
Distributed Computing on Core-Periphery Networks:
Axiom-based Design

Chen Avina,1,2, Michael Borokhovicha,2, Zvi Lotkera,2, David Pelegb,2

aBen-Gurion University of the Negev, Israel.
bThe Weizmann Institute, Israel.

Abstract

Inspired by social networks and complex systems, we propose a core-periphery
network architecture that supports fast computation for many distributed algo-
rithms and is robust and efficient in number of links. Rather than providing a
concrete network model, we take an axiom-based design approach. We provide
three intuitive and independent algorithmic axioms and prove that any network
that satisfies all axioms enjoys an efficient algorithm for a range of tasks (such
as MST, sparse matrix multiplication, and more). We also show the minimality
of our axiom set: for networks that satisfy any subset of the axioms, the same
efficiency cannot be guaranteed for any deterministic algorithm.

1. Introduction

A fundamental goal in distributed computing concerns finding network ar-
chitectures that allow fast running times for various distributed algorithms, but
at the same time are cost-efficient, in terms of minimizing the number of com-
munication links between the machines and the amount of memory used by each
processor.

For illustration, let’s consider three basic network topologies: a star, a clique
and a constant degree expander. The star graph has only a linear number of
links, and can compute every computable function in one round of communi-
cation. But clearly, such an architecture has two major disadvantages: the
memory requirements of the central node do not scale, and the network is not
robust (in the sense that a failure of the central node is enough to disable the
network). The complete graph, on the other hand, is very robust, and can sup-
port extremely high performance for tasks such as information dissemination,

Email addresses: avin@cse.bgu.ac.il (Chen Avin), borokhom@cse.bgu.ac.il (Michael
Borokhovich), zvilo@cse.bgu.ac.il (Zvi Lotker), david.peleg@weizmann.ac.il (David
Peleg)

1Part of this work was done while the author was a visitor at ICERM, Brown university.
2Supported in part by the Israel Science Foundation (grant 1549/13).

ar
X

iv
:1

40
4.

65
61

v2
 [

cs
.D

C
]

 1
5

Se
p

20
15

distributed sorting and minimum spanning tree, to name a few [26, 24, 23].
Also, in a complete graph, the amount of memory used by a single processor is
minimal. The main drawback of that architecture is the high number of links
it uses. Constant degree expanders are a family of graphs that support efficient
computation for many tasks. They also have linear number of links, and can
effectively balance the workload between many machines. But the diameter of
these graphs is lower bounded by Ω(log n), which implies a similar lower bound
on the time required for most of the interesting tasks one can consider.

Therefore, a natural question is whether there are other candidate topologies
with guaranteed good performance. We are interested in the best compromise
solution: a network on which distributed algorithms have low running times,
memory requirements at each node are limited, the architecture is robust to link
and node failures and the total number of links is minimized (preferably linear
in the number of nodes).

To try to answer this question, we adopt in this paper an axiomatic ap-
proach to the design of efficient networks. In contrast to the direct approach
to network design, which is based on providing a concrete type of networks (by
deterministic or randomized construction) and showing its efficiency, the ax-
iomatic approach attempts to abstract away the algorithmic requirements that
are imposed on the concrete model. This allows one to isolate and identify the
basic requirements that a network needs for a certain type of tasks. While there
are obvious similarities between the traditional direct modeling approach and
our axiom-based one, there are also some marked differences. Perhaps the main
difference is that whereas the direct modeling approach focuses on rules gov-
erning the concrete structural properties of a network, our axiomatic approach
relies on defining necessary operational or algorithmic properties required from
the network, without committing to any a specific topology. This approach may
allow us to abstract away many of the less significant details of the structure,
and thus enable us to derive a simpler analysis of the essential properties of
the structure under consideration, developing efficient algorithms for various
purposes, relying solely on those abstract features.

A closely related distinction is that while the performance of distributed
algorithms is usually expressed by specific structural network parameters (e.g.,
diameter, degree, etc.), the axioms proposed in this work are expressed in terms
of desired algorithmic properties that the network should have.

Our axiomatic approach is also influenced by the recent concept of Software
Defined Networks (SDN) [14]. The concept of SDN implies layering and ab-
stractions in the networking control plane, which allows easy configuration of
overlay architectures with a specific behavior (as opposed to specific structure).
By only defining the desired behavior, we may allow many network implemen-
tations, as long as the desired behavior is maintained. Using our axioms, we are
able to define the exact abstractions required for devising efficient distributed
algorithms,thus decoupling them from specific topology details.

The axioms proposed in the current work are motivated and inspired by
the core-periphery structure exhibited by many social networks and complex
systems. A core-periphery network is a network structured of two distinct groups

2

of nodes, namely, a large, sparse and weakly connected group of nodes identified
as the periphery, which is loosely organized around a small, cohesive and densely
connected group identified as the core. Such a dichotomic structure appears in
many domains of our life, and has been observed in many social organizations,
including modern social networks [2]. It can also be found in urban and even
global systems (e.g., in global economy, the wealthiest countries constitute the
core, which is highly connected by trade and transportation routes) [15, 21, 19].
An analysis conducted in [29] for many software systems, revealed that 75−80%
of the systems examined possess a core-periphery structure. There are also peer-
to-peer networks that use a similar hierarchical structure, e.g., FastTrack [25]
and Skype [4], in which the supernodes can be viewed as the core, while the
regular users constitute the periphery. Various client-server systems can also be
thought of in these terms.

The vast presence of the core-periphery structure in our life suggests that it is
a natural and effective design pattern. Consequently, we argue that a distributed
network architecture based on it may support distributed algorithms that are
easy to devise and reason about, given that we are used to thinking in “core-
periphery terms” (for instance, in employing information processes based on
collecting inputs from various peripheral sources to the core nodes, processing
the data centrally, and then sending the results back to the periphery).

The main technical contribution of this paper is in proposing a minimal
set of simple core-periphery-oriented axioms, and demonstrating that networks
satisfying these axioms achieve efficient running time for various distributed
computing tasks, while being able to maintain a linear number of edges and
limited memory use. We identify three basic, abstract and conceptually simple
(parameterized) properties, which turn out to be highly relevant to the effective
interplay between core and periphery. For each of these three properties, we
propose a corresponding axiom, which in our opinion captures some intuitive
aspect of the desired behavior expected of a network based on a core-periphery
structure. Let us briefly describe our three properties, along with their “real
life” interpretation, technical formulation and associated axioms.

The three properties are: (i) balanced boundary between the core and pe-
riphery, (ii) clique-like structure of the core and (iii) fast convergecast from the
periphery to the core. The first property (i) concerns the boundary between the
core and the periphery. Drawing an analogy from the world of social networks,
the core can be thought of as a highly influential group, that exerts its influence
(in the form of instructions, opinions, or other means) on the periphery. The
mechanism through which this is done is based on certain core nodes, which are
each connected to many nodes in the periphery, and act as “ambassadors” of the
core. Ambassadors serve as bidirectional channels, through which information
flows into the core and influence flows from the core to the periphery. However,
to be effective as an ambassador, the core node must maintain a balance between
its interactions with the external periphery, and its interactions with the other
core members, serving as its natural “support”; a core node that is significantly
more connected to the periphery than to the core, becomes ineffective as a chan-
nel of influence. In distributed computing terms, a core node that has many

3

Task Running time Lower bounds
on CP networks All Axioms Any 2 Axioms

MST * O(log2 n) Ω(1) Ω̃(4
√
n)

Matrix transposition O(k) Ω(k) Ω(n)
Vector by matrix multiplication O(k) Ω(k/ log n) Ω(n/ log n)
Matrix multiplication O(k2) Ω(k2) Ω(n/ log n)
Rank finding O(1) Ω(1) Ω(n)
Median finding O(1) Ω(1) Ω(log n)
Mode finding O(1) Ω(1) Ω(n/ log n)
Number of distinct values O(1) Ω(1) Ω(n/ log n)
Top r ranked by areas O(r) Ω(r) Ω(r

√
n)

k - maximum number of nonzero entries in a row or column. * - randomized algorithm

Table 1: Summary of algorithms for core-periphery networks.

connections to the periphery has to be able to distribute all the information it
collected from them, to other core nodes. Hence the relevant property is having
a balanced boundary: a set S of nodes is said to have an α-balanced boundary
if for each of its nodes, the ratio between the sizes of its neighborhoods outside
and inside S is at most O(α). The corresponding Axiom AB states that the
core must have a Θ(1)-balanced boundary.

The second property (ii) deals with the flow of information within the core.
It is guided by the key observation that to be influential, the core must be able to
accomplish fast information dissemination internally among its members. The
extreme example of a dissemination-efficient network is the complete graph, so
the core’s efficiency in information flow should naturally be measured against
that benchmark. Formally, a set of nodes is said to be a β-clique emulator if it
can accomplish full communication (namely, message exchange between every
pair of its members) in β time (communication rounds). The corresponding
Axiom AE postulates that the core must be a Θ(1)-clique emulator. Note that
this requirement is stronger than just requiring the core to possess a dense in-
terconnection subgraph, since the latter permits the existence of “bottlenecks”,
whereas the requirement dictated by the axiom disallows such bottlenecks.

The third and the last property (iii) focuses on the flow of information from
the periphery to the core and measures its efficiency. The core-periphery struc-
ture of the network is said to be a γ-convergecaster if this data collection opera-
tion can be performed in time γ. The corresponding Axiom AC postulates that
information can flow from the periphery nodes to the core efficiently (i.e., in con-
stant time), namely, the core and periphery must form a Θ(1)-convergecaster.
Note that one implication of this requirement is that the presence of periphery
nodes that are far away from the core, or bottleneck edges that bridge between
many periphery nodes and the core, is forbidden.

One may raise the “semi-philosophical” question whether the properties we
defined should be referred to as “axioms”. Our answer is that adopting the ax-

4

iomatic view yields the added benefit that it immediately raises the fundamental
issues of minimality, independence and necessity, thus allowing us to carefully
verify the role and usefulness of each property / axiom. Indeed, we partially
address these issues. First, we establish the independence of our axioms, by
showing that neither of them is implied by the other two. Second, for each
task, we establish the necessity of the axioms. Specifically, we show that if at
least one of the axioms required by the algorithm is omitted, then there exists
a network that satisfies the other axioms, but for which the running time (of
any distributed algorithm) is larger by at least a factor of log n and at most a
factor n, see Table 1.

To support and justify our selection of axioms, we examine their usefulness
for effective distributed computations on core-periphery networks. We consider
a collection of different types of tasks, and show that they can be efficiently
solved on core-periphery networks, by providing a distributed algorithm for
each task and bounding its running time.

Table 1 provides a summary of the main tasks we studied, along with the
upper and lower bounds on the running time when the network satisfies our
axioms, and a worst case lower bound on the time required when at least one
of the axioms is not satisfied. For each task we provide an algorithm, and prove
formally its running time and the necessity of the axioms. As it turns out,
some of the necessity proofs make use of an interesting connection to known
communication complexity results.

The most technically challenging part of the paper is the distributed con-
struction of a minimum-weight spanning tree (MST), a significant task in both
the distributed systems world, cf. [28, 34], and the social networks world [1, 6, 9].
Thus, the main algorithmic result of the current paper is proving that MST
can be computed efficiently (in O(log2 n) rounds) on core-periphery networks,
namely, networks that comply with our axioms (interestingly, our algorithm is
randomized, which is a rarity in the distributed MST literature). To position
this result in context, let us briefly review the state of the art on the prob-
lem of distributed MST construction. The problem was first studied in [16, 3],
where the main focus was on low communication costs, and the run-time was
at least linear in n. The study of sublinear-time distributed MST construction
was initiated in [17]. Currently, the best upper bound for general graphs is
O (
√
n log∗ n+D) [22], where D denotes the network diameter. Conversely, it

was shown in [35] that there is a graph for which any deterministic algorithm
for MST requires Ω(

√
n/ log n) time. More efficient algorithms exist for specific

families of graphs. For the complete graph G = Kn, an MST, can be con-
structed in a distributed manner in O(log log n) time [26]. For the wider class of
graphs, of diameter at most 2, this task can still be performed in time O(log n).
In contrast, taking the next step, and considering graphs of diameter 3, drasti-
cally changes the picture, as there are examples of such graphs for which any
distributed MST construction requires Ω (4

√
n) time [27].

Let us now briefly review related work. Core periphery structures in so-
cial networks provided the inspiration to our approach. A number of excellent
books provide a general review of social networks. A brief description of the

5

core-periphery structure, and the core’s possible utilization as an interconnec-
tion mechanism among the network’s users (albeit with no formal models or
algorithmic procedures), can be found in Easley and Kleinberg’s book [12].
The first explicit treatment of the core-periphery structure in social networks
is given by Borgatti and Everett in [8], which provides a descriptive model for
the core-periphery structure, and reviews some of its occurrences in a variety of
social settings, lending support to our intuition regarding the centrality of the
core-periphery structure in social networks. It does not, however, provide any
systematic mathematical model for this structure. Similar phenomena of core-
periphery structure were shown to exist in economics, e.g., the core–periphery
model of Krugman [21] and other network formation models [18]. Several books
present a formal rigorous analysis for the Preferential Attachment model. The
interested reader is invited to look at, cf., Chapter 3 of [10], Chapter 4 of [7], or
Chapter 14 of [32].

Turning to the distributed realm, in recent years there have been many
studies focusing on the analysis of distributed algorithms on the complete graph
Kn, cf. [33, 5, 11, 20, 13, 27, 35, 26, 24]. We believe that some of those
algorithms can be extended to, and applied in, the context of core-periphery
networks, which provide a much larger family of graphs.

The rest of the paper is organized as follows. Section 2 formally describes
core-periphery networks, the axioms and their basic structural implications.
Section 3 provides a description of the MST algorithm, and Section 4 presents
the rest of the tasks we study.

2. Axiomatic design for core-periphery networks

2.1. Preliminaries

Let G(V,E) denote our (simple undirected) network, where V is the set of
nodes, |V | = n, and E is the set of edges, |E| = m. The network can be thought
of as representing a distributed system. We assume the synchronous CONGEST
model (cf. [34]), where communication proceeds in rounds, and in each round
each node can send a message of at most O(log n) bits to each of its neighbors.
Initially, each node has a unique ID of O(log n) bits.

For a node v, let N(v) denote its set of neighbors and d(v) = |N(v)| its
degree. For a set S ⊂ V and a node v ∈ S, let Nin(v, S) = N(v) ∩ S denote
its set of neighbors within S, and denote the number of neighbors of v in the
set S by din(v, S) = |Nin(v, S)|. Analogously, let Nout(v, S) = N(v) ∩ V \ S
denote v’s set of neighbors outside the set S, and let dout(v) = |Nout(v, S)|.
For two subsets S, T ⊆ V , let ∂(S, T) be the edge boundary (or cut) of S and
T , namely, the set of edges with exactly one endpoint in S, one in T and
|∂(S, T)| =

∑
v∈S |Nout(v, S) ∩ T |. Let ∂(S) denote the boundary in the special

case where T = V \ S.

2.2. Core-periphery networks

Given a network G(V,E), a 〈C,P〉-partition is a partition of the nodes of V
into two sets, the core C and the periphery P. Denote the sizes of the core and

6

the periphery by nC and nP , respectively. To represent the partition along with
the network itself, we denote the partitioned network by G(V,E, C,P).

Intuitively, the core C consists of a relatively small group of strong and highly
connected machines, designed to act as central servers, whereas the periphery P
consists of the remaining nodes, typically acting as clients. The periphery ma-
chines are expected to be weaker and less well connected than the core machines,
and they perform much of their communication via the dense interconnection
network of the core. In particular, a central component in many of our algo-
rithms, for various coordination and computational tasks, is based on assigning
each node v a representative core node r(v), which is essentially a neighbor act-
ing as a “channel” between v and the core. The representative chosen for each
periphery node is fixed.

For a partitioned network to be effective, the 〈C,P〉-partition must possess
certain desirable properties. In particular, a partitioned network G(V,E, C,P) is
called a core-periphery network, or CP-network for short, if the 〈C,P〉-partition
satisfies three properties, defined formally later on, in the form of three axioms.

2.3. Core-periphery properties and axioms

We define certain key parametrized properties of node groups, in networks
that are of particular relevance to the relationships between core and periphery
in our partitioned network architectures. We then state our axioms, which
capture the expected behavior of those properties in core-periphery networks,
and demonstrate their independence and necessity. Our three basic properties
are the following.

(i) α-Balanced Boundary. A subset of nodes S is said to have an α-balanced

boundary iff dout(v,S)
din(v,S)+1 = O(α) for every node v ∈ S.

(ii) β-Clique Emulation. The task of clique emulation on an n-node graph
G involves delivering a distinct message Mv,w, from v to w, for every pair of
nodes v, w in V (G). An n-node graph G is a β-clique-emulator, if it is possible
to perform clique emulation on G within β rounds (in the CONGEST model).

(iii) γ-convergecast. For S, T ⊆ V , the task of 〈S, T 〉-convergecast, on a
graph G, involves delivering |S| distinct messages Mv, originating at the nodes
v ∈ S, to some nodes in T (i.e., each message must reach at least one node
in T). The sets S, T ⊂ V form a γ-convergecaster if it is possible to perform
〈S, T 〉-convergecast on G in γ rounds (in the CONGEST model).

Consider a partitioned network G(V,E, C,P). We propose the following set
of axioms, concerning the core C and periphery P.

AB . Core Boundary. The core C has a Θ(1)-balanced boundary.

AE . Clique Emulation. The core C is a Θ(1)-clique emulator.

AC . Periphery-Core Convergecast. The periphery P and the core C form
a Θ(1)-convergecaster.

7

(a)

(b) (c)

...

(I) (II)

Figure 1: (I) An example for a 36-node CP-network that satisfies all three ax-
ioms. The 6 core nodes (in gray) are connected in clique. In this example every
core node is also an ambassador with equal number of edges to the core and out-
side the core. The core and periphery form a convergecaster since the periphery
can send all its information to the core in one round. (II) Networks used in
proofs: (a) The “lollipop partitioned” network L25. (b) The “sun partitioned”
network S16. (c) The “dumbbell partitioned” network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary
between the core and periphery. Core nodes with a high out-degree (i.e., with
many links to the periphery) are thought of as ambassadors of the core to the
periphery. Axiom AB states that while not all nodes in the core must serve as
ambassadors, if a node is indeed an ambassador, then it must also have many
links within the core. Axiom AE talks about the flow of information within the
core, and postulates that the core must be dense, and in a sense, behave almost
like a complete graph: “everyone must know almost everyone else”. The clique-
emulation requirement is actually stronger than just being a dense subgraph,
since the latter permits the existence of “bottlenecks” nodes, which a clique-
emulator must avoid. Axiom AC also concerns the boundary between the core
and periphery, but in addition it refers also to the structure of the periphery. It
postulates that information can flow efficiently from the periphery to the core.
For example, it forbids the presence of periphery nodes that are far away from
the core, or bottleneck edges that bridge between many periphery nodes and
the core. Fig. 1(I) provides an example for a CP-network satisfying the three
axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB, AE, AC are independent, namely, assuming any two
of them does not imply the third.

Proof. We prove the theorem by considering three examples of partitioned net-
works, described next. Each of these networks satisfies two of the axioms, but

8

violates the third (hence, they are not CP-networks), implying independence.

The lollipop partitioned network Ln (Fig. 1(II)(a)). The lollipop graph consists
of a b

√
nc-node clique and a n− b

√
nc-node line, attached to some node of the

clique. The corresponding partitioned network is obtained by setting its core C
to be the clique, and its periphery P to be the line. Observe that Ln is not a
CP-network. Indeed, Axiom AE holds on Ln, and Axiom AB also holds since
the outgoing degree of each node in the core is 0 or 1. However, AC is not
satisfied on Ln since the periphery consists of a line of length n − b

√
nc, so it

will take linear time for the periphery P to convergecast to the core C.

The sun partitioned network Sn (Fig. 1(II)(b)) . The sun graph consists of an
dn/2e-node cycle, with an additional leaf node attached to each cycle node. The
corresponding partitioned network is obtained by setting its core C to be the
cycle, and its periphery P to contain all other bn/2c nodes. Clearly, AC holds
on Sn, since each node in P is only one hop away from some node in C. Axiom
AB also holds, since the outgoing degree of each node in C is 1. Axiom AE ,
however, does not hold, since the distance between two diametrically opposing
nodes in the cycle is at least n/4, so it is not possible to perform Θ(1) clique
emulation.

The dumbbell partitioned network Dn (Fig. 1(II)(c)) . The dumbbell graph is
composed of two stars, each consisting of a center node connected to dn/2e − 1
leaves, whose centers are connected by an edge. The corresponding partitioned
network is obtained by setting its core C to be the two centers, and the pe-
riphery P to consist of the n − 2 leaves of the two stars (each of degree 1). It
is easy to see that Axioms AE and AC hold on Dn, while Axiom AB does not. �

2.4. Structural implications of the axioms

The axioms imply a number of simple properties of the network structure.

Theorem 2. If the partitioned network G(V,E, C,P) is a core-periphery net-
work (i.e., it satisfies Axioms AB, AE and AC), then the following properties
hold:

1. The core size satisfies Ω(
√
n) ≤ nC ≤ O(

√
m).

2. Every v ∈ C satisfies dout(v, C) = O(nC) and din(v, C) = Ω(nC).

3. The number of outgoing edges of the core is |∂(C)| = Θ(n2C).

4. The core is dense, i.e., the number of edges in it is
∑
v∈C din(v, C) = Θ(n2C).

Proof. Axiom AE necessitates that the inner degree of each node v is din(v, C) =
Ω(nC) (or else it would not be possible to complete clique emulation in constant
time), implying the second part of claim 2. It follows that the number of edges
in the core is

∑
v∈C din(v, C) = Θ(n2C), hence it is dense; claim 4 follows. Since

9

also
∑
v∈C din(v, C) ≤ 2m, we must have the upper bound of claim 1, that is,

nC = O(
√
m). Axiom AB yields that for every v, dout(v, C) = O(nC), so the

first part of claim 2 follows. Note that |∂(C)| =
∑
v∈C dout(v, C) = O(n2C), so

the upper bound of claim 3 follows. To give a lower bound on nC, note that
by Axiom AC we have |∂(C)| = Ω(n− nC) (otherwise the information from the
n − nC nodes of P could not flow in O(1) time to C), so nC = Ω(

√
n) and the

lower bounds of claims 1 and 3 follow. �

An interesting case for efficient networks is where the number of edges is
linear in the number of nodes. In this case, Theorem 2 implies the following.

Corollary 1. In a core-periphery network G(V,E, C,P) where m = O(n), the
following properties hold:

1. The core size satisfies nC = Θ(
√
n).

2. The number of outgoing edges from the core is |∂(C)| = Θ(n).

3. The number of edges in the core is
∑
v∈C din(v, C) = Θ(n).

Now we show a key property relating our axioms to the network diameter.

Claim 1. If the partitioned network G(V,E, C,P) satisfies Axioms AE and AC ,
then its diameter is Θ(1).

Proof. Suppose the partitioned network G(V,E, C,P) satisfies Axioms AE and
AC . Let u, v be two nodes in V . There are three cases to consider: (1)
Both u, v ∈ C: then Axiom AE ensures O(1) time message delivery, and
thus O(1) distance. (2) u ∈ P and v ∈ C: Axiom AC implies that there
must be a node in w ∈ C such that dist(u,w) = O(1). By Axiom AE ,
and dist(w, v) = O(1), thus dist(u, v) ≤ dist(u,w) + dist(w, v) = O(1). (3)
Both u, v ∈ P : then there must be w, x ∈ C such that dist(u,w) = O(1)
and dist(x, v) = O(1). Since dist(w, x) = O(1) by Axiom AE , it follows that
dist(u, v) ≤ dist(u,w) + dist(w, x) + dist(x, v) = O(1). Hence dist(u, v) = O(1)
for any u, v ∈ V , so the diameter of G(V,E) is constant. �

The following claim shows that the above conditions are necessary.

Claim 2. For X ∈ {E,C}, there exists a family of n-node partitioned networks
GX(V,E, C,P), of diameter Ω(n), which satisfy all axioms except AX .

Proof. For X = C, let GC(V,E, C,P) be the lollipop partitioned network Ln.
As mentioned before, for this network Axiom AC is violated, while the others
are not. Also note that the diameter of GC is Ω(n).

For X = E, let GE(V,E, C,P) be the sun partitioned network Sn. As men-
tioned before, for this network Axiom AE is violated, while the others are not.
Also note that the diameter of GE is Ω(n). �

10

3. MST on a Core-Periphery Network

In this section we present a time-efficient randomized distributed algorithm
CP-MST for computing a minimum-weight spanning tree (MST) on a core-
periphery network. In particular, we consider a n-node core periphery network
G(V,E, C,P), namely, a partitioned network satisfying all three axioms, and
show that a MST can be computed in a distributed manner on such a network
in O(log2 n) rounds with high probability. Upon termination, each node knows
which of its edges belong to the MST. We also show that Axioms AB , AE , and
AC are indeed necessary, for our distributed MST algorithm to be efficient.

3.1. Axiom necessity

Theorem 3. For each X ∈ {B,E,C} there exists a family of n-node partitioned
networks FX = {GX(V,E, C,P)(n)}, that do not satisfy Axiom AX , but satisfy
the other two axioms; and the time complexity of any distributed MST algorithm
on FX is Ω(nαX), for some constant αX > 0.

Proof. For X = B, consider the graph GB on Figure 2(a), in which Core is a
clique of size k, and each node in the Core is connected to k3 Periphery nodes
(one node in Core is also connected to s, so it has k3 + 1 Periphery neighbors).
The number of nodes in GB is thus n = k + k · k3 + 1 = Θ(k4). In [27],
it was shown that any distributed algorithm will take at least Ω

(
4
√
n/
√

log n
)

time on GB . Since Core is a clique, GB satisfies Axiom AE . Since every node
in Periphery has a direct edge to the Core, GB satisfies Axiom AC , i.e., it is
possible to perform a convergecast in O(1) time. But notice that din = 4

√
n

while dout =
4
√
n3 and thus GB does not satisfy Axiom AB .

For X = E, consider the graph GE on Figure 3(a), in which Core is a
collection of k cliques, each of size k, where a single node in each clique is
connected to a special Core node u, and there are no edges between cliques.
The k3 Periphery nodes are arranged in k columns of k2 nodes each. Each node
in the Core (except u) is connected to k Periphery nodes such that the nodes
in a specific clique i are connected to all the Periphery nodes that reside in
a specific column i. One Core node (from the leftmost clique) is additionally
connected to s, and another Core node (from the rightmost clique) is connected
to r. The number of nodes in GE is thus n = k · k + k · k2 + 2 = Θ(k3).

Assume the following weight assignment. All the edges between Core and
Periphery have weight 10, except for the two edges that come from s and r.
The weights of all the edges incident to s are 2, and the weights of all the edges
incident to r are 3. Assume also that the weights of all the rest of the edges
in Periphery are 1. It’s easy to see that such a weight assignment will yield an
MST as illustrated in Figure 3(b). Notice that increasing the weight of some
edge incident to s (say, to 5), will cause this edge to be removed from the MST,
and the corresponding edge incident to r to be included. Thus, in order for r
to know which of its edges belong to the MST, it needs to receive information
regarding the weights of all the edges incident to s, i.e., at least k2 edge weights
should be delivered from s to r. In the CONGEST model, at most O(log n) edge

11

weights can be sent in a single message, hence Ω(k2/ log n) messages must be
delivered from s to r. Next, we show that delivering k2/ log n messages from s
to r will require at least Ω(k/(log n)) time. First, note that any path s→ r that
is not passing via the node u has length at least k, thus if any of the messages
avoids u, we are done. So now assume that all the messages take paths via
u. Observe that the edge cut of the node u (i.e., its degree) is k, and thus in
k/(2 log n) time units, it can forward at most k2/(2 log n) messages, which is
not sufficient for completing the MST task. Thus, any MST algorithm on the
graph GE will take at least Ω(k/ log n) = Ω(3

√
n/ log n) time.

It is left to show that GE satisfies Axioms AB and AC , but not AE . For
every node in the Core, din = k and dout = k, except the node u, for which
dout = 0. So, for each node in the core dout/(din + 1) = O(1), which means that
AB is satisfied. Since every node in Periphery has a direct edge to the Core,
GE satisfies Axiom AC , i.e., it is possible to perform a convergecast in O(1). It
is also easy to see that the Core does not support O(1)-clique emulation (AE),
since sending k messages out of any clique in Core to any other clique in Core
requires k time, as there is only one edge connecting any clique to the node u.

Finally, for X = C, consider a graph GC on Figure 2(b), in which Core is a
clique of size k, and each node in the Core is connected to k/2 Periphery nodes.
One Core node is additionally connected to a cycle of size k2/2 that resides in
Periphery. The number of nodes in GC is thus n = k + k · k/2 + k2/2 = Θ(k2).
It is easy to see that Axioms AB and AE are satisfied, but Axiom AC is not.
For a suitable weight assignment, the decision regarding which edge of r to in-
clude in the MST depends on the weights of the edges incident to s. The last
observation implies that at least one message has to be delivered from s to r
which will take Ω(k2) = Ω(n) time. �

.
.
.

.
.
.

.
.
.

...

...

...

.
.
.

Core

Periphery

...

k-clique

k
3

k

r

s

.

.

.

...

Core

Periphery

...

k-clique

k
2
/4

k/2

.

.

.
.

.

.

.

.

.

...

...s

r

(a) Graph GB (b) Graph GC

Figure 2: (a) Graph GB : each node in the Core is connected to k3 Periphery
nodes. (b) Graph GC : each node in the Core is connected to k/2 Periphery
nodes, and one Core node is connected to cycle of length k2/2 in Periphery.

12

k-clique

Core

Periphery

k
2

k

.
.
.

k-clique

.
.
.

k-clique

.
.
.

k-clique

.
.
.

...

...

...

...

s r

u

some tree

Core

Periphery

k
2

k

.
.
.

.
.
.

.
.
.

.
.
.

...

...

...

2

2

2

2

3

1

1

1

1

1

1

s r

(a) Graph GE (b) MST

Figure 3: (a) Graph GE : Core consists of k cliques each of size k. Each node
in the Core (except u) is connected to k nodes in Periphery. (b) Possible MST
of GE .

3.2. Description of the CP-MST algorithm

Let us now give a high level description of our CP-MST algorithm. The al-
gorithm is based on Boruvka’s MST algorithm [31], and runs in O(log n) phases,
each consisting of several steps. The algorithm proceeds by maintaining a forest
of tree fragments (initially singletons) and gradually merging fragments, until
the forest converges to a single tree. Throughout the execution, each node has
two officials, namely, core nodes that represent it. In particular, recall that
each node v is assigned a representative core neighbor r(v), passing information
between v and the core. In addition, v is also managed by the leader l(i) of its
current fragment i. An important distinction between these two roles is that
the representative of each node is fixed, while its fragment leader may change
in each phase (as its fragment grows). At the beginning of each phase, every
node knows the IDs of its fragment and its leader. Then, every node considers
all its outgoing edges (i.e., edges with the second endpoint belonging to another
fragment), and finds its minimum weight outgoing edge. This information is
delivered to the core by the means of the representative nodes, which receive
the information, aggregate it (as much as possible) and forward it to the leaders
of the appropriate fragments. The leaders decide on the fragment merging, and
inform all the nodes about new fragments IDs.

The main challenges in obtaining the proof were in bounding the running
time, which required careful analysis. There are two major sources of potential
delays in the algorithm. The first involves sending information between officials
(representatives to leaders and vice versa). Note that there are only O(

√
m)

officials, but they may need to send information about m edges, which can
lead to congestion. For example, if more than α ·

√
m messages need to be

sent to an official of degree
√
m, then this will take at least α rounds. We

use randomization of leaders and the property of clique emulation to avoid this
situation, and make sure that officials do not have to send, or receive, more than

13

O(
√
m logm) messages in a phase.

The second source for delays is the fragment merging procedure. This further
splits into two types of problems. The first is that a chain of fragments that need
to be merged could be long, and in the basic distributed Boruvka’s algorithm
will take long time (up to n) to resolve. This problem is overcome by using a
modified pointer jumping technique, similar to [27]. The second problem is that
the number of fragments that need to be merged could be large, resulting in a
large number of merging messages that contain, for example, the new fragment
ID. This problem is overcome by using randomization, and by reducing the
number of messages needed for resolving a merge.

Before describing the subsequent phases of the algorithm, a few definitions
are in place. At any point throughout the execution, let f(u) denote the frag-
ment that u belongs to. Dually, let V i denote the set of nodes in fragment i,
and let V i(w) denote the subset of V i consisting of the nodes that are repre-
sented by w. For a representative w ∈ C, let Frep(w) be the set of fragments
that w represents, namely, Frep(w) = {i | V i(w) 6= ∅}, and let Flead(w) be the
set of fragments that w leads, namely, Flead(w) = {i | l(i) = w}. For a set
of nodes Si belonging to the same fragment i, an outgoing edge is one whose
second endpoint belongs to a different fragment. Let mwoe(Si) be the minimum
weight outgoing edge of Si. For a node u, a fragment i and a representative w,
we may occasionally refer to the fragment’s mwoe as either mwoe(u), mwoe(V i) or
mwoe(V i(w)). The merge-partner of fragment i, denoted mp(i), is the fragment
of the second endpoint of the edge mwoe(V i). Define F jlead(w) ⊆ Flead(w) to
be the set of fragments led by w that attempt to merge with the fragment j,
i.e., F jlead(w) = {i | i ∈ Flead(w) and mp(i) = j}. Define a speaker fragment

spkj(w) = minF jlead(w), that is responsible for sending merge-requests on be-

half of all the fragments in F jlead(w), and updating them upon the reception of
merge-replies.

We now proceed with the description of the algorithm.

Phase 0 – Initialization.

1. Obtaining a Representative. Each node u ∈ V obtains a representa-
tive r(u) ∈ C in the core. In particular, if u ∈ C, it represents itself, i.e.,
r(u) = u. Each periphery node u ∈ P sends a “representative-request”
message towards the core C with its ID. This is done in parallel, using a
γ-convergecast protocol on P and C, which ensures that each such message
is received by some node in C. Once a node w ∈ C receives such a message,
it replies to u on the same route, and u sets r(u) = w.

2. Renaming. Each node u ∈ V receives a unique ID, id(u) ∈ [1, . . . , n].
This step can be performed in the following simple way: each node sends
to its representative its ID, and each representative sends its own ID and
the number of nodes it represents, to all core members. Now, every core
member can sort the core IDs and reserve a sufficiently large range of IDs
for each representative. Each node in the core can now set its own new ID,

14

and send unique new IDs in the range [1 . . . n] to the nodes it represents.
We assume nodes in the core C take IDs [1 . . . nC].

3. Fragment ID Initialization. Each node u ∈ V forms a singleton frag-
ment with its unique id(u).

4. Obtaining a Leader. Each initial fragment i = f(u) (which is a singleton
at this phase) obtains a leader by asking the representative r(u) of node
u, to select a random Core member w uniformly at random, and declare
it as a leader of i, l(i) = w. This is done, in a balanced way, by picking
a random permutation and assigning leaders according to it, hence every
node in C becomes the leader of O(nc) fragments.

5. Fragment State Initialization. Each leader keeps a state (active /
frozen / root / waiting) for each of its fragments. The initial state of all
fragments is active.

Phase b ∈ {1 . . . B} (similar to Boruvka’s phases).

1. Finding mwoe. Each u ∈ V finds an edge (u, v) = mwoe(u), and obtains
f(v) and l(f(v)).

2. Periphery to Representatives. Each node u ∈ V sends (u, v) =
mwoe(u), f(u), l(f(u)), f(v) and l(f(v)) to its representative r(u) ∈ C.

3. Representatives to Leaders. Each representative w ∈ C, for each
fragment i ∈ Frep(w), sends (u, v) = mwoe(V i(w)), i, f(v), and l(f(v)) to
the leader l(i) of i.

4. Leaders Merge Fragments. Each leader w ∈ C, for each fragment
i ∈ Flead(w), finds (u, v) = mwoe(V i) and mp(i) = f(v), and then executes
MergeFrags(i).

5. Leaders to Representatives. Each leader w ∈ C, for each active frag-
ment i ∈ Flead(w), sends an update message with the new fragment name
newID(i), the new leader node l(newID(i)) and the edge to add to the
MST, to all the representatives of the nodes in V i. If w 6= l(newID(i)),
then the fragment i is removed from Flead(w).

6. Representatives to Periphery. Each representative w ∈ C, for each i ∈
Frep(w), for which the update message with newID(i) and l(newID(i))
was received, forwards it to all the nodes of V i(w).

3.3. MergeFrags procedure

The MergeFrags procedure is the essential part of our algorithm, executed
at each phase b. The procedure is executed by each leader w ∈ C, for each
fragment i ∈ Flead(w). For a fragment i, its leader maintains a state parameter
state(i) ∈ {active, frozen, root, waiting}. Each fragment i attempts to merge

15

with some other fragment mp(i). Towards that, the leader of i initiates a merge-
request to a leader of the fragment mp(i) (the fragment at the other end of
mwoe(i)). Since these requests do not have to be reciprocal, merge requests
usually form a merge-tree, whose nodes are fragments and whose directed edges
represent merge-requests (see Figure 4 for illustration). In order to minimize
the number of merge-request messages sent by fragment leaders, we propose
to designate, for each set of fragments sharing the same leader that attempt
to merge with the same target fragment, a speaker fragment, that will act on
behalf of all the fragments in the set, and update all of them upon reception of
merge-replies.

6 216 9 1

3 520

12 430 8

10 7

25 13

18 11

21 15

)(8 vF
lead

mp(9)=5

mp(3)=8

mp(8)=10

spk
5
(u)=1

spk
8
(u)=3

spk
8
(v)=7

)(10 wF
lead

)(12 vF
lead

)(18 vF
lead

)(3 wF
lead

)(5 uF
lead

)(8 uF
lead

)(7 wF
lead

Figure 4: Illustration of a fragments merge-tree. An arrow i → j means that
fragment i attempts to merge with fragment j, i.e., j = mp(i). The root of the
merge-tree is fragment 8, since it has a reciprocal arrow with fragment 10 and
8 < 10.

The root of that tree is a fragment that received a reciprocal merge-request
(actually, there are two such fragments, so the one with the smaller ID is selected
as a root). However, since merge-requests are not sent by every fragment, only
by speakers, the root node is detected by the speaker, and not the root fragment
itself (except for the case when the root is the speaker). For example, in Figure
4, fragment 4 sends a merge request to fragment 10, and gets a merge-reply
with the next pointer of 10, which is 8 (the next pointer of fragment i is always
set initially to mp(i)). Fragment 4 then realizes that 8 belongs to F 10

lead(w), and
thus identifies the reciprocity between 8 and 10. Fragment 4 (the speaker) then
notifies 8 that it should be the root (7 does not notify 10 since 8 < 10). For a

16

detailed description of the root finding procedure see Algorithm FindRoot(i)
in Appendix A.

When a fragment i that is led by w is in the active state and attempts to
merge with another fragment (mp(i)), it first tries to find the root using the
procedure FindRoot (see Appendix A for the pseudocode). By the end of the
FindRoot procedure, i may not find a root, in which case its state will become

frozen; i may find that the root is another fragment k in F
mp(i)
lead (w), and then

i will notify k, but i’s state will become frozen; i may find that it is a root by
itself, in which case its state will become root; and finally, i may be notified by

a speaker of F
mp(i)
lead (w) and i’s state will become root.

Once a fragment enters the root state, it starts waiting for all the tree
fragments to send it merge-requests. These merge-requests are sent by each
fragment, using the pointer-jumping procedure PJ (see Appendix A for the
pseudocode), while it is in the frozen state. Once the requests of all the tree
fragments reach the root (using pointer-jumping), it chooses a new random ID
(newID) for the fragment, among all the fragments in the tree, and a random
Core node to be the new leader (newLead) for this fragment, and sends this
information back to all of them. At this point, the merge-tree is considered
to be resolved, and all its fragments (including the root) change their state to
active. The simple state diagram of Algorithm MergeFrags can be found in
Figure 5, and a detailed pseudocode in Appendix A.

active

frozen waitingroot

FIN received from root

new phase start

try to find root fragment (FINDROOT)

I’m root

new phase start && pointer-jumping not finished

perform 2 iterations of pointer-jumping

I’m not root

notify root if found

perform 2 iterations

of pointer-jumping

pointer-jumping finished

new phase start && no merge-request received

newID = rand fragment ID from all the

fragments IDs in the merge-tree

newLead = rand node among all the nodes in

the Core

send FIN with newID and newLead to all the

current leaders of fragments in the merge-tree

notified by other fragment

Figure 5: State diagram of Algorithm MergeFrags. The algorithm is executed
by every leader for every fragment it leads. Each title indicates an event, and
the text below it is the action performed upon that event.

Now we briefly describe the pointer-jumping approach used to resolve frag-
ment merge-trees. Pointer-jumping is a technique (developed in [37] and often

17

used in parallel algorithms) for contracting a given linked list of length k, caus-
ing all its elements to point to the last element, in O(log k) steps. We use the
pointer-jumping approach for resolving merge-trees, viewing the fragments as
the nodes in a linked list, with each fragment i initially pointing at mp(i). Each
fragment chain can be of length at most O(n), and thus can be contracted in
log n rounds, resulting in a log n time overhead per phase. In order to overcome
this, we use a technique first introduced in [27], called “amortized pointer-
jumping”, in which the contraction of long chains is deferred to later phases,
while in each phase only a small constant number of pointer-jumps is performed.
The argument for the correctness of this approach is that if the chain (or tree)
is large, then the resulting fragment, once resolved, is large enough to satisfy
the fragment growth rate needed to complete the algorithm in B = O(log n)
phases (see Claim 6).

3.4. Correctness of the CP-MST Algorithm

We now show that our CP-MST algorithm is correct, i.e., it results in an
MST. The following claim shows that the MergeFrags algorithm indeed re-
solves a merge-tree.

Claim 3. Once a merge-tree becomes active, all the (old) fragments in the tree
have the same (new) fragment ID.

Proof. The claim follows directly from the description above, and the observa-
tion that in the pointer-jumping procedure, at every step, at least one more node
points to the root. Thus, if at some phase the root of the merge-tree does not
receive any merge-request, then every other fragment in the tree is in waiting
state, i.e., points to the root. Consequently, the root knows all the fragments in
the tree, and can inform their leaders about the new fragment ID, newID, and
the new leader node l(newID). �

Claim 4. The CP-MST algorithm emulates Boruvka’s MST algorithm and thus
constructs an MST for the network.

Proof. In Boruvka’s algorithm, fragment merges can be performed in any order.
What’s important is that a merge between any two fragments will occur if, and
only if, they share an edge that is an mwoe, for at least one of the fragments.
Since our algorithm satisfies this property, it results in an MST. �

3.5. Running time analysis of the CP-MST algorithm

We now analyze the running time of Algorithm CP-MST in a Core-Periphery
network. To do that, we analyze each part of the algorithm separately, and prove
the following Claims 5, 6 and 7. We start with the initialization phase.

Claim 5. The initialization phase (Phase 0) takes O(1) rounds.

18

Proof. Due to Axiom AC , the convergecast process employed in step 1 of Phase
0 requires O(1) rounds. The renaming step (step 2 of Phase 0) can be done in
O(1) rounds, due to Axiom AE . The operation of obtaining a leader (step 3 of
Phase 0) requires O(1) rounds due to the Axiom AC . �

Now we show that the number of Boruvka phases needed in algorithm CP-
MST is B = O(log n).

Claim 6. Algorithm CP-MST takes O(log n) phases, i.e., B = O(log n).

Proof. The proof is by induction. Assume that every active fragment f at phase
x ≤ i has size (in nodes) |f | > min(2x, n). We show that in the phase j > i
at which f becomes active again, its size will be at least min(2j , n). In phase
i, f joins a merge-tree that was created at some phase k ≤ i, and according to
induction assumption, every fragment in this tree has size at least min(2k, n).
That tree will be resolved in phase j, i.e., after j − k phases. Let D be the
diameter of the tree in phase j. Since the algorithm uses pointer jumping with
two iterations at each phase, it follows that j − k ≤ dlogDe /2. The size of the
resolved tree is at least min(2k, D), since it comprises of at least D fragments,
each of size at least min(2k, n). Clearly,

2kD = 2k+logD ≥ 2k+
dlog De

2 ≥ 2j ,

and thus |f | ≥ min(2j , n). So each active fragment at phase j is of size at least
min(2j , n). If in phase dlog ne there are no active fragments, then the algorithm
waits for at most log n time, which is sufficient to resolve any fragments tree,
and then, the size of the fragment is min(22 logn, n) = n, which means that the
algorithm has terminated. �

Finally, we analyze the steps performed in phases b ∈ [1, . . . , B]. First, we
give the following auxiliary lemma. The result of this lemma is well known, and
its proof is analogous to the proof of Lemma 5.1 in [30].

Lemma 1. For every real x > 0, when up to k balls are thrown independently
and uniformly at random into at least w bins, the maximum loaded bin has at
most O(k/w + log x) with probability at least 1− w/xc, where c is an arbitrary
constant.

Proof. Let Xi be the random variable representing the number of balls in bin
i. For integer l ≥ 0,

Pr(Xi ≥ l) ≤
(
k

l

)
·
(

1

w

)l
≤ kl

l!
· 1

wl
=

(
k

w

)l
· 1

l!

≤
(
k

w

)l
·
(e
l

)l
=

(
ek

wl

)l

19

For l = c1(k/w + log x), we obtain

Pr(Xi ≥ c1(k/w + log x)) ≤
(
e

c1

)c1(k/w+log x)

≤ 1

xc
,

where c = c(c1) is an arbitrary constant.
By taking union bound over all the w bins, we obtain that the probabil-

ity that any bin has at most O(k/w + log x) balls with probability of at least
1− w/xc. �

Claim 7. For every phase b ∈ [1, . . . , B], the running times of the main steps
1, 2 and 6 are bounded by O(1), and of steps 3, 4 and 5 by O(log n). Thus, every
phase b takes O(log n) rounds.

Proof. In step 1, every node sends a single message to all its neighbors, so the
running time is O(1). In step 2, each node u ∈ V sends mwoe(u) to r(u) ∈ C
using γ-convergecast. By Axiom AC , the running time is O(γ) = O(1). Next,
consider step 3. Since the network satisfies Axiom AE , one may assume that C is
a clique. To derive the running time of this step we have to calculate how many
messages are sent between a representative u and a leader v in C. It suffices to
look only at Core edges, since this step involves communication only between
nodes in C (representatives and leaders). By Theorem 2(2), dout(u) = O(nC),
and since P and C form a Θ(1)-convergecaster, it follows that on each edge
towards P, u ∈ C receives a constant number of “representative-requests” at
the initialization phase. The last claim implies that u represents O(nC) nodes,
and thus at most O(nC) fragments. Hence, every representative node has to
send O(nC) messages, each destined to a leader of a specific fragment. Since the
“leadership” on a fragment is assigned independently at random to the nodes
in C, sending messages from representative to leaders is analogous to throwing
O(nC) balls into nC bins. Hence by Lemma 1 with an appropriate constant c,
the most loaded edge (bin) from a representative u to some leader v handles
O(log nC) messages (balls), with probability at least 1 − 1/n8C. Applying the
union bound over all O(nC) representative nodes and all O(log n) = O(log nC)
phases of the algorithm, we get that the most loaded edge in step 3, is at most
O(log n) with probability at least 1− 1/n. Thus, this step takes O(log n) time.

In step 4, every execution of Procedure MergeFrags requires sending /
receiving merge-request/reply messages from every leader u ∈ C, for each frag-
ment i ∈ Flead(u). For each merge-request there is exactly one merge-reply, so
it suffices to count only merge-requests. Moreover, if there are multiple frag-
ments that have the same leader node and need to send a merge-request to
the same other fragment, only one message will actually be sent by the speaker
fragment. The last observation implies that every request message sent by a
leader is destined to a different fragment (i.e., to its leader). As in the analysis
of the previous step, since “leadership” is assigned independently at random to
the nodes in C, sending messages from leaders to leaders is analogous to throw-
ing A balls into nC bins, where A is the number of fragments that the node

20

u leads. Using Lemma 1 with an appropriate constant c, A can be bounded
with high probability by O(

√
n), since up to n fragments (balls) are assigned to

nC = Ω(
√
n) Core nodes (bins).

We now apply Lemma 1 with O(
√
n) balls (fragments led by a node), and

nC = Ω(
√
n) bins (edges towards other Core nodes), and conclude that the most

loaded edge from a leader u to some other leader v carries O(log n) messages,
with probability at least 1 − 1/(

√
n)8 = 1 − 1/n4. Applying the union bound

over all the O(
√
m) leaders, and all O(log n) phases of the algorithm, we get

that the most loaded edge in the process of sending merge-requests carries at
most O(log n) messages, with probability at least 1− 1/nc.

The last part of step 4 is when the root fragment sends the FIN (“finish”)
message to all the merge-tree members. at the beginning of phase j, the size of
each active fragment is at least 2j (see Claim 6) and at most 2j+1 (as the root
does not release a tree at phase j − 1 if it is too large). Thus, the number of
merge-trees resolved at phase i is at most n/2i+1 (every resolved tree becomes
an active fragment at the next phase). In case 2i+1 ≤

√
n, it follows from

the Lemma 1 that a leader node u ∈ C has at most O(
√
n/2i+1 + log n) roots

(at most n/2i+1 balls into at least
√
n bins). For each root, a leader has to

send a message, for each fragment in its tree. The number of fragments in
the tree is bounded by the number of nodes in the tree, which is 2i+2 (this
is because the tree becomes an active fragment at the beginning of the next
phase j = i + 1, and its size is limited by 2j+1). Thus, a leader has to send
O(
√
n/2i+1 + log n) · 2i+2 = O(

√
n log n) messages. Each message is destined

to a leader of some fragment, which is located at the randomly chosen node in
C. So, again, by Lemma 1, we have that the most loaded edge carries O(log n)
messages with high probability.

In case 2i+1 >
√
n, Lemma 1 yields that a leader u ∈ C has at most O(log n)

roots (at most n/2i+1 balls into at least
√
n bins). Since a root has to send

at most one message to each leader (even if the node is a leader of multiple
fragments of the tree), the total number of messages needed to be sent by a
leader is O(nC log n). Since every message is destined to a random leader, by
Lemma 1 we obtain a bound of O(log n) on the maximum edge load, with high
probability.

Overall, step 4 takes O(log n) time. Step 5 obviously takes the same time
(O(log n)) as step 3, since it involves the transfer of the same amount of infor-
mation (except in the opposite direction). Step 6 takes the same time (O(1)) as
step 2, since again it involves transferring the same amount of information (in
the opposite direction). �

We have established the following theorem.

Theorem 4. On a CP-network G(V,E, C,P), Algorithm CP-MST constructs
a MST in O(log2 n) rounds, with high probability.

21

4. Additional Algorithms in Core-Periphery Networks

In addition to MST, we have considered a number of other distributed prob-
lems of different types, and developed algorithms for these problems that can be
efficiently executed on core-periphery networks. In particular, we dealt with the
following set of tasks, related to matrix operations: (M1) Sparse matrix transpo-
sition. (M2) Multiplication of a sparse matrix by a vector. (M3) Multiplication
of two sparse matrices.

We then considered problems related to calculating aggregate functions of
initial values, initially stored one at each node in V . In particular, we developed
efficient algorithms for the following problems: (A1) Finding the rank of each
value, assuming the values are ordered. (As output, each node should know the
rank of the element it stores.) (A2) Finding the median of the values. (A3)
Finding the (statistical) mode, namely, the most frequent value. (A4) Finding
the number of distinct values stored in the network. Each of these problems
requires Ω(D) rounds on general networks of diameter D. We show that on a
CP-network these tasks can be performed in O(1) rounds.

An additional interesting task is defined in a setting where the initial val-
ues are split into disjoint groups, and requires finding the r largest values of
each group. This task can be used, for example, for finding the most popular
headlines in each area of news. Here, there is an O(r) round solution on a
CP-network. (The diameter is a lower bound for this task in general networks.)

In all of these problems, we also establish the necessity of all 3 axioms, by
showing that there are network families satisfying 2 of the 3 axioms, for which
the general lower bound holds.

4.1. Technical preliminaries

A few definitions are in place. Let A be a matrix, in which each entry
A(i, j) can be represented by O(log n) bits (i.e., it fits in a single message in
the CONGEST model). Denote by Ai,∗ (respectively, A∗,i) the ith row (resp.,
column) of A. Denote the ith entry of a vector s by s(i). We assume that the
nodes in C have IDs [1, . . . , nC], and this is known to all of them. A square n×n
matrix A with O(k) nonzero entries in each row and each column is hereafter
referred to as an O(k)-sparse matrix.

Our algorithms make extensive use of the following theorem of [24].

Theorem 5 ([24]). Consider a fully connected network of nC nodes, where each
node is given up to Ms messages to send, and each node is the destination of
at most Mr messages. There exists an algorithm SendMsg that delivers all the
messages to their destinations in the CONGEST model in O((Ms + Mr)/nC)
rounds with high probability.

This theorem provides a time-efficient procedure for messages delivery in
a core that satisfies Axiom AE . Note that the result of the theorem holds
with high probability, which implies that it exploits a randomized algorithm.
Nevertheless, our algorithms, presented below, can be considered “mostly deter-
ministic”, in the sense that all the decisions they make are deterministic. That

22

is, the choices concerning which messages should be send where during different
stages of our algorithms are made deterministically, and randomness is used
only in the information delivery algorithm SendMsg of Theorem 5, which is used
as a low-level procedure for routing messages from sources to destinations over
a complete network. Hence the time bound of each of our algorithms holds with
the same probability as those of the calls to SendMsg used in that algorithm.

In some of our algorithms, we use the following result on distributed sorting
in a complete network, presented in [23].

Theorem 6 ([23]). Consider a complete network G(V,E) with node ID’s [1, . . . , n].
Each node is given n values. For simplicity assume all n2 values are distinct3.
The following tasks can be performed deterministically in Θ(1) rounds.

1. Value learning (VL): Node i needs to learn the values with indices [i(n−
1) + 1, . . . , in] according to the total order of all values.

2. Index Learning (IL): Node i needs to determine the indices of its input
(initial) values in the total order of all values.

Observation 1. Theorem 6 can be naturally extended to the case where each
node initially holds O(n) keys (instead of exactly n).

4.2. Matrix transposition (MT)

Initially, each node in V holds one row of an O(k)-sparse matrix A (along
with its index). The matrix transposition (MT) task is to distributively calculate
the matrix AT , and store its rows in such a way that the node that stores row
Ai,∗ will eventually store row ATi,∗. We start with a lower bound.

Theorem 7. Any algorithm for transposing an O(k)-sparse matrix on an ar-
bitrary network of diameter D requires Ω(D) rounds. On a CP-network, Ω(k)
rounds are required.

Proof. Consider a nonzero entry A(i, j), where j 6= i. Consider the nodes u and
v that initially store Ai,∗ and Aj,∗ respectively. Clearly, in any algorithm for MT,
A(i, j) should be delivered to the node v (which is required to eventually obtain
A∗,j = ATj,∗). Since the distance dist(u, v) may be as large as the diameter, the
lower bound is Ω(D) rounds.

For a CP-network, the lower bound on MT is Ω(k), since there are inputs
for which row ATi,∗ has k nonzero values, which must be delivered to the node
that initially has row Ai,∗. There are CP-networks whose minimum degree is
1 (see Figure 1(I) for an illustration) and hence delivering Ω(k) messages will
require Ω(k) communication rounds. �

3This limitation can be eliminated by chaining each value, with the node ID and its order
at the node. Thus, each input value becomes unique.

23

Algorithm 1. MT generating AT on a CP-network G(V,E, C,P).
(1) Each u ∈ V sends its row (all the nonzero values with their indices in A) to
its representative r(u) ∈ C. Now, each representative has O(nC) rows of A (or,
O(knC) entries of A).
(2) Each representative sends each entry A(i, j) it has to the node in C that is
responsible for the row ATj,∗. Every node in C is responsible for the rows of AT

indexed 1 + (n/nC)(i− 1), . . . , (n/nC)i. (Assume n/nC is integral.)
[∗ Now, each node in C stores O(n/nC) rows of AT . ∗]
(3) Each node u ∈ V that initially stored the row i of A, requests ATi,∗ from its
representative. The representative gets the row from the corresponding node in
C, and sends it back to u.

Theorem 8. On a CP-network G(V,E, C,P), transposing an O(k)-sparse ma-
trix can be completed in O(k) rounds with high probability.

Proof. Consider Algorithm 1 and the CP-network G(V,E, C,P). Step 1 of the
algorithm will take O(k) rounds, since each row has up to k nonzero entries and
sending one entry takes O(1) due to Axiom AC . Now each representative has
O(knC) values, since it represents up to O(nC) nodes in P (due to Axiom AB).

In the beginning of Step 2, each representative knows the destination for each
of the A(i, j) entries it has (since, by agreement, each node in C is responsible
for collecting entries for specific rows of AT). So, it will send O(knC) messages,
each one to a specific single destination. Since each node in C is responsible for
O(n/nC) rows of AT , it will receive O(kn/nC) messages. Thus, using Axiom AE
and Theorem 5, the running time is O(k).

At Step 3, a single row (with O(k) nonzero entries) is sent, by each node,
to its representative (which takes O(k) time, due to the Axiom AC). Then
the requests are delivered to the appropriate nodes in C, and the replies with
the appropriate rows of AT are received back by the representatives. All this
takes O(k) rounds, due to Axiom AE and Theorem 5. Then the rows of AT are
delivered to the nodes that have requested them. Due to the Axiom AC this
will also take O(k) rounds. �

We now show the necessity of the Axioms AB , AE and AC for achieving
O(k) running time.

Theorem 9. For each X ∈ {B,E,C} there exist a family of n-node parti-
tioned networks FX = {GX(V,E, C,P)(n)} that satisfy all axioms except AX ,
and input matrices of size n × n for every n, such that the time complexity
of any matrix transposition (MT) algorithm on the networks of Fi, with the
corresponding inputs, is Ω(n).

Proof. Consider the following cases where in each case, one of the axioms is not
satisfied, while the other two are satisfied.
Necessity of AB : Consider the family of dumbbell partitioned networks Dn.
As discussed earlier, Axiom AB is violated, while the others hold. Let A be
a matrix where, at least, the following n/2 entries are nonzero (assume n/2

24

is even): A(n/2 + 1, 1), A(n/2 + 2, 2), . . . , A(n, n/2). Then we input the rows
A1,∗−An/2,∗ to the nodes in the first star of of Dn, and rows An/2+1,∗−An,∗ to
the nodes in the second star of Dn. Clearly, the entries we specified before are
initially located in the second star, but they all must be delivered to the first
star (by the problem definition, an entry A(i, j) should eventually be stored in
a node that initially has row Aj,∗). Since there is only one edge connecting the
stars, any distributed algorithm for the specified task will take Ω(n) rounds.
Necessity of AE : Consider the family of sun partitioned networks Sn. As dis-
cussed earlier, Axiom AE is violated, while the others hold. The diameter of Sn
is Ω(n), hence, any distributed MT algorithm will require Ω(n) communication
rounds (due to the lower bound discussed earlier).
Necessity of AC : Consider the family of lollipop partitioned networks Ln. As
discussed earlier, Axiom AC is violated, while the others hold. Again, the diam-
eter of Ln is Ω(n), hence, any distributed MT algorithm requires Ω(n) rounds. �

4.3. Vector by matrix multiplication (VMM)

Let s be a vector of size n, and A be a square n × n O(k)-sparse matrix.
Initially, each node in V holds one entry of s (along with its index), and one
row of A (along with its index). The vector by matrix multiplication (VMM)
task is to distributively calculate the vector s′ = sA, and store its entries at
the corresponding nodes in V , such that the node that initially stored s(i) will
store s′(i). We start with the lower bound.

Theorem 10. Any algorithm for the multiplication of a vector by an O(k)-
sparse matrix (VMM) on any network requires Ω(D) rounds. On a CP-network,
Ω(k/ log n) rounds are required.

Proof. The Ω(D) time lower bound for VMM on an arbitrary network follows
since in order to obtain s′(1), we need, at least, to multiply s(1) by A(1, 1)
(assuming s(1) 6= 0 and A(1, 1) 6= 0), which might take Ω(D) rounds in case
s(1) and A(1, 1) are located at different nodes u and v at distance dist(u, v) = D.

Now we show that there exists a CP-network for which the lower bound on
VMM is Ω(k/ log n) rounds. Consider a CP-network, as in Figure 1(I). Let u be
a node in P (whose degree is 1). Let v be any other node in V . Assume that
u initially stores the row A1,∗,, and the entry s(1), while v stores row A2,∗ and
the entry s(2).

Next, we show a reduction from the well-known equality problem (EQ),
in which two parties are required to determine whether their input vectors
x, y ∈ {0, 1}k are equal. Assuming the existence of a procedure P for our VMM
problem, we use it to solve the EQ problem. Given input vectors x, y for the EQ
problem (at u and v respectively), we create an input for the VMM problem
in the following way. Node u assigns A(1, i) = x(i), for every i ∈ [1, . . . , k]
and s(1) = 1; while node v assigns A(2, i) = y(i) for every i ∈ [1, . . . , k]
and s(2) = 1. All the other entries of A and s are initialized to 0. It fol-
lows that s′(i) =

∑n
j=1 s(j)A(j, i) = A(1, i) + A(2, i) = x(i) + y(i) for every

25

i ∈ [1, . . . , k]. Given the value of s′(i), one can decide whether x(i) = y(i) for
every i ∈ [1, . . . , k], since clearly, x(i) = y(i) if’f s′(i) ∈ {0, 2} (and otherwise
s′(i) = 1). Notice that the vector s′ is stored distributedly in the network, one
entry in each node. But the indication to v and u, whether all the entries are
in {0, 2}, can be delivered in O(1) rounds in the following way. Each node in
P sends its entry of s′ to its representative, who checks all the received entries
and sends an indication bit to all the other nodes in C. So, every node in C
knows now whether all the entries in s′ are in {0, 2} (actually, we are interested
only in the first k entries). Representatives can now inform the nodes in P
they represent in O(1) rounds. It follows that using procedure P , one can solve
the EQ problem, which is known to require at least k bits of communication.
Therefore, assuming that each message has O(log n) bits, our problem requires
Ω(k/ log n) communication rounds. �

Algorithm 2. VMM on a CP-network G(V,E, C,P).
(1) Each u ∈ V sends the entry of s it has (along with its index) to its repre-
sentative r(u) ∈ C (recall that if u ∈ C then r(u) = u).
(2) C nodes redistribute the s entries among them, so that the node with ID i
stores indices [1 + (n/nC)(i− 1), . . . , (n/nC)i] (assume n/nC is integral).
(3) Each u ∈ V sends the index of the row of A it has to its representative
r(u) ∈ C.
(4) Each representative requests the s(i) entries corresponding to rows Ai,∗ that
it represents, from the C node storing it.
(5) Once getting them, it sends them to the nodes in P it represents.
(6) Each u ∈ V sends the products {A(i, j)s(i)}nj=1 to its representative.
(7) Each representative sends each nonzero value A(i, j)s(i) it has (up to O(knC)
values) to the representative responsible for s(j), so it can calculate s′(j).
(8) Each node u ∈ V , that initially stored s(i), requests s′(i) from its represen-
tative. The representative gets the entry from the corresponding node in C and
sends it back to u.

Theorem 11. On a CP-network G(V,E, C,P), the multiplication of a vector
by an O(k)-sparse matrix (VMM) can be completed in O(k) rounds with high
probability.

Proof. Consider Algorithm 2 and the CP-network G(V,E, C,P). At Step 1,
due to AB and AC , each representative will obtain O(nC) entries of s in O(1)
rounds. For Step 2, we use Theorem 5 with the parameters Ms = O(nC) and
Mr = O(n/nC), and thus such a redistribution will take O((nC + n/nC)/nC) =
O(1) rounds. At Step 3, due to AB and AC each representative will obtain
O(nC) row indices of A in O(1) rounds.

For Step 4, we again use Theorem 5 with the parameters Ms = O(nC)
(indices of rows each representative has), Mr = O(n/nC) (number of entries of
s stored in each node in C), and obtain a running time of O((nC + n/nC)/nC) =
O(1) rounds for this step. At Step 5, each representative gets the required
elements of s, which takes O(1) rounds due to Theorem 5, and then sends them

26

to the nodes in P it represents, which also takes O(1) rounds due to AC . Step
6 takes O(k) rounds, since A has up to k nonzero entries in each row. Step 7
again uses Theorem 5 with parameters Ms = O(knC), Mr = O(n/nC), and thus
its running time is O(kn/n2

C) = O(k).
At Step 8, a single message is sent by each node to its representative (which

takes O(1) rounds due to AC), then the requests are delivered to the appropri-
ate nodes in C, and the replies with the appropriate entries of s′ are received
back by the representatives. All this takes O(1) rounds, due to Axiom AE and
Theorem 5. Then the entries of s′ are delivered to the nodes that have requested
them. By AC this also takes O(1) rounds. �

The following theorem shows the necessity of the axioms for achieving O(k)
running time.

Theorem 12. For each X ∈ {B,E,C} there exists a family of n-node parti-
tioned networks FX = {GX(V,E, C,P)(n)}, that satisfy all axioms except AX ,
and input matrices of size n × n and vectors of size n, for every n, such that
the time complexity of any algorithm for VMM on the networks of FX with the
corresponding-size inputs is Ω(n/ log n).

Proof. Necessity of AB : Consider the family of dumbbell partitioned networks
Dn (which violates only Axiom AB). Denote the core’s nodes as u and v. In
O(k) rounds u (resp. v) can collect all the rows of A and entries of s stored
at the nodes of P connected to u (resp., v). So, assuming n/2 is an integer,
after O(k) rounds, u and v have each n/2 rows of A and n/2 entries of s.
Assume also an input, for which u has rows A1,∗, A2,∗, . . . , An/2,∗, and entries
s(n/2 + 1), s(n/2 + 2), . . . , s(n), and v has all the remaining rows of A and
entries of s. We again show a reduction from the EQ problem. Assuming the
existence of a procedure P for VMM, we use it to solve the EQ problem. Given
input vectors x, y for the EQ problem (at u and v respectively), we create an
input for VMM in the following way. Node u assigns A(i, i) = x(i) + 1 for every
i ∈ [1, . . . , n/2], and s(i) = x(i) + 1 for every i ∈ [n/2 + 1, . . . , n]; while node v
assigns A(i, i) = y(i)+1, for every i ∈ [n/2+1, . . . , n] and s(i) = y(i)+1 for every
i ∈ [1, . . . , n/2]. All the other entries of A are initialized to 0, thus A is a diagonal
matrix. It follows that s′(i) =

∑n
j=1 s(j)A(j, i) = s(i)A(i, i) = (x(i)+1)(y(i)+1)

for every i. Given the value of s′(i), one can decide whether x(i) = y(i), since
clearly, x(i) = y(i) if’f s′(i) ∈ {1, 4} (and otherwise s′(i) = 2). It follows that,
using procedure P , one can solve the EQ problem, which in this case requires
at least n bits of communication. Hence the VMM problem requires Ω(n/ log n)
communication rounds.
The proof of the necessity of AE and AC is the same as in the proof of Theorem
9, and is based on the diameter argument. �

4.4. Matrix multiplication (MM)
Let A and B be square n × n matrices, with O(k) nonzero entries in each

row and each column. Initially, each node in V holds one row of A (along with

27

its index), and one row of B (along with its index). The matrix multiplication
(MM) task is to distributively calculate C = AB, and store its rows at the
corresponding nodes in V , such that the node that initially stored row i of B
will store row i of C.

Theorem 13. Any algorithm for O(k)-sparse matrix multiplication on any net-
work requires Ω(D) rounds. On a CP-network, Ω(k2) rounds are required.

Proof. The lower bound for general networks follows since in order to obtain
C(1, 1) we need, at least, to multiply A(1, 1) by B(1, 1) (assuming an input in
which A(1, 1) 6= 0 and B(1, 1) 6= 0), which might take Ω(D) rounds in case
A(1, 1) and B(1, 1) are located at nodes u and v, at distance dist(u, v) = D.

For a CP-network, consider a network illustrated on Figure 1(I), where the
degree of a node u ∈ P is 1. Assume that initially u has row A1,∗ and B1,∗
and thus, by problem definition, it has to eventually receive the row C1,∗. We
show now that Ω(k2) messages are required to allow u to obtain C1,∗. Assume

that {bji} for i, j ∈ [1, . . . , k] are k2 distinct values. Consider an input in which
A(1, i) = 1 for every i ∈ [2, . . . , k + 1], B(2, i) = b1i for every i ∈ [1, . . . , k],
B(3, i) = b2i for every i ∈ [k + 1, . . . , 2k]; and so on until B(k + 1, i) = bki for
every i ∈ [k(k − 1) + 1, . . . , k2]. All other entries of A and B are set to 0. It
is easy to see that C(1, i) = b1i for every i ∈ [1, . . . , k], C(1, i) = b2i for every
i ∈ [k+1, . . . , 2k]; and so on until C(1, i) = bki for every i ∈ [k(k−1)+1, . . . , k2].

So, in order to obtain the row C1,∗, u must receive all the k2 values {bji}, which
will take Ω(k2) communication rounds. �

Algorithm 3. O(k)-sparse matrix multiplication on a CP-networkG(V,E, C,P).
(1) Each node in V send its row of B to its representative.
[∗ Now, each node in C has O(knC) entries of B. ∗]
(2) Nodes in C redistribute the rows of B among themselves, so that the node
with ID i will store rows 1 + (n/nC)(i − 1), . . . (n/nC)i (assuming n/nC is an
integer).
[∗ Now, each u ∈ C has O(n/nC) rows of B. ∗]
(3) Each node in V sends its row of A to its representative. Notice that the row
i of B needed to be multiplied only by values of the column i of A.
(4) Each u ∈ C sends the values of A it has to the nodes in C, which hold the
corresponding rows of B. I.e., the value A(i, j) will be sent to the node in C,
which holds the row Bj,∗.
[∗ Now all the summands are prepared and distributed across all the nodes in
C, and it is left to combine corresponding summands. ∗]
(5) Each u ∈ C sends each of its values to the corresponding node in C, that is
responsible for gathering the summands for the values of specific O(n/nC) rows
of the resulting matrix C.
(6) Each node u ∈ V that initially stored row i of B, requests row i of C from
its representative. The representative gets the row from the corresponding node
in C, and sends it back to u.

28

Theorem 14. On a CP-network G(V,E, C,P), the multiplication of two O(k)-
sparse matrices can be completed in O(k2) rounds with high probability.

Proof. Consider Algorithm 3 and the network G(E, V), with a partition 〈C,P〉
that satisfies Axioms AB , AE , AC .

Step 1 takes O(k) rounds, due to the Axiom AC and the fact that the number
of nonzero entries in each row is bounded by k. Each node in C will have O(knC)
entries of B, since it represents O(nC) nodes in P due to the Axiom AB . Using
Theorem 5 with the parameters Ms = O(knC) and Mr = O(kn/nC), we show
that the redistribution, performed at Step 2, takes O((knC +kn/nC)/nC) = O(k)
rounds.

For Step 4, we again use Theorem 5, with the parameters Ms = O(k)O(nC)
(O(k) values per row), Mr = O(n/nC)O(k) (O(k) values per column of A), and
obtain that the running time is O(k). Note that each node in C has O(n/nC)
rows (of B), with O(k) elements in each. Each row was multiplied by O(k)
values received in the previous step (O(k), since each column of A has O(k)
nonzero values). Thus, each u ∈ C has O(k2n/nC) values that needed to be sent
to the appropriate nodes in the next step.

At Step 5, each u ∈ C sends each of its values to the corresponding node in C
that is responsible for gathering the summands for the values of specific O(n/nC)
rows of the resulting matrix C. Clearly, Ms = O(k2n/nC) since each row of B
hasO(k) different entries, and was multiplied byO(k) different entries ofA. Now
let’s find Mr. Each u ∈ C is responsible for O(n/nC) rows of C. Thus, e.g., for a
row C1,∗ it needs to receive the following summands: C(1, 1) =

∑
A(1, i)B(i, 1),

C(1, 2) =
∑
A(1, i)B(i, 2), ..., C(1, n) =

∑
A(1, i)B(i, n). Since the number of

nonzero entries in each row of A and B is O(k), the number of nonzero entries
in each row of C is bounded by O(k2). Thus, for each row of C, a node in C will
receive O(k2) messages. So, Mr = O(k2n/nC) and thus the running time of this
step is O(k2).

At the last step, each node u ∈ V sends a single message (request for a row)
to its representative. This takes O(1) rounds due to AC . Then, the represen-
tative gets the row from the corresponding node in C, and sends it back to u.
Using Axiom AE and Theorem 5 with Ms = O(nC) and Mr = O(n/nC), deliver-
ing the request inside the core takes O(1) rounds. In a similar way, sending the
rows inside the core takes O(k2) rounds. The same amount of time is required
to deliver those rows to the nodes in P that requested them (O(1) per row entry,
due to AC , and O(k2) nonzero entries per row). �

Theorem 15. For each X ∈ {B,E,C} there exist a family of n-node partitioned
networks FX = {GX(V,E, C,P)(n)}, that satisfy all axioms except AX , and
input matrices of size n× n, for every n, such that the time complexity of any
MM algorithm for the multiplication for O(k)-sparse matrices on the networks
of FX with the corresponding inputs is Ω(n/ log n).

Proof. Necessity of AB : Again consider the dumbbell partitioned networks Dn.
As done in the proof of Theorem 12, we can show a reduction from the EQ

29

problem to the MM problem for sparse matrices. Here we initialize A and B to
be diagonal matrices, and the first core node, u, will have first half of A’s rows
and second half of B’s rows. Due to the initialization, each entry of the resulting
matrix C will be a multiplication of the corresponding entries of x and y. Thus,
obtaining C will allow us to determine whether x and y are equal. Hence the
lower bound for the MM problem is again Ω(n/ log n) communication rounds.
The proof for AE and AC is the same as in the proof of Theorem 9. �

4.5. Rank Finding (RF)

Next, we show another set of algorithms that deals with aggregate functions.
Let each node v ∈ V hold some initial value. The rank finding (RF) task requires
each node to know the position of its value in the ordered list of all the values.

Theorem 16. Any algorithm for finding the rank of each value on any network
requires Ω(D) rounds.

Proof. For two nodes u, v ∈ V to decide whose value is larger, at least one bit
of information must travel between them. Thus, the lower bound for this task
on any graph is Ω(D). �

Algorithm 4. RF on a CP-network G(V,E, C,P).
(1) Each node in V sends its initial value to its representative in C.
(2) Nodes in C sort all the values they have, and obtain the ranks of those values.
[∗ Now, each node u ∈ C knows the ranks of the values it had received from the
nodes it represents. ∗]
(3) The ranks are delivered to the appropriate nodes in P.

Theorem 17. On a CP-network G(V,E, C,P), the RF task can be completed
in O(1) rounds with high probability.

Proof. Consider Algorithm 4 and the CP-network G(V,E, C,P). The first step
takes O(1), due to Axiom AC . Now, each representative u ∈ C has O(nC) values,
due to Axiom AB . Step 2 is performed in O(1) rounds, due to Theorem 6 and
Axiom AE . The last step takes O(1) rounds, due to AC . �

Theorem 18. For each X ∈ {B,E,C} there exist a family of n-node partitioned
networks FX = {GX(V,E, C,P)(n)} that satisfy all axioms except AX , and
input matrices of size n×n and vectors of size n, for every n, such that the time
complexity of any RF algorithm on the networks of FX with the corresponding
inputs is Ω(n).

Proof. Necessity of AB : Consider the family of dumbbell partitioned networks
Dn. Consider a sorted list of n values (ai ≤ ai+1): a1, a2, a3, ..., an. Clearly,
every two adjacent values must be compared in any sorting procedure. For
example, assuming that some sorting procedure does not compare a2 and a3,

30

and also a4 = a3 + 2, we can replace a2 with a3 + 1 and get the same output
a1, a2, a3, ..., an, which is now incorrect since a2 > a3. Denote the two core
nodes by u and v. Node u and all the nodes in P that are connected to it,
will be assigned values (one per node) with odd indices in the ordered list (i.e.,
a1, a3, . . .). The other n/2 values will be assigned to the remaining n/2 nodes
(one value to one node). Note that in order to obtain a sorted list, at least the
following comparisons must take place: a1 with a2, a3 with a4, and so on. Hence
about n/2 pairs of values have to be brought together, while initially they are
located at the different sides of the link (u, v). Thus, Ω(n) messages must be
sent over the link (u, v) in order to perform the sorting task. This takes Ω(n)
communication rounds.

The proof for AE and AC is the same as in Thm. 9. �

4.6. Median Finding (MedF)

Let each node v ∈ V hold some initial value. The median finding (MedF)
task requires each node to know the value, which is the median in the ordered
list of all the values in the network.

Theorem 19. Any median finding algorithm on any network requires Ω(D)
rounds.

Proof. For two nodes u, v ∈ V , if u wants to obtain the median of the initial
values, then at least one bit of information must travel between u and v (oth-
erwise u will never know that v exists, while v may even be the median). Since
the distance dist(u, v) can be as large as the diameter, the lower bound for this
task is Ω(D) communication rounds. �

Algorithm 5. MedF on a CP-network G(V,E, C,P).
(1) Each node in V sends its initial value to its representative in C.
(2) Nodes in C sort all their values and obtain the ranks of those values.
[∗ Now, each node i ∈ C now knows values with indices i(nC − 1) + 1, . . . inC

according to the total order of all values. ∗]
(3) The node in C that has the value with index n2/2 (namely, the median value)
sends it to all the nodes in C.
(4) The median value is delivered to the nodes in P.

Theorem 20. On a CP-network G(V,E, C,P), the MedF task can be completed
in O(1) rounds with high probability.

Proof. Consider Algorithm 5 and the CP-network G(V,E, C,P). The first step
takes O(1) due to Axiom AC . Now, each representative u ∈ C has O(nC) values
due to Axiom AB . Step 2, is performed in O(1) rounds, due to Theorem 6 and
Axiom AE . The last step will take O(1) rounds, due to AC . �

31

Theorem 21. For each X ∈ {B,E,C} there exist a family of n-node partitioned
networks FX = {GX(V,E, C,P)(n)}, that satisfy all axioms except AX , and
input matrices of size n × n, and vectors of size n, for every n, such that the
time complexity of any algorithm for finding median of all the initial values on
the networks of FX , with the corresponding inputs is Ω(log n).

Proof. Necessity of AB : Consider the family of dumbbell partitioned networks
Dn. As discussed earlier, Axiom AB is violated, while the others hold. In
constant time, each of the two centers, A and B, can learn the inputs of its star.
Now, the problem becomes for A and B to learn the median of the union of
their sets. This operation is known to require at least Ω(log n) communication
rounds. More formally, it is shown in [36], that the Median function does
not admit a deterministic protocol using O(log1−ε n) rounds, and a logarithmic
amount of communication at each round, for any ε > 0 (even though the total
communication complexity of the problem is known to be only O(log n) bits).
This allows us to conclude the same lower bound in our case too.

The proof for AE and AC is the same as in Thm. 9. �

4.7. Mode Finding (ModF)

Let each node v ∈ V hold some initial value. The mode finding (ModeF) task
requires each node to know the value (values) that appears most frequently.

Theorem 22. Any mode finding algorithm on any network requires Ω(D) rounds.

Proof. For three nodes u, v, w ∈ V , assume an input, for which the most fre-
quent value appears with frequency 2, and is initially located at v and w, while
all the other nodes have other distinct values. Obviously, if u needs to learn the
mode, at least one bit of information must travel from v to u, since otherwise
u will not be aware of the v’s existence. Since the distance dist(u, v) can be as
large as diameter, the lower bound for this task is Ω(D) communication rounds.

�

Algorithm 6. ModF on a CP-network G(V,E, C,P).
(1) Each node in V sends its initial value to its representative in C.
(2) Nodes in C perform sorting of all the values they have, and obtain the
ranks of those values. So, each node i ∈ C now knows values with indices
i(nC − 1) + 1, . . . inC, according to the total order of all values.
(3) Each node in C sends to each other node in C: (i) its most frequent value
(values) and its frequency, (ii) its minimum value and its frequency, (iii) its
maximum value and its frequency.
[∗ The minimum and maximum are needed in order capture the most frequent
values that appear at the boundaries of the ranges. ∗]
(4) Each node in C finds the most frequent value (values), and delivers it to the
nodes in P it represents.

32

Theorem 23. On a CP-network G(V,E, C,P), the ModF task can be completed
in O(k) rounds with high probability.

Proof. Consider Algorithm 6 and the CP-network G(V,E, C,P). The first step
takes O(1) due to Axiom AC . Now, each representative u ∈ C has O(nC) values
due to Axiom AB . Step 2, is performed in O(1) rounds, due the Theorem 6 and
Axiom AE . Step 3 takes O(1), due to Axiom AE since each node in C needs
to send O(1) values to all the other nodes in C. The last step will take O(1)
rounds due to AC (and assuming there are O(1) most frequent values). �

Theorem 24. For each X ∈ {B,E,C} there exist a family of n-node partitioned
networks FX = {GX(V,E, C,P)(n)} that satisfy all axioms except AX , and
input matrices of size n × n and vectors of size n, for every n, such that the
time complexity of any algorithm for the finding mode on the networks of FX ,
with the corresponding inputs is Ω(n/ log n).

Proof. Necessity of AB : Consider the family of dumbbell partitioned networks
Dn. As discussed earlier, Axiom AB is violated while the other hold. Assume
such an input that every element appears exactly once or twice on each side
(for simplicity, assume there are n/4 types of elements altogether, and some
nodes do not have any element). Hence, the most frequent element will appear
2, 3 or 4 times in the graph. The case where the answer is 2 occurs only when
every element appears exactly once on every side. This case is easy to check
in a constant amount of communication between the two centers, so we assume
we do this check first, and it remains to consider the case where this does not
happen. It thus remains to decide whether the answer is 3 or 4. To do that, A
(the center of the first star) defines a set SA of all the elements that appear twice
in its star, and B defines a set SB similarly for its side. Now the answer is 4 if’f
the sets SA and SB intersect. Set disjointness has communication complexity
n, so A and B must exchange at least n bits, or, at least Ω(n/ log n) messages.
Since these messages all cross the single edge connecting the two centers, they
require this much time.

The proof for AE and AC is the same as in Thm. 9. �

4.8. Finding the number of distinct values (DF)

Let each node v ∈ V hold some initial value. The number of distinct values
finding (DF) requires each node to know the number of distinct values present
in the network.

Theorem 25. Any DF algorithm on any network requires Ω(D) rounds.

Proof. For two nodes u, v ∈ V , assume all input values in the network are dis-
tinct. Obviously, that if u needs to learn the number of distinct values, at least
one bit of information must travel from v to u, since otherwise, u will not be
aware of the v’s existence. Since the distance dist(u, v) can be as large as di-
ameter, the lower bound for this task is Ω(D) communication rounds. �

33

Algorithm 7. DF on a CP-network G(V,E, C,P).
(1) Each node in V sends its initial value to its representative in C.
(2) Nodes in C perform sorting of all the values they have, and obtain the ranks
of those values.
[∗ Now, each node i ∈ C now knows values with indices i(nC − 1) + 1, . . . inC

according to the total order of all values. ∗]
(3) Each node in C sends to every other node in C, the number of distinct values
and the two border values (min,max).
[∗ Now, every node in C is able to find the number of distinct values (for each
repeated border value, decrease 1 from the total count). ∗]
(4) Each representative delivers the number of distinct values to the nodes in P
it represents.

Theorem 26. On a CP-network G(V,E, C,P), the DF task requires O(1) rounds
with high probability.

Proof. Consider Algorithm 7 and the CP-network G(V,E, C,P). The first step
takes O(1) due to Axiom AC . Now, each representative u ∈ C has O(nC) values
due to the Axiom AB . Step 2, is performed in O(1) rounds, due the Theorem
6 and Axiom AE . Step 3 takes O(1), due to Axiom AE since each node in C
needs to send O(1) values to all the other nodes in C. The last step will take
O(1) rounds, due to AC . �

Theorem 27. For each X ∈ {B,E,C} there exist a family of n-node partitioned
networks FX = {GX(V,E, C,P)(n)}, that satisfy all axioms except AX , and
input matrices of size n × n and vectors of size n, for every n, such that the
time complexity of any algorithm for finding the number of distinct values on
the networks of FX , with the corresponding inputs is Ω(n/ log n).

Proof. Necessity of AB : Consider the family of dumbbell partitioned networks
Dn. As discussed earlier, Axiom AB is violated, while the others hold. Assume
that the inputs are taken out of a range of m distinct possible values. In constant
time, the two star centers A and B can collect m-bit vectors x and y respectively,
representing the values that exist in their respective stars. The goal is for A and
B to decide the number of distinct values in the graph, i.e., the number of 1’s
in the vector x ∨ y. We show a reduction from set disjointness to this problem,
hence, the lower bound for set disjointness holds for it. Assume we are given a
procedure P for our problem. We use it to solve set disjointness as follows. (1)
A computes |x| and informs B. (2) B computes |y| and informs A. (3) A and B
invoke procedure P and compute |x ∨ y|. (4) The answer is “yes” (the sets are
disjoint) iff |x ∨ y| = |x|+ |y|. It is easy to verify that the reduction is correct,
hence, we get the desired lower bound of Ω(m/ log n) on the number of round
required for finding the number of distinct values.
The proof for AE and AC is the same as in Thm. 9. �

34

4.9. Get the top k ranked by areas (TopK)

Let each node v ∈ V hold some initial value. Assume that each value is
assigned to a specific area of a total

√
n areas. E.g., values may represent news

and areas topics, so that each news belongs to a specific topic. Assume also,
that each node in V is interested in one specific area. The Getting the top k
ranked values by areas (TopK) task is to deliver to each node in V the largest
k values, from the area it is interested in.

Theorem 28. Any TopK algorithm on any network requires Ω(D) rounds. On
a CP-network Ω(k) rounds are required.

Proof. First, let us show the lower bound for any network. For two nodes
u, v ∈ V , assume input in which u is interested in the value initially stored at
v. Obviously, delivering the value from v to u will take at least dist(u, v). Since
the distance dist(u, v) may be as large as diameter, the lower bound on the
running time is Ω(D).

For a CP-network, the lower bound is Ω(k), since obviously, there are inputs
for which k values must be delivered to a node in P. There are CP-networks,
in which minimum degree is 1 (see Figure 1(I) for an illustration) and hence
delivering Ω(k) messages will require Ω(k) communication rounds. �

Algorithm 8. TopK on a CP-network G(V,E, C,P).
Without loss of generality, assume that all the values are taken from the

range [1, . . . , n], and each area has its own range for its values (e.g., politics
[1, . . . , 100], sports [101, . . . , 200], etc.).
(1) Each node in V sends its initial value to its representative in C.
(2) Perform sorting using Theorem 6 and Axiom AE .
[∗ Now, each node i ∈ C knows values with indices i(nC−1)+1, . . . inC according
to the total order of all values. ∗]
(3) Each node in C sends the largest k values from each area, to the appropriate
node in C, so that each node in C will be responsible for at most one area (recall
that we have

√
n areas and nC = Ω(

√
n)).

(4) Each representative sends requests for areas (up to O(nC) areas) requested by
nodes it represents. Each request is destined to the specific node in C responsible
for the requested area. Upon request, each node in C returns the k largest values,
for the area it is responsible for, to the requesting nodes.
(5) Each representative u ∈ C delivers the values to the nodes in P it represents.

Theorem 29. On a CP-network G(V,E, C,P), the TopK task requires O(k)
rounds with high probability.

Proof. Consider Algorithm 8 and the CP-network G(V,E, C,P). From Theo-
rem 2, we know that nC = Ω(

√
n), thus we can say that the number of areas is

O(nC). The first step takes O(1) due to Axiom AC . Now, each representative
u ∈ C has O(nC) values due to the Axiom AB . At Step 2, each node has O(nC)
values (each destined to a specific single node), so Ms = nC. Each node has

35

to receive Mr = k values (more precisely: Mr = 2k, since it is possible that
after the initial sorting, an area is split across two nodes, and each of these
two nodes will send up to k values from that area, and the receiving node will
have to select the correct k). Thus, this step will take (according to Theorem
5) O((nC + k)/nC) = O(k/nC). Step 3 takes O(k), since sending requests will
take O(1) (due to the Axiom AE and Theorem 5 with Ms = nC, Mr = nC), and
receiving the desired values will take O(k) (since Ms = knC and Mr = knC).
The last step will take O(k), since each node in P needs k values, and deliv-
ering a single value from r(u) ∈ C to u ∈ P takes O(1), due to the Axiom AC . �

Theorem 30. For each X ∈ {B,E,C} there exist a family of n-node partitioned
networks FX = {GX(V,E, C,P)(n)}, that satisfy all axioms except AX , and
input matrices of size n × n and vectors of size n, for every n, such that the
time complexity of any algorithm for finding the k top ranked values from a
specific area on the networks of FX , with the corresponding inputs is Ω(knC).

Proof. Necessity of AB : Consider the family of dumbbell partitioned networks
Dn. As discussed earlier, Axiom AB is violated, while the others hold. Consider√
n/2 areas, and assume that all the k

√
n/2 values belonging to these areas are

initially located at the nodes of the first star of Dn. Consider a subset of nodes
of the second star. Let the subset size be

√
n/2 and each node in this subset is

interested in different area, of the areas stored in the first star we mentioned.
We can see that in order to complete the task, all the k

√
n/2 values have to be

sent from the first to the second star, which are interconnected by a single edge.
Thus, the running time will be Ω(k

√
n) rounds.

The proof for AE and AC is the same as in Thm. 9. �

References

References

[1] Adamic, L. (1999). The small world web. Research and Advanced Technology for
Digital Libraries, pages 852–852.

[2] Avin, C., Lotker, Z., Pignolet, Y. A., and Turkel, I. (2012). From caesar to twitter:
An axiomatic approach to elites of social networks. CoRR, abs/1111.3374.

[3] Awerbuch, B. (1987). Optimal distributed algorithms for minimum weight span-
ning tree, counting, leader election and related problems. In Proc. STOC, pages
230–240.

[4] Baset, S. and Schulzrinne, H. (2006). An analysis of the skype peer-to-peer internet
telephony protocol. In Proc. INFOCOM, pages 1–11.

[5] Berns, A., Hegeman, J., and Pemmaraju, S. (2012). Super-fast distributed algo-
rithms for metric facility location. In Proc. ICALP, pages 428–439.

36

[6] Bonanno, G., Caldarelli, G., Lillo, F., and Mantegna, R. (2003). Topology of
correlation-based minimal spanning trees in real and model markets. Phys. Rev. E,
68.

[7] Bonato, A. (2008). A course on the web graph, volume 89. AMS.

[8] Borgatti, S. and Everett, M. (2000). Models of core/periphery structures. Social
networks, 21(4):375–395.

[9] Chen, C. and Morris, S. (2003). Visualizing evolving networks: Minimum spanning
trees versus pathfinder networks. In Proc. INFOVIS, pages 67–74.

[10] Chung, F. and Lu, L. (2006). Complex graphs and networks. Number 107. AMS.

[11] Dolev, D., Lenzen, C., and Peled, S. (2012). Tri, tri again”: Finding triangles
and small subgraphs in a distributed setting. arXiv preprint arXiv:1201.6652.

[12] Easley, D. A. and Kleinberg, J. M. (2010). Networks, Crowds, and Markets -
Reasoning About a Highly Connected World. Cambridge Univ. Press.

[13] Elkin, M. (2006). An unconditional lower bound on the time-approximation
trade-off for the distributed minimum spanning tree problem. SIAM J. Computing,
36(2):433–456.

[14] Feamster, N., Rexford, J., and Zegura, E. (2013). The road to sdn. Queue,
11(12):20:20–20:40.

[15] Fujita, M., Krugman, P. R., and Venables, A. J. (2001). The spatial economy:
Cities, regions, and international trade. MIT press.

[16] Gallager, R., Humblet, P., and Spira, P. (1983). A distributed algorithm for
minimum-weight spanning trees. ACM Trans. on Programming Lang. and Syst.,
5:66–77.

[17] Garay, J. A., Kutten, S., and Peleg, D. (1998). A sublinear time distributed
algorithm for minimum-weight spanning trees. SIAM J. Computing, 27:302–316.

[18] Hojman, D. and Szeidl, A. (2008). Core and periphery in networks. J. Economic
Theory, 139(1):295–309.

[19] Holme, P. (2005). Core-periphery organization of complex networks. Physical
Review E, 72:046111.

[20] Jung, K., Kim, B., and Vojnovic, M. (2012). Distributed ranking in networks
with limited memory and communication. In Proc. ISIT, pages 980–984.

[21] Krugman, P. (1991). Increasing Returns and Economic Geography. J. Political
Economy, 99(3):483–499.

[22] Kutten, S. and Peleg, D. (1998). Fast distributed construction of small k-
dominating sets and applications. J. Algorithms, 28:40–66.

[23] Lenzen, C. (2013). Optimal deterministic routing and sorting on the congested
clique. In Proc. PODC, pages 42–50.

37

[24] Lenzen, C. and Wattenhofer, R. (2011). Tight bounds for parallel randomized
load balancing. In Proc. STOC, pages 11–20.

[25] Liang, J., Kumar, R., and Ross, K. W. (2006). The fasttrack overlay: A mea-
surement study. Computer Networks, 50:842 – 858.

[26] Lotker, Z., Patt-Shamir, B., Pavlov, E., and Peleg, D. (2005). Minimum-weight
spanning tree construction in o(log log n) communication rounds. SIAM J. Com-
puting, 35(1):120–131.

[27] Lotker, Z., Patt-Shamir, B., and Peleg, D. (2006). Distributed MST for constant
diameter graphs. Distributed Computing, 18(6):453–460.

[28] Lynch, N. (1995). Distributed Algorithms. Morgan Kaufmann.

[29] MacCormack, A. (2010). The architecture of complex systems: do core-periphery
structures dominate? In Proc. Acad. Management, pages 1–6.

[30] Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge Univ. Press.

[31] Nesetril, J., Milkova, E., and Nesetrilova, H. (2001). Otakar boruvka on mini-
mum spanning tree problem translation of both the 1926 papers, comments, history.
Discrete Mathematics, 233(1 - 3):3 – 36.

[32] Newman, M. (2010). Networks: an introduction. Oxford Univ. Press.

[33] Patt-Shamir, B. and Teplitsky, M. (2011). The round complexity of distributed
sorting. In Proc. PODC, pages 249–256.

[34] Peleg, D. (2000). Distributed Computing: A Locality-Sensitive Approach. SIAM.

[35] Peleg, D. and Rubinovich, V. (2000). A near-tight lower bound on the time
complexity of distributed minimum-weight spanning tree construction. SIAM J.
Computing, 30:1427–1442.

[36] Soltys, K. (2011). The hardness of median in the synchronized bit communication
model. In Proc. TAMC, pages 409–415.

[37] Wyllie, J. (1979). The complexity of parallel computations. Technical report.
Dept. of Computer Science, Cornell University.

38

APPENDIX

Appendix A. Pseudocodes for Section 3

Algorithm MergeFrags(i)

Executed every phase by every leader w ∈ C, for each fragment i ∈ Flead(w).

1: if state(i) = active then
2: next← mp(i)
3: state(i)← frozen
4: [isFound, rootFrag]← FindRoot(i)
5: if isFound = true then
6: state(rootFrag)← root

7: if state(i) = frozen then
8: [isF inished, next]← PJ(i, next, 2)

9: next(F
mp(i)
lead (w))← next

10: if isF inished = true then
11: state(F

mp(i)
lead (w))← waiting

12: if state(i) = waiting then
13: receive merge-requests
14: send merge-replies with next (which now points to the root)
15: wait for FIN msg from root with newID and newLead
16: if FIN msg received then

17: newID(F
mp(i)
lead (w))← newID

18: state(F
mp(i)
lead (w))← active

19: if state(i) = root then
20: wait for incoming merge-requests
21: store the sources of the requests
22: reply on all requests with null
23: if num of requests = 0 and size of merge-tree ≤ 22+phase then
24: newID ← random ID among all fragments in the merge-tree
25: newLead← random node in C
26: send FIN msg with newID and newLead to all the stored sources
27: state(i)← active

i

Algorithm PJ(i, next, iter) (pointer jumping)

Executed by each fragment i in the frozen state
Input: next – first fragment to try, iter – how many pointer-jumps to perform

Output 1: indication whether the root was reached
Output 2: pointer to the root or to the next fragment in the chain

1: while iter > 0 do
2: if i = spkmp(i)(w) then
3: send merge-request to next

4: receive merge-requests
5: send merge-replies with next

6: if i = spkmp(i)(w) then
7: receive merge-reply with next′

8: if next′ = null then
9: return [true, next]

10: next← next′

11: iter ← iter − 1

12: return [false, next]

Algorithm FindRoot(i)

1: if i = spkmp(i)(w) then
2: send merge-request to mp(i)

3: receive merge-requests
4: send merge-replies with mp(i)

5: if i = spkmp(i)(w) then
6: receive merge-reply with next′

7: if next′ ∈ F mp(i)
lead (w) then

8: if next′ ≤ mp(i) then
9: return [true, next′]

10: return [false,NULL]

ii

	1 Introduction
	2 Axiomatic design for core-periphery networks
	2.1 Preliminaries
	2.2 Core-periphery networks
	2.3 Core-periphery properties and axioms
	2.4 Structural implications of the axioms

	3 MST on a Core-Periphery Network
	3.1 Axiom necessity
	3.2 Description of the C¶-MST algorithm
	3.3 Metafont procedure
	3.4 Correctness of the C¶-MST Algorithm
	3.5 Running time analysis of the C¶-MST algorithm

	4 Additional Algorithms in Core-Periphery Networks
	4.1 Technical preliminaries
	4.2 Matrix transposition (MT)
	4.3 Vector by matrix multiplication (VMM)
	4.4 Matrix multiplication (MM)
	4.5 Rank Finding (RF)
	4.6 Median Finding (MedF)
	4.7 Mode Finding (ModF)
	4.8 Finding the number of distinct values (DF)
	4.9 Get the top k ranked by areas (TopK)

	Appendix A Pseudocodes for Section 3

