
HAL Id: hal-01206451
https://hal.science/hal-01206451

Submitted on 29 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Grasping the Gap between Blocking and Non-Blocking
Transactional Memories
Petr Kuznetsov, Srivatsan Ravi

To cite this version:
Petr Kuznetsov, Srivatsan Ravi. Grasping the Gap between Blocking and Non-Blocking Transactional
Memories . DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �10.1007/978-
3-662-48653-5_16�. �hal-01206451�

https://hal.science/hal-01206451
https://hal.archives-ouvertes.fr

Grasping the Gap between Blocking and
Non-Blocking Transactional Memories

Petr Kuznetsov1 ? and Srivatsan Ravi2

1 Télécom ParisTech, petr.kuznetsov@telecom-paristech.fr
2 TU Berlin, srivatsan.ravi@inet.tu-berlin.de

Abstract. Transactional memory (TM) is an inherently optimistic syn-
chronization abstraction: it allows concurrent processes to execute se-
quences of shared-data accesses (transactions) speculatively, with an op-
tion of aborting them in the future. Early TM designs avoided using
locks and relied on non-blocking synchronization to ensure obstruction-
freedom: a transaction that encounters no step contention is not allowed
to abort. However, it was later observed that obstruction-free TMs per-
form poorly and, as a result, state-of-the-art TM implementations are
nowadays blocking, allowing aborts because of data conflicts rather than
step contention.
In this paper, we explain this shift in the TM practice theoretically,
via complexity bounds. We prove a few important lower bounds on
obstruction-free TMs. Then we present a lock-based TM implementa-
tion that beats all of these lower bounds. In sum, our results exhibit
a considerable complexity gap between non-blocking and blocking TM
implementations.

1 Introduction

Transactional memory (TM) allows concurrent processes to organize sequences
of operations on shared data items into transactions. A transaction may commit,
in which case its updates of data items “take effect” or it may abort, in which
case no data item is modified. Typically, it is required that all committed trans-
actions appear to execute sequentially, respecting the timing of non-overlapping
transactions (strict serializability).

As a synchronization abstraction, TM came as an alternative to conventional
lock-based synchronization, and it therefore appears natural that early TM im-
plementations [12,18,23,26], i.e., algorithms for implementing operations on data
items using shared base objects, avoided using locks. Instead, early TM designs
relied on non-blocking (sometimes also called lock-free) synchronization, where a
prematurely halted transaction cannot prevent all other transactions from com-
mitting. Possibly the weakest non-blocking progress condition is obstruction-
freedom [17,19] stipulating that every transaction running in the absence of step
contention, i.e., not encountering steps of concurrent transactions, must commit.

? The author is supported by the Agence Nationale de la Recherche, ANR-14-CE35-
0010-01, project DISCMAT

2

In 2005, Ennals [11] argued that obstruction-free TMs inherently yield poor
performance, because they require transactions to forcefully abort each other.
Ennals further described a lock-based TM implementation [10] that he claimed
to outperform DSTM [18], the most referenced obstruction-free TM implemen-
tation at the time. Inspired by [11], more recent lock-based TMs, such as TL [7],
TL2 [6] and NOrec [5], demonstrate better performance than obstruction-free
TMs on most workloads. These TMs typically ensure progressiveness: a trans-
action may be aborted only if it encounters a read-write or a write-write conflict
on a data item with a concurrent transaction [14].

There is a considerable amount of empirical evidence on the performance
gap between non-blocking (obstruction-free) and blocking (progressive) TM im-
plementations but, to the best of our knowledge, no analytical result explains
it. Complexity lower and upper bounds presented in this paper provide such an
explanation.

Lower bounds for non-blocking TMs. Our first result focuses on strictly
serializable TM implementations that satisfy two important properties: weak
disjoint-access-parallelism (weak DAP) and read invisibility. Informally, weak
DAP [4] is believed to improve TM performance by ensuring that two trans-
actions concurrently contend on the same base object only if their data sets
are connected in the conflict graph, capturing data-set overlaps among all con-
current transactions [4]. The requirement of invisible reads [3, 8], believed to
be important for most commonly observed read-dominated workloads, ensures
that a transaction cannot reveal any information about its read set to other
transactions.

There exist weak DAP lock-based TM implementations that use invisible
reads [7, 10]. In contrast, we establish that it is impossible to implement an
obstruction-free TM that provides both weak DAP and read invisibility. Indeed,
DSTM [18] and FSTM [12] are weak DAP, but use visible reads for aborting
pending writing transactions.

We then derive lower bounds on the stall complexity [9] of obstruction-free
TM implementations. Intuitively, the metric captures the fact that the time
a process might have to spend before it applies a primitive on a base object
can be proportional to the number of processes that try to update the object
concurrently. We show that a read operation in an n-process obstruction-free
TM implementation may incur Ω(n) stalls.

Finally, we prove that any read-write (RW) DAP opaque obstruction-free
TM implementation has an execution in which a read-only transaction incurs
Ω(n) non-overlapping RAWs or AWARs. Intuitively, RAW (read-after-write) or
AWAR (atomic-write-after-read) patterns [2] capture the amount of “expensive
synchronization”, i.e., the number of costly conditional primitives or memory
barriers [24] incurred by the implementation. The metric appears to be more
practically relevant than simple step complexity, as it accounts for expensive
cache-coherence operations or conditional instructions. RW DAP, a restriction
of weak DAP, defines the conflict graph based on the write-set overlaps among
concurrent transactions and is satisfied by several popular obstruction-free im-

3

plementations [12, 18, 26]. For this lower bound, probably the most interesting
and technically challenging, we assume opacity [15], a restriction of strict serial-
izability that ensures safety of incomplete and aborted transactions.

Obstruction-free Progressive LP (Sec. 4)

strict DAP No [13] Yes

invisible reads+weak DAP No (Sec. 3.1) Yes

stall complexity of reads Ω(n) (Sec. 3.2) O(1)

RAW/AWAR complexity Ω(n) (Sec. 3.3) O(1)

read-write base objects, wait-free termination No [15] Yes

Fig. 1: Complexity gap between blocking and non-blocking TMs; n is the number
of processes

An upper bound for blocking TMs. We describe a progressive opaque TM
implementation that uses invisible reads and beats all the lower bounds we
established for obstruction-free TMs.

Our implementation, denoted LP , (1) uses only read-write base objects and
ensures that every transactional operation terminates in a wait-free manner,
(2) ensures strict DAP [15] (a restriction of RW DAP), (3) has invisible reads,
(4) performs O(1) non-overlapping RAWs/AWARs per transaction, and (5) in-
curs O(1) memory stalls per read operation. In contrast, from prior work and our
lower bounds we know that (i) no OF TM that provides wait-free transactional
operations can be implemented using only read-write base objects [15]; (ii) no
OF TM can provide strict DAP [13]; (iii) no weak DAP OF TM has invisible
reads (Section 3.1) and (iv) no OF TM ensures a constant number of stalls in-
curred by a read operation (Section 3.2). Finally, (v) no RW DAP opaque OF
TM has constant RAW/AWAR complexity (Section 3.3). Thus, (iv) and (v) ex-
hibit a linear separation between blocking and non-blocking TMs w.r.t expensive
synchronization and memory stall complexity, respectively.

Our results are summarized and put in perspective in Figure 1. Altogether,
we grasp a considerable complexity gap between blocking and non-blocking TM
implementations, justifying theoretically the shift in TM practice we observed
during the past decade.

Overcoming our lower bounds for obstruction-free TMs individually is com-
paratively easy. Say, TL [7] combines strict DAP with invisible reads, but it is
not read-write, and it does not provide constant RAW/AWAR and stall com-
plexities.

Coming out with a single algorithm that beats all these lower bounds is
quite nontrivial. Our algorithm LP incurs the cost of incremental validation,
i.e., checking that the current read set has not changed per every new read
operation. This is, however, unavoidable for invisible read algorithms [15, 21],
and is, in fact, believed to yield better performance in practice than “visible”
reads [5, 7, 10], and we show that it enables constant stall and RAW/AWAR
complexity.

4

Roadmap. Sections 2 defines our model and the classes of TMs considered in
this paper. Section 3 contains lower bounds for obstruction-free TMs. Section 4
describes our progressive TM implementation LP . Sections 5 and 6 present re-
lated work and concluding remarks respectively. Due to space constraints, formal
proofs are delegated to the technical report [22].

2 TM Model and Properties

TM interface. Transactional memory (in short, TM) allows a set of data items
(called t-objects) to be accessed via atomic transactions. A transaction Tk may
contain the following t-operations: readk(X) returns a value in some domain V
(denoted readk(X) → v) or a special value Ak /∈ V (abort); writek(X, v), for a
value v ∈ V , returns ok or Ak; tryCk returns Ck /∈ V (commit) or Ak.

TM implementations. We consider an asynchronous shared-memory system
in which a set of n processes, communicate by applying primitives on shared
base objects. We assume that processes issue transactions sequentially, i.e., a
process starts a new transaction only after its previous transaction has com-
pleted (committed or aborted). A TM implementation provides processes with
algorithms for implementing readk, writek and tryCk() of a transaction Tk by
applying primitives from a set of shared base objects, each of which is assigned an
initial value. A primitive is a generic read-modify-write (rmw) procedure applied
to a base object [9,16]. It is characterized by a pair of functions 〈g, h〉: given the
current state of the base object, g is an update function that computes its state
after the primitive is applied, while h is a response function that specifies the
outcome of the primitive returned to the process. A rmw primitive is trivial if it
never changes the value of the base object to which it is applied. Otherwise, it
is nontrivial.

Executions and configurations. An event of a transaction Tk (sometimes
we say a step of Tk) is a rmw primitive 〈g, h〉 applied by Tk to a base object b
along with its response r (we call it a rmw event and write (b, 〈g, h〉, r, k)), or
the invocation or the response of a t-operation performed by Tk.

A configuration (of a TM implementation) specifies the value of each base
object and the state of each process. The initial configuration is the configuration
in which all base objects have their initial values and all processes are in their
initial states.

An execution fragment is a (finite or infinite) sequence of events. An execution
of a TM implementation M is an execution fragment where, starting from the
initial configuration, each event is issued according to M and each response of
a RMW event (b, 〈g, h〉, r, k) matches the state of b resulting from the preceding
events. If an execution can be represented as E ·E′ (concatenation of execution
fragments E and E′), then we say that E ·E′ is an extension of E or E′ extends
E.

Let E be an execution fragment. For a transaction Tk (and resp. process pk),
E|k denotes the subsequence of E restricted to events of Tk (and resp. pk). If

5

E|k is non-empty, we say that Tk (resp. pk) participates in E, else we say E is
Tk-free (resp. pk-free). Two executions E and E′ are indistinguishable to a set T
of transactions, if for each transaction Tk ∈ T , E|k = E′|k. A TM history is the
subsequence of an execution consisting of the invocation and response events of
t-operations. Two histories H and H ′ are equivalent if txns(H) = txns(H ′) and
for every transaction Tk ∈ txns(H), H|k = H ′|k.

The read set (resp., the write set) of a transaction Tk in an execution E, de-
noted RsetE(Tk) (and resp. WsetE(Tk)), is the set of t-objects that Tk attempts
to read (and resp. write) by issuing a t-read (and resp. t-write) invocation in E
(for brevity, we sometimes omit the subscript E from the notation). The data set
of Tk is Dset(Tk) = Rset(Tk)∪Wset(Tk). Tk is called read-only if Wset(Tk) = ∅;
write-only if Rset(Tk) = ∅ and updating if Wset(Tk) 6= ∅. Note that we consider
the conventional dynamic TM model: the data set of a transaction is identifiable
only by the set of t-objects the transaction has invoked a read or write in the
given execution.

Orders on transactions. Let txns(E) denote the set of transactions that par-
ticipate in E. An execution E is sequential if every invocation of a t-operation is
either the last event in the history H exported by E or is immediately followed
by a matching response. We assume that executions are well-formed, i.e., for
all Tk, E|k begins with the invocation of a t-operation, is sequential and has
no events after Ak or Ck. A transaction Tk ∈ txns(E) is complete in E if E|k
ends with a response event. The execution E is complete if all transactions in
txns(E) are complete in E. A transaction Tk ∈ txns(E) is t-complete if E|k ends
with Ak or Ck; otherwise, Tk is t-incomplete. Tk is committed (resp., aborted) in
E if the last event of Tk is Ck (resp., Ak). The execution E is t-complete if all
transactions in txns(E) are t-complete.

For transactions {Tk, Tm} ∈ txns(E), we say that Tk precedes Tm in the real-
time order of E, denoted Tk ≺RTE Tm, if Tk is t-complete in E and the last event
of Tk precedes the first event of Tm in E. If neither Tk ≺RTE Tm nor Tm ≺RTE Tk,
then Tk and Tm are concurrent in E. An execution E is t-sequential if there are
no concurrent transactions in E.

Contention. If a transaction T is incomplete in an execution E, it has exactly
one enabled event, which is the next event the transaction will perform according
to the TM implementation. Events e and e′ of an execution E contend on a base
object b if they are both events on b in E and at least one of them is nontrivial
(the event is trivial (resp., nontrivial) if it is the application of a trivial (resp.,
nontrivial) primitive).

We say that T is poised to apply an event e after E if e is the next enabled
event for T in E. We say that transactions T and T ′ concurrently contend on b
in E if they are poised to apply contending events on b after E.

We say that an execution fragment E is step contention-free for t-operation
opk if the events of E|opk are contiguous in E. We say that an execution fragment
E is step contention-free for Tk if the events of E|k are contiguous in E. We say
that E is step contention-free if E is step contention-free for all transactions that
participate in E.

6

TM-correctness. Informally, a t-sequential history S is legal if every t-read of
a t-object returns the latest written value of this t-object in S. A history H is
opaque if there exists a legal t-sequential history S equivalent to H such that S
respects the real-time order of transactions in H [15]. A weaker condition called
strict serializability ensures opacity only with respect to committed transactions.

TM-liveness. We say that a TM implementation M provides obstruction-free
(OF) TM-liveness if for every finite execution E of M , and every transaction
Tk that applies the invocation of a t-operation opk immediately after E, the
finite step contention-free extension for opk contains a matching response. A
TM implementation M provides wait-free TM-liveness if in every execution of
M , every t-operation returns a matching response in a finite number of its steps.

TM-progress. Progress for TMs specifies the conditions under which a trans-
action is allowed to abort. We say that a TM implementation M provides
obstruction-free (OF) TM-progress if for every execution E of M , if any trans-
action Tk ∈ txns(E) returns Ak in E, then E is not step contention-free for
Tk.

We say that transactions Ti, Tj conflict in an execution E on a t-object
X if Ti and Tj are concurrent in E and X ∈ Dset(Ti) ∩ Dset(Tj), and X ∈
Wset(Ti)∪Wset(Tj). A TM implementation M provides progressive TM-progress
(or progressiveness) if for every execution E of M and every transaction Ti ∈
txns(E) that returns Ai in E, there exists prefix E′ of E and a transaction
Tk ∈ txns(E′) such that Tk and Ti conflict in E.

Read invisibility. Informally, in a TM using invisible reads, a transaction can-
not reveal any information about its read set to other transactions. Thus, given
an execution E and some transaction Tk with a non-empty read set, transactions
other than Tk cannot distinguish E from an execution in which Tk’s read set is
empty. This prevents TMs from applying nontrivial primitives during t-read op-
erations and from announcing read sets of transactions during tryCommit. Most
popular TM implementations like TL2 [6] and NOrec [5] satisfy this property
(the formal definition can be found in the technical report [22]).

Disjoint-access parallelism (DAP). A TM implementation M is strictly
disjoint-access parallel (strict DAP) if, for all executions E of M , and for all
transactions Ti and Tj that participate in E, Ti and Tj contend on a base object
in E only if Dset(Ti) ∩Dset(Tj) 6= ∅ [15].

We now describe two relaxations of strict DAP. For the definitions, we in-
troduce the notion of a conflict graph which captures the dependency relation
among t-objects accessed by transactions.

We denote by τE(Ti, Tj), the set of transactions (Ti and Tj included) that
are concurrent to at least one of Ti and Tj in an execution E.

LetG(Ti, Tj , E) be an undirected graph whose vertex set is
⋃

T∈τE(Ti,Tj)

Dset(T)

and there is an edge between t-objects X and Y iff there exists T ∈ τE(Ti, Tj)
such that {X,Y } ∈ Dset(T). We say that Ti and Tj are disjoint-access in E if
there is no path between a t-object in Dset(Ti) and a t-object in Dset(Tj) in
G(Ti, Tj , E) [4, 25].

7

Let G̃(Ti, Tj , E) be a subgraph of G(Ti, Tj , E) where t-objects X and Y are
connected with an edge iff there exists T ∈ τE(Ti, Tj) such that {X,Y } ∈
Wset(T). Respectively, Ti and Tj are read-write disjoint-access in E if there is

no path between a t-object in Dset(Ti) and a t-object in Dset(Tj) in G̃(Ti, Tj , E).
A TM implementation M is read-write disjoint-access parallel (RW DAP)

(and resp. weak DAP) if, for all executions E of M , transactions Ti and Tj
contend (and resp. concurrently contend) on the same base object in E only
if Ti and Tj are not read-write disjoint-access (and resp. disjoint-access) in E
or there exists a t-object X ∈ Dset(Ti) ∩ Dset(Tj). The technical report [22]
provides further details and examples on the DAP definitions.

3 Lower bounds for obstruction-free TMs

Let OF denote the class of TMs that provide OF TM-progress and OF TM-
liveness. In Section 3.1, we show that no strict serializable TM in OF can be
weak DAP and have invisible reads. In Section 3.2, we determine stall complexity
bounds for strict serializable TMs in OF , and in Section 3.3, we present a linear
(in n) lower bound on the RAW/AWAR complexity for RW DAP opaque TMs
in OF .

3.1 Impossibility of invisible reads

In this section, we prove that it is impossible to derive TM implementations in
OF that combine weak DAP and invisible reads. The formal proof is given in
the technical report [22], we present an intuition below.

Theorem 1. There does not exist a weak DAP strictly serializable TM imple-
mentation in OF that uses invisible reads.

Proof (Outline). Suppose, by contradiction, that such a TM implementation M
exists. Consider an execution E of M in which a transaction T0 performs a t-read
of t-object Z (returning the initial value v), writes nv (new value) to t-object
X, and commits. Let E′ denote the longest prefix of E that cannot be extended
with the t-complete step contention-free execution of any transaction that reads
nv in X and commits.

Thus if T0 takes one more step after E′, then the resulting execution E′ ·e can
be extended with the t-complete step contention-free execution of a transaction
T1 that reads nv in X and commits (Figure 2a).

Since M uses invisible reads, the following execution exists: E′ can be ex-
tended with the t-complete step contention-free execution of a transaction T2
that reads the initial value v in X and commits, followed by the step e of T0
after which transaction T1 running step contention-free reads nv in X and com-
mits (Figure 2b). Moreover, this execution is indistinguishable to T1 and T2
from an execution in which the read set of T0 is empty. Thus, we can modify
this execution by inserting the step contention-free execution of a committed

8

R0(Z) → v W0(X,nv) tryC0 (event of T0)

e
R1(X) → nv

new value
T0 T1

(a) T1 must read the base object updated in e and return
the new value nv of X

R0(Z) → v W0(X,nv) tryC0 R2(X) → v

initial value

(event of T0)

e
R1(X) → nv

new value
T0 T2 T1

(b) T1 returns new value of X since T2 is invisible

R0(Z) → v W0(X,nv) tryC0 R2(X) → v

initial value

(event of T0)

e
R1(X) → nv

new value

W3(Z, nv)

write new value
T0 T3 T2 T1

(c) By weak DAP and invisible reads, T1 and T2 do not observe the presence of T3

Fig. 2: Executions describing the proof sketch of Theorem 1; execution in 2c is
not strictly serializable

transaction T3 that writes a new value to Z after E′, but preceding T2 in real-
time order. Intuitively, by weak DAP, transactions T1 and T2 cannot distinguish
this execution from the original one in which T3 does not participate.

Thus, we can show that the following execution exists: E′ is extended with
the t-complete step contention-free execution of T3 that writes nv to Z and
commits, followed by the t-complete step contention-free execution of T2 that
reads the initial value v in X and commits, followed by the step e of T0, after
which T1 reads nv in X and commits (Figure 2c).

This execution is, however, not strictly serializable: T0 must appear in any
serialization (T1 reads a value written by T0). Transaction T2 must precede T0,
since the t-read of X by T2 returns the initial value of X. To respect real-
time order, T3 must precede T2. Finally, T0 must precede T3 since the t-read
of Z returns the initial value of Z. The cycle T0 → T3 → T2 → T0 implies a
contradiction.

3.2 Stall complexity

We prove a linear (in n) lower bound for strictly serializable TM implementations
inOF on the total number of memory stalls incurred by a single t-read operation.

Let E = α ·e1 · · · em ·e ·β be an execution of M , where α and β are execution
fragments, e is a primitive applied by a process p on a base object b within
a t-operation op, and e1 · · · em is a maximal sequence of m ≥ 1 consecutive
nontrivial events by distinct processes other than p that access b. Then, we say
that op incurs m memory stalls in E on account of e. The number of memory
stalls incurred by op in E is the sum of memory stalls incurred by all events of
op in E [1, 9].

Theorem 2. Every strictly serializable TM implementation M ∈ OF has an
execution in which some t-read operation incurs Ω(n) stalls.

9

We give an intuitive sketch below, but the full proof can be found in [22]. Induc-
tively, for each k ≤ n − 1, we construct a specific k-stall execution [9] in which
some t-read operation by a process p incurs k stalls. In the k-stall execution, k
processes are partitioned into disjoint subsets S1, . . . , Si. The execution can be
represented as α ·σ1 · · ·σi; α is p-free, where in each σj , j = 1, . . . , i, p first runs
by itself, then each process in Sj applies a nontrivial event on a base object bj ,
and then p applies an event on bj . Moreover, p does not detect step contention in
this execution and, thus, must return a non-abort value in its t-read and commit
in the solo extension of it. Additionally, it is guaranteed that in any extension
of α by the processes other than {p} ∪ S1 ∪ S2 ∪ . . .∪ Si, no nontrivial primitive
is applied on a base object accessed in σ1 · · ·σi.

Assuming a k-stall execution α · σ1 · · ·σi for process p executing a t-read
operation where k ≤ n − 2, we introduce a not previously used process execut-
ing an updating transaction immediately after α, so that the subsequent t-read
operation executed by p is “perturbed” (must return another value). This will
help us to construct a (k+k′)-stall execution α ·α′ ·σ1 · · ·σi ·σi+1, where k′ > 0.
Thus, the TM has a (n− 1)-stall execution for some t-read operation.

3.3 RAW/AWAR complexity

In this section, we characterize the complexity of implementations in OF by
measuring the amount of expensive synchronization patterns like RAW (read-
after-write) or AWAR (atomic-write-after-read) that read-only transactions may
need to perform.

A RAW pattern performed by a transaction Tk in an execution π is a pair of
its events e and e′, such that: (1) e is a write to a base object b by Tk, (2) e′ is a
subsequent read of a base object b′ 6= b by Tk, and (3) no event on b by Tk takes
place between e and e′. In this paper, we are concerned only with non-overlapping
RAWs, i.e., the read performed by one RAW precedes the write performed by
the other RAW. An AWAR pattern e in an execution π · e is a nontrivial rmw
event on an object b which atomically returns the value of b (resulting after π)
and updates b with a new value, e.g., a successful compare-and-swap.

We prove that opaque, RW DAP TM implementations in OF have execu-
tions in which some read-only transaction performs a linear (in n) number of
non-overlapping RAWs or AWARs. Our result illustrates why individual t-read
operations of RW DAP obstruction-free TMs like DSTM [18] must forcefully
abort pending conflicting transactions using compare-and-swap in some execu-
tions.

Theorem 3. Every RW DAP opaque TM implementation M ∈ OF has an
execution E in which some read-only transaction T ∈ txns(E) performs Ω(n)
non-overlapping RAW/AWARs.

Proof (Outline). We first construct an execution of the form ρ̄1 · · · ρ̄m, where for
all j ∈ {1, . . . ,m}; m = n − 3, ρ̄j denotes the t-complete step contention-free
execution of transaction Tj that reads the initial value v in a distinct t-object

10

Zj , writes a new value nv to a distinct t-object Xj and commits. Observe that
since any two transactions that participate in this execution are mutually read-
write disjoint-access, they cannot contend on the same base object and, thus,
the execution appears solo to each of them.

Let each of two new transactions Tn−1 and Tn perform m t-reads on ob-
jects X1, . . . , Xm. For j ∈ {1, . . . ,m}, we now define ρj to be the longest prefix
of ρ̄j such that ρ1 · · · ρj cannot be extended the complete step contention-free
execution fragment of Tn−1 or Tn where the t-read of Xj returns nv. Let ej
be the event by Tj enabled after ρ1 · · · ρj . Let us count the number of indices
j ∈ {1, . . . ,m} such that Tn−1 (resp., Tn) reads the new value nv in Xj when it
runs after ρ1 · · · ρj · ej . Without loss of generality, assume that Tn−1 has more
such indices j than Tn. We are going to show that, in the worst-case, Tn must
perform dm2 e non-overlapping RAW/AWARs in the course of performing m t-
reads of X1, . . . , Xm immediately after ρ1 · · · ρm.

Consider any j ∈ {1, . . . ,m} such that Tn−1, when it runs step contention-free
after ρ1 · · · ρj · ej , reads nv in Xj . We claim that, in ρ1 · · · ρm extended with the
step contention-free execution of Tn performing j t-reads readn(X1) · · · readn(Xj),
the t-read of Xj must contain a RAW or an AWAR.

Suppose not. Then we are going to schedule a specific execution of Tj and
Tn−1 concurrently with readn(Xj) so that Tn cannot detect the concurrency.
By the definition of ρj and the fact that the TM is RW DAP, Tn, when it
runs step contention-free after ρ1 · · · ρm, must read v (the initial value) in Xj .
Then the following execution exists: ρ1 · · · ρm is extended with the t-complete
step contention-free execution of Tn−2 writing nv to Zj and committing, after
which Tn runs step contention-free and reads v in Xj . Since, by the assumption,
readn(Xj) contains no RAWs or AWARs, we show that we can run Tn−1 per-
forming j t-reads concurrently with the execution of readn(Xj) so that Tn and
Tn−1 are unaware of step contention and readn−1(Xj) still reads the value nv in
Xj .

To understand why this is possible, consider the following: we take the exe-
cution constructed above, but without the execution of readn(Xj), i.e, ρ1 · · · ρm
is extended with the step contention-free execution of committed transaction
Tn−2 writing nv to Zj , after which Tn runs step contention-free performing j−1
t-reads. This execution can be extended with the step ej by Tj , followed by the
step contention-free execution of transaction Tn−1 in which it reads nv in Xj .
Indeed, by RW DAP and the definition of ρj · ej , there exists such an execution.

Since readn(Xj) contains no RAWs or AWARs, we can reschedule the execu-
tion fragment ej followed by the execution of Tn−1 so that it is concurrent with
the execution of readn(Xj) and neither Tn nor Tn−1 see a difference. Therefore,
in this execution, readn(Xj) still returns v, while readn−1(Xj) returns nv.

However, the resulting execution is not opaque. In any serialization the fol-
lowing must hold. Since Tn−1 reads the value written by Tj in Xj , Tj must be
committed. Since readn(Xj) returns the initial value v, Tn must precede Tj . The
committed transaction Tn−2, which writes a new value to Zj , must precede Tn
to respect the real-time order on transactions. However, Tj must precede Tn−2

11

since readj(Zj) returns the initial value and the implementation is opaque. The
cycle Tj → Tn−2 → Tn → Tj implies a contradiction.

Thus, we can show that transaction Tn must perform Ω(n) RAW/AWARs
during the execution of m t-reads immediately after ρ1 · · · ρm.

4 Upper bound for opaque progressive TMs

In this section, we describe a progressive, opaque TM implementation LP (Al-
gorithm 1) that is not subject to any of the lower bounds we derived so far for
OF (cf. Figure 1). In our TM LP , every transaction performs at most a single
RAW, every t-read operation incurs O(1) memory stalls and maintains exactly
one version of every t-object in every execution. Moreover, the implementation
is strict DAP and uses only read-write base objects.

Base objects. For every t-object Xj , LP maintains a base object vj that stores
the value of Xj . Additionally, for each Xj , we maintain a bit Lj , which if set,
indicates the presence of an updating transaction writing to Xj . Also, for every
process pi and t-object Xj , LP maintains a single-writer bit rij to which only
pi is allowed to write. Each of these base objects may be accessed only via read
and write primitives.

Read operations. The implementation first reads the value of t-object Xj from
base object vj and then reads the bit Lj to detect contention with an updat-
ing transaction. If Lj is set, the transaction is aborted; if not, read validation
is performed on the entire read set. If the validation fails, the transaction is
aborted. Otherwise, the implementation returns the value of Xj . For a read-only
transaction Tk, tryCk simply returns the commit response.

Updating transactions. The writek(X, v) implementation by process pi simply
stores the value v locally, deferring the actual updates to tryCk. During tryCk,
process pi attempts to obtain exclusive write access to everyXj ∈Wset(Tk). This
is realized through the single-writer bits, which ensure that no other transaction
may write to base objects vj and Lj until Tk relinquishes its exclusive write access
to Wset(Tk). Specifically, process pi writes 1 to each rij , then checks that no other
process pt has written 1 to any rtj by executing a series of reads (incurring a
single RAW). If there exists such a process that concurrently contends on write
set of Tk, for each Xj ∈Wset(Tk), pi writes 0 to rij and aborts Tk. If successful
in obtaining exclusive write access to Wset(Tk), pi sets the bit Lj for each Xj in
its write set. Implementation of tryCk now checks if any t-object in its read set is
concurrently contended by another transaction and then validates its read set. If
there is contention on the read set or validation fails (indicating the presence of
a conflicting transaction), the transaction is aborted. If not, pi writes the values
of the t-objects to shared memory and relinquishes exclusive write access to each
Xj ∈Wset(Tk) by writing 0 to each of the base objects Lj and rij .

Complexity. Read-only transactions do not apply any nontrivial primitives.
Any updating transaction performs at most a single RAW in the course of acquir-
ing exclusive write access to the transaction’s write set. Thus, every transaction

12

Algorithm 1 Strict DAP progressive opaque TM implementation LP ; code for
Tk executed by process pi

1: Shared base objects:

2: vj , for each t-object Xj

allows reads and writes
3: rij , for every pi and t-object Xj

single-writer bit
allows reads and writes

4: Lj , for every t-object Xj

allows reads and writes

5: Local variables:

6: Rsetk,Wsetk for every Tk;
dictionaries storing {Xm, vm}

7: readk(Xj):

8: if Xj 6∈ Rset(Tk) then
9: [ovj , kj] := read(vj)

10: Rset(Tk).add({Xj , [ovj , kj]})
11: if read(Lj) 6= 0 then
12: Return Ak

13: if validate() then
14: Return Ak

15: Return ovj

16: else
17: [ovj ,⊥] := Rset(Tk).locate(Xj)
18: Return ovj

19: writek(Xj, v):

20: nvj := v
21: Wset(Tk).add({Xj})
22: Return ok

23: tryCk():

24: if |Wset(Tk)| = ∅ then
25: Return Ck

26: locked := acquire(Wset(Tk))
27: if ¬ locked then
28: Return Ak

29: if isAbortable() then
30: release(Wset(Tk))
31: Return Ak

// Exclusive write access to each vj

32: for all Xj ∈ Wset(Tk) do
33: write(vj , [nvj , k])

34: release(Wset(Tk))
35: Return Ck

36: Function: release(Q):

37: for all Xj ∈ Q do
38: write(Lj , 0)

39: for all Xj ∈ Q do
40: write(rij , 0)

41: Return ok

42: Function: acquire(Q):

43: for all Xj ∈ Q do
44: write(rij , 1)

45: if ∃Xj ∈ Q; t 6= i : read(rtj) = 1 then

46: for all Xj ∈ Q do
47: write(rij , 0)

48: Return false

// Exclusive write access to each Lj

49: for all Xj ∈ Q do
50: write(Lj , 1)

51: Return true

52: Function: isAbortable() :

53: if ∃Xj ∈ Rset(Tk) : Xj 6∈ Wset(Tk) ∧
read(Lj) 6= 0 then

54: Return true
55: if validate() then
56: Return true
57: Return false

58: Function: validate() :

// Read validation

59: if ∃Xj ∈ Rset(Tk):[ovj , kj] 6=
read(vj) then

60: Return true
61: Return false

13

performs O(1) non-overlapping RAWs in any execution. However, just as state-
of-the-art progressive opaque TM implementations like TL [7] and NOrec [5]
that use invisible reads, LP must incur the inherent incremental validation cost
that is linear in the size of the read set [15,21].

Recall that a transaction may write to base objects vj and Lj only after
obtaining exclusive write access to t-object Xj , which in turn is realized via
single-writer base objects. Thus, no transaction performs a write to any base
object b immediately after a write to b by another transaction, i.e., every trans-
action incurs only O(1) memory stalls on account of any event it performs. The
readk(Xj) implementation reads base objects vj and Lj , followed by the valida-
tion phase in which it reads vk for each Xk in its current read set. Note that
if the first read in the validation phase incurs a stall, then readk(Xj) aborts. It
follows that each t-read incurs O(1) stalls in every execution.

Thus, we can prove the following theorem:

Theorem 4. Algorithm 1 describes a progressive, opaque and strict DAP TM
implementation LP that provides wait-free TM-liveness, uses invisible reads,
uses only read-write base objects, and for every execution E and transaction
Tk ∈ txns(E): (i) Tk performs at most a single RAW, and (ii) every t-read
operation performed by Tk incurs O(1) memory stalls in E.

5 Related work

Attiya et al. [4] were the first to formally define DAP for TMs. They proved the
impossibility of implementing weak DAP strictly serializable TMs that use invis-
ible reads and guarantee that read-only transactions eventually commit, while
updating transactions are guaranteed to commit only when they run sequen-
tially [4]. This class is orthogonal to the class of obstruction-free TMs, as is the
proof technique used to establish the impossibility arguments (Section 3.1).

Perelman et al. [25] showed that mv-permissive weak DAP TMs cannot be im-
plemented. In mv-permissive TMs, only updating transactions may be aborted,
and only when they conflict with other updating transactions. In particular, read-
only transactions cannot be aborted and updating transactions may sometimes
be aborted even in the absence of step contention, which makes the impossibility
result in [25] unrelated to ours (Section 3.1).

Guerraoui and Kapalka [15] proved that it is impossible to implement strict
DAP obstruction-free TMs. They also proved that a strict serializable TM that
provides OF TM-progress and wait-free TM-liveness cannot be implemented
using only read and write primitives. We show in Section 4 that progressive
TMs are not subject to either of these lower bounds.

Attiya et al. [2] proved that it is impossible to derive RAW/AWAR-free imple-
mentations of data types like stacks, queues and deadlock-free mutual exclusion.
The metric was previously used in [20] to measure the complexity of read-only
transactions in a strictly stronger (than OF) class of permissive TMs (assuming
wait-free TM-liveness) which ensure that a transaction may be aborted only if
committing it would violate opacity. This lower bound in [20] is unrelated to

14

Theorem 3 on RW DAP obstruction-free TMs. Detailed coverage on memory
fences and the RAW/AWAR metric can be found in [24].

To derive the linear lower bound on the memory stall complexity of obstruction-
free TMs (Section 3.2), we adopted the definition of a k-stall execution and
certain proof steps from [1,9].

Our upper bound LP that theoretically demonstrates the advantages of
adapting TMs to data conflicts rather than step contention is inspired by the
progressive TM of [20]. Complexity optimizations for progressive TMs like re-
ducing the cost of read-validation by slightly relaxing strict DAP, as achieved in
TL2 [6], can also be applied to LP .

The technical report [22] provides details on the DAP definitions as well as
opaque implementations in OF that satisfy weak and RW DAP. The definition
of invisible reads used in this paper is adopted from [3].

6 Concluding remarks

As highlighted in [7,11], obstruction-free TMs require an indirection from the t-
object metadata in order to find the current version of the t-object. This suggests
that obstruction-free TMs must forcefully abort pending conflicting transactions
in order to return the correct t-object version. This observation inspires the
impossibility of invisible reads (Theorem 1). Typically, to detect the presence of a
conflicting transaction and abort it, the reading transaction must employ a RAW
or read-modify-write primitives like compare-and-swap, motivating the linear
lower bound on expensive synchronization (Theorem 3). Also, in obstruction-
free TMs, a transaction may not wait for a concurrent inactive transaction to
complete and, as a result, we may have an execution in which a transaction incurs
a distinct stall due to a transaction run by each other process (Theorem 2).
Intuitively, since transactions in progressive TMs may abort themselves in case
of conflicts, they can employ invisible reads and maintain constant stall and
RAW/AWAR complexities.

Some benefits of obstruction-free TMs, namely their ability to make progress
even if some transactions prematurely fail, are not provided by progressive TMs.
However, several papers [6, 7, 11] argued that lock-based TMs tend to outper-
form obstruction-free ones by allowing for simpler algorithms with lower over-
head, and their inherent progress issues may be resolved using timeouts and
contention-managers. This paper explains the empirically observed performance
gap between blocking and non-blocking TMs via a series of lower bounds on
obstruction-free TMs and a progressive TM algorithm that beats all of them.

References

1. H. Attiya, R. Guerraoui, D. Hendler, and P. Kuznetsov. The complexity of
obstruction-free implementations. J. ACM, 56(4), 2009.

2. H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. Michael, and M. Vechev.
Laws of order: Expensive synchronization in concurrent algorithms cannot be elim-
inated. In POPL, pages 487–498, 2011.

15

3. H. Attiya and E. Hillel. The cost of privatization in software transactional memory.
IEEE Trans. Computers, 62(12):2531–2543, 2013.

4. H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access par-
allel implementations of transactional memory. Theory of Computing Systems,
49(4):698–719, 2011.

5. L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining STM by
abolishing ownership records. In PPOPP, pages 67–78, 2010.

6. D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, pages
194–208, 2006.

7. D. Dice and N. Shavit. What really makes transactions fast? In Transact, 2006.
8. D. Dice and N. Shavit. TLRW: return of the read-write lock. In SPAA, pages

284–293, 2010.
9. F. Ellen, D. Hendler, and N. Shavit. On the inherent sequentiality of concurrent

objects. SIAM J. Comput., 41(3):519–536, 2012.
10. R. Ennals. The lightweight transaction library.

http://sourceforge.net/projects/libltx/files/.
11. R. Ennals. Software transactional memory should not be obstruction-free. 2005.
12. K. Fraser. Practical lock-freedom. Technical report, Cambridge University Com-

puter Laborotory, 2003.
13. R. Guerraoui and M. Kapalka. On obstruction-free transactions. In Proceedings

of the twentieth annual symposium on Parallelism in algorithms and architectures,
SPAA ’08, pages 304–313, New York, NY, USA, 2008. ACM.

14. R. Guerraoui and M. Kapalka. The semantics of progress in lock-based transac-
tional memory. In POPL, pages 404–415, 2009.

15. R. Guerraoui and M. Kapalka. Principles of Transactional Memory,Synthesis Lec-
tures on Distributed Computing Theory. Morgan and Claypool, 2010.

16. M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–
149, 1991.

17. M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In ICDCS, pages 522–529, 2003.

18. M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional
memory for dynamic-sized data structures. In PODC, pages 92–101, 2003.

19. M. Herlihy and N. Shavit. On the nature of progress. In OPODIS, pages 313–328,
2011.

20. P. Kuznetsov and S. Ravi. On the cost of concurrency in transactional memory.
In OPODIS, pages 112–127, 2011. full version: http://arxiv.org/abs/1103.1302.

21. P. Kuznetsov and S. Ravi. Progressive transactional memory in time and space.
CoRR, abs/1502.04908, 2015. To appear in 13th International Conference on Paral-
lel Computing Technologies August 31 - September 4, 2015, Petrozavodsk, Russia.

22. P. Kuznetsov and S. Ravi. Why transactional memory should not be obstruction-
free. CoRR, abs/1502.02725, 2015. http://arxiv.org/abs/1502.02725.

23. V. J. Marathe, W. N. S. Iii, and M. L. Scott. Adaptive software transactional
memory. In Proc. of the 19th International Symposium on Distributed Computing,
pages 354–368, 2005.

24. P. E. McKenney. Memory barriers: a hardware view for software hackers. Linux
Technology Center, IBM Beaverton, June 2010.

25. D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in STM. In
PODC, pages 16–25, 2010.

26. F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, and C. Wang. Nztm: Nonblocking
zero-indirection transactional memory. SPAA ’09, pages 204–213, New York, NY,
USA, 2009. ACM.

	Grasping the Gap between Blocking and Non-Blocking Transactional Memories
	Introduction
	TM Model and Properties
	Lower bounds for obstruction-free TMs
	Impossibility of invisible reads
	Stall complexity
	RAW/AWAR complexity

	Upper bound for opaque progressive TMs
	Related work
	Concluding remarks

