directly.
Therefore, the circuit built between the requestor L1 and the L2 bank
will never be used and should be undone.

• When we try to build a complete circuit and reach a router where
resources are not available, we have to undo the section of the circuit
we had successfully built so far (see Figure 4b).

In both those situations, we undo the circuit with a simple and efficient
technique: we send the data of the circuit to be undone towards the circuit
destination using credits. If a credit had to be sent at the same time to free
a buffer, we piggyback the information; otherwise, we send a specific credit.

We also considered undoing circuits when an L2 miss occurs, because
resources will be held for a long time while the request goes to main memory.
However, simulation results show better performance if we keep them built.

13

4.5. Reusing complete circuits

In the previous sections, circuits were specifically built for a message and
used only by that message. We go a step further to improve our mechanism
and try to find other messages that can reuse the circuits. When a reply
that does not have a built circuit is about to leave the network interface, it
checks if there is any circuit starting at that NI that it could use to get closer
to its destination. In that case, the message becomes a scrounger message
that uses the circuit to reach an intermediate destination. At that point, the
network interface will forward the message by re-injecting into the network
that it can arrive at its final destination.

Note that we can only apply this method with complete circuits because
there are no buffer guarantees for two messages using the same fragmented
circuit.

4.6. Eliminating coherence messages

Studying the coherence protocol while designing the NoC has allowed us
to notice a rewarding effect of our reactive complete circuits. We already
mentioned that we cannot build a circuit for the L1 DATA ACK reply mes-
sages that are sent from L1 to L2 after the L2 Reply (see Section 4.1). Since
the NoC does not guarantee message ordering, this L2 DATA ACK avoids
a situation where the L1 received an invalidation or a forwarded request for
data it had not received yet. However, if the L2 Reply uses a complete circuit
to get to the L1 requestor, we are sure the data, travelling at a speed of 2
cycles per hop and never blocking, will arrive before any other message sent
from L2 to L1 afterwards. Therefore, we can acknowledge the data reception
to the L2 without the need to wait for the L1 DATA ACK message. With
this simple observation, we can omit those messages to reduce contention in
the network and energy consumption. On top of that, other requests waiting
to access the same cache line will reduce their waiting time since the L2 cache
line will not be blocked while the L2 Reply and L1 DATA ACK messages are
exchanged.

4.7. Timed reservation of complete circuits

Having complete circuits is the most beneficial option to reduce router
power and area. However, circuits cannot be built when there is a conflict,
which means there cannot be two circuits with different input ports and same
output port built simultaneously in a router. If two flits arrived at the router
at the same time wanting to leave through the same port, one would be forced

14

to wait and we would not be able to store it because we have removed the
buffers for that virtual channel. However, given the light load of the network,
it is very improbable for those two flits to arrive at the same time and create
a real conflict.

Therefore, circuits cannot be built due to the possibility of a collision
that may not actually happen. To avoid that, we implement timed circuit
reservation: we optimistically calculate when the reply will go through the
router, and reserve the circuit only for those cycles. This way, the channel
is not busy from the moment it is reserved until it is used, it will only be
busy for a short time interval. The time will be calculated using the number
hops between the current router and the destination, the hop latency for the
request (five cycles/hop) and for the reply (two cycles/hop), and the cache
hit latency [6]. It will then be stored in two counters where we will annotate
the cycles until the circuit reservation starts and finishes, and that will be
decreased every cycle. Abousamra et al. also calculate the expected reply
arrival time but use it only order the circuit reservations, stating that timed
based reservations are impractical due to unforeseen delays. We address this
issue by enhancing the basic idea with three variations of complete timed
circuits, as explained below.

Now, circuits with different input port and same output port can be built
at the same time, as long as they use non-conflicting time slots. When a reply
is going to be sent, it can only use its circuit if it is within the optimistic
timing estimation. Otherwise (for example in case of a cache miss), the
circuit will be undone and the reply will need to go through all the stages of
the router. Figure 5 describes how timed circuits are reserved and includes
three variations designed to increase the flexibility:

1. Reserve the circuits with slack. Instead of reserving the exact number
of cycles the reply will need, we give the option to reserve more cycles to
be able to accommodate delays due to failed arbitrations of the request
and extra cache delays.

2. Allow reserving the circuits with delay. If the time slot the circuit
needs has already been occupied, we try to reserve the circuit for some
cycles later. The reply may need to wait for its time slot before being
sent, but it will reach its destination faster by using the circuit. Note
that this version must be combined with the previous one: we need to
reserve the timeslot with a slack so that we can introduce a delay and
still be on time for the reservations already made in previous routers.

15

3. To have the flexibility of the slack without reserving the circuit for a
longer period of time (which increases the probability of conflicts), we
reserve postponed circuits. In this case, we reserve the circuit for the
exact number of cycles it needs, but for a later time. This will increase
the number of circuits that can be built and used, but all the replies
will need to wait for the circuit, even if the request was not delayed
and they were ready before.

In the three versions, the number of cycles of slack, delay or postponement
is proportional to the path length, introduced as number of cycles per hop.

4.8. Ideal circuit reservation

We consider an ideal version of the mechanism that will successfully re-
serve and use all the circuits. This version is not a feasible design due to
the increased area and power consumption, and the inclusion of logic that
wouldn’t fit in a single cycle, but we include it as an upper bound for per-
formance comparison. It consists of keeping the buffers and reserving all
the circuits, without caring about conflicts or timing, and without a limit in
number of circuits per input port. Then, all the replies will use their circuit
to reach their destination. At every hop, the router needs to check if there
are two conflicting flits using circuits, and in that case, prioritise one of them
and keep the other in the buffer. That is done in a single cycle, as well as
checking if the circuit has credits for the next hop before forwarding the flit.
We would not be able to implement this in a real system, but all the replies
will use circuits and suffer only small delays if there are collisions, which will
give us the best performance Reactive Circuits can offer and will be useful
for reference.

5. Evaluation

This section presents the simulation methodology and the main results
for the Reactive Circuits techniques, including power, area, and performance.

5.1. Simulation framework and workloads

We use Simics [31], GEMS [32] and an extended version of Garnet [33].
We carefully model all the components of the chip and perform full system
simulation with single-thread cores and directory-based coherence. To get
the timing, area and energy expended by the network we use DSENT, a

16

slack{

circuit reservation

timed circuits

timed circuits
with slack
and delay

request reaches the router

expected reply arrivalmessage duration

Router1

Router2

Router1

Router2

timed circuits
with slack

slack{

Router1

Router2

another circuit
reservation

delay{

slack{

slack{

Router1

Router2

timed postponed
circuits

{
{postponed

cycles

postponed
cycles

cycles

complete
circuits

Router1

Router2

Figure 5: Diagram for reactive circuit reservation in the four variants of
complete timed circuits. Basic complete circuits are also included for com-
parison. In each configuration, the construction of the circuit is shown for
two consecutive routers.

17

state-of-the-art circuit modelling tool [34]. We assume 32 nm technology
and run at 2 GHz frequency.

CMPs can execute parallel applications to reduce execution time, or
multiprogrammed workloads (execution of independent applications on each
core) to increase throughput. We use parallel applications from PARSEC
[35] (blackscholes, bodytrack, canneal, dedup, ferret, fluidanimate,
raytrace, swaptions, vips, and x264) and SPLASH2 [36] with scaled in-
puts from PARSEC 3.0 (barnes, cholesky, fft, lu cb, lu ncb, ocean cp,
ocean ncp, radiosity, volrend, water nsquared, and water spatial).
We run the applications with 16 and 64 threads in the 16 and 64-core chips,
respectively, and simulate the whole parallel region.

For the multiprogrammed workloads, we choose 16 applications with a
large working set from the SPEC CPU 2006 suite [37] and bind each appli-
cation to a different core. To build the workloads for the 16-core chip, we
randomly distribute the applications to build a mix. For the 64-core chip, we
use each application four times, and again build a random mix. To perform
the evaluation, we warm up the caches for 200 million cycles and simulate
for 500 million cycles.

5.2. Construction and use of Reactive Circuits

We analyse how effective each version of our mechanism is in building and
using circuits. Figure 6 presents the percentage of replies that travel on a
circuit, with a failed circuit (could not be completely built), with an undone
circuit (it was completely built but had to be undone), that travel on a circuit
built for another message (scrounger messages), that were not eligible for a
circuit, and that were eliminated (removed L1 DATA ACKs due to successful
L2 to L1 circuits). It includes every circuit-building configuration tested in
16 (Figure 6a) and 64-core chips (Figure 6b), and we present the average of
all the parallel applications and the multiprogrammed mix.

The first bar of the graph corresponds to fragmented circuits. In this
case, the failed circuits are those that could not be completely built, but
replies using them will still have sections of their path with a built circuit.
As we already anticipated in Section 4.4, there are some cases when a built
circuit will not be used due to the behaviour of the coherence protocol (when
the L2 bank forwards the request to the L1 owner). However, this is a very
small percentage of the total of replies. Apart from that, there are more than
40% of replies that cannot benefit from the mechanism because they are not
associated with a request that can reserve the circuit.

18

 0

20

40

60

80

100

Fragm
ented

C
om

plete

C
om

plete_N
oAC

Ks

R
euse

R
euse_N

oAC
Ks

Tim
ed

Tim
ed_Slack1

Tim
ed_Slack2

Tim
ed_Slack3

Tim
ed_Slack4

Tim
ed_SlackD

elay1

Tim
ed_SlackD

elay2

Tim
ed_SlackD

elay3

Tim
ed_SlackD

elay4

Tim
ed_Postponed1

Tim
ed_Postponed2

Tim
ed_Postponed3

Tim
ed_Postponed4

Ideal

%
 R

e
p
lie

s

With circuit
With failed circuit

With undone circuit
Scrounger

Without Circuit
Eliminated

(a) 16 cores

 0

20

40

60

80

100

Fragm
ented

C
om

plete

C
om

plete_N
oAC

Ks

R
euse

R
euse_N

oAC
Ks

Tim
ed

Tim
ed_Slack1

Tim
ed_Slack2

Tim
ed_Slack3

Tim
ed_Slack4

Tim
ed_SlackD

elay1

Tim
ed_SlackD

elay2

Tim
ed_SlackD

elay3

Tim
ed_SlackD

elay4

Tim
ed_Postponed1

Tim
ed_Postponed2

Tim
ed_Postponed3

Tim
ed_Postponed4

Ideal

%
 R

e
p
lie

s

With circuit
With failed circuit

With undone circuit
Scrounger

Without Circuit
Eliminated

(b) 64 cores

Figure 6: Percentage of replies that travel on a circuit, with a failed circuit
(could not be completely built), with an undone circuit (it was built but
had to be undone), that were scrounger messages, that were not eligible for
a circuit, and that were eliminated, for every circuit-building configuration
tested.

19

The rest of the bars are different versions of complete reactive circuits.
We detect that in this case we can reserve more successful circuits (blue
section of the bars). This is because fragmented circuits have to guarantee
a buffer for all the replies, which forces us to set a low maximum of circuits
per port (two in this case). On the other hand, replies with complete circuits
will never block, so they do not need a buffer. This allows us to reserve more
simultaneous circuits per input port (five in our case), and almost all circuit
failures come exclusively from output port conflicts (when we would need
two circuits from different input ports to the same output port). Removing
coherence messages (NoAck) has a significant impact by eliminating 20-30%
of the replies. On the other hand, reusing circuits has only some impact
on the 64-core configuration, because there are more circuits built on the
network, and, therefore, a higher probability for scrounger replies to find a
suitable circuit.

We then present results for basic timed circuits and three additional ver-
sions, always removing the non-necessary coherence messages. The three
versions correspond to the ones introduced in Section 4.7 (Slack , SlackDe-
lay , and Postponed , where “ ” is the number of cycles per hop). They are
all simulated with different values for the slack, which is introduced as num-
ber of cycles per hop in the path. This way, the slack automatically adapts
to the path length. In the basic timed version, we notice that there are more
failed circuits than in the simple complete circuits scheme, especially in the
16-core system. This is because the strict timing restrictions cause the cir-
cuit to fail as soon as the request suffers any delay (loses any VC or switch
arbitration), the optimistic timing calculation performed for the reply does
not stand any more after that. We clearly see in the figure how the number of
successful circuits rapidly increases as we introduce slack, effectively solving
the problem. However, especially with 64 cores, we realize that increasing
the slack does not necessarily allow more circuits to be built. This is because
there is a trade-off in the number of cycles of slack we reserve: with a small
slack, circuits fail because the timing cannot be met after small delays; on
the other hand, higher slacks give more room for delays, but reserve circuits
for longer periods of time, making it more likely to have conflicts in output
ports.

Apart from that, we notice a negative effect in all the timed circuits: the
amount of circuits that get completely built but have to be undone without
being used significantly increases. In the versions of the mechanism without
timing, this was only caused by a pattern in the coherence protocol that

20

happened sporadically (the L2 bank forwarding the request to the L1 owner).
However, with timed circuits a reply must leave the network interface exactly
within the reserved timeslot; otherwise, the circuit must be undone and the
reply has to follow traditional router pipeline. This unpleasant situation
happens due to unpredictable delays in the caches, mostly because requests
are blocked in busy cache lines waiting for acknowledgements.

The last bar with the ideal circuit construction has been included for
comparison. In the 16-core chip, our mechanism achieves results very close
to the ideal, while the 64-core chip cannot exploit the mechanism to its
fullest potential. Comparing Figures 6a and 6b, we notice that it is more
complicated to build circuits with a larger chip, making the scalability of
the mechanism a concern. This is due to the longer paths messages need to
follow and the increased amount of traffic, which generate more conflicts and
cause circuits to fail. This means that less replies will be able to reduce their
latency and that more replies will need to use the same non-circuit VC, thus
increasing latency. With the basic version of complete circuits for 64 cores,
only about 25% of replies use a circuit, the remaining 75% must use the
other VC, thus increasing congestion. This situation is however improved
by two optimizations: removing acknowledgements reduces the amount of
replies using the non-circuit VC down to about 50%; timed circuits increase
the amount of replies that can use a circuit to about 40%, and in turn, also
increases the number of acknowledgements that can be removed. With all
these optimizations, there are less than 40% of replies contending for the
non-circuit VC. Assuming that in the baseline configuration both VCs would
be used equally (50% of replies in each VC), with the most optimized reactive
circuits version we are actually reducing the load of that VC and maintaining
the benefits of Reactive Circuits. We expect the effect of those optimizations
to be even more relevant with bigger chips.

In the complete circuits versions, we can reserve several circuits per input
port. As we explained in Section 4.2, we experimentally choose the number
of simultaneous circuits to be big enough to reduce failed circuits due to lack
of storage but small enough to minimize area and power. As an example,
Table 5 presents the number of simultaneous circuits built for the complete
circuits version with eliminated coherence messages in a 64-core chip. The
table includes the percentage of circuit reservations at routers that corre-
spond to the first, second, third, fourth, and fifth reservation in the same
input. We notice that it is much more common to reserve the first circuit
at an input port that it is to reserve the second or third. Nevertheless, the

21

Table 5: Percentage of circuit reservations in all routers that correspond
to the first, second, third, fourth, and fifth reservation in that input. The
percentage of failed circuits is also included.

Avg. circuit
reservations
in routers

1st
circuit

2nd
circuit

3rd
circuit

4th
circuit

5th
circuit

failed

48% 24% 7% 6% 6% 9%

storage for all the five circuits is used and it leaves a small percentage of
failed circuits due to lack of storage.

5.3. Network Latency

Figure 7 shows how the circuit construction affects message latency de-
pending on the type of message: requests, replies eligible for circuit construc-
tion (Circuit Rep), and replies for which we cannot build a circuit (NoCir-
cuit Rep). We include the baseline and ideal configurations, and the most
relevant versions of the Reactive Circuits mechanism. Since the latency of
requests does not change in any of those versions, we show it only in the
baseline experiment. In each bar we distinguish between network latency
(cycles each message spends in the network) and queueing latency (cycles
before the message can enter the network). In the baseline configuration
we see that the replies eligible for construction have higher latency than the
requests, which is because most of them have five flits instead of one; replies
not eligible for circuits are normally acknowledgements composed of a single
flit.

When we build circuits for the replies, either fragmented or complete
circuits, the network latency is significantly reduced. The highest savings are
obtained with the basic complete circuits, reusing circuits, and timed circuits
with slack and delay, always removing unnecessary acknowledgements. To
make a fair comparison, we have considered the latency of the eliminated
coherence messages to be zero. In the configurations where we remove those
messages, we notice a dramatic drop in the latency of replies that are not
eligible for circuits.

The timed circuits without any slack do not reduce network latency as
much as the other options because, as we already showed in Section 5.2, not
many circuits can be successfully built. We include two of the optimized ver-
sions of timed circuits: one with slack and delay, which significantly reduces
the latency, and one with postponed circuits. The latter was implemented

22

 0

 5

10

15

20

25

R
equests

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

M
e
s
s
a
g
e
L
a
te

n
c
y
 (

c
y
c
le

s
)

Network Latency Queueing Latency

Ideal
 Timed

Postponed1
 Timed

SlackDelay1 Timed
Reuse
NoACKReuse

Complete
NoACKCompleteFragmentedBaseline

(a) 16 cores

 0

 5

10

15

20

25

30

35

40

45

R
equests

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

C
ircuit_R

ep

N
oC

ircuit_R
ep

M
e
s
s
a
g
e
L
a
te

n
c
y
 (

c
y
c
le

s
)

Network Latency Queueing Latency

Ideal
 Timed

Postponed1
 Timed

SlackDelay1 Timed
Reuse
NoACKReuse

Complete
NoACKCompleteFragmentedBaseline

(b) 64 cores

Figure 7: Message latency for different types of messages (requests, replies
eligible for circuit construction (Circuit Rep), and replies for which we cannot
build a circuit (NoCircuit Rep)) and Reactive Circuit versions, averaging the
result from the parallel programs and the multiprogrammed mix.

23

to increase the number of built circuits, but this was done by forcing a delay
for every reply. Even though we can reserve many circuits, the forced delay
has a negative impact on network latency. In fact, this option will not re-
sult in performance or energy improvements, so we will not include it in the
following sections.

We notice that Reactive Circuits have a negative effect, especially in
the 64-core chip: the queueing latency increases significantly, as well as the
network latency for non-circuit messages. This is because virtual channels
are now dedicated to each traffic type (circuit or non-circuit), so we eliminate
their use as virtual lanes to reduce congestion, thus increasing the latency
for non-circuit messages. Luckily, we can partially solve it by eliminating the
unnecessary coherence messages, which lightens the load of the non-circuit
VC.

5.4. Router Area and Network Energy

Table 6 presents the savings in router area for each version of the mech-
anism compared with the baseline router with four VCs. We assume that
links are routed over logic, and therefore do not contribute to network area.
With fragmented circuits, the area increases by almost 20% because we had
to include an extra VC for circuits in order to increase the number of simul-
taneous circuits, as well as storage for the circuit information. In contrast,
with complete circuits we also need to include storage for circuit informa-
tion but we can eliminate the buffers in the VC dedicated for circuits, which
makes the router area decrease by 6%. When enhancing complete circuits
with timed reservations, we must also store the circuit timestamps, which
cancels the benefit or removing the buffers almost completely. We always
remove the buffering from one VC at every port in every router, therefore,
these area savings will be maintained when scaling the chip to larger sizes.

These benefits in area, along with the speedup achieved as a result of
the network latency reduction, translate into outstanding energy savings.
Figure 8 depicts the normalized network energy for the most relevant con-
figurations, including dynamic and static energy for both routers and links.
The ideal version is not included because it involves unlimited storage for
circuit information. With fragmented circuits, the energy increases the same
way the area did. However, for the rest of versions, we substantially reduce
the energy. The versions without unnecessary coherence messages involve
further improvements due to the reduction in execution time and network
utilization. The complete circuits removing the acknowledgements achieve

24

Table 6: Router area savings in the different versions of the circuit-building
mechanism. Negative values correspond to configurations with larger area.

Version Area Savings

16 cores 64 cores

Fragmented -19.28% -18.96%

Complete 6.21% 5.77%

Complete Timed 3.38% 1.09%

the highest savings, with energy reductions of 15.2% and 20.8% in 16 and
64-core chips, respectively. The effect of the mechanism on the 64-core chip
is more relevant because the network has a higher impact on larger systems.
Using the different versions of complete Reactive Circuits, we will always
save network energy from the elimination of buffers, as long as there is not a
degradation in performance that reverses the trend by significantly increasing
execution time.

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1.1

 1.2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

16 cores 64 cores

Fragmented
Complete

Complete noACK

Reuse
Reuse noACK

Timed

Timed_SlackDelay1

Figure 8: Network energy for the different versions of the Reactive Circuits
mechanism normalized to the baseline without circuits. We present the av-
erage of all parallel applications and one multiprogrammed workload and
include the standard error for every configuration.

25

5.5. System Performance
Figure 9 presents the average speedup of all parallel applications and the

multiprogrammed mix for the most relevant versions of the mechanism. We
notice that the speedups are not very large, mainly because the network is
lightly loaded, which limits the effect of network latency on overall perfor-
mance. Other similar proposals do not mention performance in their results,
probably because the nice improvement in network latency translates into
small performance improvements, like in our case. The speedup achieved by
our mechanism is very close to the ideal one. Differences among versions are
slightly more pronounced in the 64-core chip, where the network has a larger
impact. The versions where we eliminate unnecessary coherence messages
consistently achieve better results than their counterparts with all coherence
messages. The version with the best performance results is the timed circuits
with slack and delay, with performance improvements of 4.4% and 6.0% for
16 and 64 cores, respectively. Non-timed complete circuits had larger energy
savings than timed circuits even though their speedup is slightly lower (3.8%
and 4.8% for 16 and 64 cores) because they do not need to store circuit
timestamps.

Figure 9 also includes the standard error for every configuration, which is
very small. The margin of error of our results with a confidence level of 95%
is always less than 2% for 64 cores and less than 5% for 16 cores [38]. These
results point out that, even though performance gains are small, they are
consistent across all the simulated applications and statistically significant.

For complete timed circuits with slack and delay in a 64-core chip we
present the speedup for each application in Figure 10. We can see that 50%
of the simulated applications experience performance gains over 4.5%. There
are several applications where the Reactive Circuits mechanism is especially
beneficial and experience performance improvements above 10%, while only
two applications out of the twenty two experience a very small slowdown
(less than 2%).

Under very adverse conditions, with heavy traffic loads, conflicts would
be frequent and prevent complete circuits from being built, lowering system
performance. However, timed circuits reduce the time circuits keep virtual
channels occupied, thus rising the threshold over which the network would
be too congested to build circuits and reduce latency.

With the studied chip sizes (16 and 64 cores), all the versions of the
mechanism achieve similar speedups. As the chip size increases, paths will
be longer and there will be more messages using the network simultaneously.

26

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1.1

S
p
e
e
d
u
p

16 cores 64 cores

Fragmented
Complete

Complete noACK

Reuse
Reuse noACK

Timed

Timed_SlackDelay1
Ideal

Figure 9: Speedup for the different versions of the circuit-building mechanism
with respect to the baseline without circuits. We present the average of all
parallel applications and the multiprogrammed workload and include the
standard error for every configuration.

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1.1

 1.2

cholesky

fft barnes

ocean_cp

ocean_ncp

canneal

ferret

raytrace

volrend

w
ater_nsquared

blackscholes

sw
aptions

vips
m

ix00

radiosity

x264
lu_cb

bodytrack

fluidanim
ate

w
ater_spatial

dedup

lu_ncb

S
p
e
e
d
u
p

Figure 10: Speedup with respect to the baseline for every parallel application
and the multiprogrammed mix for timed reactive circuits with slack and delay
of 1 cycle per hop.

27

This will generate more conflicts and it will be more complicated to build
complete circuits. For these reasons, timed circuits will be very useful to guar-
antee the scalability of the mechanism. They will only keep resources busy
for short periods of time, thus reducing conflicts compared with non-timed
circuits. Apart from that, it is considered that future systems with hun-
dreds of cores will not be used monolithically to run one single application.
Workloads do not offer enough parallelism to run efficiently on such a large
number of cores. Therefore, the usage model of near-future networks-on-chip
will likely involve partitioning and partition isolation, as it has already been
implemented by Tilera with their Multicore Hardwall mechanism [39]. In
a partitioned system, Reactive Circuits could be used independently inside
each partition, thus eliminating concerns about the need to scale to a larger
number of cores.

6. Conclusions

CMPs are composed of multiple nodes connected via an interconnection
network, which contributes with a substantial share to chip area, energy
consumption, and system performance. The use of the interconnect is deter-
mined by the memory subsystem. By studying the communication patterns
of the coherence protocol, we have come up with a smart network design
that reduces both energy and area in the interconnect, and improves system
performance.

Our work was inspired by the observation that most of the traffic follows
a request-reply pattern, which helps anticipate the path most replies will fol-
low. We have used that information to propose a mechanism called Reactive
Circuits based on reserving network resources and dynamically building the
circuit for the reply while the request travels through the network. Conse-
quently, reply messages with a set-up circuit can go through the router in
a single cycle, compared with the four cycles needed in the baseline router.
Guaranteeing complete circuits for data messages has also enabled us to
predict when they will reach their destination, and elegantly eliminate the
need for their acknowledgement. To evaluate the proposal, we have per-
formed full-system simulation with realistic parallel and multiprogrammed
workloads. For a 64-core chip, where the NoC has more impact, our pro-
posal with complete reactive circuits achieves an average energy reduction of
20.8% at the NoC, routers have 5.8% smaller area, and system performance
improves by 4.8%.

28

7. Acknowledgements

This work was supported in part by grants TIN2013-46957-C2-1-P, Con-
solider NoE TIN2014-52608-REDC (Spanish Gov.), and gaZ: T48 research
group (Aragn Gov. and European ESF), and FPU12/02553.

8. Bibliography

[1] D. Sanchez, G. Michelogiannakis, C. Kozyrakis, An analysis of on-
chip interconnection networks for large-scale chip multiprocessors, ACM
Transactions on Architecture and Code Optimization 7 (1) (2010) 4:1–
4:28. doi:10.1145/1756065.1736069.
URL http://doi.acm.org/10.1145/1756065.1736069

[2] M. Ortin, D. Suarez, M. Villarroya, C. Izu, V. Vinals, Dynamic construc-
tion of circuits for reactive traffic in homogeneous CMPs, in: Design,
Automation and Test in Europe Conference and Exhibition (DATE),
2014, 2014, pp. 1–4. doi:10.7873/DATE.2014.254.

[3] R. Kumar, V. Zyuban, D. M. Tullsen, Interconnections in multi-core ar-
chitectures: Understanding mechanisms, overheads and scaling, in: Pro-
ceedings of the 32nd annual international symposium on Computer Ar-
chitecture, ISCA ’05, IEEE Computer Society, Washington, DC, USA,
2005, pp. 408–419. doi:http://dx.doi.org/10.1109/ISCA.2005.34.
URL http://dx.doi.org/10.1109/ISCA.2005.34

[4] F. Palumbo, D. Pani, A. Congiu, L. Raffo, Concurrent hybrid switching
for massively parallel systems-on-chip: the cyber architecture, in: Pro-
ceedings of the 9th conference on Computing Frontiers, CF ’12, ACM,
New York, NY, USA, 2012, pp. 173–182. doi:10.1145/2212908.2212933.
URL http://doi.acm.org/10.1145/2212908.2212933

[5] J. Duato, P. Lopez, F. Silla, S. Yalamanchili, A high performance router
architecture for interconnection networks, in: Proceedings of the Inter-
national Conference on Parallel Processing, Vol. 1, 1996, pp. 61–68 vol.1.
doi:10.1109/ICPP.1996.537144.
URL http://dx.doi.org/10.1109/ICPP.1996.537144

[6] A. Abousamra, A. K. Jones, R. Melhem, Proactive circuit allocation
in multiplane NoCs, in: Proceedings of the 50th Annual Design Au-
tomation Conference, DAC ’13, ACM, New York, NY, USA, 2013, pp.

29

35:1–35:10. doi:10.1145/2463209.2488778.
URL http://doi.acm.org/10.1145/2463209.2488778

[7] A. Abousamra, R. Melhem, A. Jones, Deja-vu switching for multiplane
NoCs, in: Sixth IEEE/ACM International Symposium on Networks on
Chip (NoCS), 2012, pp. 11 –18. doi:10.1109/NOCS.2012.9.

[8] N. D. E. Jerger, L.-S. Peh, M. H. Lipasti, Circuit-switched coherence,
in: Proceedings of the Second ACM/IEEE International Symposium on
Networks-on-Chip, NOCS ’08, IEEE Computer Society, Washington,
DC, USA, 2008, pp. 193–202.
URL http://dl.acm.org/citation.cfm?id=1397757.1397999

[9] A. Abousamra, A. Jones, R. Melhem, Codesign of NoC and cache or-
ganization for reducing access latency in chip multiprocessors, IEEE
Transactions on Parallel and Distributed Systems 23 (6) (2012) 1038–
1046. doi:10.1109/TPDS.2011.238.

[10] D. Kline, Jr., K. Wang, R. Melhem, A. K. Jones, Mscs: Multi-hop
segmented circuit switching, in: Proceedings of the 25th Edition on
Great Lakes Symposium on VLSI, GLSVLSI ’15, ACM, New York, NY,
USA, 2015, pp. 179–184. doi:10.1145/2742060.2742087.
URL http://doi.acm.org/10.1145/2742060.2742087

[11] A. Mazloumi, M. Modarressi, A hybrid packet/circuit-switched router
to accelerate memory access in NoC-based chip multiprocessors, in: Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition, DATE, Grenoble, France, March 9-13, 2015, pp. 908–911.
URL http://dl.acm.org/citation.cfm?id=2757023

[12] S. Liu, A. Jantsch, Z. Lu, Parallel probe based dynamic connection setup
in TDM NoCs, in: Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, pp. 1–6. doi:10.7873/DATE.2014.252.

[13] L.-S. Peh, W. Dally, Flit-reservation flow control, in: High-Performance
Computer Architecture, 2000. HPCA-6. Proceedings. Sixth Interna-
tional Symposium on, 2000, pp. 73–84. doi:10.1109/HPCA.2000.824340.

[14] P. Gaughan, S. Yalamanchili, A family of fault-tolerant routing protocols
for direct multiprocessor networks, IEEE Transactions on Parallel and
Distributed Systems 6 (1995) 482–497. doi:10.1109/71.382317.

30

[15] C.-Y. Lee, N. Jha, Variable-pipeline-stage router, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 21 (9) (2013) 1669–1682.
doi:10.1109/TVLSI.2012.2217401.

[16] R. Mullins, A. West, S. Moore, The design and implementation of a low-
latency on-chip network, in: Proceedings of the 2006 Asia and South
Pacific Design Automation Conference, ASP-DAC ’06, IEEE Press, Pis-
cataway, NJ, USA, 2006, pp. 164–169. doi:10.1145/1118299.1118348.
URL http://dx.doi.org/10.1145/1118299.1118348

[17] R. Mullins, A. West, S. Moore, Low-latency virtual-channel routers for
on-chip networks, in: Proceedings of the 31st annual international sym-
posium on Computer architecture, ISCA ’04, IEEE Computer Society,
Washington, DC, USA, 2004, pp. 188–.
URL http://dl.acm.org/citation.cfm?id=998680.1006717

[18] L.-S. Peh, W. J. Dally, A delay model and speculative architecture for
pipelined routers, in: Proceedings of the 7th International Symposium
on High-Performance Computer Architecture, HPCA ’01, IEEE Com-
puter Society, Washington, DC, USA, 2001, pp. 255–.
URL http://dl.acm.org/citation.cfm?id=580550.876446

[19] A. Kumar, P. Kundu, A. Singhx, L.-S. Peh, N. Jha, A 4.6Tbits/s 3.6GHz
single-cycle NoC router with a novel switch allocator in 65nm CMOS,
in: 25th International Conference on Computer Design, ICCD, 2007,
pp. 63–70. doi:10.1109/ICCD.2007.4601881.

[20] J. Kim, Low-cost router microarchitecture for on-chip networks, in:
42nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-42, 2009, pp. 255–266.

[21] J. Mische, T. Ungerer, Low power flitwise routing in an unidirectional
torus with minimal buffering, in: Proceedings of the Fifth International
Workshop on Network on Chip Architectures, NoCArc ’12, ACM, New
York, NY, USA, 2012, pp. 63–68. doi:10.1145/2401716.2401730.
URL http://doi.acm.org/10.1145/2401716.2401730

[22] M. Zhang, K. Asanovic, Victim replication: Maximizing capacity while
hiding wire delay in tiled chip multiprocessors, in: Proceedings of the
32nd annual international symposium on Computer Architecture, ISCA

31

’05, IEEE Computer Society, Washington, DC, USA, 2005, pp. 336–345.
doi:10.1109/ISCA.2005.53.
URL http://dx.doi.org/10.1109/ISCA.2005.53

[23] C. Seiculescu, S. Volos, N. Khosro Pour, B. Falsafi, G. De Micheli,
CCNoC: On-Chip Interconnects for Cache-Coherent Manycore Server
Chips, in: Proceedings of the Workshop on Energy-Efficient Design
(WEED 2011), 2011.

[24] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, B. Verghese, Piranha: a scalable
architecture based on single-chip multiprocessing, in: Proceedings
of the 27th annual international symposium on Computer architec-
ture, ISCA ’00, ACM, New York, NY, USA, 2000, pp. 282–293.
doi:10.1145/339647.339696.
URL http://doi.acm.org/10.1145/339647.339696

[25] Tilera, TILEPro64http://www.tilera.com/products/processors/
TILEPro_Family (Last access November 2015).
URL http://www.tilera.com/products/processors/TILEPro_

Family

[26] Intel, Intel Xeon Phihttp://www.intel.es/content/
dam/www/public/us/en/documents/datasheets/

xeon-phi-coprocessor-datasheet.pdf (Last access November
2015).
URL http://www.intel.es/content/dam/www/public/us/en/

documents/datasheets/xeon-phi-coprocessor-datasheet.pdf

[27] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erra-
guntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, A 48-core IA-32
processor in 45 nm CMOS using on-die message-passing and DVFS for
performance and power scaling, IEEE Journal of Solid-State Circuits
46 (1) (2011) 173 –183. doi:10.1109/JSSC.2010.2079450.

[28] A. Raghavan, C. Blundell, M. M. K. Martin, Token tenure and
PATCH: A predictive/adaptive token-counting hybrid, ACM Transac-
tions on Architecture and Code Optimization 7 (2) (2010) 6:1–6:31.

32

doi:10.1145/1839667.1839668.
URL http://doi.acm.org/10.1145/1839667.1839668

[29] R. Fernandez-Pascual, J. Garcia, M. Acacio, J. Duato, A fault-
tolerant directory-based cache coherence protocol for CMP archi-
tectures, in: IEEE International Conference on Dependable Sys-
tems and Networks With FTCS and DCC, 2008, pp. 267–276.
doi:10.1109/DSN.2008.4630095.

[30] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, B. Hughes,
Cache hierarchy and memory subsystem of the AMD opteron processor,
Micro, IEEE 30 (2) (2010) 16–29. doi:10.1109/MM.2010.31.

[31] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, B. Werner, Simics: A
full system simulation platform, Computer 35 (2) (2002) 50 –58.
doi:10.1109/2.982916.

[32] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, D. A. Wood,
Multifacet’s general execution-driven multiprocessor simulator (GEMS)
toolset, SIGARCH Computer Architecture News 33 (2005) 92–99.
doi:http://doi.acm.org/10.1145/1105734.1105747.
URL http://doi.acm.org/10.1145/1105734.1105747

[33] N. Agarwal, T. Krishna, L.-S. Peh, N. Jha, GARNET: A detailed on-
chip network model inside a full-system simulator, in: IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software,
ISPASS, 2009, pp. 33 –42. doi:10.1109/ISPASS.2009.4919636.

[34] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-
S. Peh, V. Stojanovic, DSENT - a tool connecting emerging photonics
with electronics for opto-electronic networks-on-chip modeling, in: Pro-
ceedings of the 2012 IEEE/ACM Sixth International Symposium on
Networks-on-Chip, NOCS ’12, IEEE Computer Society, Washington,
DC, USA, 2012, pp. 201–210. doi:10.1109/NOCS.2012.31.
URL http://dx.doi.org/10.1109/NOCS.2012.31

[35] C. Bienia, S. Kumar, J. P. Singh, K. Li, The PARSEC benchmark suite:
characterization and architectural implications, in: Proceedings of the

33

17th international conference on Parallel architectures and compilation
techniques, PACT ’08, ACM, New York, NY, USA, 2008, pp. 72–81.
doi:http://doi.acm.org/10.1145/1454115.1454128.
URL http://doi.acm.org/10.1145/1454115.1454128

[36] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta, The SPLASH-2
programs: characterization and methodological considerations, in: Pro-
ceedings of the 22nd annual international symposium on Computer ar-
chitecture, ISCA ’95, ACM, New York, NY, USA, 1995, pp. 24–36.
doi:http://doi.acm.org/10.1145/223982.223990.
URL http://doi.acm.org/10.1145/223982.223990

[37] Standard Performance Evaluation Corporation (SPEC), SPEC
CPU2006, http://www.spec.org/cpu2006/ (Last access November
2015).
URL http://www.spec.org/cpu2006/

[38] R. Jain, The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Model-
ing, Wiley, 1991.
URL https://books.google.es/books?id=HetQAAAAMAAJ

[39] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, A. Agarwal, On-chip inter-
connection architecture of the tile processor, IEEE Micro 27 (5) (2007)
15–31. doi:10.1109/MM.2007.89.
URL http://dx.doi.org/10.1109/MM.2007.89

34

