

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

https://doi.org/10.1016/j.jpdc.2017.01.011

http://hdl.handle.net/10251/101889

Elsevier

A Research-Oriented Course on Advanced Multicore
Architecture: Contents and Active Learning Methodologies

Salvador Petit, Julio Sahuquillo, Marı́a E. Gómez, Vicent Selfa

Department of Computer Engineering (DISCA)

Universitat Politècnica de València

Cmno. de Vera s/n, 46022, SPAIN

spetit@disca.upv.es

Abstract

The fast evolution of multicore processors makes it difficult for professors to offer

computer architecture courses with updated contents. To deal with this shortcoming

that could discourage students, the most appropriate solution is a research-oriented

course based on current microprocessor industry trends. Additionally, we also seek to

improve the students’ skills by applying active learning methodologies, where teach-

ers act as guiders and resource providers while students take the responsibility for

their learning. In this paper, we present the Advanced Multicore Architecture (AMA)

course, which follows a research-oriented approach to introduce students in architec-

tural breakthroughs and uses active learning methodologies to enable students to de-

velop practical research skills such as critical analysis of research papers or commu-

nication abilities. To this end five main activities are used: i) lectures dealing with

key theoretical concepts, ii) paper review & discussion, iii) research-oriented practical

exercises, iv) lab sessions with a state-of-the-art multicore simulator, and v) paper pre-

sentation. An important part of all these activities is driven by active learning method-

ologies. Special emphasis is put on the practical side by allocating 40% of the time to

labs and exercises. This work also includes an assessment study that analyzes both the

course contents and the used methodology (both of them compared to other courses).

Keywords: Advanced computer architecture courses, teaching methods,

IFully documented templates are available in the elsarticle package on CTAN.

Preprint submitted to Journal of Parallel and Distributed Computing April 19, 2018

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle

research-oriented method, lab sessions

2010 MSC: 00-01, 99-00

1. Introduction

Many universities all over the world organize Computer Architecture topics at least

in two courses: an introductory course and an advanced course. Usually, several ad-

vanced courses covering different computer architecture topics (e.g. parallel computer

architectures or memory subsystems) are offered. From our point of view, designing5

courses with updated contents is a key issue to capture the student’s interest. However,

the vertiginous technological and architectural advances in these topics impose a seri-

ous limitation for instructors to offer courses addressing up-to-date topics. Because of

this reason, many instructors opt to follow an advanced computer architecture book for

their courses. Despite this fact, some interesting courses are already being offered fol-10

lowing a research-oriented perspective. In general, instructors of these courses present

a solid background in research like Professor Onur Mutlu at Carnegie Mellon or Pro-

fessor Christos Kozyrakis at Stanford. Examples of recent courses offered by Professor

Mutlu are 18–742 Research in Parallel Computer Architecture (available at http://

www.ece.cmu.edu/˜ece742/f14/doku.php) and 18–740 Computer Archi-15

tecture (available at http://www.ece.cmu.edu/˜ece740/f13/doku.php).

These courses cover a wide spectrum of computer architecture topics, mainly hot topics

of top top-ranked conferences like ISCA or MICRO. This approach, based on recent

hot topics is useful to capture the students’ interest. Our approach, complements this

one and, apart from stimulate the students’ motivation, we also pursue to improve the20

students’ skills by applying active learning methodologies.

Active learning methodologies have been recently applied on engineering courses

[1, 2]. Under these methodologies, the student takes responsibility in his learning pro-

cess while instructors act as resource providers and directors who guide the learning

process. These methodologies have been shown to improve the understanding of en-25

gineering principles with respect to methodologies dominated by traditional lectures

in which students are passive recipients. Additionally, these methodologies develop

2

http://www.ece.cmu.edu/~ece742/f14/doku.php
http://www.ece.cmu.edu/~ece742/f14/doku.php
http://www.ece.cmu.edu/~ece742/f14/doku.php
http://www.ece.cmu.edu/~ece740/f13/doku.php

cross-curricular skills that students should acquire such as oral communication and

critical analysis skills.

This work presents the undergraduate Advanced Multicore Architectures (AMA)30

course, offered in winter 2014, 2015 and 2016 at Universitat Universitat Politècnica de

València. The course consists of 16 sessions of 2 1
2 hours each, which are taught over a

period of four months.

The key difference of the proposed course over typical advanced courses is the use

of active learning methodologies to teach hot research topics. For this purpose, the35

AMA course does not try to cover a wide range of architectural concepts (e.g. transac-

tional memory or dataflow architectures are not studied). Instead, the course focuses on

a few key aspects of recent and future multicores to place the stress on the practical side.

The AMA course is organized in four main modules. Three of them study three major

components (cores, caches, and memories) of a typical multicore, paying attention to40

both architectural and performance aspects; and one of them devoted to the study of

performance methodologies recently proposed for multicores. Instructors highlight the

hot research topics for each studied component, that is, where is the current academia

and industry research interest. Additionally, students participate in the learning process

by using active learning methodologies, which help them to develop skills required in45

the professional or research activity, such as writing and oral communication, apart

from helping in the understanding of the studied concepts.

The main contribution of this paper is to provide guidelines to combine a research-

oriented approach with active learning methodologies, which allows instructors to

achieve an advanced research-oriented course. For this purpose, two main directions50

have been followed. First, the number of studied topics has been selectively reduced.

Second, a wide set of activities based on active learning methodologies have been de-

signed. Five main types of learning activities are performed: lectures, paper review &

discussion, research-based exercises, lab sessions, and paper presentation.

In the AMA course, traditional lectures, where the instructors act as the only com-55

municator, are used to explain some theoretical concepts, but in other lessons, the

student plays an active role, by reviewing research papers and participating in their

discussion in the classroom, while the instructor chairs and moderates the students’

3

discussion. Research-based exercises refer to typical research problems that students

will likely face after graduation. Lab sessions are performed with a state-of-the-art60

multicore simulator used at academia and the industry. For illustrative purposes, we

present some examples for each type of activity discussing the roles of the student and

the teacher, as well as some excerpt of the provided material. The time devoted by

instructors to lectures, exercises, and labs is about 60%, 15%, and 25%, respectively;

apart from the paper presentation sessions.65

The remainder of this paper is organized as follows: Section 2 introduces the course

main goals and methods employed to achieve them. Section 3 describes the course

contents in detail. Section 4 explains in depth the methodology used to teach the course.

Section 5 presents a survey which assesses the course contents and applied learning

methods. Finally, Section 6 presents some concluding remarks.70

2. AMA Course Learning Goals

This section summarizes the learning goals of the undergraduate AMA course. Be-

fore this course, students have attended to the Computer Organization course that stud-

ies the pipeline of a simple processor and the Computer Architecture and Engineering

course, which describes extensions to the previous pipeline to support speculative exe-75

cution. The focus in both courses is mainly educational and their aim is to introduce the

basic concepts and to describe how the distinct computer components (e.g. superscalar

processors, caches, etc.) work.

The AMA course covers the study of three main components of a typical multicore:

the cores, the cache hierarchy and the main memory. It is aimed at providing students80

with the knowledge about industry and academia trends on multicores, as well as with

the skills that enable them to initiate research in these topics. Due to time constraints,

we have focused the course on industry-ready multicores with computing cores that

implement conventional instruction set architectures (ISAs). For instance, graphic pro-

cessing units (GPUs) and computational accelerators have not been included in the85

course.

The AMA course is organized in four main modules as shown in Table 1 apart from

4

Table 1: Learning Goals: concepts & skills (skills are shown with italic font). Legend. Lect: Lectures. Prd:
Paper review & discussion. Ex: Research-oriented exercises. Labs: Lab sessions. Pp: Paper presentation.

Mod. Learning Goals: concepts & skills Method.
Mod. 0 Course Presentation

Course organization (contents, methodology and grading)
How to review papers

Mod. 1 Core review & multicores
Sound knowledge of microarchitectural concepts Lect
Understand why multicores Lect
Get familiarized with multicore evolution Lect
Understand the benefits of heterogeneous multicores Lect & Ex
Acquire a sound understanding of how multicore simulators work Labs
Experiment Design and Data Analysis skills Ex & Labs
Acquire oral communication (discussion) and critical analysis skills Prd

Mod. 2 Performance
Understand performance metrics for multicores Lect
Acquire skills analyzing performance metrics Ex & Labs
Confidence intervals and practical skills to obtain them Lect & Ex
Solid understanding about where performance can drop and why Lect & Labs
Understanding interferences in multicores Lect & Labs
Acquire a sound understanding of how multicore simulators work Labs
Acquire oral communication (discussion) and critical analysis skills Prd

Mod. 3 Advanced caching
Shared cache partitioning for performance Lect & Lab
Dealing with fairness in shared caches Lect & Lab
Shared caches: scheduling and allocation Lect
Acquire a sound understanding of how multicore simulators work Lab
Acquire oral communication (presentation) skills Pp

Mod. 4 Main memory
Understand how current DDR memory modules are organized Lect & Ex
Understand the current DRAM limitations and trends Lect & Prd
Acquire communication (discussion) and critical analysis skills Prd
Acquire oral communication (presentation) skills Pp

Module 0, where instructors present the course contents, organization and grading, as

well as introducing the guidelines followed in the course for reading research papers

[3]. Module 2 is aimed at providing students with multicore evaluation fundamentals,90

while modules 1, 3 and 4 are devoted to the study of the main system components.

An example of a recent multicore illustrating these components is presented in Figure

1, which depicts the layout of the IBM Power8 with twelve cores, on-chip L2 and L3

caches, and main memory controllers (located at the edges of the chip).

Each module pursues two main goals: i) review architectural and structural con-95

cepts in order to homogenize students’ knowledge, ii) provide students with research

5

Figure 1: The Power IBM Power 8 die and major components. Source: IBM.

skills by means of research oriented exercises, labs, as well as paper review and discus-

sion activities. The central column of the table summarizes the main learning goals and

skills pursued across all the main modules (skills are emphasized in italic characters).

A broad range of skills is pursued ranging from research oriented skills like simulator100

usage and development or data analysis, to interdisciplinary skills like paper review,

critical analysis, paper presentation or paper discussion.

Finally, the rightmost column refers to the teaching methods employed to achieve

the pursued learning goals.

3. AMA Course Contents105

This section presents the contents of the AMA course. As mentioned above, the

course is organized in four main modules that take a total of 16 sessions of 2 1
2 hours

6

Table 2: Course contents.

MODULE 0. Course Presentation
Topic 0.0. Course Description

Grading policies
How to do paper reviews

MODULE 1. Core review and multicores
Topic 1.1. Advanced Microarchitectural Concepts (review)
Topic 1.2. Reasons for moving to multicore
Topic 1.3. Multicore Evolution and Design

MODULE 2. Performance
Topic 2.1. Performance Evaluation Metrics
Topic 2.2. Performance Accounting Architectures

MODULE 3. Caching
Topic 3.1. Advanced Caching: Concepts and Problems
Topic 3.2. Advanced Caching: Papers

MODULE 4. Main Memory
Topic 4.1. Main Memory Organization
Topic 4.2. Main Memory Scheduling

each of them. The topics included in each module are presented in Table 2. Below, we

describe each of these topics.

3.1. Module 1: Core review and multicores110

3.1.1. Topic 1.1: Advanced microarchitectural concepts

In Topic 1.1, microarchitectural concepts are reviewed in order to homogenize the

students’ knowledge concerning core details. These working details are widely and

deeply studied in another elective course called Advanced Computer Architectures.

The focus of this module is to review and highlight microarchitectural details of typical115

commercial processors. The studied microarchitecture closely resembles to the Alpha

21264 [4] and most commercial microprocessors. The pipeline consists of a physi-

cal register file, a single instruction queue, the reorder buffer (ROB), and a load/store

unit. The microarchitecture is reviewed detailing what is done at each stage. Emphasis

is given to renaming, dispatching, and issue stages, paying special attention to why120

7

pipeline stalls can appear. In addition to this architecture, multithreaded processors are

also studied, focusing on simultaneous multithreaded processors that are dominating

an important segment of the market.

The key goal of this topic is twofold. On the one hand, to summarize the key char-

acteristics of the distinct types of cores implemented in current multicores. On the other125

hand, to enable students to understand (in subsequent lectures) where performance can

be lost during the program execution. At the end of this topic two papers [5, 6] are

assigned to students to be discussed before introducing the next topic. Students must

deliver at the beginning of the next lecture a brief (less than one page) review of the

paper to the instructor.130

3.1.2. Topic 1.2: Reasons for moving to multicore

Advances in transistor technology have allowed cramming more components onto

integrated circuits as predicted by Moore’s law [7]. This fact brings new opportunities

for computer architects. In Topic 1.2, we discuss alternative architectures to multi-

cores like bigger cores, larger caches, clustered processors, etc. Instructors present135

and discuss the pros and cons of each alternative to provide the students with a wide

perspective on multicore design. Attention is paid to the analysis of the benefits each

alternative provides.

Before starting this topic it is highly recommended that all the students read the

paper The Case for a Single-chip Multiprocessor by Olukotun et al. [5]. This paper140

explains in detail the multiple reasons why industry moved to multicores (e.g. the

power wall, wire delay, microarchitecture complexity, etc.) This reading is important

since a widely extended misconception is that there is only one single cause of the

industry trends. Based on our experience, the discussion of this paper in the classroom

really encourages students to study multicore topics.145

3.1.3. Topic 1.3: Multicore evolution and design

The last topic of Module 1 is devoted to multicore evolution and design. We present

a representative set of commercial multicores, ranging from very simple in-order exe-

cution cores (e.g. the Piranha Chip Multiprocessor [8]) to complex multithreaded out-

8

Table 3: Multicore processors presented in the AMA course.

Multicore #cores
Characteristics

#threads Year
Issue width Threads/Core Multithreading type Issue type

Piranha 8 1 1 – in-order 8 2000

Niagara 8 2 4 fine-grained in-order 32 2005

Niagara II 8 2 8 fine-grained in-order 64 2007

IBM Power4 2 8 1 – o-o-o 2 2002

IBM Power5 2 8 2 SMT o-o-o 4 2004

IBM Power6 2 8 2 SMT in-order 4 2007

IBM Power7 8 8 4 SMT o-o-o 32 2010

IBM Power8 12 10 8 SMT o-o-o 96 2014

of-order (e.g. IBM Power8) cores. The discussion on these multicores is always done150

emphasizing the design objectives and use case of each machine. For instance, if the

goal is to support the execution of many threads in specific workloads (e.g. web work-

loads) a good design choice might be to implement many but simpler cores.

Table 3 summarizes the main characteristics of the studied multicores. We select

a representative subset to illustrate the industry trends. During the earliest phases of155

the multicore evolution (2000-2007), some high-performance systems were built using

processors with simple cores, which allowed supporting a high number of threads rela-

tively early (e.g. the Niagara II supported 64 threads by 2007). During the same period,

companies such as IBM or Intel introduce multicore designs with fewer complex cores

(e.g. in 2007, the IBM Power6 only included 2 cores). Later, the number of cores160

and supported threads scaled with technology advances, reaching by one hundred of

threads in 2014 (IBM Power8).

The second part of this topic focuses on the Amdahl’s Law for multicores. This

part is entirely based on the talk by Mark Hill entitled Amdahl’s Law in the Multi-

core Era [9]. We use the Amdahl’s Law to analyze both asymmetric and symmetric165

multicores.

9

3.2. Module 2: Performance

Both the industry and the academia have sharply moved from single core processors

to multicores. The nature of multicores, different from their single core counterparts,

has lead researchers to define specific performance metrics to evaluate multicore per-170

formance.

Several recent works [10, 11, 12] survey multicore performance metrics that have

been used in the literature. These works also analyze and discuss which metrics should

be used in order to get a more complete performance evaluation study. Due to these

reasons, the mentioned papers are discussed in this module.175

3.2.1. Topic 2.1: Performance evaluation metrics

In Topic 2.1, we discuss the key performance engineering steps: measurement,

analysis, and improvements. Regarding measurement, this module covers both moni-

toring/profiling tools, as well as simulation tools. Special attention is paid to multicore

metrics mainly based on the discussion presented in [10].180

An important set of current research is being done on real machines (e.g. thread

scheduling policies). In this regard, an interesting reading can be the work by Feliu

et al. [13] where performance counters are used to assist a thread-to-core allocation

policy on the Intel Xeon. We also present distinct profiling tools related to performance

counters (e.g. Perf, PAPI, Libpfm, etc.).185

Finally, practical stats for architects are studied. We present the basic principles and

how to use stats in real systems to interpret the results. We study confidence intervals

as a statistical tool that is useful to analyze the values of a given performance metric

when they are not deterministic, which is the case of measurements performed on real

systems.190

3.2.2. Topic 2.2: Performance accounting architectures

Accounting architectures [14, 15, 16] allow researchers to achieve a sound under-

standing about where performance can be lost. Thus, we strongly recommend to in-

clude the study of these architectures in advanced architecture courses. We start Topic

10

2.2 with the concept of CPI stacks [14] for single-threaded processors. These stacks195

represent the contribution of the major processor components to the system’s perfor-

mance. After that, different approaches to construct CPI (cycles per instruction) stacks

are analyzed, mainly focusing on that of the IBM Power5 and on the interval analysis

approach. Interval analysis is studied in detail; the performance penalty is analyzed

for both frontend miss events (e.g. I-Cache misses) and backend miss events (e.g. L2200

data cache). The implementation of the accounting architecture is also discussed in

detail in order to enable students to implement this architecture in a detailed multicore

simulator.

After the study of accounting architectures in single core processors, we proceed

with Topic 2.2 by explaining the accounting architecture for multicores [15]. The first205

step in this study is to understand the sources of interferences, which depend on the

shared resources. The base system presents two main shared resources, a shared L2

cache which acts as the LLC (last level cache) and the main memory resources.Two

types of interference at the LLC are studied and estimated, inter-thread cache misses

and intra-thread cache misses. Interferences at the main memory are estimated assum-210

ing an open page policy and FR-FCFS (first ready, first come first served) scheduling

policy. Students are provided with the equations to calculate all (inter- and intra-thread)

interferences at run time.

These architectures allow estimating the execution time that each benchmark would

experience in isolated execution. Therefore, they are of paramount importance to esti-215

mate the individual progress of each benchmark, which can be used as a powerful tool

to investigate on fairness-aware policies for shared resources.

Finally, Topic 2.2 could be extended by applying interval analysis to processors

including other type of cores like simultaneous multithreading (SMT) [16] cores or

graphic processing units (GPUs). Nevertheless, these studies are relatively more com-220

plex so we leave them as optional readings for those interested students.

3.3. Module 3: Caching

Advanced cache design is of paramount importance for multicore performance due

two main reasons. First, the miss latency introduces a serious performance penalty

11

when the accessed data is retrieved from the off-chip main memory. Second, shared225

caches can become contention points that increase the average memory access time.

Solutions to both problems require advanced techniques beyond classic cache perfor-

mance enhancements. Module 3 deals with the most successful techniques proposed

in the literature, as discussed below.

3.3.1. Topic 3.1: Advanced caching: concepts and problems230

In Topic 3.1, basic concepts related to cache performance such as working set, as-

sociativity and miss ratio are revised. Special emphasis is given to the fact that simply

reducing the miss ratio may not improve the performance, since miss latency depends

on where the block is located and latency-hiding mechanisms must be taken into ac-

count.235

After introducing basic caching concepts, several techniques to reduce miss rates

are overviewed. These techniques go beyond increasing associativity and cache size,

since blindly doing that will significantly increase access latency while only providing

incremental benefits on the hit ratio. Instead, some successful proposals are presented,

such as victim caches [17] or skewed associative caches [18]. The goal of these pro-240

posals is to reduce conflict misses without significantly impacting the access time.

Next, the topic deals with cache enhancements to reduce miss latencies. Basic

approaches, such multi-level cache hierarchies, critical word first, or subblocking are

reviewed, but special attention is paid to techniques aware of memory level parallelism

(MLP). In this regard, non-blocking caches are used to allow multiple outstanding miss245

requests. First, the implementation of non-blocking caches [19] is explained in detail

as well as the role of the miss status handling registers (MSHRs). Then, to demonstrate

the importance of MLP-aware microarchitectural techniques, an example is presented

where the optimal (regarding miss ratio) Belady’s replacement algorithm [20] obtains

lower performance than a basic MLP-aware replacement policy.250

The last part of Topic 3.1 studies the multicore memory hierarchy as a shared re-

source. This part analyzes benefits and disadvantages of cache sharing. Disadvantages

are mainly caused by uncontrolled sharing that can cause unfairness and even starva-

tion of individual threads. This is an ongoing research area that links with the next

12

topic.255

3.3.2. Topic 3.2: Advanced caching: papers

Topic 3.2 studies recent papers dealing with caching problems already introduced

in Topic 3.1. In particular, we focus on cache partitioning and insertion/replacement

policies.

Regarding cache partitioning, the Utility-based partitioning approach [21] is dis-260

cussed. This scheme partitions a shared cache among multiple applications depending

on the reduction in the number of cache misses that each application is likely to ex-

perience. We selected this approach because it includes the auxiliary tag directory, a

useful mechanism that has been used in other papers since it helps estimate the cache

behavior is stand-alone execution.265

With respect to insertion policies, the work by Seshadri et al. [22], which presents

the evicted-address filter, is studied. This approach implements a hardware structure

that holds the address of the most recently replaced blocks. This proposal decides the

position of the LRU (least recently used) queue in which the block should be inserted to

mitigate cache pollution and trashing. We selected this approach to illustrate insertion270

policies other than placing the incoming block at the top of the queue. With the same

aim, the work [23] by Qureshi et al. that proposes a MLP-aware cache replacement

policy is also studied.

3.4. Module 4: Main memory

The last module covers main memory issues in modern multicores. This module275

focuses on two main system components: the DRAM (dynamic random-access mem-

ory) organization and the memory controller. We start the module describing the main

memory subsystem as a set of off-chip DRAM modules connected to one or more

on-chip memory controllers. Then, we describe the major concerns affecting main

memory design: i) capacity, bandwidth and quality of service (QoS) requirements; ii)280

energy consumption and iii) DRAM technology scaling.

13

3.4.1. Topic 4.1: Main memory organization

In the first topic, the DRAM organization is deeply reviewed using a bottom-up

approach, starting from the DRAM memory cell. Once the basic cell is introduced,

cell arrays and banks are straightforward presented. The concept of bank is introduced285

as a mean to reduce the access time and to increase memory level parallelism. This

abstract concept then is placed in context by explaining how DRAM memory banks

expand across several chips with a narrower data path in order to reduce the manufac-

turing costs of DRAM memory chips, and how they work jointly and synchronously

to compound the wider data path of the banks. The internal organization of a memory290

chip is deeply analyzed with the students explaining the row buffer concept and how

it acts as a basic prefetcher. Once the bank and chip structures have been studied, in-

structors introduce the basic DRAM commands that the memory controller issues to

control DRAM memory access.

After the study of the chip organization, instructors define the concept of rank as a295

set of chips with their respective banks working in lockstep. Then, dual in-line mem-

ory module (DIMMs) are described as a set of ranks and memory channels are intro-

duced. Finally, instructors present different DRAM address mapping schemes varying

the physical address bits used to select the distinct components (banks, ranks, and

channels) of the multidimensional DRAM organization. This is an interesting topic to300

discuss since the optimal mapping scheme depends on the memory access patterns of

the executed workload.

3.4.2. Topic 4.2: Main memory scheduling

Finally, Module 4 covers the memory controller and memory request scheduling

topics. Instructors first explain how refresh is done in current DRAM memories and its305

implications in performance and energy consumption nowadays and in the near future.

We then devote some time to the memory controller, describing all its functions,

alternative locations (on-chip versus off-chip) and its components. Special attention is

paid to memory request queues and scheduling policies. Two main policies are intro-

duced and compared: FCFS and FR-FCFS. Finally, instructors review the two main310

ways of operation in current DRAM modules: open page and closed page, analyzing

14

how they handle the row buffers, as well as their implications on performance and

energy consumption.

4. AMA Learning Methodology

This section describes the proposed learning methodology to achieve the learning315

goals presented in Section 2, covering the skills and theoretical concepts of the course.

For this purpose, the proposed course applies five main teaching methods: i) research-

oriented lectures, ii) paper review & discussion, iii) practical exercises, iv) realistic lab

sessions, and v) paper presentation. Below, each of them is discussed.

4.1. Lectures320

Lectures are used with different purposes. On the one hand, the professor reviews

and presents the basic theoretical concepts required to enable students to follow all

the remaining activities planned for the course. On the other hand, lectures also serve

to motivate students. For this purpose, the professor introduces current research and

industry trends. In addition, the professor presents himself some research papers; either325

focusing on hot topics or fundamental papers that have had an important contribution

in the past (e.g., [5]).

4.2. Paper review and discussion

In the first class of the course (Module 0), the professor states the importance of re-

viewing papers and introduces the guidelines to review papers. The professor explains330

that reviewing papers consists not only on understanding the proposed approach, but

on analyzing the manuscript from a critical perspective, identifying the weaknesses and

strengths. To provide feedback in the reviewing skills, the papers are discussed in the

classroom.

This teaching method is implemented as follows. First, instructors assign one or335

two research papers to the students, that must be reviewed as homework. Students must

deliver a short review report (around half to one page) to the instructor at the begin-

ning of the paper discussion session, and before starting the core lecture. Basically,

15

the report contains four main points about the paper proposal: summary, strengths,

weakness, and ideas about how to improve the approach.340

Then, the professor chairs a short (10 to 20 minutes) session, where the key aspects

–pros and cons– of the studied paper are discussed. Usually, these students’ discus-

sions are co-scheduled with lectures related with the topics of the paper. Overall, each

student reviews around four papers during the course. All the students review the same

papers because it facilitates the students’ evaluation and makes students more proactive345

in the discussion.

The paper review and discussion teaching method allow the instructors to work

with active learning methodologies and improve skills such as oral communication and

critical analysis.

4.3. Exercises350

Unlike typical paper and pencil exercises, the proposed exercises are designed to

train students to deal with common research problems. Most of the exercises are in-

dividually performed using a spreadsheet like excel or libre office. This can be done

thanks to the classroom is equipped with enough desktop computers. The time taken to

solve a typical exercise is relatively low (e.g. from half an hour to one hour). Because355

of this short time, exercises are intermingled with lectures. This way allows students

to reinforce theoretical concepts. Below three exercises are discussed for illustrative

purposes.

4.3.1. Exercise example 1. Amdahl’s Law for multicores

This exercise focuses on the work Amdahl’s Law in the Multicore Era [24] by Mark360

Hill. To perform the exercise, the instructor first explains basic concepts on symmetric

and asymmetric multicores. The study focuses on a bounded chip area that can fit

N simple cores (i.e., a symmetric multicore). Alternatively, this area can also fit an

asymmetric multicore consisting of: i) an enhanced (big) core that occupies an area

equivalent to R simple cores (base core equivalents or BCEs), and ii) N − R simple365

cores. In the exercise, students must determine the speedup of an asymmetric multicore

with respect to the baseline symmetric multicore while varying the size of the enhanced

16

0	

50	

100	

150	

200	

250	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	

A
ss

ym
m

et
ric

 S
pe

ed
up

n BCEs

F=0,999	

F=0,99	

F=0,975	

F=0,9	

F=0,5	

Figure 2: Resulting figure of the Amdahl law exercise for asymmetric multicores with a big core (area

equivalent to n cores –X axis–) and 256− n simple cores (BCEs).

core. Figure 2 presents the results for N = 256. Different curves are presented varying

the parallel fraction F of the workload.

This exercise is really interesting and illustrates the need of heterogenous cores. In370

addition it is instructive since students fail to represent correctly the curve in their first

two or three attempts corroborating Mark Hill’s words: “Everyone knows Amdahl’s

Law but quickly forgets it”.

4.3.2. Exercise example 2: Metrics for measuring the performance of multiprogrammed

workloads375

Multicores typically run multiprogram workloads most of the time. These work-

loads consist of multiple independent applications, where each one runs on a specific

core. The evaluation of such workloads is not straightforward mainly due to multi-

cores implement shared resources. That is, applications interfere among them when

accessing to such resources. Because of the interference, the execution time of a given380

application becomes unpredictable. Moreover, the multicore can favor the execution

time of a given application at the cost of the others. To deal with this fact, recent work

has claimed that there is a need to evaluate both performance and fairness in these sys-

17

tems. In this sense, new metrics have been recently proposed to deal with performance

and fairness.385

In this exercise students are provided with performance values (e.g. instructions per

cycle in isolation and in multicore execution) of different applications across several

machines. Students must use the provided values in a spreadsheet, where they must

implement the equations and obtain different global and per application performance

metrics. Once they have the results, students must argue which is the best machine390

considering the tradeoff between performance and fairness.

4.3.3. Exercise example 3. Energy consumption estimation in caches

A main design concern in current microprocessors is static and dynamic energy

consumption. In this exercise students are asked to estimate the energy consumption of

a L1 data cache. Dynamic energy can be obtained as the energy consumed by a single395

cache access multiplied by the number of cache accesses, while static energy grows

linearly with the execution time.

To estimate both types of energy, the students combine the results of two tools:

Multi2Sim [25] and CACTI [26]. Multi2Sim is used to gather the execution time and

number of cache accesses while CACTI provides the dynamic energy consumed by a400

single access and the leakage (static energy) incurred by a given cache geometry and

technology node.

Students must obtain the required inputs to compute the energy consumption with

the aforementioned tools for a given set of benchmarks. To make the exercise length

reasonable, we provide students the script to execute the benchmarks for a limited405

number of instructions. After that, they must deduce how to calculate, with the help of

an spreadsheet, the energy consumption broken down in static and dynamic for a given

processor clock. Figure 3 presents the resulting figure of this exercise.

4.4. Lab sessions

Lab sessions are designed pursuing four main goals: i) familiarize students with a410

detailed state-of-the-art multicore simulation framework, ii) enable students to accu-

rately model multicores, iii) obtain results with representative workloads, iv) train stu-

18

Figure 3: Resulting figure of the energy estimation exercise. Legend. Dynamic, Static: Dynamic and static

energy consumption, respectively.

dents to analyze performance results and understand how multicore processors work.

To achieve these goals, we choose Multi2Sim as simulation framework, used for re-

search both in the academia and the industry.415

To perform the experiments, we provide the students several scripts that run a short

simulation with a given configuration. The obtained results must be plotted and ana-

lyzed with the help of a spreadsheet. As the exercises, the lab sessions are also carried

out with the computers available at the classroom and take a 2 1
2 -hour session. The main

differences between both teaching methods lie on the time length and the complexity420

of the job to be done.

Students must prepare a report for each lab session where they must plot and discuss

the obtained results. The report is revised by the instructor considering whether the

student relates the discussed results with theoretical lectures, exercises or other lab

sessions. Then, the revised report is used to provide feedback to the students. Below,425

three lab sessions are discussed for illustrative purposes.

4.4.1. Lab example 1. Single-threaded monocore processor

In this lab, students analyze the microarchitecture of a single-threaded processor.

The purpose of this lab is to provide a solid understanding of the processor stalls that

occur during the execution of applications. With this lab, students realize that most of430

19

Figure 4: Resulting figure of laboratory 1. Legend. rename, lsq, iq, rob: stall time due to lack of free

physical registers, entries in the load-store queue, entries in the instruction queue, entries in the reorder buffer,

respectively. uop queue: stall time due to empty fetch queue. spec: time lost dispatching misspeculated

instructions. used: time used dispatching useful instructions.

these stalls are mainly related to long memory latency miss events.

Once students download and compile the Multi2Sim source code, the instructor

explains the code to detect the multiple events that cause the dispatch to stall. During

the lab, it is discussed if the default implementation takes into account all the possible

causes or some of them are missing. Students are encouraged to back their claims with435

the information provided during regular lectures. After some discussion, the instructor

indicates how to update the simulator before running the experiments for all the SPEC

CPU 2006 benchmarks [27].

The lab explores the following dispatch stall causes: i) branch mispredictions, ii)

lack of free physical registers, iii) lack of free entries in the load-store queue (LSQ), iv)440

lack of entries in the instruction queue (IQ), and v) lack of entries in the ROB. We start

with a baseline configuration, where branch misprediction events is the main cause

that stalls the processor. Figure 4 shows the resulting figure. It can be appreciated that

the effects of branch mispredictions broken down in misspeculated instructions (spec

label) and empty fetch queue (uop queue label), take all together more execution time445

20

Figure 5: Resulting figure of laboratory 2. Legend. lbm, leslie3d, gcc: slowdown due to concurrent execution

of 3 instances of lbm, leslie3d, or gcc, respectively.

in some benchmarks than useful instructions (used) do. As it can be observed, these

stalls completely hide in the figure other possible stalls (i.e. those caused by a lack of

entries in the LSQ, the IQ, and the ROB).

After this observation, students are asked to modify the baseline configuration to

reduce the misprediction penalty. As a consequence, other stall causes or performance450

bottlenecks rise. The students should iteratively improve the baseline configuration

step by step until performance stabilizes.

4.4.2. Lab example 2. Multicore evaluation with multiprogram workloads

In this laboratory, students explore the impact of multicore execution on the indi-

vidual per-application performance.455

First, students characterize the behavior of each application in stand-alone execu-

tion. They measure metrics such as the instructions per cycle (IPC), the L1 cache

misses per kilo-instruction committed the (MPKIL1) and the MPKIL2.

Second, the study concentrates on analyzing the impact of the co-runners interfer-

ence in multicore execution. Each application is executed with 1 and 3 instances of460

the same co-runner in a 2- or 4-core processor, respectively. Different co-runners are

21

analyzed presenting different requirements of the L2 shared cache. Figure 5 depicts the

resulting figure of the 4-core experiment where each bar shows the impact of a specific

co-runner (lbm, leslie3d, and gcc). Students realize that the execution time of a given

application is unpredictable since it can widely vary depending on the co-runner.465

4.4.3. Lab example 3. Impact of cache partitioning on performance and fairness

This lab session examines different attempts to improve multicore fairness and per-

formance by acting on the shared L2 cache. Three 8-way L2 cache schemes are eval-

uated: i) default configuration where no sharing policy is considered, ii) static way

partitioning in which the 8 ways of each set are equally distributed among the 4 cores470

(2 ways per core), and iii) static set partitioning where the same amount of cache sets

are assigned to each core.

To evaluate these schemes, students measure different performance and fairness

indicators across multiple 4-application workloads. After that, students analyze the

tradeoff between performance and fairness.475

4.5. Paper presentation

At the end of the course, each student is asked to present a conference paper in the

classroom. The aim of this activity is to develop the oral communication skills by doing

a real presentation similarly as done in a conference. For this purpose, the instructor

provides a list of papers belonging to any of the studied topics, e.g. advanced caching480

(module 3) or main memory organization (module 4). All the papers in the list have

been presented in a recent conference. A key point of all these papers is that the slides

used by the presenting author in the conference are available on the internet. This way

eases the student’s job, which mainly consists in studying the paper and its associated

slides. Of course, students can modify and adapt available slides.485

5. Course Assessment

The success of the course relies on two main pillars, the studied contents and the

employed learning methodologies. To evaluate and provide feedback about these pil-

22

Table 4: Course contents assessment.
Statement Totally disagree Disagree Average Agree Totally Agree

1. The theoretical contents cover in a wide extend

recent processors and state-of-the-art research 0% 0% 0 14.3% 85.7%

2. The course presents current problems in current processors

and analyzes the solutions to overcome them 0% 0% 0 57.1% 42.9%

3. Studying existing mechanisms to measure multicore performance helps me

to understand better how the system works and where performance is lost 0% 0% 0 % 42.9% 57.1

4. Studying updated contents motivates me to the study of the course topics 0% 0% 14.2% 42.9% 42.9

lars, students were asked to complete two surveys, consisting of a set of statements,

where students mark their level of satisfaction ranging from totally disagree to totally490

agree.

The results of the survey of the Course Content Assessment are presented in Ta-

ble 4. The marks of this questionnaire highlight the importance of studying existing

mechanisms and recent processors. Results show that students agree and totally

agree that these aspects help them to achieve a better understanding about how the495

real systems work. Regarding motivation (fourth question), most of them (by 86%)

state that these updated contents motivate them to study the course topics. Thus, the

last question shows a clear sign of the success of the studied contents because in-

creasing students’ motivation was one of the aim that we chased with this new course

organization.500

The survey of the Course Methodology Assessment is presented in Table 5. As

observed in the first three questions, students have had a good acceptance about pa-

per reading, discussion and paper presentation methods. Most of the students consider

that using active teaching methods such as exercises and lab sessions, in which stu-

dents play an active role, helps them to better understand theoretical concepts. This is505

demonstrated by the results of statements 4 and 5, which are positively scored by more

than 85% of students and did not receive any negative score. Regarding labs, notice

that students agree in the importance of writing lab reports after laboratories. An inter-

esting observation is that students perceive that the teaching methodologies contribute

to students’ cross-curricula skills (e.g. communication, analysis and writing skills). In510

23

Table 5: Course methodology assessment.

Statement Totally disagree Disagree Average Agree Totally Agree

1. Reading papers develops the critical analysis that helps identifying

the most important issues of each proposal 0% 0% 14.3% 28.6 57.1%

2. Paper discussion at class help me to

develop communication skills (public speaking and ideas discussion) 0% 0% 14.2% 42.9% 42.9%

3. Presenting a top conference paper in class helps me to improve

communication skills 0% 0% 0 % 42.9% 57.1

4. Research-oriented exercises help me to understand

theoretical aspects 0% 0% 14.2% 42.9% 42.9%

5. Lab sessions help me to better understand the processor 0% 0% 14.3% 57.1% 28.6

6. Writing the lab report after the Laboratory helps me to improve

analysis and writing skills 0% 0% 0 57.1% 42.9%

7. In general, I find the followed methodology (exercises, paper reading,

Lab sessions) very complete in comparison with other courses 0% 0% 0 57.1% 42.9%

this context, the work related with papers’ review has contributed specially to develop

these skills. Special attention must be paid to the last statement where all the students

found the methodology very complete compared to other existing courses.

In short, the results of the surveys show that the AMA methodology motivates

the study and helps them to achieve a better understanding of the topics addressed in515

the course. Moreover, the second survey shows that the teaching methods develop

students’ analysis and communication abilities, which are fundamental for the profes-

sional activity.

6. Conclusions, lessons learned and future directions

This paper has presented the contents of the course Advanced Multicore Architec-520

tures offered at Universitat Politècnica de València. The course is organized in four

modules, three of them devoted to the study of the three main components of a current

multicore (core, caches, and main memory) and the other tackling multicore perfor-

mance evaluation. The course has been designed to motivate students on the study of

advanced computer architecture topics and to enable them to research on these topics.525

24

For this purpose, the course includes cutting-edge contents at lectures, highlighting cur-

rent research trends on the academia and the industry, and makes use of active learning

methodologies.

In addition, this paper presents an overview of the main teaching methods where the

course relies on in order to fulfill its objectives. These teaching methods are lectures,530

paper reviews & discussion, exercises, labs, and paper presentation; all of them with the

aim of providing students the skills to enable them to research on the studied computer

architecture topics.

We would like to remark the main lessons learned that could help other colleagues

to adapt the proposed approach to other contexts:535

• A key issue is the selection of an appropriate set of papers for revision and

discussion. It is important that this set contains both classic papers (e.g. ger-

minal/visionary papers, widely referenced, that have had a great impact both

in the academia and the industry) and recent papers, showing the current re-

search/industry trends. In our opinion, both kind of papers motivate the students.540

• Another issue is if the course focus should be either wide (more topics with few

details) or deep (less topics but more details and lab training). Our experience

tells us that the first approach, in general, demotivates most of the students. In

contrast, the second option allows students to master some topics. Thus, we feel

that the latter approach should be followed. The mastery of a subject makes the545

student gain confidence and motivation to go on.

• It is highly recommended that both presentation of papers and laboratories are re-

lated to taught lectures and reviewed documents. Working on the same direction

helps students get more performance and benefits of their work.

As for future AMA course directions, we plan to include contents related to many-550

core and GPU processors due to their growing importance in the high-performance

computing domain. In this regard, an interesting processor is the Xeon Phi “Knights

Landing”, an x86-compatible many-core recently launched by Intel that includes 72

computing cores.

25

Acknowledgments555

This work was supported in part by the Spanish Ministerio de Economı́a y Compet-

itividad (MINECO) and by Plan E funds under Grant TIN2014–62246–EXP and Grant

TIN2015–66972–C5–1–R, and by Generalitat Valenciana under grant AICO/2016/059.

Authors also would like to thank Onur Mutlu for making available online his valuable

teaching material.560

References

[1] I. Estévez-Ayres, C. Alario-Hoyos, M. Pérez-Sanagustı́n, A. Pardo, R. M. Crespo-

Garcı́a, D. Leony, H. A. P. G., C. Delgado-Kloos, A methodology for improving

active learning engineering courses with a large number of students and teach-

ers through feedback gathering and iterative refinement, International Journal of565

Technology and Design Education 25 (3) (2014) 387–408.

[2] O. Arbelaitz, J. I. Martı́n, J. Muguerza, Analysis of introducing active learning

methodologies in a basic computer architecture course, IEEE Transactions on

Education 58 (2).

[3] A. J. Smith, The task of the referee, Computer 23 (4) (1990) 65–71. doi:10.570

1109/2.55470.

[4] R. E. Kessler, The alpha 21264 microprocessor, IEEE Micro 19 (2) (1999) 24–36.

doi:10.1109/40.755465.

[5] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, K. Chang, The case for

a single-chip multiprocessor, in: ASPLOS, 1996, pp. 2–11. doi:10.1145/575

237090.237140.

[6] S. Palacharla, N. P. Jouppi, J. E. Smith, Complexity-effective superscalar proces-

sors, in: ISCA, 1997, pp. 206–218. doi:10.1145/264107.264201.

[7] R. R. Schaller, Moore’s law: Past, present, and future, IEEE Spectr. 34 (6) (1997)

52–59. doi:10.1109/6.591665.580

26

http://dx.doi.org/10.1109/2.55470
http://dx.doi.org/10.1109/2.55470
http://dx.doi.org/10.1109/2.55470
http://dx.doi.org/10.1109/40.755465
http://dx.doi.org/10.1145/237090.237140
http://dx.doi.org/10.1145/237090.237140
http://dx.doi.org/10.1145/237090.237140
http://dx.doi.org/10.1145/264107.264201
http://dx.doi.org/10.1109/6.591665

[8] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,

B. Sano, S. Smith, R. Stets, B. Verghese, Piranha: A scalable architecture

based on single-chip multiprocessing, in: ISCA, 2000, pp. 282–293. doi:

10.1145/339647.339696.

[9] https://www.youtube.com/watch?v=KfgWmQpzD74.585

[10] V. Selfa, J. Sahuquillo, C. Gómez, M. E. Gómez, Methodologies and performance

metrics to evaluate multiprogram workloads, in: PDP, 2015.

[11] S. Eyerman, L. Eeckhout, Restating the case for weighted-ipc metrics to evalu-

ate multiprogram workload performance, IEEE Comput. Archit. Lett. 99 (2013)

1. doi:http://doi.ieeecomputersociety.org/10.1109/L-CA.590

2013.9.

[12] P. Michaud, Demystifying multicore throughput metrics, IEEE Comput. Archit.

Lett. 12 (2) (2013) 63–66. doi:http://doi.ieeecomputersociety.

org/10.1109/L-CA.2012.25.

[13] J. Feliu, J. Sahuquillo, S. Petit, J. Duato, L1-bandwidth aware thread allocation595

in multicore SMT processors, in: PACT, 2013, pp. 123–132. doi:10.1109/

PACT.2013.6618810.

[14] S. Eyerman, L. Eeckhout, T. Karkhanis, J. E. Smith, A performance counter archi-

tecture for computing accurate cpi components, in: ASPLOS, 2006, pp. 175–184.

doi:10.1145/1168857.1168880.600

[15] K. Du Bois, S. Eyerman, L. Eeckhout, Per-thread cycle accounting in multicore

processors, ACM Trans. Archit. Code Optim. 9 (4) (2013) 29:1–29:22. doi:

10.1145/2400682.2400688.

[16] S. Eyerman, L. Eeckhout, Per-thread cycle accounting in smt processors, in: AS-

PLOS, 2009, pp. 133–144. doi:10.1145/1508244.1508260.605

[17] N. P. Jouppi, Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers, in: ISCA, 1990, pp. 364–373.

doi:10.1145/325164.325162.

27

http://dx.doi.org/10.1145/339647.339696
http://dx.doi.org/10.1145/339647.339696
http://dx.doi.org/10.1145/339647.339696
https://www.youtube.com/watch?v=KfgWmQpzD74
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/L-CA.2013.9
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/L-CA.2013.9
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/L-CA.2013.9
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/L-CA.2012.25
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/L-CA.2012.25
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/L-CA.2012.25
http://dx.doi.org/10.1109/PACT.2013.6618810
http://dx.doi.org/10.1109/PACT.2013.6618810
http://dx.doi.org/10.1109/PACT.2013.6618810
http://dx.doi.org/10.1145/1168857.1168880
http://dx.doi.org/10.1145/2400682.2400688
http://dx.doi.org/10.1145/2400682.2400688
http://dx.doi.org/10.1145/2400682.2400688
http://dx.doi.org/10.1145/1508244.1508260
http://dx.doi.org/10.1145/325164.325162

[18] A. Seznec, A case for two-way skewed-associative caches, in: ISCA, 1993, pp.

169–178. doi:10.1145/165123.165152.610

[19] D. Kroft, Lockup-free instruction fetch/prefetch cache organization, in: ISCA,

1981, pp. 81–87.

[20] L. A. Belady, A study of replacement algorithms for a virtual-storage computer,

IBM Syst. J. 5 (2) (1966) 78–101. doi:10.1147/sj.52.0078.

[21] M. K. Qureshi, Y. N. Patt, Utility-based cache partitioning: A low-overhead, high-615

performance, runtime mechanism to partition shared caches, in: MICRO, 2006,

pp. 423–432. doi:10.1109/MICRO.2006.49.

[22] V. Seshadri, O. Mutlu, M. A. Kozuch, T. C. Mowry, The evicted-address filter:

A unified mechanism to address both cache pollution and thrashing, in: PACT,

2012, pp. 355–366. doi:10.1145/2370816.2370868.620

[23] M. K. Qureshi, D. N. Lynch, O. Mutlu, Y. N. Patt, A case for mlp-aware cache

replacement, in: ISCA, 2006, pp. 167–178. doi:10.1109/ISCA.2006.5.

[24] M. D. Hill, M. R. Marty, Amdahl’s law in the multicore era, Computer 41 (7)

(2008) 33–38.

[25] R. Ubal, J. Sahuquillo, S. Petit, P. López, Multi2sim: A simulation framework to625

evaluate multicore-multithread processors, in: SBAC-PAD, 2007, pp. 62–68.

[26] T. Thozhiyoor, N. Muralimanohar, J. Ahn, N. Jouppi, Cacti 5.1, Tech. rep., HP-

2008-20, HP Labs (2008).

[27] C. D. Spradling, Spec cpu2006 benchmark tools, SIGARCH Comput. Archit.

News 35 (1) (2007) 130–134.630

28

http://dx.doi.org/10.1145/165123.165152
http://dx.doi.org/10.1147/sj.52.0078
http://dx.doi.org/10.1109/MICRO.2006.49
http://dx.doi.org/10.1145/2370816.2370868
http://dx.doi.org/10.1109/ISCA.2006.5

