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Abstract

Power consumption in current high-performance chip multiprocessors (CMPs) has be-

come a major design concern that aggravates with the current trend of increasing the

core count. A significant fraction of the total power budget is consumed by on-chip

caches which are usually deployed with a high associativity degree (even L1 caches

are being implemented with eight ways) to enhance the system performance. On a

cache access, each way in the corresponding set is accessed in parallel, which is costly

in terms of energy. On the other hand, coherence protocols also must implement effi-

cient directory caches that scale in terms of power consumption. Most of the state-of-

the-art techniques that reduce the energy consumption of directories are at the cost of

performance, which may become unacceptable for high-performance CMPs.

In this paper we propose an energy-efficient architectural design that can be effec-

tively applied to any kind of cache memories. The proposed approach, called the Tag

Filter (TF) Architecture, filters the ways accessed in the target cache set, and just a

few ways are searched in the tag and data arrays. This allows to reduce the dynamic

energy consumption of caches without hurting their access time. For this purpose, the

proposed architecture holds the X least significant bits of each tag in a small auxiliary

X-bit-wide array. These bits are used to filter the ways where the least significant bits

of the tag do not match with the bits in the X-bit array. Experimental results show that,

on average, the TF architecture reduces the dynamic power consumption across the
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studied applications up to 74.9%, 85.9%, and 84.5% when applied to L1 caches, L2

caches, and directory caches, respectively.

Keywords: Multicore, cache, directory, dynamic consumption

1. Introduction

As silicon resources become increasingly abundant, core counts grow rapidly in

successive chip-multiprocessors (CMPs) generations. These CMPs usually improve

their memory latency by using a multi-level cache hierarchy that occupies a significant

percentage of the overall CMP die area [1] and consumes an important fraction of the

overall power budget. Most of the cache power consumption is due to dynamic power

while a small fraction is due to static power. Dynamic power consumption comes from

switching activity of transistors during cache accesses while static power consumption

comes from current leaking, even when the cache is not being accessed. Cache de-

signers must reach a compromise among performance, cost, size, and power/energy

dissipation.

Dynamic energy consumption is dominated by first-level (L1) caches since they are

much more frequently accessed than last level caches (LLC), e.g. L3 caches. Moreover,

the high consumption of the cache memories is due to the parallel access of tag and data

arrays, a common characteristic in L1 caches since they have a strong influence on the

overall processor performance. This concern is even more important in CMPs than in

monolithic processors since L1 caches can be accessed both from the processor side

and from the interconnection network side due to coherence requests, increasing their

number of accesses.

Due to performance reasons, processor caches are being deployed with a high as-

sociativity degree. In high-performance microprocessors, ways in the target set are

accessed concurrently on a cache look up. Thus, the associativity degree defines the

number of accessed tags. In addition, caches include one comparator per way and

compare as many tags as the number of ways. As a consequence, the dynamic energy

dissipated per access increases along with the cache associativity.

Apart from the cache hierarchy, other cache structures are implemented in many-
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core processors. In current many-cores, like the Xeon Phi [2], directory-based coher-

ence is the commonly preferred approach. Cache memories, referred to as directory

caches or sparse directories, are used to keep track of the cached blocks. In this ap-

proach, when a directory entry is evicted, all copies of the tracked block in the processor

caches are invalidated, even if the block is being used by the processor, thus rising the

so-called coverage misses [3]. Mainly due to power reasons (i.e. lower associativity

degree in comparison to duplicate tags directories [4, 5, 6]), sparse directories are the

preferred design choice for a medium to high number of cores.

Previous research on the design of energy-efficient caches addressing dynamic

power has focused on minimizing the internal transistor activity during a cache ac-

cess. That activity comes from reading and comparing tags in tag arrays, and from

reading and writing data in data arrays. Ideally, on a cache hit, the cache would read

and compare a single tag, and access a single data entry without losing performance.

Furthermore, on a miss, the cache would have no need to access neither the tag array

nor the data array.

Many cache energy reduction approaches have focused on monolithic processors

in the past such as Cache Decay [7], Drowsy Caches [8], and Way Guard [9]. Some of

them, e.g. [10], were originally developed to reduce cache access time, but subsequent

research has proven that these schemes provide important energy savings. However,

since these schemes are not directly applied to CMPs, recent research has dealt with

energy savings on CMPs when running parallel workloads.

In this work we propose the Tag Filter (TF) Architecture, a technique that can

be applied to any set-associative cache in the system, ranging from processor caches

that store memory blocks to directory caches holding coherence information. The TF

Architecture reduces the number of tags and data entries checked when accessing a

cache, which leads to reducing the dynamic power consumption. The TF Architecture

is based on using the X least significant bits (LSB) of the address tag (X = 1, 2, 3, 4)

to discern which ways of a cache may contain the searched block. Only those ways

that may potentially contain the block are accessed, thus saving the energy required

to access the other ways. This allows caches to implement high-associativity with

a similar energy consumption as that of conventional low-associativity caches, while
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Figure 1: Fraction of memory instructions.

reducing the number of conflict misses.

The TF Architecture is deployed with minimal hardware complexity, while allow-

ing tag and data arrays to be accessed in parallel, so no performance degradation rises

with respect to conventional caches. In addition, unlike other approaches [11], no way-

alignment across sets must be done, which simplifies its implementation.

Experimental results show that the TF Architecture with X = 4 can reduce dy-

namic power consumption up to 74.9% when applied to the L1 cache and up to 85.9%

when applied to the L2 cache, thus achieving better results than recent proposals. Ad-

ditionally, when applied to the directory caches, the TF Architecture can reduce the

dynamic energy dissipated up to 84.2% for a single-level directory cache and 84.5%

for a multi-level directory cache.

The remainder of this paper is organized as follows. Section 2 describes the main

reasons that motivate us to carry out this research. Section 3 discusses the related

work. Section 4 presents the proposal. Section 5 describes the simulation framework.

Section 6 presents how the number of ways accessed is reduced and energy results.

Finally, Section 7 draws some concluding remarks.

2. Motivation

Cache memories, especially first- and second-level caches, are frequently accessed,

since memory reference instructions represent a significant percentage of the executed

instructions. Figure 1 shows the fraction of memory reference instructions in each

4
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(a) Average number of ways in a set of each type in the L1 cache
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(b) Average number of ways in a set of each type in the L2 cache

Figure 2: Average number of ways in a set of each type in the cache hierarchy.

individual benchmark executed on a 16-core CMP system (experimental environment,

system parameters, protocols and cache hierarchy are described in Section 5). This

value is roughly the same, around 16%, across the different benchmarks.

Therefore, a significant fraction of the total power budget is often consumed by

on-chip caches, as for example, in the Niagara2 processor [? ], where 44% of the chip

power is consumed by the L2 cache [12]. Reducing dynamic power consumption in

caches of CMPs is an actual problem that is being under research [11, 13]. To deal with

this problem, this paper proposes an architectural approach based on the hypothesis of

the homogeneous distribution of the least significant bits of the address tag across the

ways of a set-associative cache [14].

We launched experiments to verify this hypothesis in the considered workloads.
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Figure 2 shows the average distribution of the blocks across an 8-way L1 cache and

a 16-way L2 cache on a 16-core CMP system. In Figures 2(a) and 2(b) on average

there are 1 and 2 ways in an invalid state, under the implemented MOESI protocol,

in the L1 and L2 cache, respectively. Meanwhile, the remaining ways share a quite

homogeneous distribution considering the lowest order tag bits of the allocated blocks.

Therefore, there is no need to access all ways in a set if there is some mechanism able

to filter accesses only looking at the subset of ways that might allocate the requested

block. The homogeneous distribution of the lowest order tag bits makes our approach

a perfect method for filtering accesses.

Directory caches are typically built as set-associative caches and, as experimental

results will show, the least significant bits in the address tag follow a similar homoge-

neous distribution. A low associativity of the directory caches causes frequent evictions

of directory entries that lead to extra coverage misses in the processor caches, thus as

in any kind of cache, a higher associativity would improve the performance. How-

ever, their associativity is also limited due to power constraints. This power limitation

can be attacked using the TF Architecture allowing the same performance as highly-

associative directories with similar dynamic energy consumption as low-associative

directories.

In summary, the aim of this paper is to save dynamic energy by reducing the number

of lookups on each cache or directory access while keeping the performance of high-

associative caches.

3. Related Work

An important amount of research has focused on reducing the energy consumption

of cache memories. Most of this work has mainly focused on processor caches which

was already a concern in monolithic processors. Other work has focused only on direc-

tory caches in many-core CMPs where the problem mainly lies on scalability issues.

Below, we summarize these two lines of research.
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3.1. Processor Caches

Cache power consumption comes from both leakage (or static) and dynamic power

consumption. Regarding leakage savings, Powell et al. [15] proposed a Gated-Vdd

technique that aims to reduce leakage for instruction caches by re-configuring them

and turning off unused lines. Kaxiras et al. [7] proposes the Cache Decay, an approach

that reduces the leakage power of processor caches by turning off those cache lines that

are predicted to be dead, i.e. not referenced by the processor before they are evicted.

Drowsy Caches [8] exploits the fact that in a particular period of time only a subset of

the cache lines are accessed. Different from the Cache Decay proposal, in the Drowsy

Caches scheme the voltage is reduced but not cut off for those cache lines that are not

being accessed. In case the voltage is cut off, the content of the cache line cannot

be preserved, and therefore, it has to be re-fetched, as happens in the Cache Decay

proposal.

While techniques that aim to save leakage focus on reducing (or cutting off) volt-

age, dynamic energy saving techniques try to minimize the number of data read and

written on every cache access. For example, Albonesi [16] proposed Selective Cache

Ways, a cache design that enables only a subset of the cache ways when the cache

activity is not high. The prediction of ways was previously proposed by Calder et al.

[10] to reduce the access time of set-associative caches. This approach works well in

L1 caches with a relatively small associativity which presents very predictable access

patterns; however, as we show in the evaluation of this work, this mechanism presents

poor results for higher level caches since locality is hidden by previously accessed

cache levels.

The Way-Halting cache [17] filters lines accessed in the corresponding set by com-

paring the four least significant bits of the tag during the index decoding. This ap-

proach performs a fully-associative search in the first comparison which negatively

affects power consumption. Unlike our proposal, the way-halting cache scheme does

not work in virtually-indexed physically-tagged (VIPT) caches, since it requires the

tags to be available no later than the set index. If the address tag needs to be trans-

lated by a translation look-aside buffer (TLB), then the halt array (where the low order

bits are stored) look-up cannot proceed. We do not compare our approach against this
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scheme, since even though it filters the ways accessed in a similar manner as ours, the

performance is expected to be worse and the number of bits looked in the halt array is

greater than the bits looked in our proposal in order to do the filtering.

Way Guard [9] is a mechanism for large set-associative caches that employs bloom

filters to reduce dynamic energy by skipping the look-up of cache ways that do not con-

tain the requested data according to the bloom filter. This scheme requires the addition

of a large decoder and two fields per way: one segmented bloom filter, previously pro-

posed by the same authors to filter accesses to the whole cache [18], and another bloom

filter to filter accesses to ways. This may result in excessive overhead and critical com-

plexity. Way Guard shows performance gains with respect to the way-halting approach.

A quantitative comparison with Way Guard is shown in the evaluation section.

The PS-Cache [19] is a mechanism that filters the ways looked up on each cache

access by classifying each block as private or shared, according to the page table in-

formation. On a cache access, only the ways containing blocks that match with the

classification of the requested block are searched. In the evaluation section, we quanti-

tatively compare the PS cache with our TF Architecture.

Finally, other recently proposed techniques focus on reducing both leakage and dy-

namic consumption, for instance, by reducing the area of the cache tags like in the

TLB Index-Based Tagging [13], by employing direct mapped caches along with mech-

anisms to remove conflict misses like in ASCIB [14? ], or by performing run-time

partitioning like in the Cooperative Caching scheme [11] or in the ReCaC scheme [20].

3.2. Directory Caches

Cache coherence is a necessity in shared memory systems where multiple cores can

access the same memory block. Coherence protocols employ a coherence directory to

track which processor private caches (e.g. L1 caches) share each block. The directory

structure is accessed to carry out the required coherence actions such as sending invali-

dation requests to serialize write operations, or asking a copy of the block to the owner

(e.g. the last processor that wrote it).

Cache directories [21] are organized as set-associative caches. Each cache directory

entry encodes the set of sharers for the tracked block. Conventional approaches make
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use of a bit vector (a bit per-core cache) to encode the sharers. In this scheme, the

per-core area and energy grow almost linearly with the core count but they can grow

quadratically considering the aggregated directory size, since the number of directory

structures increases with the number of cores. In summary, scalability issues rise in

terms of energy and area.

Many proposals try to address the mentioned scalability issues by differentiating

between entries with few (or even none) sharers and entries with many sharers. For

instance, Coherence Deactivation [22] does not track private data (or even shared read-

only data [23]) in the directory caches, since they are tracked at page granularity in the

page table. SCD [24] uses different entry formats of the same length. Lines with one

or a few sharers use a single directory entry while widely shared lines employ several

cache lines (multi-tag format) using hierarchical bit vectors. Multi-grain directories

(MGD) [25] also use different entry formats of the same length and track coherence at

multiple different granularities to achieve scalability. Each MGD entry tracks either a

temporarily private memory region or a single cache block with any number of sharers.

PS-Dir [26] separates the directory in two structures, one storing shared entries and

the other private entries. To save energy, this scheme provides low associativity for

the cache that keeps track of shared blocks while private blocks are stored in a cache

with more associativity. In addition, it also brings energy savings by not storing the

sharer vector in the cache for private blocks. In contrast, the proposed TF Architecture

reduces energy consumption by minimizing the number of lookups during a directory

access.

4. Tag Filter Architecture

The Tag Filter (TF) Architecture can be applied to any set-associative cache in a

CMP, such as processor or directory caches. The aim of our proposal is to achieve

dynamic energy savings by filtering the number of accessed ways in the target set on

each cache access. The terms Tag Filter Cache (TF-Cache) and Tag Filter Directory

(TF-Directory) are used to refer to the Tag Filter Architecture when it is applied to a

processor cache and to a directory cache, respectively.

9



Virtual 

Address
Virtual Page Set Block

Offset

Xa Page Offset

Physical Page
Physical

Address

Data Array
TLB

Xa

Dec

MUX=

Tag Hit

N-X

Filter Hit

...

...

...

Xs

Tag Array

WL

WL

WL

WL

WL

WL

N-X

Taga

n ways

Figure 3: The TF Architecture for L1 caches.

The TF-Cache approach reduces the number of tags that are compared on each

cache access and also the number of ways that are accessed in parallel in the data array.

The final aim is to reduce dynamic power consumption in these cache components

which represents a large percentage of the total system power consumption. In a typical

cache access, to check if the searched block is in the cache, the entire tag in all the ways

of the target set are compared. Although the comparison is done in all the ways, only

one of them can potentially result in a hit. In first level caches, where performance is a

key objective, the data array is looked up in parallel with the tag array, before knowing

whether or not the target block is stored in the set.

For energy savings purposes, the proposed approach applies a first, small and fast

filter to discard some of the ways accessed (both in the tag array and in the data array)

to those cache ways that mismatch the small tag comparison. For this purpose, the

cache memory is upgraded with minimal hardware complexity as follows. The tag

array is decoupled in two main structures: one X-bit-wide and the other one N − X

bits wide. The TF-Cache employs the least significant bits of the tags stored in a X-

bit-wide table to reduce the number of accessed ways; that is, the entries in this table

act as a filter to access the tag and the data arrays as explained below. Figure 3 depicts

a block diagram of the TF-Cache for a first-level cache, which is commonly virtually

indexed and physically tagged (VIPT).
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To allow the mechanism to work in current VIPT caches, like those of Intel proces-

sors, the first comparison must start before the TLB output is known. For this purpose,

we assume that the operating system (OS) is responsible to ensure that the X least sig-

nificant bits of the virtual address are the same as those of the physical address. This

assumption is reasonable since i) a uniform page address distribution is expected and

ii) main memory capacities are by four orders of magnitude bigger than page sizes (e.g.

a 32GB main memory [27] and a 4KB page size), which allows the OS to have some

allocation flexibility, and so, being able to tolerate this small restriction.

Unlike a typical cache that performs a single N -bit tag comparison, the proposed

mechanism performs two tag comparisons, one of X-bit and the other of N-X-bit as

depicted in the flowchart depicted in Figure 4 and illustrated in the block diagram of

Figure 3. Under the aforementioned assumption, the first comparison can be done once

the output of the set decoder is provided, while the address translation in the TLB

is being performed. In this step, only the X least significant bits of the virtual page

(namely Xa in Figure 3) are looked up in all the ways of the target set (namely Xs).

The few number of bits (from 1 to 4) used in this comparison, allows it to be fast and
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effective (as experimental results will show), thus introducing negligible time penalty

and important energy savings.

In case that the first comparison fails in all the cache ways, the L2 cache is ac-

cessed. Otherwise, two main actions are performed in parallel. On one hand, once the

TLB provides the N-X bits of the physical address (i.e. Taga), the remaining N-X bits

of the tag array are compared to those provided by the TLB. Notice, that this com-

parison involves a much larger number of bits, however, it is only performed in those

cache ways that succeed the first comparison. Similarly, those entries of the data array

corresponding to those ways that matched the first tag comparison are accessed.

From a complexity perspective, the proposal requires minimal hardware require-

ments to be applied to current caches: an additional AND gate per set and way, plus

an additional X-bit small comparator per way (the one showed in the box representing

the tag array in Figure 3). For instance, in the evaluated caches (see Section 5) this

gives a simple circuitry consisting of 1K AND gates and 8 X-bit comparators, where

X varies from 1 to 4 depending on the evaluated configuration. As mentioned above,

the tag array is decoupled in two independent structures. A simple logic is required

to drive the wordline (WL) signal to both the N −X tag structure and the data array.

As observed in Figure 3, the wordline is allowed to drive both the wide tag structure

and the data array for a given way, but only in case the first comparison for that way

succeeds. Notice that the AND gates do not remove the power supply since this would

not preserve the data contents.

Regarding the TF-Directory, on a directory access the working mechanism works

very close to that of the TF-Cache. The tag array is decoupled in two, a X-bit and a

N −X bits wide, tables and the access is split in two sequential steps. In this manner,

the tags whose least significant bits do not match with the ones of the searched block

are filtered in a similar way as explained in the L1 data cache.

This design allows the mechanism to significantly reduce dynamic energy con-

sumption across the cache accesses since, in general, only a small fraction of ways is

compared in most of the accesses.

Finally, we would like to remark that the benefits of our proposal mainly vary

with the cache associativity. The higher the associativity the larger the energy sav-
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ings achieved by the TF Architecture. However, since our focus is on dynamic energy,

varying the number of sets or the cache size would have a minimal impact on per-

formance other than changing the capacity misses so incurring in less or more cache

accesses. Anyway, it is expected that varying the number of accesses would maintain

approximately the same percentage of filtered ways hence keeping comparable energy

savings. A similar rationale could be applied for an increasing core count.

5. Simulation Environment

We evaluate our proposal with a full-system simulation using Virtutech Simics [28]

and the Wisconsin GEMS toolset [29], which enables detailed simulation of multipro-

cessor systems. GARNET [30], a detailed network simulator included in the GEMS

toolset, models the interconnection network.

Table 5 shows the values of the main system parameters that correspond to our

base system, which is a 16-tile CMP architecture. We use the CACTI 6.5 tool [31] to

estimate access time, area requirements, and power consumption of the different cache

structures for a 32nm technology node and high performance transistors.

Our evaluation analyzes a 16-core CMP comprised of a cache hierarchy with private

L1 caches and a shared L2 NUCA distributed among all tiles. A MOESI directory-

based cache coherence protocol keeps coherence for the data within the private caches.

The directory scheme employed is an on-chip sparse directory that employs a bit-vector

sharing code.

The proposal has been evaluated with a wide range of scientific applications. Barnes

(16K particles), Cholesky (tk15), FFT (64K complex doubles), FMM (16K particles),

LU (512×512 matrix), Ocean (514×514 ocean), Radiosity (room, -ae 5000.0 -en 0.050

-bf 0.10), Radix (512K keys, 1024 radix), Raytrace (teapot –optimized by removing

locks for unused ray ids–), Volrend (head), and Water-Nsq (512 molecules) are from the

SPLASH-2 benchmark suite. Tomcatv (256 points) and Unstructured (Mesh.2K) are

two scientific benchmarks. Blackscholes (simmedium) and Swaptions (simmedium)

belong to the PARSEC suite. The experimental results reported in this work corre-

spond to the parallel phase of the evaluated benchmarks. Details about traffic patterns

13



Table 1: System parameters

Legend– BW: buffer writing, RC: route computation, VA: VC allocation, SA: switch allocation, ST: switch traversal, and

LT: link traversal.

Memory Parameters

Cache hierarchy Non-inclusive

Cache block size 64 bytes

Split L1 I & D caches 64KB, 8-way

L1 cache access time 2 cycles

Shared single L2 cache 512KB/tile, 16-way

L2 cache access time 6 cycles (2 if only tag accessed)

Directory cache 256 sets, 4 ways (same as L1)

Directory cache hit time 2 cycles

Memory access time 160 cycles

Network Parameters

Topology 2-dimensional mesh (4x4)

Routing technique Deterministic X-Y

Flit size 16 bytes

Buffer size 6 flits

Data and control message size 5 flits and 1 flit

Stages of the pipelined router BW, RC, VA, SA, ST and LT

14



of SPLASH-2 and PARSEC benchmarks can be found in [32] and [33] respectively.

6. Experimental Evaluation

This section briefly explains the schemes that are considered with comparison pur-

poses against the TF Architecture. Then, experimental results are presented and ana-

lyzed for both processor caches and directory caches. The benefits of the TF Architec-

ture depend on the average number of ways that are looked up by the memory accesses.

This number mainly changes depending on the accessed structure (first or second cache

level or directory cache) and on the application behavior.

6.1. Compared Schemes

First, to evaluate the TF-Cache against other proposals that also reduce dynamic

energy consumption by accessing a subset of the cache ways instead of all of them.

These schemes are Way Prediction [10, 16] and two recent approaches: Way Guard [9]

and PS-Cache [19].

Way Prediction techniques [10, 16] predict the way to be accessed in advance,

typically the way containing the MRU block, and only that way is accessed first. The

problem lies when the prediction fails; in such a case, after performing the comparison

of the MRU complete tag, all the remaining ways are accessed at a second phase to

look up the target block. This means that on misprediction, both energy wasting rises

and latency increases, since additional cycles are required to solve the memory request.

Way Guard [9] has been proven to work efficiently in highly-associative caches.

The mechanism implements a counting bloom filter associated to each cache way. Way

Guard works as follows. First, a hash function is applied to a subset of bits of the

address of the target block. The output of the hash is a m-bit index that is decoded to

access the 2m − 1 entry bloom filter vector. If the bit is set to 1 then the associated

cache way is accessed (both tags and data arrays), otherwise that way is not searched.

Each entry of the bloom filter has associated an up/down counter (e.g. 3-bit in the

original work), that is decremented each time a cache line whose address maps to that

position is evicted from the cache and increased when the block is written in the cache.
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In the original paper, results are shown for m equal to 4× the number of blocks in a

cache. We will refer to this configuration as WayGuard−4×. This approach requires

a decoder with 4× more outputs than the already implemented in the cache to index

the target set.

The PS-Cache [19] tags cache blocks at run-time as shared or private according to

a simple classification mechanism based on the OS. Upon an access to the PS-Cache,

only those ways having the same type as the requested block are accessed.

To evaluate the TF-Directory we implemented the Tag Filter Architecture in two

directory schemes: in a convention single-level directory cache [21] and in the PS-Dir

[26]. The latter approach, separates the directory in two different structures referred

to as the Shared Cache and the Private Cache. The former is smaller and stores those

entries keeping track of shared blocks, whereas the latter is bigger, lacks the sharer

vector, and keeps track of private blocks. The PS-Dir relies on the fact that most of

the directory hits are in shared entries, which we want to solve as quickly as possible,

while the number of private entries is much higher than the number of shared ones. By

having two different structures the necessities of each entry type can be addressed more

adequately. Results will show how the Tag Filter mechanism affects directory caches

with one or more levels.

6.2. TF Architecture in Processor Caches

Figure 5(a) shows the average number of searched ways in the 8-way L1 cache for

the different studied techniques. As can be seen, the more bits (from 1 to 4) we use in

the bit-array for filtering the ways, the less ways are accessed. On average, the number

of accessed ways in a 8-way cache for 1-,2-,3-, and 4-bit tag filter is 3.53, 1.82, 1.06,

and 0.98, respectively. This means that accesses follow a uniform distribution when

considering the least significant bits. As expected using three bits suffices to limit the

number of ways needed to be looked up to only a single one, since our first-level cache

has 8 ways, therefore allowing the consumption of a set-associative cache that uses this

mechanism to be similar as that of a direct-mapped cache. There is no high difference

in the obtained results across the different applications for a given number of tag bits.

Notice that, it is possible to have an average number of ways accessed lower than 1. It
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(a) Average number of ways accessed in the 8-way L1 cache.
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(b) Average number of ways accessed in the 16-way L2 cache.

Figure 5: Average number of ways accessed in the cache hierarchy.

might happen that the least significant bits of the tag address have no match in the tag

array. In this case, no way has to be accessed and the cache miss is triggered earlier

than it would be without filtering. This explains the results obtained for four bits.

Compared to the PS-Cache, the proposal always achieves better results even with

just a single tag bit (i.e. X equal to 1 bit). The PS-Cache accesses on average to

4.6 ways and the results widely vary from one application to another. In some cases

like Ocean there is almost no access reduction, whereas in others (i.e. Tomcatv) it can

reduce it by about 50%. This variability in the results is due to the high variation in the

private-shared access pattern across the applications. WayGuard and Way-Prediction

access on average 2.41 and 1.43 ways, which remains mostly constant along all the

studied applications. Thus, they perform better than the proposal with a single bit.

Two bits are enough to surpass WayGuard and a third one in order to surpass Way-
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Prediction. Using the MRU way as a prediction does prove to be good enough for

first-level caches providing a good hit ratio.

Figure 5(b) shows the average number of searched ways in the 16-way L2 cache.

The number of ways accessed on average is by 7.68, 4.04, 2.43 and 1.74 for X equal to

one, two, three, and four bits, respectively. As in the L1 cache, which was previously

discussed, the reduction distributes evenly across all the studied applications. The trend

shows that there is still room for improvement, but there has to be a limit to how big the

tag array can be. In comparison, the PS-Cache, Way-Prediction and WayGuard access

9.85, 12.7 and 4.34 ways, respectively. Way-Prediction, which works really well for

the L1 cache, performs poorly in lower levels of the cache hierarchy, since L1 caches

filter many of the processor accesses, thus application locality is much poorer. When

the prediction hits, only a way is accessed, but when it misses the remaining ways have

to be accessed. Therefore, the figure shows a poor hit ratio in the LLC. Also it is worth

to note, that a failed prediction also means a penalty in the access time since additional

cycles are required in order to get the data information. That is, Way-Prediction is a

hindrance for performance when applied in this level. Both Way-Prediction and the PS-

Cache perform worse than the TF Architecture even with one bit, whereas WayGuard

performs almost as well as the proposal when employing a two-bit tag array.

As a consequence of reducing the number of accessed ways in the data caches,

the dynamic energy consumption is also reduced. Figure 6(a) shows the dynamic en-

ergy consumed by the first-level cache. Results have been normalized to those of a

set-associative cache in which all ways are accessed, which also include the power

overhead incurred by the extra comparators. The Tag Filter Cache is able to reduce the

dynamic energy consumed by 48.1%, 65.8%, 73.2%, and 74.9% for a tag filter with

one, two, three, and four bits, respectively. It can be seen that the marginal benefits of

adding additional bits to the filter are fewer with each additional step. We can assume

that results for a five-bit filter will not differ much from the ones shown for a four-bit

one. As expected from the previous results, Way-Prediction shows the best results, be-

ing able to reduce dynamic energy consumption up to 82.1% in the Ocean application.

The PS-Cache obtains the worst results, since it is also the scheme that accesses more

ways. Analogously, Figure 6(b) depicts the same results, but for the L2 cache. The Tag
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(a) Dynamic energy consumed in the 8-way L1 cache normalized to a conventional cache.
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Figure 6: Dynamic energy consumed in the cache hierarchy.

Filter Cache is able to reduce consumption by 51.8%, 72.2%, 81.1%, and 85.9% for a

tag filter with one, two, three, and four bits, respectively. Again one can see the dimin-

ishing benefits of further increasing the tag filter size. WayGuard achieves reductions

similar as a 2-bit TF-Cache, whereas PS-Cache and Way-Prediction display no such

improvements in comparison to the proposed architecture, reducing energy consumed

only by 38.4% and 20.4%, respectively.

No performance evaluation is shown, since the mechanism introduces no access

time penalty.

6.3. TF Architecture in Directory Caches

This section evaluates the TF Architecture implemented both, in a conventional

single-level directory cache and in the recently proposed PS-Dir [26] approach. Ex-

perimental results assume an 8-way conventional directory cache and a PS-Dir with a
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Figure 7: Average number of ways accessed in the directory per directory access.

2-way Shared cache and a 6-way Private cache (the configuration assumed in the orig-

inal work). For each of them we evaluated the proposal ranging the filter size from 1

to 4 bits in 1-bit steps.

Figure 7 shows the average number of accessed ways on a cache access in the

studied schemes. As can be seen, the base directory schemes access an average of

5.5 and 5.1 ways on each memory access, for the directory cache and the PS-Dir,

respectively. Unless some few exceptions, PS-Dir always accesses fewer ways than the

conventional directory cache. The TF Architecture further improves these numbers.

As happened in the TF-Cache, the more bits are used in the filtering, the less ways are

accessed. Just one bit is enough to reduce to 3.1 and 3.6 the average accessed ways.

The TF-Directory is able to reduce as much as 0.8 and 0.7 accessed ways, for directory

cache and PS-Dir respectively, when employing 4 bits. The tag filtering behaves almost

identically in both directory protocols which means that it is applicable to any other

cache directory scheme. Also, as happened in the TF-Cache, directory misses could be

detected earlier with this architecture if there is no way match in the least significant

bits.

Figure 8 shows the normalized dynamic energy consumed by the different directory

configurations. The proposal is able to achieve energy reductions by 30.2%, 43.6%,

71.4% and 84.5% with 1, 2, 3, and 4 bits, respectively, in the PS-Dir. Analogously,

reductions by 43.5%, 62.5%, 77.7%, and 84.2% are achieved in the directory cache.

Single-level directories seem to profit more of the tag filtering than many-level ones
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Figure 8: Normalized dynamic energy consumed by the directory.
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Figure 9: Normalized total number of accessed ways in the directory during execution time.

when few bits are selected in the filtering process. Nonetheless, results in energy con-

sumed seem to converge as we increase this number of bits. Comparing this figure with

Figure 7, it can be appreciated that there is no direct correlation between energy con-

sumption and average number of accessed ways. For this purpose we should account

for the total number of accesses, which varies among the studied schemes since they

produce a different number of invalidations due to evictions of entries in the directory

cache. Below we present these results.

Figure 9 shows the normalized total number of ways accessed in the directory cache

along the complete execution of the applications. These results effectively confirm that

there is a direct correlation between the total number of accessed ways and dynamic

energy consumed by the directory. As such, the lower this number, the more energy

can be saved. Remember that an access to the directory is triggered on a miss in the L1
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processor cache for coherence maintenance. Even though the PS-Dir looks up a lower

average number of ways per access than the directory cache, it looks up on overall a

higher number of ways because it performs more accesses to the directory. This is

due to a higher number of the so called coverage misses, i.e. misses that occur due

to space constraints in the directory. The tag filter is able to decrease the number of

ways accessed from 69.4% with one single bit up to 15.7% with 4 bits in the PS-Dir

and from 56.5% to 15.8% in the conventional directory cache. Although there seems

to be a convergence in the total number of accessed ways as the number of bits of the

tag filter increases, better results are achieved when the TF Architecture is applied to

the conventional directory cache in comparison to the PS-Dir. The reason is the higher

number of ways assumed in the conventional directory.

In summary, the Tag Filter Cache and the Tag Filter Directory achieve significant

energy gains, the more bits we use in the tag filter the more it surpasses recent ap-

proaches like WayGuard, Way-Prediction, PS-Cache and PS-Dir. Furthermore, this

idea can be applied to any level of the cache hierarchy without inquiring in any perfor-

mance degradation, which is the case of Way-Prediction in lower level caches.

7. Conclusions

Power consumption is a major design concern in current high-performance chip

multiprocessors, which increases with the core count. On-chip caches often consume

a significant fraction of the total power budget, and important research has focused

on reducing energy consumption in these memory structures frequently at the cost of

performance.

This work proposes the TF Architecture (TF-Cache and TF-Directory) to reduce

dynamic power consumption in set-associative caches. The proposed mechanism saves

a significant amount of energy by effectively reducing the number of searched ways.

In this paper we have implemented and evaluated the proposed architecture both in

processor caches (L1 and L2) and in the directory cache.

Results show that the TF-Cache can reduce up to 87.75% and 89.13% the average

number of ways that are looked up on every access to the L1 and L2 caches, respec-
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tively; which translates in energy savings by 74.9% and 85.9%. Compared to other

state-of-the-art schemes, TF-Cache achieves better results than the compared architec-

tures, with the only exception of Way-Prediction in first-level caches by a small margin.

Way-Prediction has proven to be ineffective when applied to other levels of the cache

hierarchy, whereas our TF Architecture works better at any level.

The TF-Directory has been implemented and evaluated on a conventional single-

cache directory and the PS-Dir (a state-of-the-art approach). Results show that up to

84% of the ways accessed by the conventional cache are filtered in both approaches,

which translates in roughly the same percentage of energy savings.

All in all, we achieve significant energy benefits with minimal hardware complexity

and without impacting applications performance.
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